rcutree.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/percpu.h>
  45. #include <linux/notifier.h>
  46. #include <linux/cpu.h>
  47. #include <linux/mutex.h>
  48. #include <linux/time.h>
  49. #include <linux/kernel_stat.h>
  50. #include <linux/wait.h>
  51. #include <linux/kthread.h>
  52. #include <linux/prefetch.h>
  53. #include <linux/delay.h>
  54. #include <linux/stop_machine.h>
  55. #include <linux/random.h>
  56. #include "rcutree.h"
  57. #include <trace/events/rcu.h>
  58. #include "rcu.h"
  59. /* Data structures. */
  60. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  61. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  62. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) { \
  63. .level = { &sname##_state.node[0] }, \
  64. .call = cr, \
  65. .fqs_state = RCU_GP_IDLE, \
  66. .gpnum = 0UL - 300UL, \
  67. .completed = 0UL - 300UL, \
  68. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  69. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  70. .orphan_donetail = &sname##_state.orphan_donelist, \
  71. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  72. .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
  73. .name = #sname, \
  74. .abbr = sabbr, \
  75. }
  76. struct rcu_state rcu_sched_state =
  77. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  78. DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
  79. struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  80. DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
  81. static struct rcu_state *rcu_state;
  82. LIST_HEAD(rcu_struct_flavors);
  83. /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
  84. static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
  85. module_param(rcu_fanout_leaf, int, 0444);
  86. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  87. static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
  88. NUM_RCU_LVL_0,
  89. NUM_RCU_LVL_1,
  90. NUM_RCU_LVL_2,
  91. NUM_RCU_LVL_3,
  92. NUM_RCU_LVL_4,
  93. };
  94. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  95. /*
  96. * The rcu_scheduler_active variable transitions from zero to one just
  97. * before the first task is spawned. So when this variable is zero, RCU
  98. * can assume that there is but one task, allowing RCU to (for example)
  99. * optimize synchronize_sched() to a simple barrier(). When this variable
  100. * is one, RCU must actually do all the hard work required to detect real
  101. * grace periods. This variable is also used to suppress boot-time false
  102. * positives from lockdep-RCU error checking.
  103. */
  104. int rcu_scheduler_active __read_mostly;
  105. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  106. /*
  107. * The rcu_scheduler_fully_active variable transitions from zero to one
  108. * during the early_initcall() processing, which is after the scheduler
  109. * is capable of creating new tasks. So RCU processing (for example,
  110. * creating tasks for RCU priority boosting) must be delayed until after
  111. * rcu_scheduler_fully_active transitions from zero to one. We also
  112. * currently delay invocation of any RCU callbacks until after this point.
  113. *
  114. * It might later prove better for people registering RCU callbacks during
  115. * early boot to take responsibility for these callbacks, but one step at
  116. * a time.
  117. */
  118. static int rcu_scheduler_fully_active __read_mostly;
  119. #ifdef CONFIG_RCU_BOOST
  120. /*
  121. * Control variables for per-CPU and per-rcu_node kthreads. These
  122. * handle all flavors of RCU.
  123. */
  124. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  125. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  126. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  127. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  128. #endif /* #ifdef CONFIG_RCU_BOOST */
  129. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  130. static void invoke_rcu_core(void);
  131. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  132. /*
  133. * Track the rcutorture test sequence number and the update version
  134. * number within a given test. The rcutorture_testseq is incremented
  135. * on every rcutorture module load and unload, so has an odd value
  136. * when a test is running. The rcutorture_vernum is set to zero
  137. * when rcutorture starts and is incremented on each rcutorture update.
  138. * These variables enable correlating rcutorture output with the
  139. * RCU tracing information.
  140. */
  141. unsigned long rcutorture_testseq;
  142. unsigned long rcutorture_vernum;
  143. /*
  144. * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
  145. * permit this function to be invoked without holding the root rcu_node
  146. * structure's ->lock, but of course results can be subject to change.
  147. */
  148. static int rcu_gp_in_progress(struct rcu_state *rsp)
  149. {
  150. return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
  151. }
  152. /*
  153. * Note a quiescent state. Because we do not need to know
  154. * how many quiescent states passed, just if there was at least
  155. * one since the start of the grace period, this just sets a flag.
  156. * The caller must have disabled preemption.
  157. */
  158. void rcu_sched_qs(int cpu)
  159. {
  160. struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
  161. if (rdp->passed_quiesce == 0)
  162. trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
  163. rdp->passed_quiesce = 1;
  164. }
  165. void rcu_bh_qs(int cpu)
  166. {
  167. struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
  168. if (rdp->passed_quiesce == 0)
  169. trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
  170. rdp->passed_quiesce = 1;
  171. }
  172. /*
  173. * Note a context switch. This is a quiescent state for RCU-sched,
  174. * and requires special handling for preemptible RCU.
  175. * The caller must have disabled preemption.
  176. */
  177. void rcu_note_context_switch(int cpu)
  178. {
  179. trace_rcu_utilization("Start context switch");
  180. rcu_sched_qs(cpu);
  181. rcu_preempt_note_context_switch(cpu);
  182. trace_rcu_utilization("End context switch");
  183. }
  184. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  185. DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  186. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  187. .dynticks = ATOMIC_INIT(1),
  188. };
  189. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  190. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  191. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  192. module_param(blimit, long, 0444);
  193. module_param(qhimark, long, 0444);
  194. module_param(qlowmark, long, 0444);
  195. static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
  196. static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
  197. module_param(jiffies_till_first_fqs, ulong, 0644);
  198. module_param(jiffies_till_next_fqs, ulong, 0644);
  199. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
  200. static void force_quiescent_state(struct rcu_state *rsp);
  201. static int rcu_pending(int cpu);
  202. /*
  203. * Return the number of RCU-sched batches processed thus far for debug & stats.
  204. */
  205. long rcu_batches_completed_sched(void)
  206. {
  207. return rcu_sched_state.completed;
  208. }
  209. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  210. /*
  211. * Return the number of RCU BH batches processed thus far for debug & stats.
  212. */
  213. long rcu_batches_completed_bh(void)
  214. {
  215. return rcu_bh_state.completed;
  216. }
  217. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  218. /*
  219. * Force a quiescent state for RCU BH.
  220. */
  221. void rcu_bh_force_quiescent_state(void)
  222. {
  223. force_quiescent_state(&rcu_bh_state);
  224. }
  225. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  226. /*
  227. * Record the number of times rcutorture tests have been initiated and
  228. * terminated. This information allows the debugfs tracing stats to be
  229. * correlated to the rcutorture messages, even when the rcutorture module
  230. * is being repeatedly loaded and unloaded. In other words, we cannot
  231. * store this state in rcutorture itself.
  232. */
  233. void rcutorture_record_test_transition(void)
  234. {
  235. rcutorture_testseq++;
  236. rcutorture_vernum = 0;
  237. }
  238. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  239. /*
  240. * Record the number of writer passes through the current rcutorture test.
  241. * This is also used to correlate debugfs tracing stats with the rcutorture
  242. * messages.
  243. */
  244. void rcutorture_record_progress(unsigned long vernum)
  245. {
  246. rcutorture_vernum++;
  247. }
  248. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  249. /*
  250. * Force a quiescent state for RCU-sched.
  251. */
  252. void rcu_sched_force_quiescent_state(void)
  253. {
  254. force_quiescent_state(&rcu_sched_state);
  255. }
  256. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  257. /*
  258. * Does the CPU have callbacks ready to be invoked?
  259. */
  260. static int
  261. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  262. {
  263. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  264. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  265. }
  266. /*
  267. * Does the current CPU require a not-yet-started grace period?
  268. * The caller must have disabled interrupts to prevent races with
  269. * normal callback registry.
  270. */
  271. static int
  272. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  273. {
  274. int i;
  275. if (rcu_gp_in_progress(rsp))
  276. return 0; /* No, a grace period is already in progress. */
  277. if (rcu_nocb_needs_gp(rsp))
  278. return 1; /* Yes, a no-CBs CPU needs one. */
  279. if (!rdp->nxttail[RCU_NEXT_TAIL])
  280. return 0; /* No, this is a no-CBs (or offline) CPU. */
  281. if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
  282. return 1; /* Yes, this CPU has newly registered callbacks. */
  283. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
  284. if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
  285. ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
  286. rdp->nxtcompleted[i]))
  287. return 1; /* Yes, CBs for future grace period. */
  288. return 0; /* No grace period needed. */
  289. }
  290. /*
  291. * Return the root node of the specified rcu_state structure.
  292. */
  293. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  294. {
  295. return &rsp->node[0];
  296. }
  297. /*
  298. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  299. *
  300. * If the new value of the ->dynticks_nesting counter now is zero,
  301. * we really have entered idle, and must do the appropriate accounting.
  302. * The caller must have disabled interrupts.
  303. */
  304. static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
  305. bool user)
  306. {
  307. trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
  308. if (!user && !is_idle_task(current)) {
  309. struct task_struct *idle = idle_task(smp_processor_id());
  310. trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
  311. ftrace_dump(DUMP_ORIG);
  312. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  313. current->pid, current->comm,
  314. idle->pid, idle->comm); /* must be idle task! */
  315. }
  316. rcu_prepare_for_idle(smp_processor_id());
  317. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  318. smp_mb__before_atomic_inc(); /* See above. */
  319. atomic_inc(&rdtp->dynticks);
  320. smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
  321. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  322. /*
  323. * It is illegal to enter an extended quiescent state while
  324. * in an RCU read-side critical section.
  325. */
  326. rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
  327. "Illegal idle entry in RCU read-side critical section.");
  328. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
  329. "Illegal idle entry in RCU-bh read-side critical section.");
  330. rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
  331. "Illegal idle entry in RCU-sched read-side critical section.");
  332. }
  333. /*
  334. * Enter an RCU extended quiescent state, which can be either the
  335. * idle loop or adaptive-tickless usermode execution.
  336. */
  337. static void rcu_eqs_enter(bool user)
  338. {
  339. long long oldval;
  340. struct rcu_dynticks *rdtp;
  341. rdtp = &__get_cpu_var(rcu_dynticks);
  342. oldval = rdtp->dynticks_nesting;
  343. WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
  344. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
  345. rdtp->dynticks_nesting = 0;
  346. else
  347. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  348. rcu_eqs_enter_common(rdtp, oldval, user);
  349. }
  350. /**
  351. * rcu_idle_enter - inform RCU that current CPU is entering idle
  352. *
  353. * Enter idle mode, in other words, -leave- the mode in which RCU
  354. * read-side critical sections can occur. (Though RCU read-side
  355. * critical sections can occur in irq handlers in idle, a possibility
  356. * handled by irq_enter() and irq_exit().)
  357. *
  358. * We crowbar the ->dynticks_nesting field to zero to allow for
  359. * the possibility of usermode upcalls having messed up our count
  360. * of interrupt nesting level during the prior busy period.
  361. */
  362. void rcu_idle_enter(void)
  363. {
  364. unsigned long flags;
  365. local_irq_save(flags);
  366. rcu_eqs_enter(false);
  367. local_irq_restore(flags);
  368. }
  369. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  370. #ifdef CONFIG_RCU_USER_QS
  371. /**
  372. * rcu_user_enter - inform RCU that we are resuming userspace.
  373. *
  374. * Enter RCU idle mode right before resuming userspace. No use of RCU
  375. * is permitted between this call and rcu_user_exit(). This way the
  376. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  377. * when the CPU runs in userspace.
  378. */
  379. void rcu_user_enter(void)
  380. {
  381. rcu_eqs_enter(1);
  382. }
  383. /**
  384. * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
  385. * after the current irq returns.
  386. *
  387. * This is similar to rcu_user_enter() but in the context of a non-nesting
  388. * irq. After this call, RCU enters into idle mode when the interrupt
  389. * returns.
  390. */
  391. void rcu_user_enter_after_irq(void)
  392. {
  393. unsigned long flags;
  394. struct rcu_dynticks *rdtp;
  395. local_irq_save(flags);
  396. rdtp = &__get_cpu_var(rcu_dynticks);
  397. /* Ensure this irq is interrupting a non-idle RCU state. */
  398. WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
  399. rdtp->dynticks_nesting = 1;
  400. local_irq_restore(flags);
  401. }
  402. #endif /* CONFIG_RCU_USER_QS */
  403. /**
  404. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  405. *
  406. * Exit from an interrupt handler, which might possibly result in entering
  407. * idle mode, in other words, leaving the mode in which read-side critical
  408. * sections can occur.
  409. *
  410. * This code assumes that the idle loop never does anything that might
  411. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  412. * architecture violates this assumption, RCU will give you what you
  413. * deserve, good and hard. But very infrequently and irreproducibly.
  414. *
  415. * Use things like work queues to work around this limitation.
  416. *
  417. * You have been warned.
  418. */
  419. void rcu_irq_exit(void)
  420. {
  421. unsigned long flags;
  422. long long oldval;
  423. struct rcu_dynticks *rdtp;
  424. local_irq_save(flags);
  425. rdtp = &__get_cpu_var(rcu_dynticks);
  426. oldval = rdtp->dynticks_nesting;
  427. rdtp->dynticks_nesting--;
  428. WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
  429. if (rdtp->dynticks_nesting)
  430. trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
  431. else
  432. rcu_eqs_enter_common(rdtp, oldval, true);
  433. local_irq_restore(flags);
  434. }
  435. /*
  436. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  437. *
  438. * If the new value of the ->dynticks_nesting counter was previously zero,
  439. * we really have exited idle, and must do the appropriate accounting.
