md.c 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/init.h>
  37. #include <linux/file.h>
  38. #ifdef CONFIG_KMOD
  39. #include <linux/kmod.h>
  40. #endif
  41. #include <asm/unaligned.h>
  42. #define MAJOR_NR MD_MAJOR
  43. #define MD_DRIVER
  44. /* 63 partitions with the alternate major number (mdp) */
  45. #define MdpMinorShift 6
  46. #define DEBUG 0
  47. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  48. #ifndef MODULE
  49. static void autostart_arrays (int part);
  50. #endif
  51. static mdk_personality_t *pers[MAX_PERSONALITY];
  52. static DEFINE_SPINLOCK(pers_lock);
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwidth if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. */
  64. static int sysctl_speed_limit_min = 1000;
  65. static int sysctl_speed_limit_max = 200000;
  66. static struct ctl_table_header *raid_table_header;
  67. static ctl_table raid_table[] = {
  68. {
  69. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  70. .procname = "speed_limit_min",
  71. .data = &sysctl_speed_limit_min,
  72. .maxlen = sizeof(int),
  73. .mode = 0644,
  74. .proc_handler = &proc_dointvec,
  75. },
  76. {
  77. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  78. .procname = "speed_limit_max",
  79. .data = &sysctl_speed_limit_max,
  80. .maxlen = sizeof(int),
  81. .mode = 0644,
  82. .proc_handler = &proc_dointvec,
  83. },
  84. { .ctl_name = 0 }
  85. };
  86. static ctl_table raid_dir_table[] = {
  87. {
  88. .ctl_name = DEV_RAID,
  89. .procname = "raid",
  90. .maxlen = 0,
  91. .mode = 0555,
  92. .child = raid_table,
  93. },
  94. { .ctl_name = 0 }
  95. };
  96. static ctl_table raid_root_table[] = {
  97. {
  98. .ctl_name = CTL_DEV,
  99. .procname = "dev",
  100. .maxlen = 0,
  101. .mode = 0555,
  102. .child = raid_dir_table,
  103. },
  104. { .ctl_name = 0 }
  105. };
  106. static struct block_device_operations md_fops;
  107. static int start_readonly;
  108. /*
  109. * Enables to iterate over all existing md arrays
  110. * all_mddevs_lock protects this list.
  111. */
  112. static LIST_HEAD(all_mddevs);
  113. static DEFINE_SPINLOCK(all_mddevs_lock);
  114. /*
  115. * iterates through all used mddevs in the system.
  116. * We take care to grab the all_mddevs_lock whenever navigating
  117. * the list, and to always hold a refcount when unlocked.
  118. * Any code which breaks out of this loop while own
  119. * a reference to the current mddev and must mddev_put it.
  120. */
  121. #define ITERATE_MDDEV(mddev,tmp) \
  122. \
  123. for (({ spin_lock(&all_mddevs_lock); \
  124. tmp = all_mddevs.next; \
  125. mddev = NULL;}); \
  126. ({ if (tmp != &all_mddevs) \
  127. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  128. spin_unlock(&all_mddevs_lock); \
  129. if (mddev) mddev_put(mddev); \
  130. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  131. tmp != &all_mddevs;}); \
  132. ({ spin_lock(&all_mddevs_lock); \
  133. tmp = tmp->next;}) \
  134. )
  135. static int md_fail_request (request_queue_t *q, struct bio *bio)
  136. {
  137. bio_io_error(bio, bio->bi_size);
  138. return 0;
  139. }
  140. static inline mddev_t *mddev_get(mddev_t *mddev)
  141. {
  142. atomic_inc(&mddev->active);
  143. return mddev;
  144. }
  145. static void mddev_put(mddev_t *mddev)
  146. {
  147. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  148. return;
  149. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  150. list_del(&mddev->all_mddevs);
  151. blk_put_queue(mddev->queue);
  152. kobject_unregister(&mddev->kobj);
  153. }
  154. spin_unlock(&all_mddevs_lock);
  155. }
  156. static mddev_t * mddev_find(dev_t unit)
  157. {
  158. mddev_t *mddev, *new = NULL;
  159. retry:
  160. spin_lock(&all_mddevs_lock);
  161. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  162. if (mddev->unit == unit) {
  163. mddev_get(mddev);
  164. spin_unlock(&all_mddevs_lock);
  165. kfree(new);
  166. return mddev;
  167. }
  168. if (new) {
  169. list_add(&new->all_mddevs, &all_mddevs);
  170. spin_unlock(&all_mddevs_lock);
  171. return new;
  172. }
  173. spin_unlock(&all_mddevs_lock);
  174. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  175. if (!new)
  176. return NULL;
