request.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375
  1. /*
  2. * Main bcache entry point - handle a read or a write request and decide what to
  3. * do with it; the make_request functions are called by the block layer.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include "writeback.h"
  13. #include <linux/cgroup.h>
  14. #include <linux/module.h>
  15. #include <linux/hash.h>
  16. #include <linux/random.h>
  17. #include "blk-cgroup.h"
  18. #include <trace/events/bcache.h>
  19. #define CUTOFF_CACHE_ADD 95
  20. #define CUTOFF_CACHE_READA 90
  21. struct kmem_cache *bch_search_cache;
  22. static void check_should_skip(struct cached_dev *, struct search *);
  23. /* Cgroup interface */
  24. #ifdef CONFIG_CGROUP_BCACHE
  25. static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
  26. static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
  27. {
  28. struct cgroup_subsys_state *css;
  29. return cgroup &&
  30. (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
  31. ? container_of(css, struct bch_cgroup, css)
  32. : &bcache_default_cgroup;
  33. }
  34. struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
  35. {
  36. struct cgroup_subsys_state *css = bio->bi_css
  37. ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
  38. : task_subsys_state(current, bcache_subsys_id);
  39. return css
  40. ? container_of(css, struct bch_cgroup, css)
  41. : &bcache_default_cgroup;
  42. }
  43. static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
  44. struct file *file,
  45. char __user *buf, size_t nbytes, loff_t *ppos)
  46. {
  47. char tmp[1024];
  48. int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
  49. cgroup_to_bcache(cgrp)->cache_mode + 1);
  50. if (len < 0)
  51. return len;
  52. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  53. }
  54. static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
  55. const char *buf)
  56. {
  57. int v = bch_read_string_list(buf, bch_cache_modes);
  58. if (v < 0)
  59. return v;
  60. cgroup_to_bcache(cgrp)->cache_mode = v - 1;
  61. return 0;
  62. }
  63. static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
  64. {
  65. return cgroup_to_bcache(cgrp)->verify;
  66. }
  67. static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
  68. {
  69. cgroup_to_bcache(cgrp)->verify = val;
  70. return 0;
  71. }
  72. static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
  73. {
  74. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  75. return atomic_read(&bcachecg->stats.cache_hits);
  76. }
  77. static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
  78. {
  79. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  80. return atomic_read(&bcachecg->stats.cache_misses);
  81. }
  82. static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
  83. struct cftype *cft)
  84. {
  85. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  86. return atomic_read(&bcachecg->stats.cache_bypass_hits);
  87. }
  88. static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
  89. struct cftype *cft)
  90. {
  91. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  92. return atomic_read(&bcachecg->stats.cache_bypass_misses);
  93. }
  94. static struct cftype bch_files[] = {
  95. {
  96. .name = "cache_mode",
  97. .read = cache_mode_read,
  98. .write_string = cache_mode_write,
  99. },
  100. {
  101. .name = "verify",
  102. .read_u64 = bch_verify_read,
  103. .write_u64 = bch_verify_write,
  104. },
  105. {
  106. .name = "cache_hits",
  107. .read_u64 = bch_cache_hits_read,
  108. },
  109. {
  110. .name = "cache_misses",
  111. .read_u64 = bch_cache_misses_read,
  112. },
  113. {
  114. .name = "cache_bypass_hits",
  115. .read_u64 = bch_cache_bypass_hits_read,
  116. },
  117. {
  118. .name = "cache_bypass_misses",
  119. .read_u64 = bch_cache_bypass_misses_read,
  120. },
  121. { } /* terminate */
  122. };
  123. static void init_bch_cgroup(struct bch_cgroup *cg)
  124. {
  125. cg->cache_mode = -1;
  126. }
  127. static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
  128. {
  129. struct bch_cgroup *cg;
  130. cg = kzalloc(sizeof(*cg), GFP_KERNEL);
  131. if (!cg)
  132. return ERR_PTR(-ENOMEM);
  133. init_bch_cgroup(cg);
  134. return &cg->css;
  135. }
  136. static void bcachecg_destroy(struct cgroup *cgroup)
  137. {
  138. struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
  139. free_css_id(&bcache_subsys, &cg->css);
  140. kfree(cg);
  141. }
  142. struct cgroup_subsys bcache_subsys = {
  143. .create = bcachecg_create,
  144. .destroy = bcachecg_destroy,
  145. .subsys_id = bcache_subsys_id,
  146. .name = "bcache",
  147. .module = THIS_MODULE,
  148. };
  149. EXPORT_SYMBOL_GPL(bcache_subsys);
  150. #endif
  151. static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
  152. {
  153. #ifdef CONFIG_CGROUP_BCACHE
  154. int r = bch_bio_to_cgroup(bio)->cache_mode;
  155. if (r >= 0)
  156. return r;
  157. #endif
  158. return BDEV_CACHE_MODE(&dc->sb);