  440. * The caller must have disabled interrupts.
  441. */
  442. static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
  443. int user)
  444. {
  445. smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
  446. atomic_inc(&rdtp->dynticks);
  447. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  448. smp_mb__after_atomic_inc(); /* See above. */
  449. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  450. rcu_cleanup_after_idle(smp_processor_id());
  451. trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
  452. if (!user && !is_idle_task(current)) {
  453. struct task_struct *idle = idle_task(smp_processor_id());
  454. trace_rcu_dyntick("Error on exit: not idle task",
  455. oldval, rdtp->dynticks_nesting);
  456. ftrace_dump(DUMP_ORIG);
  457. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  458. current->pid, current->comm,
  459. idle->pid, idle->comm); /* must be idle task! */
  460. }
  461. }
  462. /*
  463. * Exit an RCU extended quiescent state, which can be either the
  464. * idle loop or adaptive-tickless usermode execution.
  465. */
  466. static void rcu_eqs_exit(bool user)
  467. {
  468. struct rcu_dynticks *rdtp;
  469. long long oldval;
  470. rdtp = &__get_cpu_var(rcu_dynticks);
  471. oldval = rdtp->dynticks_nesting;
  472. WARN_ON_ONCE(oldval < 0);
  473. if (oldval & DYNTICK_TASK_NEST_MASK)
  474. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  475. else
  476. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  477. rcu_eqs_exit_common(rdtp, oldval, user);
  478. }
  479. /**
  480. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  481. *
  482. * Exit idle mode, in other words, -enter- the mode in which RCU
  483. * read-side critical sections can occur.
  484. *
  485. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  486. * allow for the possibility of usermode upcalls messing up our count
  487. * of interrupt nesting level during the busy period that is just
  488. * now starting.
  489. */
  490. void rcu_idle_exit(void)
  491. {
  492. unsigned long flags;
  493. local_irq_save(flags);
  494. rcu_eqs_exit(false);
  495. local_irq_restore(flags);
  496. }
  497. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  498. #ifdef CONFIG_RCU_USER_QS
  499. /**
  500. * rcu_user_exit - inform RCU that we are exiting userspace.
  501. *
  502. * Exit RCU idle mode while entering the kernel because it can
  503. * run a RCU read side critical section anytime.
  504. */
  505. void rcu_user_exit(void)
  506. {
  507. rcu_eqs_exit(1);
  508. }
  509. /**
  510. * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
  511. * idle mode after the current non-nesting irq returns.
  512. *
  513. * This is similar to rcu_user_exit() but in the context of an irq.
  514. * This is called when the irq has interrupted a userspace RCU idle mode
  515. * context. When the current non-nesting interrupt returns after this call,
  516. * the CPU won't restore the RCU idle mode.
  517. */
  518. void rcu_user_exit_after_irq(void)
  519. {
  520. unsigned long flags;
  521. struct rcu_dynticks *rdtp;
  522. local_irq_save(flags);
  523. rdtp = &__get_cpu_var(rcu_dynticks);
  524. /* Ensure we are interrupting an RCU idle mode. */
  525. WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
  526. rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
  527. local_irq_restore(flags);
  528. }
  529. #endif /* CONFIG_RCU_USER_QS */
  530. /**
  531. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  532. *
  533. * Enter an interrupt handler, which might possibly result in exiting
  534. * idle mode, in other words, entering the mode in which read-side critical
  535. * sections can occur.
  536. *
  537. * Note that the Linux kernel is fully capable of entering an interrupt
  538. * handler that it never exits, for example when doing upcalls to
  539. * user mode! This code assumes that the idle loop never does upcalls to
  540. * user mode. If your architecture does do upcalls from the idle loop (or
  541. * does anything else that results in unbalanced calls to the irq_enter()
  542. * and irq_exit() functions), RCU will give you what you deserve, good
  543. * and hard. But very infrequently and irreproducibly.
  544. *
  545. * Use things like work queues to work around this limitation.
  546. *
  547. * You have been warned.
  548. */
  549. void rcu_irq_enter(void)
  550. {
  551. unsigned long flags;
  552. struct rcu_dynticks *rdtp;
  553. long long oldval;
  554. local_irq_save(flags);
  555. rdtp = &__get_cpu_var(rcu_dynticks);
  556. oldval = rdtp->dynticks_nesting;
  557. rdtp->dynticks_nesting++;
  558. WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
  559. if (oldval)
  560. trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
  561. else
  562. rcu_eqs_exit_common(rdtp, oldval, true);
  563. local_irq_restore(flags);
  564. }
  565. /**
  566. * rcu_nmi_enter - inform RCU of entry to NMI context
  567. *
  568. * If the CPU was idle with dynamic ticks active, and there is no
  569. * irq handler running, this updates rdtp->dynticks_nmi to let the
  570. * RCU grace-period handling know that the CPU is active.
  571. */
  572. void rcu_nmi_enter(void)
  573. {
  574. struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
  575. if (rdtp->dynticks_nmi_nesting == 0 &&
  576. (atomic_read(&rdtp->dynticks) & 0x1))
  577. return;
  578. rdtp->dynticks_nmi_nesting++;
  579. smp_mb__before_atomic_inc(); /* Force delay from prior write. */
  580. atomic_inc(&rdtp->dynticks);
  581. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  582. smp_mb__after_atomic_inc(); /* See above. */
  583. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  584. }
  585. /**
  586. * rcu_nmi_exit - inform RCU of exit from NMI context
  587. *
  588. * If the CPU was idle with dynamic ticks active, and there is no
  589. * irq handler running, this updates rdtp->dynticks_nmi to let the
  590. * RCU grace-period handling know that the CPU is no longer active.
  591. */
  592. void rcu_nmi_exit(void)
  593. {
  594. struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
  595. if (rdtp->dynticks_nmi_nesting == 0 ||
  596. --rdtp->dynticks_nmi_nesting != 0)
  597. return;
  598. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  599. smp_mb__before_atomic_inc(); /* See above. */
  600. atomic_inc(&rdtp->dynticks);
  601. smp_mb__after_atomic_inc(); /* Force delay to next write. */
  602. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  603. }
  604. /**
  605. * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
  606. *
  607. * If the current CPU is in its idle loop and is neither in an interrupt
  608. * or NMI handler, return true.
  609. */
  610. int rcu_is_cpu_idle(void)
  611. {
  612. int ret;
  613. preempt_disable();
  614. ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
  615. preempt_enable();
  616. return ret;
  617. }
  618. EXPORT_SYMBOL(rcu_is_cpu_idle);
  619. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  620. /*
  621. * Is the current CPU online? Disable preemption to avoid false positives
  622. * that could otherwise happen due to the current CPU number being sampled,
  623. * this task being preempted, its old CPU being taken offline, resuming
  624. * on some other CPU, then determining that its old CPU is now offline.
  625. * It is OK to use RCU on an offline processor during initial boot, hence
  626. * the check for rcu_scheduler_fully_active. Note also that it is OK
  627. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  628. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  629. * offline to continue to use RCU for one jiffy after marking itself
  630. * offline in the cpu_online_mask. This leniency is necessary given the
  631. * non-atomic nature of the online and offline processing, for example,
  632. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  633. * notifiers.
  634. *
  635. * This is also why RCU internally marks CPUs online during the
  636. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  637. *
  638. * Disable checking if in an NMI handler because we cannot safely report
  639. * errors from NMI handlers anyway.
  640. */
  641. bool rcu_lockdep_current_cpu_online(void)
  642. {
  643. struct rcu_data *rdp;
  644. struct rcu_node *rnp;
  645. bool ret;
  646. if (in_nmi())
  647. return 1;
  648. preempt_disable();
  649. rdp = &__get_cpu_var(rcu_sched_data);
  650. rnp = rdp->mynode;
  651. ret = (rdp->grpmask & rnp->qsmaskinit) ||
  652. !rcu_scheduler_fully_active;
  653. preempt_enable();
  654. return ret;
  655. }
  656. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  657. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  658. /**
  659. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  660. *
  661. * If the current CPU is idle or running at a first-level (not nested)
  662. * interrupt from idle, return true. The caller must have at least
  663. * disabled preemption.
  664. */
  665. static int rcu_is_cpu_rrupt_from_idle(void)
  666. {
  667. return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
  668. }
  669. /*
  670. * Snapshot the specified CPU's dynticks counter so that we can later
  671. * credit them with an implicit quiescent state. Return 1 if this CPU
  672. * is in dynticks idle mode, which is an extended quiescent state.
  673. */
  674. static int dyntick_save_progress_counter(struct rcu_data *rdp)
  675. {
  676. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  677. return (rdp->dynticks_snap & 0x1) == 0;
  678. }
  679. /*
  680. * Return true if the specified CPU has passed through a quiescent
  681. * state by virtue of being in or having passed through an dynticks
  682. * idle state since the last call to dyntick_save_progress_counter()
  683. * for this same CPU, or by virtue of having been offline.
  684. */
  685. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
  686. {
  687. unsigned int curr;
  688. unsigned int snap;
  689. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  690. snap = (unsigned int)rdp->dynticks_snap;
  691. /*
  692. * If the CPU passed through or entered a dynticks idle phase with
  693. * no active irq/NMI handlers, then we can safely pretend that the CPU
  694. * already acknowledged the request to pass through a quiescent
  695. * state. Either way, that CPU cannot possibly be in an RCU
  696. * read-side critical section that started before the beginning
  697. * of the current RCU grace period.
  698. */
  699. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  700. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
  701. rdp->dynticks_fqs++;
  702. return 1;
  703. }
  704. /*
  705. * Check for the CPU being offline, but only if the grace period
  706. * is old enough. We don't need to worry about the CPU changing
  707. * state: If we see it offline even once, it has been through a
  708. * quiescent state.
  709. *
  710. * The reason for insisting that the grace period be at least
  711. * one jiffy old is that CPUs that are not quite online and that
  712. * have just gone offline can still execute RCU read-side critical
  713. * sections.
  714. */
  715. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  716. return 0; /* Grace period is not old enough. */
  717. barrier();
  718. if (cpu_is_offline(rdp->cpu)) {
  719. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
  720. rdp->offline_fqs++;
  721. return 1;
  722. }
  723. return 0;
  724. }
  725. static void record_gp_stall_check_time(struct rcu_state *rsp)
  726. {
  727. rsp->gp_start = jiffies;
  728. rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
  729. }
  730. /*
  731. * Dump stacks of all tasks running on stalled CPUs. This is a fallback
  732. * for architectures that do not implement trigger_all_cpu_backtrace().
  733. * The NMI-triggered stack traces are more accurate because they are
  734. * printed by the target CPU.
  735. */
  736. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  737. {
  738. int cpu;
  739. unsigned long flags;
  740. struct rcu_node *rnp;
  741. rcu_for_each_leaf_node(rsp, rnp) {
  742. raw_spin_lock_irqsave(&rnp->lock, flags);
  743. if (rnp->qsmask != 0) {
  744. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  745. if (rnp->qsmask & (1UL << cpu))
  746. dump_cpu_task(rnp->grplo + cpu);
  747. }
  748. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  749. }
  750. }
  751. static void print_other_cpu_stall(struct rcu_state *rsp)
  752. {
  753. int cpu;
  754. long delta;
  755. unsigned long flags;
  756. int ndetected = 0;
  757. struct rcu_node *rnp = rcu_get_root(rsp);
  758. long totqlen = 0;
  759. /* Only let one CPU complain about others per time interval. */
  760. raw_spin_lock_irqsave(&rnp->lock, flags);
  761. delta = jiffies - rsp->jiffies_stall;
  762. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  763. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  764. return;
  765. }
  766. rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
  767. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  768. /*
  769. * OK, time to rat on our buddy...
  770. * See Documentation/RCU/stallwarn.txt for info on how to debug
  771. * RCU CPU stall warnings.
  772. */
  773. printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
  774. rsp->name);
  775. print_cpu_stall_info_begin();
  776. rcu_for_each_leaf_node(rsp, rnp) {
  777. raw_spin_lock_irqsave(&rnp->lock, flags);
  778. ndetected += rcu_print_task_stall(rnp);
  779. if (rnp->qsmask != 0) {
  780. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  781. if (rnp->qsmask & (1UL << cpu)) {
  782. print_cpu_stall_info(rsp,
  783. rnp->grplo + cpu);
  784. ndetected++;
  785. }
  786. }
  787. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  788. }
  789. /*
  790. * Now rat on any tasks that got kicked up to the root rcu_node
  791. * due to CPU offlining.
  792. */
  793. rnp = rcu_get_root(rsp);
  794. raw_spin_lock_irqsave(&rnp->lock, flags);
  795. ndetected += rcu_print_task_stall(rnp);
  796. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  797. print_cpu_stall_info_end();
  798. for_each_possible_cpu(cpu)
  799. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  800. pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
  801. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  802. rsp->gpnum, rsp->completed, totqlen);
  803. if (ndetected == 0)
  804. printk(KERN_ERR "INFO: Stall ended before state dump start\n");
  805. else if (!trigger_all_cpu_backtrace())
  806. rcu_dump_cpu_stacks(rsp);
  807. /* Complain about tasks blocking the grace period. */
  808. rcu_print_detail_task_stall(rsp);
  809. force_quiescent_state(rsp); /* Kick them all. */
  810. }
  811. static void print_cpu_stall(struct rcu_state *rsp)
  812. {
  813. int cpu;
  814. unsigned long flags;
  815. struct rcu_node *rnp = rcu_get_root(rsp);
  816. long totqlen = 0;
  817. /*
  818. * OK, time to rat on ourselves...