  177. memset(new, 0, sizeof(*new));
  178. new->unit = unit;
  179. if (MAJOR(unit) == MD_MAJOR)
  180. new->md_minor = MINOR(unit);
  181. else
  182. new->md_minor = MINOR(unit) >> MdpMinorShift;
  183. init_MUTEX(&new->reconfig_sem);
  184. INIT_LIST_HEAD(&new->disks);
  185. INIT_LIST_HEAD(&new->all_mddevs);
  186. init_timer(&new->safemode_timer);
  187. atomic_set(&new->active, 1);
  188. spin_lock_init(&new->write_lock);
  189. init_waitqueue_head(&new->sb_wait);
  190. new->queue = blk_alloc_queue(GFP_KERNEL);
  191. if (!new->queue) {
  192. kfree(new);
  193. return NULL;
  194. }
  195. blk_queue_make_request(new->queue, md_fail_request);
  196. goto retry;
  197. }
  198. static inline int mddev_lock(mddev_t * mddev)
  199. {
  200. return down_interruptible(&mddev->reconfig_sem);
  201. }
  202. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  203. {
  204. down(&mddev->reconfig_sem);
  205. }
  206. static inline int mddev_trylock(mddev_t * mddev)
  207. {
  208. return down_trylock(&mddev->reconfig_sem);
  209. }
  210. static inline void mddev_unlock(mddev_t * mddev)
  211. {
  212. up(&mddev->reconfig_sem);
  213. md_wakeup_thread(mddev->thread);
  214. }
  215. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  216. {
  217. mdk_rdev_t * rdev;
  218. struct list_head *tmp;
  219. ITERATE_RDEV(mddev,rdev,tmp) {
  220. if (rdev->desc_nr == nr)
  221. return rdev;
  222. }
  223. return NULL;
  224. }
  225. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  226. {
  227. struct list_head *tmp;
  228. mdk_rdev_t *rdev;
  229. ITERATE_RDEV(mddev,rdev,tmp) {
  230. if (rdev->bdev->bd_dev == dev)
  231. return rdev;
  232. }
  233. return NULL;
  234. }
  235. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  236. {
  237. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  238. return MD_NEW_SIZE_BLOCKS(size);
  239. }
  240. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  241. {
  242. sector_t size;
  243. size = rdev->sb_offset;
  244. if (chunk_size)
  245. size &= ~((sector_t)chunk_size/1024 - 1);
  246. return size;
  247. }
  248. static int alloc_disk_sb(mdk_rdev_t * rdev)
  249. {
  250. if (rdev->sb_page)
  251. MD_BUG();
  252. rdev->sb_page = alloc_page(GFP_KERNEL);
  253. if (!rdev->sb_page) {
  254. printk(KERN_ALERT "md: out of memory.\n");
  255. return -EINVAL;
  256. }
  257. return 0;
  258. }
  259. static void free_disk_sb(mdk_rdev_t * rdev)
  260. {
  261. if (rdev->sb_page) {
  262. page_cache_release(rdev->sb_page);
  263. rdev->sb_loaded = 0;
  264. rdev->sb_page = NULL;
  265. rdev->sb_offset = 0;
  266. rdev->size = 0;
  267. }
  268. }
  269. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  270. {
  271. mdk_rdev_t *rdev = bio->bi_private;
  272. mddev_t *mddev = rdev->mddev;
  273. if (bio->bi_size)
  274. return 1;
  275. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  276. md_error(mddev, rdev);
  277. if (atomic_dec_and_test(&mddev->pending_writes))
  278. wake_up(&mddev->sb_wait);
  279. bio_put(bio);
  280. return 0;
  281. }
  282. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  283. {
  284. struct bio *bio2 = bio->bi_private;
  285. mdk_rdev_t *rdev = bio2->bi_private;
  286. mddev_t *mddev = rdev->mddev;
  287. if (bio->bi_size)
  288. return 1;
  289. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  290. error == -EOPNOTSUPP) {
  291. unsigned long flags;
  292. /* barriers don't appear to be supported :-( */
  293. set_bit(BarriersNotsupp, &rdev->flags);
  294. mddev->barriers_work = 0;
  295. spin_lock_irqsave(&mddev->write_lock, flags);
  296. bio2->bi_next = mddev->biolist;
  297. mddev->biolist = bio2;
  298. spin_unlock_irqrestore(&mddev->write_lock, flags);
  299. wake_up(&mddev->sb_wait);
  300. bio_put(bio);
  301. return 0;
  302. }
  303. bio_put(bio2);
  304. bio->bi_private = rdev;
  305. return super_written(bio, bytes_done, error);
  306. }
  307. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  308. sector_t sector, int size, struct page *page)
  309. {
  310. /* write first size bytes of page to sector of rdev
  311. * Increment mddev->pending_writes before returning
  312. * and decrement it on completion, waking up sb_wait
  313. * if zero is reached.