  159. }
  160. static bool verify(struct cached_dev *dc, struct bio *bio)
  161. {
  162. #ifdef CONFIG_CGROUP_BCACHE
  163. if (bch_bio_to_cgroup(bio)->verify)
  164. return true;
  165. #endif
  166. return dc->verify;
  167. }
  168. static void bio_csum(struct bio *bio, struct bkey *k)
  169. {
  170. struct bio_vec *bv;
  171. uint64_t csum = 0;
  172. int i;
  173. bio_for_each_segment(bv, bio, i) {
  174. void *d = kmap(bv->bv_page) + bv->bv_offset;
  175. csum = bch_crc64_update(csum, d, bv->bv_len);
  176. kunmap(bv->bv_page);
  177. }
  178. k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  179. }
  180. /* Insert data into cache */
  181. static void bio_invalidate(struct closure *cl)
  182. {
  183. struct btree_op *op = container_of(cl, struct btree_op, cl);
  184. struct bio *bio = op->cache_bio;
  185. pr_debug("invalidating %i sectors from %llu",
  186. bio_sectors(bio), (uint64_t) bio->bi_sector);
  187. while (bio_sectors(bio)) {
  188. unsigned len = min(bio_sectors(bio), 1U << 14);
  189. if (bch_keylist_realloc(&op->keys, 0, op->c))
  190. goto out;
  191. bio->bi_sector += len;
  192. bio->bi_size -= len << 9;
  193. bch_keylist_add(&op->keys,
  194. &KEY(op->inode, bio->bi_sector, len));
  195. }
  196. op->insert_data_done = true;
  197. bio_put(bio);
  198. out:
  199. continue_at(cl, bch_journal, bcache_wq);
  200. }
  201. struct open_bucket {
  202. struct list_head list;
  203. struct task_struct *last;
  204. unsigned sectors_free;
  205. BKEY_PADDED(key);
  206. };
  207. void bch_open_buckets_free(struct cache_set *c)
  208. {
  209. struct open_bucket *b;
  210. while (!list_empty(&c->data_buckets)) {
  211. b = list_first_entry(&c->data_buckets,
  212. struct open_bucket, list);
  213. list_del(&b->list);
  214. kfree(b);
  215. }
  216. }
  217. int bch_open_buckets_alloc(struct cache_set *c)
  218. {
  219. int i;
  220. spin_lock_init(&c->data_bucket_lock);
  221. for (i = 0; i < 6; i++) {
  222. struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
  223. if (!b)
  224. return -ENOMEM;
  225. list_add(&b->list, &c->data_buckets);
  226. }
  227. return 0;
  228. }
  229. /*
  230. * We keep multiple buckets open for writes, and try to segregate different
  231. * write streams for better cache utilization: first we look for a bucket where
  232. * the last write to it was sequential with the current write, and failing that
  233. * we look for a bucket that was last used by the same task.
  234. *
  235. * The ideas is if you've got multiple tasks pulling data into the cache at the
  236. * same time, you'll get better cache utilization if you try to segregate their
  237. * data and preserve locality.
  238. *
  239. * For example, say you've starting Firefox at the same time you're copying a
  240. * bunch of files. Firefox will likely end up being fairly hot and stay in the
  241. * cache awhile, but the data you copied might not be; if you wrote all that
  242. * data to the same buckets it'd get invalidated at the same time.
  243. *
  244. * Both of those tasks will be doing fairly random IO so we can't rely on
  245. * detecting sequential IO to segregate their data, but going off of the task
  246. * should be a sane heuristic.
  247. */
  248. static struct open_bucket *pick_data_bucket(struct cache_set *c,
  249. const struct bkey *search,
  250. struct task_struct *task,
  251. struct bkey *alloc)
  252. {
  253. struct open_bucket *ret, *ret_task = NULL;
  254. list_for_each_entry_reverse(ret, &c->data_buckets, list)
  255. if (!bkey_cmp(&ret->key, search))
  256. goto found;
  257. else if (ret->last == task)
  258. ret_task = ret;
  259. ret = ret_task ?: list_first_entry(&c->data_buckets,
  260. struct open_bucket, list);
  261. found:
  262. if (!ret->sectors_free && KEY_PTRS(alloc)) {
  263. ret->sectors_free = c->sb.bucket_size;
  264. bkey_copy(&ret->key, alloc);
  265. bkey_init(alloc);
  266. }
  267. if (!ret->sectors_free)
  268. ret = NULL;
  269. return ret;
  270. }
  271. /*
  272. * Allocates some space in the cache to write to, and k to point to the newly
  273. * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
  274. * end of the newly allocated space).
  275. *
  276. * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
  277. * sectors were actually allocated.
  278. *
  279. * If s->writeback is true, will not fail.
  280. */
  281. static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
  282. struct search *s)
  283. {
  284. struct cache_set *c = s->op.c;
  285. struct open_bucket *b;
  286. BKEY_PADDED(key) alloc;
  287. struct closure cl, *w = NULL;
  288. unsigned i;
  289. if (s->writeback) {
  290. closure_init_stack(&cl);
  291. w = &cl;
  292. }
  293. /*
  294. * We might have to allocate a new bucket, which we can't do with a
  295. * spinlock held. So if we have to allocate, we drop the lock, allocate
  296. * and then retry. KEY_PTRS() indicates whether alloc points to
  297. * allocated bucket(s).