  819. * See Documentation/RCU/stallwarn.txt for info on how to debug
  820. * RCU CPU stall warnings.
  821. */
  822. printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
  823. print_cpu_stall_info_begin();
  824. print_cpu_stall_info(rsp, smp_processor_id());
  825. print_cpu_stall_info_end();
  826. for_each_possible_cpu(cpu)
  827. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  828. pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
  829. jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
  830. if (!trigger_all_cpu_backtrace())
  831. dump_stack();
  832. raw_spin_lock_irqsave(&rnp->lock, flags);
  833. if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
  834. rsp->jiffies_stall = jiffies +
  835. 3 * rcu_jiffies_till_stall_check() + 3;
  836. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  837. set_need_resched(); /* kick ourselves to get things going. */
  838. }
  839. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  840. {
  841. unsigned long j;
  842. unsigned long js;
  843. struct rcu_node *rnp;
  844. if (rcu_cpu_stall_suppress)
  845. return;
  846. j = ACCESS_ONCE(jiffies);
  847. js = ACCESS_ONCE(rsp->jiffies_stall);
  848. rnp = rdp->mynode;
  849. if (rcu_gp_in_progress(rsp) &&
  850. (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
  851. /* We haven't checked in, so go dump stack. */
  852. print_cpu_stall(rsp);
  853. } else if (rcu_gp_in_progress(rsp) &&
  854. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  855. /* They had a few time units to dump stack, so complain. */
  856. print_other_cpu_stall(rsp);
  857. }
  858. }
  859. /**
  860. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  861. *
  862. * Set the stall-warning timeout way off into the future, thus preventing
  863. * any RCU CPU stall-warning messages from appearing in the current set of
  864. * RCU grace periods.
  865. *
  866. * The caller must disable hard irqs.
  867. */
  868. void rcu_cpu_stall_reset(void)
  869. {
  870. struct rcu_state *rsp;
  871. for_each_rcu_flavor(rsp)
  872. rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
  873. }
  874. /*
  875. * Update CPU-local rcu_data state to record the newly noticed grace period.
  876. * This is used both when we started the grace period and when we notice
  877. * that someone else started the grace period. The caller must hold the
  878. * ->lock of the leaf rcu_node structure corresponding to the current CPU,
  879. * and must have irqs disabled.
  880. */
  881. static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
  882. {
  883. if (rdp->gpnum != rnp->gpnum) {
  884. /*
  885. * If the current grace period is waiting for this CPU,
  886. * set up to detect a quiescent state, otherwise don't
  887. * go looking for one.
  888. */
  889. rdp->gpnum = rnp->gpnum;
  890. trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
  891. rdp->passed_quiesce = 0;
  892. rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
  893. zero_cpu_stall_ticks(rdp);
  894. }
  895. }
  896. static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
  897. {
  898. unsigned long flags;
  899. struct rcu_node *rnp;
  900. local_irq_save(flags);
  901. rnp = rdp->mynode;
  902. if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
  903. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  904. local_irq_restore(flags);
  905. return;
  906. }
  907. __note_new_gpnum(rsp, rnp, rdp);
  908. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  909. }
  910. /*
  911. * Did someone else start a new RCU grace period start since we last
  912. * checked? Update local state appropriately if so. Must be called
  913. * on the CPU corresponding to rdp.
  914. */
  915. static int
  916. check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
  917. {
  918. unsigned long flags;
  919. int ret = 0;
  920. local_irq_save(flags);
  921. if (rdp->gpnum != rsp->gpnum) {
  922. note_new_gpnum(rsp, rdp);
  923. ret = 1;
  924. }
  925. local_irq_restore(flags);
  926. return ret;
  927. }
  928. /*
  929. * Initialize the specified rcu_data structure's callback list to empty.
  930. */
  931. static void init_callback_list(struct rcu_data *rdp)
  932. {
  933. int i;
  934. if (init_nocb_callback_list(rdp))
  935. return;
  936. rdp->nxtlist = NULL;
  937. for (i = 0; i < RCU_NEXT_SIZE; i++)
  938. rdp->nxttail[i] = &rdp->nxtlist;
  939. }
  940. /*
  941. * Determine the value that ->completed will have at the end of the
  942. * next subsequent grace period. This is used to tag callbacks so that
  943. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  944. * been dyntick-idle for an extended period with callbacks under the
  945. * influence of RCU_FAST_NO_HZ.
  946. *
  947. * The caller must hold rnp->lock with interrupts disabled.
  948. */
  949. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  950. struct rcu_node *rnp)
  951. {
  952. /*
  953. * If RCU is idle, we just wait for the next grace period.
  954. * But we can only be sure that RCU is idle if we are looking
  955. * at the root rcu_node structure -- otherwise, a new grace
  956. * period might have started, but just not yet gotten around
  957. * to initializing the current non-root rcu_node structure.
  958. */
  959. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  960. return rnp->completed + 1;
  961. /*
  962. * Otherwise, wait for a possible partial grace period and
  963. * then the subsequent full grace period.
  964. */
  965. return rnp->completed + 2;
  966. }
  967. /*
  968. * If there is room, assign a ->completed number to any callbacks on
  969. * this CPU that have not already been assigned. Also accelerate any
  970. * callbacks that were previously assigned a ->completed number that has
  971. * since proven to be too conservative, which can happen if callbacks get
  972. * assigned a ->completed number while RCU is idle, but with reference to
  973. * a non-root rcu_node structure. This function is idempotent, so it does
  974. * not hurt to call it repeatedly.
  975. *
  976. * The caller must hold rnp->lock with interrupts disabled.
  977. */
  978. static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  979. struct rcu_data *rdp)
  980. {
  981. unsigned long c;
  982. int i;
  983. /* If the CPU has no callbacks, nothing to do. */
  984. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  985. return;
  986. /*
  987. * Starting from the sublist containing the callbacks most
  988. * recently assigned a ->completed number and working down, find the
  989. * first sublist that is not assignable to an upcoming grace period.
  990. * Such a sublist has something in it (first two tests) and has
  991. * a ->completed number assigned that will complete sooner than
  992. * the ->completed number for newly arrived callbacks (last test).
  993. *
  994. * The key point is that any later sublist can be assigned the
  995. * same ->completed number as the newly arrived callbacks, which
  996. * means that the callbacks in any of these later sublist can be
  997. * grouped into a single sublist, whether or not they have already
  998. * been assigned a ->completed number.
  999. */
  1000. c = rcu_cbs_completed(rsp, rnp);
  1001. for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
  1002. if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
  1003. !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
  1004. break;
  1005. /*
  1006. * If there are no sublist for unassigned callbacks, leave.
  1007. * At the same time, advance "i" one sublist, so that "i" will
  1008. * index into the sublist where all the remaining callbacks should
  1009. * be grouped into.
  1010. */
  1011. if (++i >= RCU_NEXT_TAIL)
  1012. return;
  1013. /*
  1014. * Assign all subsequent callbacks' ->completed number to the next
  1015. * full grace period and group them all in the sublist initially
  1016. * indexed by "i".
  1017. */
  1018. for (; i <= RCU_NEXT_TAIL; i++) {
  1019. rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
  1020. rdp->nxtcompleted[i] = c;
  1021. }
  1022. /* Trace depending on how much we were able to accelerate. */
  1023. if (!*rdp->nxttail[RCU_WAIT_TAIL])
  1024. trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
  1025. else
  1026. trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
  1027. }
  1028. /*
  1029. * Move any callbacks whose grace period has completed to the
  1030. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1031. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1032. * sublist. This function is idempotent, so it does not hurt to
  1033. * invoke it repeatedly. As long as it is not invoked -too- often...
  1034. *
  1035. * The caller must hold rnp->lock with interrupts disabled.
  1036. */
  1037. static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1038. struct rcu_data *rdp)
  1039. {
  1040. int i, j;
  1041. /* If the CPU has no callbacks, nothing to do. */
  1042. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1043. return;
  1044. /*
  1045. * Find all callbacks whose ->completed numbers indicate that they
  1046. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1047. */
  1048. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
  1049. if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
  1050. break;
  1051. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
  1052. }
  1053. /* Clean up any sublist tail pointers that were misordered above. */
  1054. for (j = RCU_WAIT_TAIL; j < i; j++)
  1055. rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
  1056. /* Copy down callbacks to fill in empty sublists. */
  1057. for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
  1058. if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
  1059. break;
  1060. rdp->nxttail[j] = rdp->nxttail[i];
  1061. rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
  1062. }
  1063. /* Classify any remaining callbacks. */
  1064. rcu_accelerate_cbs(rsp, rnp, rdp);
  1065. }
  1066. /*
  1067. * Advance this CPU's callbacks, but only if the current grace period
  1068. * has ended. This may be called only from the CPU to whom the rdp
  1069. * belongs. In addition, the corresponding leaf rcu_node structure's
  1070. * ->lock must be held by the caller, with irqs disabled.
  1071. */
  1072. static void
  1073. __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
  1074. {
  1075. /* Did another grace period end? */
  1076. if (rdp->completed == rnp->completed) {
  1077. /* No, so just accelerate recent callbacks. */
  1078. rcu_accelerate_cbs(rsp, rnp, rdp);
  1079. } else {
  1080. /* Advance callbacks. */
  1081. rcu_advance_cbs(rsp, rnp, rdp);
  1082. /* Remember that we saw this grace-period completion. */
  1083. rdp->completed = rnp->completed;
  1084. trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
  1085. /*
  1086. * If we were in an extended quiescent state, we may have
  1087. * missed some grace periods that others CPUs handled on
  1088. * our behalf. Catch up with this state to avoid noting
  1089. * spurious new grace periods. If another grace period
  1090. * has started, then rnp->gpnum will have advanced, so
  1091. * we will detect this later on. Of course, any quiescent
  1092. * states we found for the old GP are now invalid.
  1093. */
  1094. if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
  1095. rdp->gpnum = rdp->completed;
  1096. rdp->passed_quiesce = 0;
  1097. }
  1098. /*
  1099. * If RCU does not need a quiescent state from this CPU,
  1100. * then make sure that this CPU doesn't go looking for one.
  1101. */
  1102. if ((rnp->qsmask & rdp->grpmask) == 0)
  1103. rdp->qs_pending = 0;
  1104. }
  1105. }
  1106. /*
  1107. * Advance this CPU's callbacks, but only if the current grace period
  1108. * has ended. This may be called only from the CPU to whom the rdp
  1109. * belongs.
  1110. */
  1111. static void
  1112. rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
  1113. {
  1114. unsigned long flags;
  1115. struct rcu_node *rnp;
  1116. local_irq_save(flags);
  1117. rnp = rdp->mynode;
  1118. if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
  1119. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  1120. local_irq_restore(flags);
  1121. return;
  1122. }
  1123. __rcu_process_gp_end(rsp, rnp, rdp);
  1124. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1125. }
  1126. /*
  1127. * Do per-CPU grace-period initialization for running CPU. The caller
  1128. * must hold the lock of the leaf rcu_node structure corresponding to
  1129. * this CPU.
  1130. */
  1131. static void
  1132. rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
  1133. {
  1134. /* Prior grace period ended, so advance callbacks for current CPU. */
  1135. __rcu_process_gp_end(rsp, rnp, rdp);
  1136. /* Set state so that this CPU will detect the next quiescent state. */
  1137. __note_new_gpnum(rsp, rnp, rdp);
  1138. }
  1139. /*
  1140. * Initialize a new grace period.
  1141. */
  1142. static int rcu_gp_init(struct rcu_state *rsp)
  1143. {
  1144. struct rcu_data *rdp;
  1145. struct rcu_node *rnp = rcu_get_root(rsp);
  1146. raw_spin_lock_irq(&rnp->lock);
  1147. rsp->gp_flags = 0; /* Clear all flags: New grace period. */
  1148. if (rcu_gp_in_progress(rsp)) {
  1149. /* Grace period already in progress, don't start another. */
  1150. raw_spin_unlock_irq(&rnp->lock);
  1151. return 0;
  1152. }
  1153. /* Advance to a new grace period and initialize state. */
  1154. rsp->gpnum++;
  1155. trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
  1156. record_gp_stall_check_time(rsp);
  1157. raw_spin_unlock_irq(&rnp->lock);
  1158. /* Exclude any concurrent CPU-hotplug operations. */
  1159. mutex_lock(&rsp->onoff_mutex);
  1160. /*
  1161. * Set the quiescent-state-needed bits in all the rcu_node
  1162. * structures for all currently online CPUs in breadth-first order,
  1163. * starting from the root rcu_node structure, relying on the layout
  1164. * of the tree within the rsp->node[] array. Note that other CPUs
  1165. * will access only the leaves of the hierarchy, thus seeing that no
  1166. * grace period is in progress, at least until the corresponding
  1167. * leaf node has been initialized. In addition, we have excluded
  1168. * CPU-hotplug operations.