  314. * If an error occurred, call md_error
  315. *
  316. * As we might need to resubmit the request if BIO_RW_BARRIER
  317. * causes ENOTSUPP, we allocate a spare bio...
  318. */
  319. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  320. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  321. bio->bi_bdev = rdev->bdev;
  322. bio->bi_sector = sector;
  323. bio_add_page(bio, page, size, 0);
  324. bio->bi_private = rdev;
  325. bio->bi_end_io = super_written;
  326. bio->bi_rw = rw;
  327. atomic_inc(&mddev->pending_writes);
  328. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  329. struct bio *rbio;
  330. rw |= (1<<BIO_RW_BARRIER);
  331. rbio = bio_clone(bio, GFP_NOIO);
  332. rbio->bi_private = bio;
  333. rbio->bi_end_io = super_written_barrier;
  334. submit_bio(rw, rbio);
  335. } else
  336. submit_bio(rw, bio);
  337. }
  338. void md_super_wait(mddev_t *mddev)
  339. {
  340. /* wait for all superblock writes that were scheduled to complete.
  341. * if any had to be retried (due to BARRIER problems), retry them
  342. */
  343. DEFINE_WAIT(wq);
  344. for(;;) {
  345. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  346. if (atomic_read(&mddev->pending_writes)==0)
  347. break;
  348. while (mddev->biolist) {
  349. struct bio *bio;
  350. spin_lock_irq(&mddev->write_lock);
  351. bio = mddev->biolist;
  352. mddev->biolist = bio->bi_next ;
  353. bio->bi_next = NULL;
  354. spin_unlock_irq(&mddev->write_lock);
  355. submit_bio(bio->bi_rw, bio);
  356. }
  357. schedule();
  358. }
  359. finish_wait(&mddev->sb_wait, &wq);
  360. }
  361. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  362. {
  363. if (bio->bi_size)
  364. return 1;
  365. complete((struct completion*)bio->bi_private);
  366. return 0;
  367. }
  368. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  369. struct page *page, int rw)
  370. {
  371. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  372. struct completion event;
  373. int ret;
  374. rw |= (1 << BIO_RW_SYNC);
  375. bio->bi_bdev = bdev;
  376. bio->bi_sector = sector;
  377. bio_add_page(bio, page, size, 0);
  378. init_completion(&event);
  379. bio->bi_private = &event;
  380. bio->bi_end_io = bi_complete;
  381. submit_bio(rw, bio);
  382. wait_for_completion(&event);
  383. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  384. bio_put(bio);
  385. return ret;
  386. }
  387. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  388. {
  389. char b[BDEVNAME_SIZE];
  390. if (!rdev->sb_page) {
  391. MD_BUG();
  392. return -EINVAL;
  393. }
  394. if (rdev->sb_loaded)
  395. return 0;
  396. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  397. goto fail;
  398. rdev->sb_loaded = 1;
  399. return 0;
  400. fail:
  401. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  402. bdevname(rdev->bdev,b));
  403. return -EINVAL;
  404. }
  405. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  406. {
  407. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  408. (sb1->set_uuid1 == sb2->set_uuid1) &&
  409. (sb1->set_uuid2 == sb2->set_uuid2) &&
  410. (sb1->set_uuid3 == sb2->set_uuid3))
  411. return 1;
  412. return 0;
  413. }
  414. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  415. {
  416. int ret;
  417. mdp_super_t *tmp1, *tmp2;
  418. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  419. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  420. if (!tmp1 || !tmp2) {
  421. ret = 0;
  422. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  423. goto abort;
  424. }
  425. *tmp1 = *sb1;
  426. *tmp2 = *sb2;
  427. /*
  428. * nr_disks is not constant
  429. */
  430. tmp1->nr_disks = 0;
  431. tmp2->nr_disks = 0;
  432. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  433. ret = 0;
  434. else
  435. ret = 1;
  436. abort:
  437. kfree(tmp1);
  438. kfree(tmp2);
  439. return ret;
  440. }
  441. static unsigned int calc_sb_csum(mdp_super_t * sb)
  442. {
  443. unsigned int disk_csum, csum;
  444. disk_csum = sb->sb_csum;
  445. sb->sb_csum = 0;
  446. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  447. sb->sb_csum = disk_csum;
  448. return csum;
  449. }
  450. /*
  451. * Handle superblock details.