  298. */
  299. bkey_init(&alloc.key);
  300. spin_lock(&c->data_bucket_lock);
  301. while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
  302. unsigned watermark = s->op.write_prio
  303. ? WATERMARK_MOVINGGC
  304. : WATERMARK_NONE;
  305. spin_unlock(&c->data_bucket_lock);
  306. if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
  307. return false;
  308. spin_lock(&c->data_bucket_lock);
  309. }
  310. /*
  311. * If we had to allocate, we might race and not need to allocate the
  312. * second time we call find_data_bucket(). If we allocated a bucket but
  313. * didn't use it, drop the refcount bch_bucket_alloc_set() took:
  314. */
  315. if (KEY_PTRS(&alloc.key))
  316. __bkey_put(c, &alloc.key);
  317. for (i = 0; i < KEY_PTRS(&b->key); i++)
  318. EBUG_ON(ptr_stale(c, &b->key, i));
  319. /* Set up the pointer to the space we're allocating: */
  320. for (i = 0; i < KEY_PTRS(&b->key); i++)
  321. k->ptr[i] = b->key.ptr[i];
  322. sectors = min(sectors, b->sectors_free);
  323. SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
  324. SET_KEY_SIZE(k, sectors);
  325. SET_KEY_PTRS(k, KEY_PTRS(&b->key));
  326. /*
  327. * Move b to the end of the lru, and keep track of what this bucket was
  328. * last used for:
  329. */
  330. list_move_tail(&b->list, &c->data_buckets);
  331. bkey_copy_key(&b->key, k);
  332. b->last = s->task;
  333. b->sectors_free -= sectors;
  334. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  335. SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
  336. atomic_long_add(sectors,
  337. &PTR_CACHE(c, &b->key, i)->sectors_written);
  338. }
  339. if (b->sectors_free < c->sb.block_size)
  340. b->sectors_free = 0;
  341. /*
  342. * k takes refcounts on the buckets it points to until it's inserted
  343. * into the btree, but if we're done with this bucket we just transfer
  344. * get_data_bucket()'s refcount.
  345. */
  346. if (b->sectors_free)
  347. for (i = 0; i < KEY_PTRS(&b->key); i++)
  348. atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
  349. spin_unlock(&c->data_bucket_lock);
  350. return true;
  351. }
  352. static void bch_insert_data_error(struct closure *cl)
  353. {
  354. struct btree_op *op = container_of(cl, struct btree_op, cl);
  355. /*
  356. * Our data write just errored, which means we've got a bunch of keys to
  357. * insert that point to data that wasn't succesfully written.
  358. *
  359. * We don't have to insert those keys but we still have to invalidate
  360. * that region of the cache - so, if we just strip off all the pointers
  361. * from the keys we'll accomplish just that.
  362. */
  363. struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;
  364. while (src != op->keys.top) {
  365. struct bkey *n = bkey_next(src);
  366. SET_KEY_PTRS(src, 0);
  367. bkey_copy(dst, src);
  368. dst = bkey_next(dst);
  369. src = n;
  370. }
  371. op->keys.top = dst;
  372. bch_journal(cl);
  373. }
  374. static void bch_insert_data_endio(struct bio *bio, int error)
  375. {
  376. struct closure *cl = bio->bi_private;
  377. struct btree_op *op = container_of(cl, struct btree_op, cl);
  378. struct search *s = container_of(op, struct search, op);
  379. if (error) {
  380. /* TODO: We could try to recover from this. */
  381. if (s->writeback)
  382. s->error = error;
  383. else if (s->write)
  384. set_closure_fn(cl, bch_insert_data_error, bcache_wq);
  385. else
  386. set_closure_fn(cl, NULL, NULL);
  387. }
  388. bch_bbio_endio(op->c, bio, error, "writing data to cache");
  389. }
  390. static void bch_insert_data_loop(struct closure *cl)
  391. {
  392. struct btree_op *op = container_of(cl, struct btree_op, cl);
  393. struct search *s = container_of(op, struct search, op);
  394. struct bio *bio = op->cache_bio, *n;
  395. if (op->skip)
  396. return bio_invalidate(cl);
  397. if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
  398. set_gc_sectors(op->c);
  399. bch_queue_gc(op->c);
  400. }
  401. /*
  402. * Journal writes are marked REQ_FLUSH; if the original write was a
  403. * flush, it'll wait on the journal write.
  404. */
  405. bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
  406. do {
  407. unsigned i;
  408. struct bkey *k;
  409. struct bio_set *split = s->d
  410. ? s->d->bio_split : op->c->bio_split;
  411. /* 1 for the device pointer and 1 for the chksum */
  412. if (bch_keylist_realloc(&op->keys,
  413. 1 + (op->csum ? 1 : 0),
  414. op->c))
  415. continue_at(cl, bch_journal, bcache_wq);
  416. k = op->keys.top;
  417. bkey_init(k);
  418. SET_KEY_INODE(k, op->inode);
  419. SET_KEY_OFFSET(k, bio->bi_sector);
  420. if (!bch_alloc_sectors(k, bio_sectors(bio), s))
  421. goto err;
  422. n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
  423. n->bi_end_io = bch_insert_data_endio;
  424. n->bi_private = cl;
  425. if (s->writeback) {
  426. SET_KEY_DIRTY(k, true);
  427. for (i = 0; i < KEY_PTRS(k); i++)
  428. SET_GC_MARK(PTR_BUCKET(op->c, k, i),
  429. GC_MARK_DIRTY);
  430. }
  431. SET_KEY_CSUM(k, op->csum);
  432. if (KEY_CSUM(k))
  433. bio_csum(n, k);
  434. trace_bcache_cache_insert(k);
  435. bch_keylist_push(&op->keys);
  436. n->bi_rw |= REQ_WRITE;
  437. bch_submit_bbio(n, op->c, k, 0);
  438. } while (n != bio);
  439. op->insert_data_done = true;
  440. continue_at(cl, bch_journal, bcache_wq);
  441. err:
  442. /* bch_alloc_sectors() blocks if s->writeback = true */
  443. BUG_ON(s->writeback);
  444. /*
  445. * But if it's not a writeback write we'd rather just bail out if
  446. * there aren't any buckets ready to write to - it might take awhile and
  447. * we might be starving btree writes for gc or something.