  1169. *
  1170. * The grace period cannot complete until the initialization
  1171. * process finishes, because this kthread handles both.
  1172. */
  1173. rcu_for_each_node_breadth_first(rsp, rnp) {
  1174. raw_spin_lock_irq(&rnp->lock);
  1175. rdp = this_cpu_ptr(rsp->rda);
  1176. rcu_preempt_check_blocked_tasks(rnp);
  1177. rnp->qsmask = rnp->qsmaskinit;
  1178. rnp->gpnum = rsp->gpnum;
  1179. WARN_ON_ONCE(rnp->completed != rsp->completed);
  1180. rnp->completed = rsp->completed;
  1181. if (rnp == rdp->mynode)
  1182. rcu_start_gp_per_cpu(rsp, rnp, rdp);
  1183. rcu_preempt_boost_start_gp(rnp);
  1184. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1185. rnp->level, rnp->grplo,
  1186. rnp->grphi, rnp->qsmask);
  1187. raw_spin_unlock_irq(&rnp->lock);
  1188. #ifdef CONFIG_PROVE_RCU_DELAY
  1189. if ((random32() % (rcu_num_nodes * 8)) == 0)
  1190. schedule_timeout_uninterruptible(2);
  1191. #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
  1192. cond_resched();
  1193. }
  1194. mutex_unlock(&rsp->onoff_mutex);
  1195. return 1;
  1196. }
  1197. /*
  1198. * Do one round of quiescent-state forcing.
  1199. */
  1200. int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
  1201. {
  1202. int fqs_state = fqs_state_in;
  1203. struct rcu_node *rnp = rcu_get_root(rsp);
  1204. rsp->n_force_qs++;
  1205. if (fqs_state == RCU_SAVE_DYNTICK) {
  1206. /* Collect dyntick-idle snapshots. */
  1207. force_qs_rnp(rsp, dyntick_save_progress_counter);
  1208. fqs_state = RCU_FORCE_QS;
  1209. } else {
  1210. /* Handle dyntick-idle and offline CPUs. */
  1211. force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
  1212. }
  1213. /* Clear flag to prevent immediate re-entry. */
  1214. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1215. raw_spin_lock_irq(&rnp->lock);
  1216. rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
  1217. raw_spin_unlock_irq(&rnp->lock);
  1218. }
  1219. return fqs_state;
  1220. }
  1221. /*
  1222. * Clean up after the old grace period.
  1223. */
  1224. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1225. {
  1226. unsigned long gp_duration;
  1227. int nocb = 0;
  1228. struct rcu_data *rdp;
  1229. struct rcu_node *rnp = rcu_get_root(rsp);
  1230. raw_spin_lock_irq(&rnp->lock);
  1231. gp_duration = jiffies - rsp->gp_start;
  1232. if (gp_duration > rsp->gp_max)
  1233. rsp->gp_max = gp_duration;
  1234. /*
  1235. * We know the grace period is complete, but to everyone else
  1236. * it appears to still be ongoing. But it is also the case
  1237. * that to everyone else it looks like there is nothing that
  1238. * they can do to advance the grace period. It is therefore
  1239. * safe for us to drop the lock in order to mark the grace
  1240. * period as completed in all of the rcu_node structures.
  1241. */
  1242. raw_spin_unlock_irq(&rnp->lock);
  1243. /*
  1244. * Propagate new ->completed value to rcu_node structures so
  1245. * that other CPUs don't have to wait until the start of the next
  1246. * grace period to process their callbacks. This also avoids
  1247. * some nasty RCU grace-period initialization races by forcing
  1248. * the end of the current grace period to be completely recorded in
  1249. * all of the rcu_node structures before the beginning of the next
  1250. * grace period is recorded in any of the rcu_node structures.
  1251. */
  1252. rcu_for_each_node_breadth_first(rsp, rnp) {
  1253. raw_spin_lock_irq(&rnp->lock);
  1254. rnp->completed = rsp->gpnum;
  1255. rdp = this_cpu_ptr(rsp->rda);
  1256. if (rnp == rdp->mynode)
  1257. __rcu_process_gp_end(rsp, rnp, rdp);
  1258. nocb += rcu_nocb_gp_cleanup(rsp, rnp);
  1259. raw_spin_unlock_irq(&rnp->lock);
  1260. cond_resched();
  1261. }
  1262. rnp = rcu_get_root(rsp);
  1263. raw_spin_lock_irq(&rnp->lock);
  1264. rcu_nocb_gp_set(rnp, nocb);
  1265. rsp->completed = rsp->gpnum; /* Declare grace period done. */
  1266. trace_rcu_grace_period(rsp->name, rsp->completed, "end");
  1267. rsp->fqs_state = RCU_GP_IDLE;
  1268. rdp = this_cpu_ptr(rsp->rda);
  1269. rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
  1270. if (cpu_needs_another_gp(rsp, rdp))
  1271. rsp->gp_flags = 1;
  1272. raw_spin_unlock_irq(&rnp->lock);
  1273. }
  1274. /*
  1275. * Body of kthread that handles grace periods.
  1276. */
  1277. static int __noreturn rcu_gp_kthread(void *arg)
  1278. {
  1279. int fqs_state;
  1280. unsigned long j;
  1281. int ret;
  1282. struct rcu_state *rsp = arg;
  1283. struct rcu_node *rnp = rcu_get_root(rsp);
  1284. for (;;) {
  1285. /* Handle grace-period start. */
  1286. for (;;) {
  1287. wait_event_interruptible(rsp->gp_wq,
  1288. rsp->gp_flags &
  1289. RCU_GP_FLAG_INIT);
  1290. if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
  1291. rcu_gp_init(rsp))
  1292. break;
  1293. cond_resched();
  1294. flush_signals(current);
  1295. }
  1296. /* Handle quiescent-state forcing. */
  1297. fqs_state = RCU_SAVE_DYNTICK;
  1298. j = jiffies_till_first_fqs;
  1299. if (j > HZ) {
  1300. j = HZ;
  1301. jiffies_till_first_fqs = HZ;
  1302. }
  1303. for (;;) {
  1304. rsp->jiffies_force_qs = jiffies + j;
  1305. ret = wait_event_interruptible_timeout(rsp->gp_wq,
  1306. (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
  1307. (!ACCESS_ONCE(rnp->qsmask) &&
  1308. !rcu_preempt_blocked_readers_cgp(rnp)),
  1309. j);
  1310. /* If grace period done, leave loop. */
  1311. if (!ACCESS_ONCE(rnp->qsmask) &&
  1312. !rcu_preempt_blocked_readers_cgp(rnp))
  1313. break;
  1314. /* If time for quiescent-state forcing, do it. */
  1315. if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
  1316. fqs_state = rcu_gp_fqs(rsp, fqs_state);
  1317. cond_resched();
  1318. } else {
  1319. /* Deal with stray signal. */
  1320. cond_resched();
  1321. flush_signals(current);
  1322. }
  1323. j = jiffies_till_next_fqs;
  1324. if (j > HZ) {
  1325. j = HZ;
  1326. jiffies_till_next_fqs = HZ;
  1327. } else if (j < 1) {
  1328. j = 1;
  1329. jiffies_till_next_fqs = 1;
  1330. }
  1331. }
  1332. /* Handle grace-period end. */
  1333. rcu_gp_cleanup(rsp);
  1334. }
  1335. }
  1336. /*
  1337. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1338. * in preparation for detecting the next grace period. The caller must hold
  1339. * the root node's ->lock, which is released before return. Hard irqs must
  1340. * be disabled.
  1341. *
  1342. * Note that it is legal for a dying CPU (which is marked as offline) to
  1343. * invoke this function. This can happen when the dying CPU reports its
  1344. * quiescent state.
  1345. */
  1346. static void
  1347. rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
  1348. __releases(rcu_get_root(rsp)->lock)
  1349. {
  1350. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1351. struct rcu_node *rnp = rcu_get_root(rsp);
  1352. /*
  1353. * If there is no grace period in progress right now, any
  1354. * callbacks we have up to this point will be satisfied by the
  1355. * next grace period. Also, advancing the callbacks reduces the
  1356. * probability of false positives from cpu_needs_another_gp()
  1357. * resulting in pointless grace periods. So, advance callbacks!
  1358. */
  1359. rcu_advance_cbs(rsp, rnp, rdp);
  1360. if (!rsp->gp_kthread ||
  1361. !cpu_needs_another_gp(rsp, rdp)) {
  1362. /*
  1363. * Either we have not yet spawned the grace-period
  1364. * task, this CPU does not need another grace period,
  1365. * or a grace period is already in progress.
  1366. * Either way, don't start a new grace period.
  1367. */
  1368. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1369. return;
  1370. }
  1371. rsp->gp_flags = RCU_GP_FLAG_INIT;
  1372. raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
  1373. /* Ensure that CPU is aware of completion of last grace period. */
  1374. rcu_process_gp_end(rsp, rdp);
  1375. local_irq_restore(flags);
  1376. /* Wake up rcu_gp_kthread() to start the grace period. */
  1377. wake_up(&rsp->gp_wq);
  1378. }
  1379. /*
  1380. * Report a full set of quiescent states to the specified rcu_state
  1381. * data structure. This involves cleaning up after the prior grace
  1382. * period and letting rcu_start_gp() start up the next grace period
  1383. * if one is needed. Note that the caller must hold rnp->lock, as
  1384. * required by rcu_start_gp(), which will release it.
  1385. */
  1386. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  1387. __releases(rcu_get_root(rsp)->lock)
  1388. {
  1389. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  1390. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  1391. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  1392. }
  1393. /*
  1394. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  1395. * Allows quiescent states for a group of CPUs to be reported at one go
  1396. * to the specified rcu_node structure, though all the CPUs in the group
  1397. * must be represented by the same rcu_node structure (which need not be
  1398. * a leaf rcu_node structure, though it often will be). That structure's
  1399. * lock must be held upon entry, and it is released before return.
  1400. */
  1401. static void
  1402. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  1403. struct rcu_node *rnp, unsigned long flags)
  1404. __releases(rnp->lock)
  1405. {
  1406. struct rcu_node *rnp_c;
  1407. /* Walk up the rcu_node hierarchy. */
  1408. for (;;) {
  1409. if (!(rnp->qsmask & mask)) {
  1410. /* Our bit has already been cleared, so done. */
  1411. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1412. return;
  1413. }
  1414. rnp->qsmask &= ~mask;
  1415. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  1416. mask, rnp->qsmask, rnp->level,
  1417. rnp->grplo, rnp->grphi,
  1418. !!rnp->gp_tasks);
  1419. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  1420. /* Other bits still set at this level, so done. */
  1421. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1422. return;
  1423. }
  1424. mask = rnp->grpmask;
  1425. if (rnp->parent == NULL) {
  1426. /* No more levels. Exit loop holding root lock. */
  1427. break;
  1428. }
  1429. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1430. rnp_c = rnp;
  1431. rnp = rnp->parent;
  1432. raw_spin_lock_irqsave(&rnp->lock, flags);
  1433. WARN_ON_ONCE(rnp_c->qsmask);
  1434. }
  1435. /*
  1436. * Get here if we are the last CPU to pass through a quiescent
  1437. * state for this grace period. Invoke rcu_report_qs_rsp()
  1438. * to clean up and start the next grace period if one is needed.
  1439. */
  1440. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  1441. }
  1442. /*
  1443. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  1444. * structure. This must be either called from the specified CPU, or
  1445. * called when the specified CPU is known to be offline (and when it is
  1446. * also known that no other CPU is concurrently trying to help the offline
  1447. * CPU). The lastcomp argument is used to make sure we are still in the
  1448. * grace period of interest. We don't want to end the current grace period
  1449. * based on quiescent states detected in an earlier grace period!
  1450. */
  1451. static void
  1452. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  1453. {
  1454. unsigned long flags;
  1455. unsigned long mask;
  1456. struct rcu_node *rnp;
  1457. rnp = rdp->mynode;
  1458. raw_spin_lock_irqsave(&rnp->lock, flags);
  1459. if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
  1460. rnp->completed == rnp->gpnum) {
  1461. /*
  1462. * The grace period in which this quiescent state was
  1463. * recorded has ended, so don't report it upwards.
  1464. * We will instead need a new quiescent state that lies
  1465. * within the current grace period.
  1466. */
  1467. rdp->passed_quiesce = 0; /* need qs for new gp. */
  1468. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1469. return;
  1470. }
  1471. mask = rdp->grpmask;
  1472. if ((rnp->qsmask & mask) == 0) {
  1473. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1474. } else {
  1475. rdp->qs_pending = 0;
  1476. /*
  1477. * This GP can't end until cpu checks in, so all of our
  1478. * callbacks can be processed during the next GP.
  1479. */
  1480. rcu_accelerate_cbs(rsp, rnp, rdp);
  1481. rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
  1482. }
  1483. }
  1484. /*
  1485. * Check to see if there is a new grace period of which this CPU
  1486. * is not yet aware, and if so, set up local rcu_data state for it.
  1487. * Otherwise, see if this CPU has just passed through its first
  1488. * quiescent state for this grace period, and record that fact if so.
  1489. */
  1490. static void
  1491. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  1492. {
  1493. /* If there is now a new grace period, record and return. */
  1494. if (check_for_new_grace_period(rsp, rdp))
  1495. return;
  1496. /*
  1497. * Does this CPU still need to do its part for current grace period?