  452. * We want to be able to handle multiple superblock formats
  453. * so we have a common interface to them all, and an array of
  454. * different handlers.
  455. * We rely on user-space to write the initial superblock, and support
  456. * reading and updating of superblocks.
  457. * Interface methods are:
  458. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  459. * loads and validates a superblock on dev.
  460. * if refdev != NULL, compare superblocks on both devices
  461. * Return:
  462. * 0 - dev has a superblock that is compatible with refdev
  463. * 1 - dev has a superblock that is compatible and newer than refdev
  464. * so dev should be used as the refdev in future
  465. * -EINVAL superblock incompatible or invalid
  466. * -othererror e.g. -EIO
  467. *
  468. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  469. * Verify that dev is acceptable into mddev.
  470. * The first time, mddev->raid_disks will be 0, and data from
  471. * dev should be merged in. Subsequent calls check that dev
  472. * is new enough. Return 0 or -EINVAL
  473. *
  474. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  475. * Update the superblock for rdev with data in mddev
  476. * This does not write to disc.
  477. *
  478. */
  479. struct super_type {
  480. char *name;
  481. struct module *owner;
  482. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  483. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  484. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  485. };
  486. /*
  487. * load_super for 0.90.0
  488. */
  489. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  490. {
  491. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  492. mdp_super_t *sb;
  493. int ret;
  494. sector_t sb_offset;
  495. /*
  496. * Calculate the position of the superblock,
  497. * it's at the end of the disk.
  498. *
  499. * It also happens to be a multiple of 4Kb.
  500. */
  501. sb_offset = calc_dev_sboffset(rdev->bdev);
  502. rdev->sb_offset = sb_offset;
  503. ret = read_disk_sb(rdev, MD_SB_BYTES);
  504. if (ret) return ret;
  505. ret = -EINVAL;
  506. bdevname(rdev->bdev, b);
  507. sb = (mdp_super_t*)page_address(rdev->sb_page);
  508. if (sb->md_magic != MD_SB_MAGIC) {
  509. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  510. b);
  511. goto abort;
  512. }
  513. if (sb->major_version != 0 ||
  514. sb->minor_version != 90) {
  515. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  516. sb->major_version, sb->minor_version,
  517. b);
  518. goto abort;
  519. }
  520. if (sb->raid_disks <= 0)
  521. goto abort;
  522. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  523. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  524. b);
  525. goto abort;
  526. }
  527. rdev->preferred_minor = sb->md_minor;
  528. rdev->data_offset = 0;
  529. rdev->sb_size = MD_SB_BYTES;
  530. if (sb->level == LEVEL_MULTIPATH)
  531. rdev->desc_nr = -1;
  532. else
  533. rdev->desc_nr = sb->this_disk.number;
  534. if (refdev == 0)
  535. ret = 1;
  536. else {
  537. __u64 ev1, ev2;
  538. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  539. if (!uuid_equal(refsb, sb)) {
  540. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  541. b, bdevname(refdev->bdev,b2));
  542. goto abort;
  543. }
  544. if (!sb_equal(refsb, sb)) {
  545. printk(KERN_WARNING "md: %s has same UUID"
  546. " but different superblock to %s\n",
  547. b, bdevname(refdev->bdev, b2));
  548. goto abort;
  549. }
  550. ev1 = md_event(sb);
  551. ev2 = md_event(refsb);
  552. if (ev1 > ev2)
  553. ret = 1;
  554. else
  555. ret = 0;
  556. }
  557. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  558. abort:
  559. return ret;
  560. }
  561. /*
  562. * validate_super for 0.90.0