  448. */
  449. if (s->write) {
  450. /*
  451. * Writethrough write: We can't complete the write until we've
  452. * updated the index. But we don't want to delay the write while
  453. * we wait for buckets to be freed up, so just invalidate the
  454. * rest of the write.
  455. */
  456. op->skip = true;
  457. return bio_invalidate(cl);
  458. } else {
  459. /*
  460. * From a cache miss, we can just insert the keys for the data
  461. * we have written or bail out if we didn't do anything.
  462. */
  463. op->insert_data_done = true;
  464. bio_put(bio);
  465. if (!bch_keylist_empty(&op->keys))
  466. continue_at(cl, bch_journal, bcache_wq);
  467. else
  468. closure_return(cl);
  469. }
  470. }
  471. /**
  472. * bch_insert_data - stick some data in the cache
  473. *
  474. * This is the starting point for any data to end up in a cache device; it could
  475. * be from a normal write, or a writeback write, or a write to a flash only
  476. * volume - it's also used by the moving garbage collector to compact data in
  477. * mostly empty buckets.
  478. *
  479. * It first writes the data to the cache, creating a list of keys to be inserted
  480. * (if the data had to be fragmented there will be multiple keys); after the
  481. * data is written it calls bch_journal, and after the keys have been added to
  482. * the next journal write they're inserted into the btree.
  483. *
  484. * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
  485. * and op->inode is used for the key inode.
  486. *
  487. * If op->skip is true, instead of inserting the data it invalidates the region
  488. * of the cache represented by op->cache_bio and op->inode.
  489. */
  490. void bch_insert_data(struct closure *cl)
  491. {
  492. struct btree_op *op = container_of(cl, struct btree_op, cl);
  493. bch_keylist_init(&op->keys);
  494. bio_get(op->cache_bio);
  495. bch_insert_data_loop(cl);
  496. }
  497. void bch_btree_insert_async(struct closure *cl)
  498. {
  499. struct btree_op *op = container_of(cl, struct btree_op, cl);
  500. struct search *s = container_of(op, struct search, op);
  501. if (bch_btree_insert(op, op->c)) {
  502. s->error = -ENOMEM;
  503. op->insert_data_done = true;
  504. }
  505. if (op->insert_data_done) {
  506. bch_keylist_free(&op->keys);
  507. closure_return(cl);
  508. } else
  509. continue_at(cl, bch_insert_data_loop, bcache_wq);
  510. }
  511. /* Common code for the make_request functions */
  512. static void request_endio(struct bio *bio, int error)
  513. {
  514. struct closure *cl = bio->bi_private;
  515. if (error) {
  516. struct search *s = container_of(cl, struct search, cl);
  517. s->error = error;
  518. /* Only cache read errors are recoverable */
  519. s->recoverable = false;
  520. }
  521. bio_put(bio);
  522. closure_put(cl);
  523. }
  524. void bch_cache_read_endio(struct bio *bio, int error)
  525. {
  526. struct bbio *b = container_of(bio, struct bbio, bio);
  527. struct closure *cl = bio->bi_private;
  528. struct search *s = container_of(cl, struct search, cl);
  529. /*
  530. * If the bucket was reused while our bio was in flight, we might have
  531. * read the wrong data. Set s->error but not error so it doesn't get
  532. * counted against the cache device, but we'll still reread the data
  533. * from the backing device.