  1498. * If no, return and let the other CPUs do their part as well.
  1499. */
  1500. if (!rdp->qs_pending)
  1501. return;
  1502. /*
  1503. * Was there a quiescent state since the beginning of the grace
  1504. * period? If no, then exit and wait for the next call.
  1505. */
  1506. if (!rdp->passed_quiesce)
  1507. return;
  1508. /*
  1509. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  1510. * judge of that).
  1511. */
  1512. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  1513. }
  1514. #ifdef CONFIG_HOTPLUG_CPU
  1515. /*
  1516. * Send the specified CPU's RCU callbacks to the orphanage. The
  1517. * specified CPU must be offline, and the caller must hold the
  1518. * ->orphan_lock.
  1519. */
  1520. static void
  1521. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  1522. struct rcu_node *rnp, struct rcu_data *rdp)
  1523. {
  1524. /* No-CBs CPUs do not have orphanable callbacks. */
  1525. if (is_nocb_cpu(rdp->cpu))
  1526. return;
  1527. /*
  1528. * Orphan the callbacks. First adjust the counts. This is safe
  1529. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  1530. * cannot be running now. Thus no memory barrier is required.
  1531. */
  1532. if (rdp->nxtlist != NULL) {
  1533. rsp->qlen_lazy += rdp->qlen_lazy;
  1534. rsp->qlen += rdp->qlen;
  1535. rdp->n_cbs_orphaned += rdp->qlen;
  1536. rdp->qlen_lazy = 0;
  1537. ACCESS_ONCE(rdp->qlen) = 0;
  1538. }
  1539. /*
  1540. * Next, move those callbacks still needing a grace period to
  1541. * the orphanage, where some other CPU will pick them up.
  1542. * Some of the callbacks might have gone partway through a grace
  1543. * period, but that is too bad. They get to start over because we
  1544. * cannot assume that grace periods are synchronized across CPUs.
  1545. * We don't bother updating the ->nxttail[] array yet, instead
  1546. * we just reset the whole thing later on.
  1547. */
  1548. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  1549. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  1550. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  1551. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1552. }
  1553. /*
  1554. * Then move the ready-to-invoke callbacks to the orphanage,
  1555. * where some other CPU will pick them up. These will not be
  1556. * required to pass though another grace period: They are done.
  1557. */
  1558. if (rdp->nxtlist != NULL) {
  1559. *rsp->orphan_donetail = rdp->nxtlist;
  1560. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  1561. }
  1562. /* Finally, initialize the rcu_data structure's list to empty. */
  1563. init_callback_list(rdp);
  1564. }
  1565. /*
  1566. * Adopt the RCU callbacks from the specified rcu_state structure's
  1567. * orphanage. The caller must hold the ->orphan_lock.
  1568. */
  1569. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
  1570. {
  1571. int i;
  1572. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  1573. /* No-CBs CPUs are handled specially. */
  1574. if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
  1575. return;
  1576. /* Do the accounting first. */
  1577. rdp->qlen_lazy += rsp->qlen_lazy;
  1578. rdp->qlen += rsp->qlen;
  1579. rdp->n_cbs_adopted += rsp->qlen;
  1580. if (rsp->qlen_lazy != rsp->qlen)
  1581. rcu_idle_count_callbacks_posted();
  1582. rsp->qlen_lazy = 0;
  1583. rsp->qlen = 0;
  1584. /*
  1585. * We do not need a memory barrier here because the only way we
  1586. * can get here if there is an rcu_barrier() in flight is if
  1587. * we are the task doing the rcu_barrier().
  1588. */
  1589. /* First adopt the ready-to-invoke callbacks. */
  1590. if (rsp->orphan_donelist != NULL) {
  1591. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  1592. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  1593. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  1594. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1595. rdp->nxttail[i] = rsp->orphan_donetail;
  1596. rsp->orphan_donelist = NULL;
  1597. rsp->orphan_donetail = &rsp->orphan_donelist;
  1598. }
  1599. /* And then adopt the callbacks that still need a grace period. */
  1600. if (rsp->orphan_nxtlist != NULL) {
  1601. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  1602. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  1603. rsp->orphan_nxtlist = NULL;
  1604. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1605. }
  1606. }
  1607. /*
  1608. * Trace the fact that this CPU is going offline.
  1609. */
  1610. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1611. {
  1612. RCU_TRACE(unsigned long mask);
  1613. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  1614. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  1615. RCU_TRACE(mask = rdp->grpmask);
  1616. trace_rcu_grace_period(rsp->name,
  1617. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  1618. "cpuofl");
  1619. }
  1620. /*
  1621. * The CPU has been completely removed, and some other CPU is reporting
  1622. * this fact from process context. Do the remainder of the cleanup,
  1623. * including orphaning the outgoing CPU's RCU callbacks, and also
  1624. * adopting them. There can only be one CPU hotplug operation at a time,
  1625. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  1626. */
  1627. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1628. {
  1629. unsigned long flags;
  1630. unsigned long mask;
  1631. int need_report = 0;
  1632. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1633. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  1634. /* Adjust any no-longer-needed kthreads. */
  1635. rcu_boost_kthread_setaffinity(rnp, -1);
  1636. /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
  1637. /* Exclude any attempts to start a new grace period. */
  1638. mutex_lock(&rsp->onoff_mutex);
  1639. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  1640. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  1641. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  1642. rcu_adopt_orphan_cbs(rsp);
  1643. /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
  1644. mask = rdp->grpmask; /* rnp->grplo is constant. */
  1645. do {
  1646. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1647. rnp->qsmaskinit &= ~mask;
  1648. if (rnp->qsmaskinit != 0) {
  1649. if (rnp != rdp->mynode)
  1650. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1651. break;
  1652. }
  1653. if (rnp == rdp->mynode)
  1654. need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
  1655. else
  1656. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1657. mask = rnp->grpmask;
  1658. rnp = rnp->parent;
  1659. } while (rnp != NULL);
  1660. /*
  1661. * We still hold the leaf rcu_node structure lock here, and
  1662. * irqs are still disabled. The reason for this subterfuge is
  1663. * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
  1664. * held leads to deadlock.
  1665. */
  1666. raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
  1667. rnp = rdp->mynode;
  1668. if (need_report & RCU_OFL_TASKS_NORM_GP)
  1669. rcu_report_unblock_qs_rnp(rnp, flags);
  1670. else
  1671. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1672. if (need_report & RCU_OFL_TASKS_EXP_GP)
  1673. rcu_report_exp_rnp(rsp, rnp, true);
  1674. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  1675. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  1676. cpu, rdp->qlen, rdp->nxtlist);
  1677. init_callback_list(rdp);
  1678. /* Disallow further callbacks on this CPU. */
  1679. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  1680. mutex_unlock(&rsp->onoff_mutex);
  1681. }
  1682. #else /* #ifdef CONFIG_HOTPLUG_CPU */
  1683. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1684. {
  1685. }
  1686. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1687. {
  1688. }
  1689. #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
  1690. /*
  1691. * Invoke any RCU callbacks that have made it to the end of their grace
  1692. * period. Thottle as specified by rdp->blimit.
  1693. */
  1694. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  1695. {
  1696. unsigned long flags;
  1697. struct rcu_head *next, *list, **tail;
  1698. long bl, count, count_lazy;
  1699. int i;
  1700. /* If no callbacks are ready, just return. */
  1701. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  1702. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  1703. trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
  1704. need_resched(), is_idle_task(current),
  1705. rcu_is_callbacks_kthread());
  1706. return;
  1707. }
  1708. /*
  1709. * Extract the list of ready callbacks, disabling to prevent
  1710. * races with call_rcu() from interrupt handlers.
  1711. */
  1712. local_irq_save(flags);
  1713. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  1714. bl = rdp->blimit;
  1715. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  1716. list = rdp->nxtlist;
  1717. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  1718. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1719. tail = rdp->nxttail[RCU_DONE_TAIL];
  1720. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  1721. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1722. rdp->nxttail[i] = &rdp->nxtlist;
  1723. local_irq_restore(flags);
  1724. /* Invoke callbacks. */
  1725. count = count_lazy = 0;
  1726. while (list) {
  1727. next = list->next;
  1728. prefetch(next);
  1729. debug_rcu_head_unqueue(list);
  1730. if (__rcu_reclaim(rsp->name, list))
  1731. count_lazy++;
  1732. list = next;
  1733. /* Stop only if limit reached and CPU has something to do. */
  1734. if (++count >= bl &&
  1735. (need_resched() ||
  1736. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  1737. break;
  1738. }
  1739. local_irq_save(flags);
  1740. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  1741. is_idle_task(current),
  1742. rcu_is_callbacks_kthread());
  1743. /* Update count, and requeue any remaining callbacks. */
  1744. if (list != NULL) {
  1745. *tail = rdp->nxtlist;
  1746. rdp->nxtlist = list;
  1747. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1748. if (&rdp->nxtlist == rdp->nxttail[i])
  1749. rdp->nxttail[i] = tail;
  1750. else
  1751. break;
  1752. }
  1753. smp_mb(); /* List handling before counting for rcu_barrier(). */
  1754. rdp->qlen_lazy -= count_lazy;
  1755. ACCESS_ONCE(rdp->qlen) -= count;
  1756. rdp->n_cbs_invoked += count;
  1757. /* Reinstate batch limit if we have worked down the excess. */
  1758. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  1759. rdp->blimit = blimit;
  1760. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  1761. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  1762. rdp->qlen_last_fqs_check = 0;
  1763. rdp->n_force_qs_snap = rsp->n_force_qs;
  1764. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  1765. rdp->qlen_last_fqs_check = rdp->qlen;
  1766. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  1767. local_irq_restore(flags);
  1768. /* Re-invoke RCU core processing if there are callbacks remaining. */
  1769. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1770. invoke_rcu_core();
  1771. }
  1772. /*
  1773. * Check to see if this CPU is in a non-context-switch quiescent state
  1774. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  1775. * Also schedule RCU core processing.
  1776. *
  1777. * This function must be called from hardirq context. It is normally
  1778. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  1779. * false, there is no point in invoking rcu_check_callbacks().
  1780. */
  1781. void rcu_check_callbacks(int cpu, int user)
  1782. {
  1783. trace_rcu_utilization("Start scheduler-tick");
  1784. increment_cpu_stall_ticks();
  1785. if (user || rcu_is_cpu_rrupt_from_idle()) {
  1786. /*
  1787. * Get here if this CPU took its interrupt from user
  1788. * mode or from the idle loop, and if this is not a
  1789. * nested interrupt. In this case, the CPU is in
  1790. * a quiescent state, so note it.
  1791. *
  1792. * No memory barrier is required here because both
  1793. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  1794. * variables that other CPUs neither access nor modify,
  1795. * at least not while the corresponding CPU is online.
  1796. */
  1797. rcu_sched_qs(cpu);
  1798. rcu_bh_qs(cpu);
  1799. } else if (!in_softirq()) {
  1800. /*
  1801. * Get here if this CPU did not take its interrupt from
  1802. * softirq, in other words, if it is not interrupting
  1803. * a rcu_bh read-side critical section. This is an _bh
  1804. * critical section, so note it.
  1805. */
  1806. rcu_bh_qs(cpu);
  1807. }
  1808. rcu_preempt_check_callbacks(cpu);
  1809. if (rcu_pending(cpu))
  1810. invoke_rcu_core();
  1811. trace_rcu_utilization("End scheduler-tick");
  1812. }
  1813. /*
  1814. * Scan the leaf rcu_node structures, processing dyntick state for any that
  1815. * have not yet encountered a quiescent state, using the function specified.
  1816. * Also initiate boosting for any threads blocked on the root rcu_node.
  1817. *
  1818. * The caller must have suppressed start of new grace periods.
  1819. */
  1820. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
  1821. {
  1822. unsigned long bit;
  1823. int cpu;
  1824. unsigned long flags;
  1825. unsigned long mask;
  1826. struct rcu_node *rnp;
  1827. rcu_for_each_leaf_node(rsp, rnp) {
  1828. cond_resched();
  1829. mask = 0;
  1830. raw_spin_lock_irqsave(&rnp->lock, flags);
  1831. if (!rcu_gp_in_progress(rsp)) {
  1832. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1833. return;
  1834. }
  1835. if (rnp->qsmask == 0) {
  1836. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  1837. continue;
  1838. }
  1839. cpu = rnp->grplo;
  1840. bit = 1;
  1841. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  1842. if ((rnp->qsmask & bit) != 0 &&
  1843. f(per_cpu_ptr(rsp->rda, cpu)))
  1844. mask |= bit;
  1845. }
  1846. if (mask != 0) {
  1847. /* rcu_report_qs_rnp() releases rnp->lock. */
  1848. rcu_report_qs_rnp(mask, rsp, rnp, flags);
  1849. continue;
  1850. }
  1851. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1852. }
  1853. rnp = rcu_get_root(rsp);
  1854. if (rnp->qsmask == 0) {
  1855. raw_spin_lock_irqsave(&rnp->lock, flags);
  1856. rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
  1857. }
  1858. }
  1859. /*
  1860. * Force quiescent states on reluctant CPUs, and also detect which
  1861. * CPUs are in dyntick-idle mode.