  534. */
  535. if (error)
  536. s->error = error;
  537. else if (ptr_stale(s->op.c, &b->key, 0)) {
  538. atomic_long_inc(&s->op.c->cache_read_races);
  539. s->error = -EINTR;
  540. }
  541. bch_bbio_endio(s->op.c, bio, error, "reading from cache");
  542. }
  543. static void bio_complete(struct search *s)
  544. {
  545. if (s->orig_bio) {
  546. int cpu, rw = bio_data_dir(s->orig_bio);
  547. unsigned long duration = jiffies - s->start_time;
  548. cpu = part_stat_lock();
  549. part_round_stats(cpu, &s->d->disk->part0);
  550. part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
  551. part_stat_unlock();
  552. trace_bcache_request_end(s, s->orig_bio);
  553. bio_endio(s->orig_bio, s->error);
  554. s->orig_bio = NULL;
  555. }
  556. }
  557. static void do_bio_hook(struct search *s)
  558. {
  559. struct bio *bio = &s->bio.bio;
  560. memcpy(bio, s->orig_bio, sizeof(struct bio));
  561. bio->bi_end_io = request_endio;
  562. bio->bi_private = &s->cl;
  563. atomic_set(&bio->bi_cnt, 3);
  564. }
  565. static void search_free(struct closure *cl)
  566. {
  567. struct search *s = container_of(cl, struct search, cl);
  568. bio_complete(s);
  569. if (s->op.cache_bio)
  570. bio_put(s->op.cache_bio);
  571. if (s->unaligned_bvec)
  572. mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
  573. closure_debug_destroy(cl);
  574. mempool_free(s, s->d->c->search);
  575. }
  576. static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
  577. {
  578. struct bio_vec *bv;
  579. struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
  580. memset(s, 0, offsetof(struct search, op.keys));
  581. __closure_init(&s->cl, NULL);
  582. s->op.inode = d->id;
  583. s->op.c = d->c;
  584. s->d = d;
  585. s->op.lock = -1;
  586. s->task = current;
  587. s->orig_bio = bio;
  588. s->write = (bio->bi_rw & REQ_WRITE) != 0;
  589. s->op.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
  590. s->op.skip = (bio->bi_rw & REQ_DISCARD) != 0;
  591. s->recoverable = 1;
  592. s->start_time = jiffies;
  593. do_bio_hook(s);
  594. if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
  595. bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
  596. memcpy(bv, bio_iovec(bio),
  597. sizeof(struct bio_vec) * bio_segments(bio));
  598. s->bio.bio.bi_io_vec = bv;
  599. s->unaligned_bvec = 1;
  600. }
  601. return s;
  602. }
  603. static void btree_read_async(struct closure *cl)
  604. {
  605. struct btree_op *op = container_of(cl, struct btree_op, cl);
  606. int ret = btree_root(search_recurse, op->c, op);
  607. if (ret == -EAGAIN)
  608. continue_at(cl, btree_read_async, bcache_wq);
  609. closure_return(cl);
  610. }
  611. /* Cached devices */
  612. static void cached_dev_bio_complete(struct closure *cl)
  613. {
  614. struct search *s = container_of(cl, struct search, cl);
  615. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  616. search_free(cl);
  617. cached_dev_put(dc);
  618. }
  619. /* Process reads */
  620. static void cached_dev_read_complete(struct closure *cl)
  621. {
  622. struct search *s = container_of(cl, struct search, cl);
  623. if (s->op.insert_collision)
  624. bch_mark_cache_miss_collision(s);
  625. if (s->op.cache_bio) {
  626. int i;
  627. struct bio_vec *bv;
  628. __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
  629. __free_page(bv->bv_page);
  630. }
  631. cached_dev_bio_complete(cl);
  632. }
  633. static void request_read_error(struct closure *cl)
  634. {
  635. struct search *s = container_of(cl, struct search, cl);
  636. struct bio_vec *bv;
  637. int i;
  638. if (s->recoverable) {
  639. /* Retry from the backing device: */
  640. trace_bcache_read_retry(s->orig_bio);
  641. s->error = 0;
  642. bv = s->bio.bio.bi_io_vec;
  643. do_bio_hook(s);
  644. s->bio.bio.bi_io_vec = bv;
  645. if (!s->unaligned_bvec)
  646. bio_for_each_segment(bv, s->orig_bio, i)
  647. bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
  648. else
  649. memcpy(s->bio.bio.bi_io_vec,
  650. bio_iovec(s->orig_bio),
  651. sizeof(struct bio_vec) *
  652. bio_segments(s->orig_bio));
  653. /* XXX: invalidate cache */
  654. closure_bio_submit(&s->bio.bio, &s->cl, s->d);
  655. }
  656. continue_at(cl, cached_dev_read_complete, NULL);
  657. }
  658. static void request_read_done(struct closure *cl)
  659. {
  660. struct search *s = container_of(cl, struct search, cl);
  661. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  662. /*
  663. * s->cache_bio != NULL implies that we had a cache miss; cache_bio now
  664. * contains data ready to be inserted into the cache.
  665. *
  666. * First, we copy the data we just read from cache_bio's bounce buffers
  667. * to the buffers the original bio pointed to:
  668. */
  669. if (s->op.cache_bio) {
  670. bio_reset(s->op.cache_bio);
  671. s->op.cache_bio->bi_sector = s->cache_miss->bi_sector;
  672. s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev;
  673. s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
  674. bch_bio_map(s->op.cache_bio, NULL);
  675. bio_copy_data(s->cache_miss, s->op.cache_bio);
  676. bio_put(s->cache_miss);
  677. s->cache_miss = NULL;
  678. }
  679. if (verify(dc, &s->bio.bio) && s->recoverable)
  680. bch_data_verify(s);
  681. bio_complete(s);
  682. if (s->op.cache_bio &&
  683. !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
  684. s->op.type = BTREE_REPLACE;
  685. closure_call(&s->op.cl, bch_insert_data, NULL, cl);
  686. }
  687. continue_at(cl, cached_dev_read_complete, NULL);
  688. }
  689. static void request_read_done_bh(struct closure *cl)
  690. {
  691. struct search *s = container_of(cl, struct search, cl);
  692. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  693. bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
  694. trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.skip);
  695. if (s->error)
  696. continue_at_nobarrier(cl, request_read_error, bcache_wq);
  697. else if (s->op.cache_bio || verify(dc, &s->bio.bio))
  698. continue_at_nobarrier(cl, request_read_done, bcache_wq);
  699. else
  700. continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
  701. }
  702. static int cached_dev_cache_miss(struct btree *b, struct search *s,
  703. struct bio *bio, unsigned sectors)
  704. {
  705. int ret = 0;
  706. unsigned reada;
  707. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  708. struct bio *miss;
  709. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  710. if (miss == bio)
  711. s->op.lookup_done = true;
  712. miss->bi_end_io = request_endio;
  713. miss->bi_private = &s->cl;
  714. if (s->cache_miss || s->op.skip)
  715. goto out_submit;
  716. if (miss != bio ||
  717. (bio->bi_rw & REQ_RAHEAD) ||
  718. (bio->bi_rw & REQ_META) ||
  719. s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
  720. reada = 0;
  721. else {
  722. reada = min(dc->readahead >> 9,
  723. sectors - bio_sectors(miss));
  724. if (bio_end_sector(miss) + reada > bdev_sectors(miss->bi_bdev))
  725. reada = bdev_sectors(miss->bi_bdev) -
  726. bio_end_sector(miss);
  727. }
  728. s->cache_bio_sectors = bio_sectors(miss) + reada;
  729. s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
  730. DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
  731. dc->disk.bio_split);
  732. if (!s->op.cache_bio)
  733. goto out_submit;
  734. s->op.cache_bio->bi_sector = miss->bi_sector;
  735. s->op.cache_bio->bi_bdev = miss->bi_bdev;
  736. s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
  737. s->op.cache_bio->bi_end_io = request_endio;
  738. s->op.cache_bio->bi_private = &s->cl;
  739. /* btree_search_recurse()'s btree iterator is no good anymore */
  740. ret = -EINTR;
  741. if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
  742. goto out_put;
  743. bch_bio_map(s->op.cache_bio, NULL);
  744. if (bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
  745. goto out_put;
  746. s->cache_miss = miss;
  747. bio_get(s->op.cache_bio);
  748. closure_bio_submit(s->op.cache_bio, &s->cl, s->d);
  749. return ret;
  750. out_put:
  751. bio_put(s->op.cache_bio);
  752. s->op.cache_bio = NULL;
  753. out_submit:
  754. closure_bio_submit(miss, &s->cl, s->d);
  755. return ret;
  756. }
  757. static void request_read(struct cached_dev *dc, struct search *s)
  758. {
  759. struct closure *cl = &s->cl;
  760. check_should_skip(dc, s);
  761. closure_call(&s->op.cl, btree_read_async, NULL, cl);
  762. continue_at(cl, request_read_done_bh, NULL);
  763. }
  764. /* Process writes */
  765. static void cached_dev_write_complete(struct closure *cl)
  766. {
  767. struct search *s = container_of(cl, struct search, cl);
  768. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  769. up_read_non_owner(&dc->writeback_lock);
  770. cached_dev_bio_complete(cl);
  771. }
  772. static void request_write(struct cached_dev *dc, struct search *s)
  773. {
  774. struct closure *cl = &s->cl;
  775. struct bio *bio = &s->bio.bio;
  776. struct bkey start, end;
  777. start = KEY(dc->disk.id, bio->bi_sector, 0);
  778. end = KEY(dc->disk.id, bio_end_sector(bio), 0);
  779. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
  780. check_should_skip(dc, s);
  781. down_read_non_owner(&dc->writeback_lock);
  782. if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
  783. s->op.skip = false;
  784. s->writeback = true;
  785. }
  786. if (bio->bi_rw & REQ_DISCARD)
  787. goto skip;
  788. if (should_writeback(dc, s->orig_bio,
  789. cache_mode(dc, bio),
  790. s->op.skip)) {
  791. s->op.skip = false;
  792. s->writeback = true;
  793. }
  794. if (s->op.skip)
  795. goto skip;
  796. trace_bcache_write(s->orig_bio, s->writeback, s->op.skip);
  797. if (!s->writeback) {