  1862. */
  1863. static void force_quiescent_state(struct rcu_state *rsp)
  1864. {
  1865. unsigned long flags;
  1866. bool ret;
  1867. struct rcu_node *rnp;
  1868. struct rcu_node *rnp_old = NULL;
  1869. /* Funnel through hierarchy to reduce memory contention. */
  1870. rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
  1871. for (; rnp != NULL; rnp = rnp->parent) {
  1872. ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  1873. !raw_spin_trylock(&rnp->fqslock);
  1874. if (rnp_old != NULL)
  1875. raw_spin_unlock(&rnp_old->fqslock);
  1876. if (ret) {
  1877. rsp->n_force_qs_lh++;
  1878. return;
  1879. }
  1880. rnp_old = rnp;
  1881. }
  1882. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  1883. /* Reached the root of the rcu_node tree, acquire lock. */
  1884. raw_spin_lock_irqsave(&rnp_old->lock, flags);
  1885. raw_spin_unlock(&rnp_old->fqslock);
  1886. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1887. rsp->n_force_qs_lh++;
  1888. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  1889. return; /* Someone beat us to it. */
  1890. }
  1891. rsp->gp_flags |= RCU_GP_FLAG_FQS;
  1892. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  1893. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  1894. }
  1895. /*
  1896. * This does the RCU core processing work for the specified rcu_state
  1897. * and rcu_data structures. This may be called only from the CPU to
  1898. * whom the rdp belongs.
  1899. */
  1900. static void
  1901. __rcu_process_callbacks(struct rcu_state *rsp)
  1902. {
  1903. unsigned long flags;
  1904. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  1905. WARN_ON_ONCE(rdp->beenonline == 0);
  1906. /* Handle the end of a grace period that some other CPU ended. */
  1907. rcu_process_gp_end(rsp, rdp);
  1908. /* Update RCU state based on any recent quiescent states. */
  1909. rcu_check_quiescent_state(rsp, rdp);
  1910. /* Does this CPU require a not-yet-started grace period? */
  1911. local_irq_save(flags);
  1912. if (cpu_needs_another_gp(rsp, rdp)) {
  1913. raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
  1914. rcu_start_gp(rsp, flags); /* releases above lock */
  1915. } else {
  1916. local_irq_restore(flags);
  1917. }
  1918. /* If there are callbacks ready, invoke them. */
  1919. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1920. invoke_rcu_callbacks(rsp, rdp);
  1921. }
  1922. /*
  1923. * Do RCU core processing for the current CPU.
  1924. */
  1925. static void rcu_process_callbacks(struct softirq_action *unused)
  1926. {
  1927. struct rcu_state *rsp;
  1928. if (cpu_is_offline(smp_processor_id()))
  1929. return;
  1930. trace_rcu_utilization("Start RCU core");
  1931. for_each_rcu_flavor(rsp)
  1932. __rcu_process_callbacks(rsp);
  1933. trace_rcu_utilization("End RCU core");
  1934. }
  1935. /*
  1936. * Schedule RCU callback invocation. If the specified type of RCU
  1937. * does not support RCU priority boosting, just do a direct call,
  1938. * otherwise wake up the per-CPU kernel kthread. Note that because we
  1939. * are running on the current CPU with interrupts disabled, the
  1940. * rcu_cpu_kthread_task cannot disappear out from under us.
  1941. */
  1942. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  1943. {
  1944. if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
  1945. return;
  1946. if (likely(!rsp->boost)) {
  1947. rcu_do_batch(rsp, rdp);
  1948. return;
  1949. }
  1950. invoke_rcu_callbacks_kthread();
  1951. }
  1952. static void invoke_rcu_core(void)
  1953. {
  1954. raise_softirq(RCU_SOFTIRQ);
  1955. }
  1956. /*
  1957. * Handle any core-RCU processing required by a call_rcu() invocation.
  1958. */
  1959. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  1960. struct rcu_head *head, unsigned long flags)
  1961. {
  1962. /*
  1963. * If called from an extended quiescent state, invoke the RCU
  1964. * core in order to force a re-evaluation of RCU's idleness.
  1965. */
  1966. if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
  1967. invoke_rcu_core();
  1968. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  1969. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  1970. return;
  1971. /*
  1972. * Force the grace period if too many callbacks or too long waiting.
  1973. * Enforce hysteresis, and don't invoke force_quiescent_state()
  1974. * if some other CPU has recently done so. Also, don't bother
  1975. * invoking force_quiescent_state() if the newly enqueued callback
  1976. * is the only one waiting for a grace period to complete.
  1977. */
  1978. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  1979. /* Are we ignoring a completed grace period? */
  1980. rcu_process_gp_end(rsp, rdp);
  1981. check_for_new_grace_period(rsp, rdp);
  1982. /* Start a new grace period if one not already started. */
  1983. if (!rcu_gp_in_progress(rsp)) {
  1984. unsigned long nestflag;
  1985. struct rcu_node *rnp_root = rcu_get_root(rsp);
  1986. raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
  1987. rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
  1988. } else {
  1989. /* Give the grace period a kick. */
  1990. rdp->blimit = LONG_MAX;
  1991. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  1992. *rdp->nxttail[RCU_DONE_TAIL] != head)
  1993. force_quiescent_state(rsp);
  1994. rdp->n_force_qs_snap = rsp->n_force_qs;
  1995. rdp->qlen_last_fqs_check = rdp->qlen;
  1996. }
  1997. }
  1998. }
  1999. /*
  2000. * Helper function for call_rcu() and friends. The cpu argument will
  2001. * normally be -1, indicating "currently running CPU". It may specify
  2002. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2003. * is expected to specify a CPU.
  2004. */
  2005. static void
  2006. __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
  2007. struct rcu_state *rsp, int cpu, bool lazy)
  2008. {
  2009. unsigned long flags;
  2010. struct rcu_data *rdp;
  2011. WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
  2012. debug_rcu_head_queue(head);
  2013. head->func = func;
  2014. head->next = NULL;
  2015. /*
  2016. * Opportunistically note grace-period endings and beginnings.
  2017. * Note that we might see a beginning right after we see an
  2018. * end, but never vice versa, since this CPU has to pass through
  2019. * a quiescent state betweentimes.
  2020. */
  2021. local_irq_save(flags);
  2022. rdp = this_cpu_ptr(rsp->rda);
  2023. /* Add the callback to our list. */
  2024. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  2025. int offline;
  2026. if (cpu != -1)
  2027. rdp = per_cpu_ptr(rsp->rda, cpu);
  2028. offline = !__call_rcu_nocb(rdp, head, lazy);
  2029. WARN_ON_ONCE(offline);
  2030. /* _call_rcu() is illegal on offline CPU; leak the callback. */
  2031. local_irq_restore(flags);
  2032. return;
  2033. }
  2034. ACCESS_ONCE(rdp->qlen)++;
  2035. if (lazy)
  2036. rdp->qlen_lazy++;
  2037. else
  2038. rcu_idle_count_callbacks_posted();
  2039. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  2040. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  2041. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  2042. if (__is_kfree_rcu_offset((unsigned long)func))
  2043. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2044. rdp->qlen_lazy, rdp->qlen);
  2045. else
  2046. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  2047. /* Go handle any RCU core processing required. */
  2048. __call_rcu_core(rsp, rdp, head, flags);
  2049. local_irq_restore(flags);
  2050. }
  2051. /*
  2052. * Queue an RCU-sched callback for invocation after a grace period.
  2053. */
  2054. void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2055. {
  2056. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2057. }
  2058. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2059. /*
  2060. * Queue an RCU callback for invocation after a quicker grace period.
  2061. */
  2062. void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2063. {
  2064. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2065. }
  2066. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2067. /*
  2068. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2069. * any blocking grace-period wait automatically implies a grace period
  2070. * if there is only one CPU online at any point time during execution
  2071. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2072. * occasionally incorrectly indicate that there are multiple CPUs online
  2073. * when there was in fact only one the whole time, as this just adds
  2074. * some overhead: RCU still operates correctly.
  2075. */
  2076. static inline int rcu_blocking_is_gp(void)
  2077. {
  2078. int ret;
  2079. might_sleep(); /* Check for RCU read-side critical section. */
  2080. preempt_disable();
  2081. ret = num_online_cpus() <= 1;
  2082. preempt_enable();
  2083. return ret;
  2084. }
  2085. /**
  2086. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2087. *
  2088. * Control will return to the caller some time after a full rcu-sched
  2089. * grace period has elapsed, in other words after all currently executing
  2090. * rcu-sched read-side critical sections have completed. These read-side
  2091. * critical sections are delimited by rcu_read_lock_sched() and
  2092. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2093. * local_irq_disable(), and so on may be used in place of
  2094. * rcu_read_lock_sched().
  2095. *
  2096. * This means that all preempt_disable code sequences, including NMI and
  2097. * non-threaded hardware-interrupt handlers, in progress on entry will
  2098. * have completed before this primitive returns. However, this does not
  2099. * guarantee that softirq handlers will have completed, since in some
  2100. * kernels, these handlers can run in process context, and can block.
  2101. *
  2102. * Note that this guarantee implies further memory-ordering guarantees.
  2103. * On systems with more than one CPU, when synchronize_sched() returns,
  2104. * each CPU is guaranteed to have executed a full memory barrier since the
  2105. * end of its last RCU-sched read-side critical section whose beginning
  2106. * preceded the call to synchronize_sched(). In addition, each CPU having
  2107. * an RCU read-side critical section that extends beyond the return from
  2108. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2109. * after the beginning of synchronize_sched() and before the beginning of
  2110. * that RCU read-side critical section. Note that these guarantees include
  2111. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2112. * that are executing in the kernel.
  2113. *
  2114. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2115. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2116. * to have executed a full memory barrier during the execution of
  2117. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2118. * again only if the system has more than one CPU).
  2119. *
  2120. * This primitive provides the guarantees made by the (now removed)
  2121. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2122. * guarantees that rcu_read_lock() sections will have completed.
  2123. * In "classic RCU", these two guarantees happen to be one and
  2124. * the same, but can differ in realtime RCU implementations.
  2125. */
  2126. void synchronize_sched(void)
  2127. {
  2128. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2129. !lock_is_held(&rcu_lock_map) &&
  2130. !lock_is_held(&rcu_sched_lock_map),
  2131. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2132. if (rcu_blocking_is_gp())
  2133. return;
  2134. if (rcu_expedited)
  2135. synchronize_sched_expedited();
  2136. else
  2137. wait_rcu_gp(call_rcu_sched);
  2138. }
  2139. EXPORT_SYMBOL_GPL(synchronize_sched);
  2140. /**
  2141. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2142. *
  2143. * Control will return to the caller some time after a full rcu_bh grace
  2144. * period has elapsed, in other words after all currently executing rcu_bh
  2145. * read-side critical sections have completed. RCU read-side critical
  2146. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2147. * and may be nested.
  2148. *
  2149. * See the description of synchronize_sched() for more detailed information
  2150. * on memory ordering guarantees.
  2151. */
  2152. void synchronize_rcu_bh(void)
  2153. {
  2154. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2155. !lock_is_held(&rcu_lock_map) &&
  2156. !lock_is_held(&rcu_sched_lock_map),
  2157. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2158. if (rcu_blocking_is_gp())
  2159. return;
  2160. if (rcu_expedited)
  2161. synchronize_rcu_bh_expedited();
  2162. else
  2163. wait_rcu_gp(call_rcu_bh);
  2164. }
  2165. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2166. static int synchronize_sched_expedited_cpu_stop(void *data)
  2167. {
  2168. /*
  2169. * There must be a full memory barrier on each affected CPU
  2170. * between the time that try_stop_cpus() is called and the
  2171. * time that it returns.
  2172. *
  2173. * In the current initial implementation of cpu_stop, the
  2174. * above condition is already met when the control reaches
  2175. * this point and the following smp_mb() is not strictly
  2176. * necessary. Do smp_mb() anyway for documentation and
  2177. * robustness against future implementation changes.
  2178. */
  2179. smp_mb(); /* See above comment block. */
  2180. return 0;
  2181. }
  2182. /**
  2183. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  2184. *
  2185. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  2186. * approach to force the grace period to end quickly. This consumes
  2187. * significant time on all CPUs and is unfriendly to real-time workloads,
  2188. * so is thus not recommended for any sort of common-case code. In fact,
  2189. * if you are using synchronize_sched_expedited() in a loop, please
  2190. * restructure your code to batch your updates, and then use a single
  2191. * synchronize_sched() instead.
  2192. *
  2193. * Note that it is illegal to call this function while holding any lock
  2194. * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
  2195. * to call this function from a CPU-hotplug notifier. Failing to observe
  2196. * these restriction will result in deadlock.
  2197. *
  2198. * This implementation can be thought of as an application of ticket
  2199. * locking to RCU, with sync_sched_expedited_started and
  2200. * sync_sched_expedited_done taking on the roles of the halves
  2201. * of the ticket-lock word. Each task atomically increments
  2202. * sync_sched_expedited_started upon entry, snapshotting the old value,
  2203. * then attempts to stop all the CPUs. If this succeeds, then each
  2204. * CPU will have executed a context switch, resulting in an RCU-sched
  2205. * grace period. We are then done, so we use atomic_cmpxchg() to
  2206. * update sync_sched_expedited_done to match our snapshot -- but
  2207. * only if someone else has not already advanced past our snapshot.
  2208. *
  2209. * On the other hand, if try_stop_cpus() fails, we check the value
  2210. * of sync_sched_expedited_done. If it has advanced past our
  2211. * initial snapshot, then someone else must have forced a grace period
  2212. * some time after we took our snapshot. In this case, our work is
  2213. * done for us, and we can simply return. Otherwise, we try again,
  2214. * but keep our initial snapshot for purposes of checking for someone
  2215. * doing our work for us.
  2216. *
  2217. * If we fail too many times in a row, we fall back to synchronize_sched().
  2218. */
  2219. void synchronize_sched_expedited(void)
  2220. {
  2221. long firstsnap, s, snap;
  2222. int trycount = 0;
  2223. struct rcu_state *rsp = &rcu_sched_state;
  2224. /*
  2225. * If we are in danger of counter wrap, just do synchronize_sched().
  2226. * By allowing sync_sched_expedited_started to advance no more than
  2227. * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
  2228. * that more than 3.5 billion CPUs would be required to force a
  2229. * counter wrap on a 32-bit system. Quite a few more CPUs would of
  2230. * course be required on a 64-bit system.
  2231. */
  2232. if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
  2233. (ulong)atomic_long_read(&rsp->expedited_done) +
  2234. ULONG_MAX / 8)) {
  2235. synchronize_sched();
  2236. atomic_long_inc(&rsp->expedited_wrap);
  2237. return;
  2238. }
  2239. /*
  2240. * Take a ticket. Note that atomic_inc_return() implies a
  2241. * full memory barrier.
  2242. */
  2243. snap = atomic_long_inc_return(&rsp->expedited_start);
  2244. firstsnap = snap;
  2245. get_online_cpus();
  2246. WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
  2247. /*
  2248. * Each pass through the following loop attempts to force a
  2249. * context switch on each CPU.
  2250. */
  2251. while (try_stop_cpus(cpu_online_mask,
  2252. synchronize_sched_expedited_cpu_stop,
  2253. NULL) == -EAGAIN) {
  2254. put_online_cpus();
  2255. atomic_long_inc(&rsp->expedited_tryfail);
  2256. /* Check to see if someone else did our work for us. */
  2257. s = atomic_long_read(&rsp->expedited_done);
  2258. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2259. /* ensure test happens before caller kfree */
  2260. smp_mb__before_atomic_inc(); /* ^^^ */
  2261. atomic_long_inc(&rsp->expedited_workdone1);
  2262. return;
  2263. }
  2264. /* No joy, try again later. Or just synchronize_sched(). */
  2265. if (trycount++ < 10) {
  2266. udelay(trycount * num_online_cpus());
  2267. } else {
  2268. wait_rcu_gp(call_rcu_sched);
  2269. atomic_long_inc(&rsp->expedited_normal);
  2270. return;
  2271. }
  2272. /* Recheck to see if someone else did our work for us. */
  2273. s = atomic_long_read(&rsp->expedited_done);
  2274. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2275. /* ensure test happens before caller kfree */
  2276. smp_mb__before_atomic_inc(); /* ^^^ */
  2277. atomic_long_inc(&rsp->expedited_workdone2);
  2278. return;
  2279. }
  2280. /*
  2281. * Refetching sync_sched_expedited_started allows later
  2282. * callers to piggyback on our grace period. We retry
  2283. * after they started, so our grace period works for them,
  2284. * and they started after our first try, so their grace
  2285. * period works for us.
  2286. */
  2287. get_online_cpus();
  2288. snap = atomic_long_read(&rsp->expedited_start);
  2289. smp_mb(); /* ensure read is before try_stop_cpus(). */
  2290. }
  2291. atomic_long_inc(&rsp->expedited_stoppedcpus);
  2292. /*
  2293. * Everyone up to our most recent fetch is covered by our grace
  2294. * period. Update the counter, but only if our work is still
  2295. * relevant -- which it won't be if someone who started later
  2296. * than we did already did their update.
  2297. */
  2298. do {
  2299. atomic_long_inc(&rsp->expedited_done_tries);
  2300. s = atomic_long_read(&rsp->expedited_done);
  2301. if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
  2302. /* ensure test happens before caller kfree */
  2303. smp_mb__before_atomic_inc(); /* ^^^ */
  2304. atomic_long_inc(&rsp->expedited_done_lost);
  2305. break;
  2306. }
  2307. } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
  2308. atomic_long_inc(&rsp->expedited_done_exit);
  2309. put_online_cpus();
  2310. }
  2311. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  2312. /*
  2313. * Check to see if there is any immediate RCU-related work to be done
  2314. * by the current CPU, for the specified type of RCU, returning 1 if so.
  2315. * The checks are in order of increasing expense: checks that can be
  2316. * carried out against CPU-local state are performed first. However,
  2317. * we must check for CPU stalls first, else we might not get a chance.
  2318. */
  2319. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  2320. {
  2321. struct rcu_node *rnp = rdp->mynode;
  2322. rdp->n_rcu_pending++;
  2323. /* Check for CPU stalls, if enabled. */
  2324. check_cpu_stall(rsp, rdp);
  2325. /* Is the RCU core waiting for a quiescent state from this CPU? */
  2326. if (rcu_scheduler_fully_active &&
  2327. rdp->qs_pending && !rdp->passed_quiesce) {
  2328. rdp->n_rp_qs_pending++;
  2329. } else if (rdp->qs_pending && rdp->passed_quiesce) {
  2330. rdp->n_rp_report_qs++;
  2331. return 1;
  2332. }
  2333. /* Does this CPU have callbacks ready to invoke? */
  2334. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  2335. rdp->n_rp_cb_ready++;
  2336. return 1;
  2337. }
  2338. /* Has RCU gone idle with this CPU needing another grace period? */
  2339. if (cpu_needs_another_gp(rsp, rdp)) {
  2340. rdp->n_rp_cpu_needs_gp++;
  2341. return 1;
  2342. }
  2343. /* Has another RCU grace period completed? */
  2344. if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  2345. rdp->n_rp_gp_completed++;
  2346. return 1;
  2347. }
  2348. /* Has a new RCU grace period started? */
  2349. if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
  2350. rdp->n_rp_gp_started++;
  2351. return 1;
  2352. }
  2353. /* nothing to do */
  2354. rdp->n_rp_need_nothing++;
  2355. return 0;
  2356. }
  2357. /*
  2358. * Check to see if there is any immediate RCU-related work to be done
  2359. * by the current CPU, returning 1 if so. This function is part of the
  2360. * RCU implementation; it is -not- an exported member of the RCU API.
  2361. */
  2362. static int rcu_pending(int cpu)
  2363. {
  2364. struct rcu_state *rsp;
  2365. for_each_rcu_flavor(rsp)
  2366. if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
  2367. return 1;
  2368. return 0;
  2369. }
  2370. /*
  2371. * Return true if the specified CPU has any callback. If all_lazy is
  2372. * non-NULL, store an indication of whether all callbacks are lazy.
  2373. * (If there are no callbacks, all of them are deemed to be lazy.)
  2374. */
  2375. static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
  2376. {
  2377. bool al = true;
  2378. bool hc = false;
  2379. struct rcu_data *rdp;
  2380. struct rcu_state *rsp;
  2381. for_each_rcu_flavor(rsp) {
  2382. rdp = per_cpu_ptr(rsp->rda, cpu);
  2383. if (rdp->qlen != rdp->qlen_lazy)
  2384. al = false;
  2385. if (rdp->nxtlist)
  2386. hc = true;
  2387. }
  2388. if (all_lazy)
  2389. *all_lazy = al;
  2390. return hc;
  2391. }
  2392. /*
  2393. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  2394. * the compiler is expected to optimize this away.
  2395. */
  2396. static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
  2397. int cpu, unsigned long done)
  2398. {
  2399. trace_rcu_barrier(rsp->name, s, cpu,
  2400. atomic_read(&rsp->barrier_cpu_count), done);
  2401. }
  2402. /*
  2403. * RCU callback function for _rcu_barrier(). If we are last, wake
  2404. * up the task executing _rcu_barrier().
  2405. */
  2406. static void rcu_barrier_callback(struct rcu_head *rhp)
  2407. {
  2408. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  2409. struct rcu_state *rsp = rdp->rsp;
  2410. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  2411. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
  2412. complete(&rsp->barrier_completion);
  2413. } else {
  2414. _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
  2415. }
  2416. }
  2417. /*
  2418. * Called with preemption disabled, and from cross-cpu IRQ context.
  2419. */
  2420. static void rcu_barrier_func(void *type)
  2421. {
  2422. struct rcu_state *rsp = type;
  2423. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  2424. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
  2425. atomic_inc(&rsp->barrier_cpu_count);
  2426. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  2427. }
  2428. /*
  2429. * Orchestrate the specified type of RCU barrier, waiting for all
  2430. * RCU callbacks of the specified type to complete.
  2431. */
  2432. static void _rcu_barrier(struct rcu_state *rsp)
  2433. {
  2434. int cpu;
  2435. struct rcu_data *rdp;
  2436. unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
  2437. unsigned long snap_done;
  2438. _rcu_barrier_trace(rsp, "Begin", -1, snap);
  2439. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  2440. mutex_lock(&rsp->barrier_mutex);
  2441. /*
  2442. * Ensure that all prior references, including to ->n_barrier_done,
  2443. * are ordered before the _rcu_barrier() machinery.
  2444. */
  2445. smp_mb(); /* See above block comment. */
  2446. /*
  2447. * Recheck ->n_barrier_done to see if others did our work for us.
  2448. * This means checking ->n_barrier_done for an even-to-odd-to-even
  2449. * transition. The "if" expression below therefore rounds the old
  2450. * value up to the next even number and adds two before comparing.
  2451. */
  2452. snap_done = ACCESS_ONCE(rsp->n_barrier_done);
  2453. _rcu_barrier_trace(rsp, "Check", -1, snap_done);
  2454. if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
  2455. _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
  2456. smp_mb(); /* caller's subsequent code after above check. */
  2457. mutex_unlock(&rsp->barrier_mutex);
  2458. return;
  2459. }
  2460. /*
  2461. * Increment ->n_barrier_done to avoid duplicate work. Use
  2462. * ACCESS_ONCE() to prevent the compiler from speculating
  2463. * the increment to precede the early-exit check.
  2464. */
  2465. ACCESS_ONCE(rsp->n_barrier_done)++;
  2466. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
  2467. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
  2468. smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
  2469. /*
  2470. * Initialize the count to one rather than to zero in order to
  2471. * avoid a too-soon return to zero in case of a short grace period
  2472. * (or preemption of this task). Exclude CPU-hotplug operations
  2473. * to ensure that no offline CPU has callbacks queued.
  2474. */
  2475. init_completion(&rsp->barrier_completion);
  2476. atomic_set(&rsp->barrier_cpu_count, 1);
  2477. get_online_cpus();
  2478. /*
  2479. * Force each CPU with callbacks to register a new callback.
  2480. * When that callback is invoked, we will know that all of the
  2481. * corresponding CPU's preceding callbacks have been invoked.
  2482. */
  2483. for_each_possible_cpu(cpu) {
  2484. if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
  2485. continue;
  2486. rdp = per_cpu_ptr(rsp->rda, cpu);
  2487. if (is_nocb_cpu(cpu)) {
  2488. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  2489. rsp->n_barrier_done);
  2490. atomic_inc(&rsp->barrier_cpu_count);
  2491. __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
  2492. rsp, cpu, 0);
  2493. } else if (ACCESS_ONCE(rdp->qlen)) {
  2494. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  2495. rsp->n_barrier_done);
  2496. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  2497. } else {
  2498. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  2499. rsp->n_barrier_done);
  2500. }
  2501. }
  2502. put_online_cpus();
  2503. /*
  2504. * Now that we have an rcu_barrier_callback() callback on each
  2505. * CPU, and thus each counted, remove the initial count.
  2506. */
  2507. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  2508. complete(&rsp->barrier_completion);
  2509. /* Increment ->n_barrier_done to prevent duplicate work. */
  2510. smp_mb(); /* Keep increment after above mechanism. */
  2511. ACCESS_ONCE(rsp->n_barrier_done)++;
  2512. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
  2513. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
  2514. smp_mb(); /* Keep increment before caller's subsequent code. */
  2515. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  2516. wait_for_completion(&rsp->barrier_completion);
  2517. /* Other rcu_barrier() invocations can now safely proceed. */
  2518. mutex_unlock(&rsp->barrier_mutex);
  2519. }
  2520. /**
  2521. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  2522. */
  2523. void rcu_barrier_bh(void)
  2524. {
  2525. _rcu_barrier(&rcu_bh_state);
  2526. }
  2527. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  2528. /**
  2529. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  2530. */
  2531. void rcu_barrier_sched(void)
  2532. {
  2533. _rcu_barrier(&rcu_sched_state);
  2534. }
  2535. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  2536. /*
  2537. * Do boot-time initialization of a CPU's per-CPU RCU data.