  798. s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
  799. dc->disk.bio_split);
  800. closure_bio_submit(bio, cl, s->d);
  801. } else {
  802. bch_writeback_add(dc);
  803. if (bio->bi_rw & REQ_FLUSH) {
  804. /* Also need to send a flush to the backing device */
  805. struct bio *flush = bio_alloc_bioset(0, GFP_NOIO,
  806. dc->disk.bio_split);
  807. flush->bi_rw = WRITE_FLUSH;
  808. flush->bi_bdev = bio->bi_bdev;
  809. flush->bi_end_io = request_endio;
  810. flush->bi_private = cl;
  811. closure_bio_submit(flush, cl, s->d);
  812. } else {
  813. s->op.cache_bio = bio;
  814. }
  815. }
  816. out:
  817. closure_call(&s->op.cl, bch_insert_data, NULL, cl);
  818. continue_at(cl, cached_dev_write_complete, NULL);
  819. skip:
  820. s->op.skip = true;
  821. s->op.cache_bio = s->orig_bio;
  822. bio_get(s->op.cache_bio);
  823. if ((bio->bi_rw & REQ_DISCARD) &&
  824. !blk_queue_discard(bdev_get_queue(dc->bdev)))
  825. goto out;
  826. closure_bio_submit(bio, cl, s->d);
  827. goto out;
  828. }
  829. static void request_nodata(struct cached_dev *dc, struct search *s)
  830. {
  831. struct closure *cl = &s->cl;
  832. struct bio *bio = &s->bio.bio;
  833. if (bio->bi_rw & REQ_DISCARD) {
  834. request_write(dc, s);
  835. return;
  836. }
  837. if (s->op.flush_journal)
  838. bch_journal_meta(s->op.c, cl);
  839. closure_bio_submit(bio, cl, s->d);
  840. continue_at(cl, cached_dev_bio_complete, NULL);
  841. }
  842. /* Cached devices - read & write stuff */
  843. unsigned bch_get_congested(struct cache_set *c)
  844. {
  845. int i;
  846. long rand;
  847. if (!c->congested_read_threshold_us &&
  848. !c->congested_write_threshold_us)
  849. return 0;
  850. i = (local_clock_us() - c->congested_last_us) / 1024;
  851. if (i < 0)
  852. return 0;
  853. i += atomic_read(&c->congested);
  854. if (i >= 0)
  855. return 0;
  856. i += CONGESTED_MAX;
  857. if (i > 0)
  858. i = fract_exp_two(i, 6);
  859. rand = get_random_int();
  860. i -= bitmap_weight(&rand, BITS_PER_LONG);
  861. return i > 0 ? i : 1;
  862. }
  863. static void add_sequential(struct task_struct *t)
  864. {
  865. ewma_add(t->sequential_io_avg,
  866. t->sequential_io, 8, 0);
  867. t->sequential_io = 0;
  868. }
  869. static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
  870. {
  871. return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
  872. }
  873. static void check_should_skip(struct cached_dev *dc, struct search *s)
  874. {
  875. struct cache_set *c = s->op.c;
  876. struct bio *bio = &s->bio.bio;
  877. unsigned mode = cache_mode(dc, bio);
  878. unsigned sectors, congested = bch_get_congested(c);
  879. if (atomic_read(&dc->disk.detaching) ||
  880. c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
  881. (bio->bi_rw & REQ_DISCARD))
  882. goto skip;
  883. if (mode == CACHE_MODE_NONE ||
  884. (mode == CACHE_MODE_WRITEAROUND &&
  885. (bio->bi_rw & REQ_WRITE)))
  886. goto skip;
  887. if (bio->bi_sector & (c->sb.block_size - 1) ||
  888. bio_sectors(bio) & (c->sb.block_size - 1)) {
  889. pr_debug("skipping unaligned io");
  890. goto skip;
  891. }
  892. if (!congested && !dc->sequential_cutoff)
  893. goto rescale;
  894. if (!congested &&
  895. mode == CACHE_MODE_WRITEBACK &&
  896. (bio->bi_rw & REQ_WRITE) &&
  897. (bio->bi_rw & REQ_SYNC))
  898. goto rescale;
  899. if (dc->sequential_merge) {
  900. struct io *i;
  901. spin_lock(&dc->io_lock);
  902. hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
  903. if (i->last == bio->bi_sector &&
  904. time_before(jiffies, i->jiffies))
  905. goto found;
  906. i = list_first_entry(&dc->io_lru, struct io, lru);
  907. add_sequential(s->task);
  908. i->sequential = 0;
  909. found:
  910. if (i->sequential + bio->bi_size > i->sequential)
  911. i->sequential += bio->bi_size;
  912. i->last = bio_end_sector(bio);
  913. i->jiffies = jiffies + msecs_to_jiffies(5000);
  914. s->task->sequential_io = i->sequential;
  915. hlist_del(&i->hash);
  916. hlist_add_head(&i->hash, iohash(dc, i->last));
  917. list_move_tail(&i->lru, &dc->io_lru);
  918. spin_unlock(&dc->io_lock);
  919. } else {
  920. s->task->sequential_io = bio->bi_size;
  921. add_sequential(s->task);
  922. }
  923. sectors = max(s->task->sequential_io,
  924. s->task->sequential_io_avg) >> 9;
  925. if (dc->sequential_cutoff &&
  926. sectors >= dc->sequential_cutoff >> 9) {
  927. trace_bcache_bypass_sequential(s->orig_bio);
  928. goto skip;
  929. }
  930. if (congested && sectors >= congested) {
  931. trace_bcache_bypass_congested(s->orig_bio);
  932. goto skip;
  933. }
  934. rescale:
  935. bch_rescale_priorities(c, bio_sectors(bio));
  936. return;
  937. skip:
  938. bch_mark_sectors_bypassed(s, bio_sectors(bio));
  939. s->op.skip = true;
  940. }
  941. static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
  942. {
  943. struct search *s;
  944. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  945. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  946. int cpu, rw = bio_data_dir(bio);
  947. cpu = part_stat_lock();