  2538. */
  2539. static void __init
  2540. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  2541. {
  2542. unsigned long flags;
  2543. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2544. struct rcu_node *rnp = rcu_get_root(rsp);
  2545. /* Set up local state, ensuring consistent view of global state. */
  2546. raw_spin_lock_irqsave(&rnp->lock, flags);
  2547. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  2548. init_callback_list(rdp);
  2549. rdp->qlen_lazy = 0;
  2550. ACCESS_ONCE(rdp->qlen) = 0;
  2551. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  2552. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  2553. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  2554. rdp->cpu = cpu;
  2555. rdp->rsp = rsp;
  2556. rcu_boot_init_nocb_percpu_data(rdp);
  2557. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2558. }
  2559. /*
  2560. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  2561. * offline event can be happening at a given time. Note also that we
  2562. * can accept some slop in the rsp->completed access due to the fact
  2563. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  2564. */
  2565. static void __cpuinit
  2566. rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
  2567. {
  2568. unsigned long flags;
  2569. unsigned long mask;
  2570. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2571. struct rcu_node *rnp = rcu_get_root(rsp);
  2572. /* Exclude new grace periods. */
  2573. mutex_lock(&rsp->onoff_mutex);
  2574. /* Set up local state, ensuring consistent view of global state. */
  2575. raw_spin_lock_irqsave(&rnp->lock, flags);
  2576. rdp->beenonline = 1; /* We have now been online. */
  2577. rdp->preemptible = preemptible;
  2578. rdp->qlen_last_fqs_check = 0;
  2579. rdp->n_force_qs_snap = rsp->n_force_qs;
  2580. rdp->blimit = blimit;
  2581. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  2582. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  2583. atomic_set(&rdp->dynticks->dynticks,
  2584. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  2585. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2586. /* Add CPU to rcu_node bitmasks. */
  2587. rnp = rdp->mynode;
  2588. mask = rdp->grpmask;
  2589. do {
  2590. /* Exclude any attempts to start a new GP on small systems. */
  2591. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  2592. rnp->qsmaskinit |= mask;
  2593. mask = rnp->grpmask;
  2594. if (rnp == rdp->mynode) {
  2595. /*
  2596. * If there is a grace period in progress, we will
  2597. * set up to wait for it next time we run the
  2598. * RCU core code.
  2599. */
  2600. rdp->gpnum = rnp->completed;
  2601. rdp->completed = rnp->completed;
  2602. rdp->passed_quiesce = 0;
  2603. rdp->qs_pending = 0;
  2604. trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
  2605. }
  2606. raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
  2607. rnp = rnp->parent;
  2608. } while (rnp != NULL && !(rnp->qsmaskinit & mask));
  2609. local_irq_restore(flags);
  2610. mutex_unlock(&rsp->onoff_mutex);
  2611. }
  2612. static void __cpuinit rcu_prepare_cpu(int cpu)
  2613. {
  2614. struct rcu_state *rsp;
  2615. for_each_rcu_flavor(rsp)
  2616. rcu_init_percpu_data(cpu, rsp,
  2617. strcmp(rsp->name, "rcu_preempt") == 0);
  2618. }
  2619. /*
  2620. * Handle CPU online/offline notification events.
  2621. */
  2622. static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
  2623. unsigned long action, void *hcpu)
  2624. {
  2625. long cpu = (long)hcpu;
  2626. struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
  2627. struct rcu_node *rnp = rdp->mynode;
  2628. struct rcu_state *rsp;
  2629. trace_rcu_utilization("Start CPU hotplug");
  2630. switch (action) {
  2631. case CPU_UP_PREPARE:
  2632. case CPU_UP_PREPARE_FROZEN:
  2633. rcu_prepare_cpu(cpu);
  2634. rcu_prepare_kthreads(cpu);
  2635. break;
  2636. case CPU_ONLINE:
  2637. case CPU_DOWN_FAILED:
  2638. rcu_boost_kthread_setaffinity(rnp, -1);
  2639. break;
  2640. case CPU_DOWN_PREPARE:
  2641. rcu_boost_kthread_setaffinity(rnp, cpu);
  2642. break;
  2643. case CPU_DYING:
  2644. case CPU_DYING_FROZEN:
  2645. /*
  2646. * The whole machine is "stopped" except this CPU, so we can
  2647. * touch any data without introducing corruption. We send the
  2648. * dying CPU's callbacks to an arbitrarily chosen online CPU.
  2649. */
  2650. for_each_rcu_flavor(rsp)
  2651. rcu_cleanup_dying_cpu(rsp);
  2652. break;
  2653. case CPU_DEAD:
  2654. case CPU_DEAD_FROZEN:
  2655. case CPU_UP_CANCELED:
  2656. case CPU_UP_CANCELED_FROZEN:
  2657. for_each_rcu_flavor(rsp)
  2658. rcu_cleanup_dead_cpu(cpu, rsp);
  2659. break;
  2660. default:
  2661. break;
  2662. }
  2663. trace_rcu_utilization("End CPU hotplug");
  2664. return NOTIFY_OK;
  2665. }
  2666. /*
  2667. * Spawn the kthread that handles this RCU flavor's grace periods.
  2668. */
  2669. static int __init rcu_spawn_gp_kthread(void)
  2670. {
  2671. unsigned long flags;
  2672. struct rcu_node *rnp;
  2673. struct rcu_state *rsp;
  2674. struct task_struct *t;
  2675. for_each_rcu_flavor(rsp) {
  2676. t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
  2677. BUG_ON(IS_ERR(t));
  2678. rnp = rcu_get_root(rsp);
  2679. raw_spin_lock_irqsave(&rnp->lock, flags);
  2680. rsp->gp_kthread = t;
  2681. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2682. rcu_spawn_nocb_kthreads(rsp);
  2683. }
  2684. return 0;
  2685. }
  2686. early_initcall(rcu_spawn_gp_kthread);
  2687. /*
  2688. * This function is invoked towards the end of the scheduler's initialization
  2689. * process. Before this is called, the idle task might contain
  2690. * RCU read-side critical sections (during which time, this idle
  2691. * task is booting the system). After this function is called, the
  2692. * idle tasks are prohibited from containing RCU read-side critical
  2693. * sections. This function also enables RCU lockdep checking.
  2694. */
  2695. void rcu_scheduler_starting(void)
  2696. {
  2697. WARN_ON(num_online_cpus() != 1);
  2698. WARN_ON(nr_context_switches() > 0);
  2699. rcu_scheduler_active = 1;
  2700. }
  2701. /*
  2702. * Compute the per-level fanout, either using the exact fanout specified
  2703. * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
  2704. */
  2705. #ifdef CONFIG_RCU_FANOUT_EXACT
  2706. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  2707. {
  2708. int i;
  2709. for (i = rcu_num_lvls - 1; i > 0; i--)
  2710. rsp->levelspread[i] = CONFIG_RCU_FANOUT;
  2711. rsp->levelspread[0] = rcu_fanout_leaf;
  2712. }
  2713. #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
  2714. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  2715. {
  2716. int ccur;
  2717. int cprv;
  2718. int i;
  2719. cprv = nr_cpu_ids;
  2720. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  2721. ccur = rsp->levelcnt[i];
  2722. rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
  2723. cprv = ccur;
  2724. }
  2725. }
  2726. #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
  2727. /*
  2728. * Helper function for rcu_init() that initializes one rcu_state structure.
  2729. */
  2730. static void __init rcu_init_one(struct rcu_state *rsp,
  2731. struct rcu_data __percpu *rda)
  2732. {
  2733. static char *buf[] = { "rcu_node_0",
  2734. "rcu_node_1",
  2735. "rcu_node_2",
  2736. "rcu_node_3" }; /* Match MAX_RCU_LVLS */
  2737. static char *fqs[] = { "rcu_node_fqs_0",
  2738. "rcu_node_fqs_1",
  2739. "rcu_node_fqs_2",
  2740. "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
  2741. int cpustride = 1;
  2742. int i;
  2743. int j;
  2744. struct rcu_node *rnp;
  2745. BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  2746. /* Silence gcc 4.8 warning about array index out of range. */
  2747. if (rcu_num_lvls > RCU_NUM_LVLS)
  2748. panic("rcu_init_one: rcu_num_lvls overflow");
  2749. /* Initialize the level-tracking arrays. */
  2750. for (i = 0; i < rcu_num_lvls; i++)
  2751. rsp->levelcnt[i] = num_rcu_lvl[i];
  2752. for (i = 1; i < rcu_num_lvls; i++)
  2753. rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
  2754. rcu_init_levelspread(rsp);
  2755. /* Initialize the elements themselves, starting from the leaves. */
  2756. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  2757. cpustride *= rsp->levelspread[i];
  2758. rnp = rsp->level[i];
  2759. for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
  2760. raw_spin_lock_init(&rnp->lock);
  2761. lockdep_set_class_and_name(&rnp->lock,
  2762. &rcu_node_class[i], buf[i]);
  2763. raw_spin_lock_init(&rnp->fqslock);
  2764. lockdep_set_class_and_name(&rnp->fqslock,
  2765. &rcu_fqs_class[i], fqs[i]);
  2766. rnp->gpnum = rsp->gpnum;
  2767. rnp->completed = rsp->completed;
  2768. rnp->qsmask = 0;
  2769. rnp->qsmaskinit = 0;
  2770. rnp->grplo = j * cpustride;
  2771. rnp->grphi = (j + 1) * cpustride - 1;
  2772. if (rnp->grphi >= NR_CPUS)
  2773. rnp->grphi = NR_CPUS - 1;
  2774. if (i == 0) {
  2775. rnp->grpnum = 0;
  2776. rnp->grpmask = 0;
  2777. rnp->parent = NULL;
  2778. } else {
  2779. rnp->grpnum = j % rsp->levelspread[i - 1];
  2780. rnp->grpmask = 1UL << rnp->grpnum;
  2781. rnp->parent = rsp->level[i - 1] +
  2782. j / rsp->levelspread[i - 1];
  2783. }
  2784. rnp->level = i;
  2785. INIT_LIST_HEAD(&rnp->blkd_tasks);
  2786. rcu_init_one_nocb(rnp);
  2787. }
  2788. }
  2789. rsp->rda = rda;
  2790. init_waitqueue_head(&rsp->gp_wq);
  2791. rnp = rsp->level[rcu_num_lvls - 1];
  2792. for_each_possible_cpu(i) {
  2793. while (i > rnp->grphi)
  2794. rnp++;
  2795. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  2796. rcu_boot_init_percpu_data(i, rsp);
  2797. }
  2798. list_add(&rsp->flavors, &rcu_struct_flavors);
  2799. }
  2800. /*
  2801. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  2802. * replace the definitions in rcutree.h because those are needed to size
  2803. * the ->node array in the rcu_state structure.
  2804. */
  2805. static void __init rcu_init_geometry(void)
  2806. {
  2807. int i;
  2808. int j;
  2809. int n = nr_cpu_ids;
  2810. int rcu_capacity[MAX_RCU_LVLS + 1];
  2811. /* If the compile-time values are accurate, just leave. */
  2812. if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
  2813. nr_cpu_ids == NR_CPUS)
  2814. return;
  2815. /*
  2816. * Compute number of nodes that can be handled an rcu_node tree
  2817. * with the given number of levels. Setting rcu_capacity[0] makes
  2818. * some of the arithmetic easier.
  2819. */
  2820. rcu_capacity[0] = 1;
  2821. rcu_capacity[1] = rcu_fanout_leaf;
  2822. for (i = 2; i <= MAX_RCU_LVLS; i++)
  2823. rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
  2824. /*
  2825. * The boot-time rcu_fanout_leaf parameter is only permitted
  2826. * to increase the leaf-level fanout, not decrease it. Of course,
  2827. * the leaf-level fanout cannot exceed the number of bits in
  2828. * the rcu_node masks. Finally, the tree must be able to accommodate
  2829. * the configured number of CPUs. Complain and fall back to the
  2830. * compile-time values if these limits are exceeded.
  2831. */
  2832. if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
  2833. rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
  2834. n > rcu_capacity[MAX_RCU_LVLS]) {
  2835. WARN_ON(1);
  2836. return;
  2837. }
  2838. /* Calculate the number of rcu_nodes at each level of the tree. */
  2839. for (i = 1; i <= MAX_RCU_LVLS; i++)
  2840. if (n <= rcu_capacity[i]) {
  2841. for (j = 0; j <= i; j++)
  2842. num_rcu_lvl[j] =
  2843. DIV_ROUND_UP(n, rcu_capacity[i - j]);
  2844. rcu_num_lvls = i;
  2845. for (j = i + 1; j <= MAX_RCU_LVLS; j++)
  2846. num_rcu_lvl[j] = 0;
  2847. break;
  2848. }
  2849. /* Calculate the total number of rcu_node structures. */
  2850. rcu_num_nodes = 0;
  2851. for (i = 0; i <= MAX_RCU_LVLS; i++)
  2852. rcu_num_nodes += num_rcu_lvl[i];
  2853. rcu_num_nodes -= n;
  2854. }
  2855. void __init rcu_init(void)
  2856. {
  2857. int cpu;
  2858. rcu_bootup_announce();
  2859. rcu_init_geometry();
  2860. rcu_init_one(&rcu_sched_state, &rcu_sched_data);
  2861. rcu_init_one(&rcu_bh_state, &rcu_bh_data);
  2862. __rcu_init_preempt();
  2863. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  2864. /*
  2865. * We don't need protection against CPU-hotplug here because
  2866. * this is called early in boot, before either interrupts
  2867. * or the scheduler are operational.
  2868. */
  2869. cpu_notifier(rcu_cpu_notify, 0);
  2870. for_each_online_cpu(cpu)
  2871. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  2872. }
  2873. #include "rcutree_plugin.h"