  948. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  949. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  950. part_stat_unlock();
  951. bio->bi_bdev = dc->bdev;
  952. bio->bi_sector += dc->sb.data_offset;
  953. if (cached_dev_get(dc)) {
  954. s = search_alloc(bio, d);
  955. trace_bcache_request_start(s, bio);
  956. if (!bio_has_data(bio))
  957. request_nodata(dc, s);
  958. else if (rw)
  959. request_write(dc, s);
  960. else
  961. request_read(dc, s);
  962. } else {
  963. if ((bio->bi_rw & REQ_DISCARD) &&
  964. !blk_queue_discard(bdev_get_queue(dc->bdev)))
  965. bio_endio(bio, 0);
  966. else
  967. bch_generic_make_request(bio, &d->bio_split_hook);
  968. }
  969. }
  970. static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
  971. unsigned int cmd, unsigned long arg)
  972. {
  973. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  974. return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
  975. }
  976. static int cached_dev_congested(void *data, int bits)
  977. {
  978. struct bcache_device *d = data;
  979. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  980. struct request_queue *q = bdev_get_queue(dc->bdev);
  981. int ret = 0;
  982. if (bdi_congested(&q->backing_dev_info, bits))
  983. return 1;
  984. if (cached_dev_get(dc)) {
  985. unsigned i;
  986. struct cache *ca;
  987. for_each_cache(ca, d->c, i) {
  988. q = bdev_get_queue(ca->bdev);
  989. ret |= bdi_congested(&q->backing_dev_info, bits);
  990. }
  991. cached_dev_put(dc);
  992. }
  993. return ret;
  994. }
  995. void bch_cached_dev_request_init(struct cached_dev *dc)
  996. {
  997. struct gendisk *g = dc->disk.disk;
  998. g->queue->make_request_fn = cached_dev_make_request;
  999. g->queue->backing_dev_info.congested_fn = cached_dev_congested;
  1000. dc->disk.cache_miss = cached_dev_cache_miss;
  1001. dc->disk.ioctl = cached_dev_ioctl;
  1002. }
  1003. /* Flash backed devices */
  1004. static int flash_dev_cache_miss(struct btree *b, struct search *s,
  1005. struct bio *bio, unsigned sectors)
  1006. {
  1007. struct bio_vec *bv;
  1008. int i;
  1009. /* Zero fill bio */
  1010. bio_for_each_segment(bv, bio, i) {
  1011. unsigned j = min(bv->bv_len >> 9, sectors);
  1012. void *p = kmap(bv->bv_page);
  1013. memset(p + bv->bv_offset, 0, j << 9);
  1014. kunmap(bv->bv_page);
  1015. sectors -= j;
  1016. }
  1017. bio_advance(bio, min(sectors << 9, bio->bi_size));
  1018. if (!bio->bi_size)
  1019. s->op.lookup_done = true;
  1020. return 0;
  1021. }
  1022. static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
  1023. {
  1024. struct search *s;
  1025. struct closure *cl;
  1026. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  1027. int cpu, rw = bio_data_dir(bio);
  1028. cpu = part_stat_lock();
  1029. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  1030. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  1031. part_stat_unlock();
  1032. s = search_alloc(bio, d);
  1033. cl = &s->cl;
  1034. bio = &s->bio.bio;
  1035. trace_bcache_request_start(s, bio);
  1036. if (bio_has_data(bio) && !rw) {
  1037. closure_call(&s->op.cl, btree_read_async, NULL, cl);
  1038. } else if (bio_has_data(bio) || s->op.skip) {
  1039. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
  1040. &KEY(d->id, bio->bi_sector, 0),
  1041. &KEY(d->id, bio_end_sector(bio), 0));
  1042. s->writeback = true;
  1043. s->op.cache_bio = bio;
  1044. closure_call(&s->op.cl, bch_insert_data, NULL, cl);
  1045. } else {
  1046. /* No data - probably a cache flush */
  1047. if (s->op.flush_journal)
  1048. bch_journal_meta(s->op.c, cl);
  1049. }
  1050. continue_at(cl, search_free, NULL);
  1051. }
  1052. static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
  1053. unsigned int cmd, unsigned long arg)
  1054. {
  1055. return -ENOTTY;
  1056. }
  1057. static int flash_dev_congested(void *data, int bits)
  1058. {
  1059. struct bcache_device *d = data;
  1060. struct request_queue *q;
  1061. struct cache *ca;
  1062. unsigned i;
  1063. int ret = 0;
  1064. for_each_cache(ca, d->c, i) {
  1065. q = bdev_get_queue(ca->bdev);
  1066. ret |= bdi_congested(&q->backing_dev_info, bits);
  1067. }
  1068. return ret;
  1069. }
  1070. void bch_flash_dev_request_init(struct bcache_device *d)
  1071. {
  1072. struct gendisk *g = d->disk;
  1073. g->queue->make_request_fn = flash_dev_make_request;
  1074. g->queue->backing_dev_info.congested_fn = flash_dev_congested;
  1075. d->cache_miss = flash_dev_cache_miss;
  1076. d->ioctl = flash_dev_ioctl;
  1077. }
  1078. void bch_request_exit(void)
  1079. {
  1080. #ifdef CONFIG_CGROUP_BCACHE
  1081. cgroup_unload_subsys(&bcache_subsys);
  1082. #endif
  1083. if (bch_search_cache)
  1084. kmem_cache_destroy(bch_search_cache);
  1085. }
  1086. int __init bch_request_init(void)
  1087. {
  1088. bch_search_cache = KMEM_CACHE(search, 0);
  1089. if (!bch_search_cache)
  1090. return -ENOMEM;
  1091. #ifdef CONFIG_CGROUP_BCACHE
  1092. cgroup_load_subsys(&bcache_subsys);
  1093. init_bch_cgroup(&bcache_default_cgroup);
  1094. cgroup_add_cftypes(&bcache_subsys, bch_files);
  1095. #endif
  1096. return 0;
  1097. }