  563. */
  564. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  565. {
  566. mdp_disk_t *desc;
  567. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  568. rdev->raid_disk = -1;
  569. rdev->flags = 0;
  570. if (mddev->raid_disks == 0) {
  571. mddev->major_version = 0;
  572. mddev->minor_version = sb->minor_version;
  573. mddev->patch_version = sb->patch_version;
  574. mddev->persistent = ! sb->not_persistent;
  575. mddev->chunk_size = sb->chunk_size;
  576. mddev->ctime = sb->ctime;
  577. mddev->utime = sb->utime;
  578. mddev->level = sb->level;
  579. mddev->layout = sb->layout;
  580. mddev->raid_disks = sb->raid_disks;
  581. mddev->size = sb->size;
  582. mddev->events = md_event(sb);
  583. mddev->bitmap_offset = 0;
  584. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  585. if (sb->state & (1<<MD_SB_CLEAN))
  586. mddev->recovery_cp = MaxSector;
  587. else {
  588. if (sb->events_hi == sb->cp_events_hi &&
  589. sb->events_lo == sb->cp_events_lo) {
  590. mddev->recovery_cp = sb->recovery_cp;
  591. } else
  592. mddev->recovery_cp = 0;
  593. }
  594. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  595. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  596. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  597. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  598. mddev->max_disks = MD_SB_DISKS;
  599. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  600. mddev->bitmap_file == NULL) {
  601. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
  602. /* FIXME use a better test */
  603. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  604. return -EINVAL;
  605. }
  606. mddev->bitmap_offset = mddev->default_bitmap_offset;
  607. }
  608. } else if (mddev->pers == NULL) {
  609. /* Insist on good event counter while assembling */
  610. __u64 ev1 = md_event(sb);
  611. ++ev1;
  612. if (ev1 < mddev->events)
  613. return -EINVAL;
  614. } else if (mddev->bitmap) {
  615. /* if adding to array with a bitmap, then we can accept an
  616. * older device ... but not too old.
  617. */
  618. __u64 ev1 = md_event(sb);
  619. if (ev1 < mddev->bitmap->events_cleared)
  620. return 0;
  621. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  622. return 0;
  623. if (mddev->level != LEVEL_MULTIPATH) {
  624. desc = sb->disks + rdev->desc_nr;
  625. if (desc->state & (1<<MD_DISK_FAULTY))
  626. set_bit(Faulty, &rdev->flags);
  627. else if (desc->state & (1<<MD_DISK_SYNC) &&
  628. desc->raid_disk < mddev->raid_disks) {
  629. set_bit(In_sync, &rdev->flags);
  630. rdev->raid_disk = desc->raid_disk;
  631. }
  632. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  633. set_bit(WriteMostly, &rdev->flags);
  634. } else /* MULTIPATH are always insync */
  635. set_bit(In_sync, &rdev->flags);
  636. return 0;
  637. }
  638. /*
  639. * sync_super for 0.90.0
  640. */
  641. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  642. {
  643. mdp_super_t *sb;
  644. struct list_head *tmp;
  645. mdk_rdev_t *rdev2;
  646. int next_spare = mddev->raid_disks;
  647. /* make rdev->sb match mddev data..
  648. *
  649. * 1/ zero out disks
  650. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  651. * 3/ any empty disks < next_spare become removed
  652. *
  653. * disks[0] gets initialised to REMOVED because
  654. * we cannot be sure from other fields if it has
  655. * been initialised or not.
  656. */
  657. int i;
  658. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  659. rdev->sb_size = MD_SB_BYTES;
  660. sb = (mdp_super_t*)page_address(rdev->sb_page);
  661. memset(sb, 0, sizeof(*sb));
  662. sb->md_magic = MD_SB_MAGIC;
  663. sb->major_version = mddev->major_version;
  664. sb->minor_version = mddev->minor_version;
  665. sb->patch_version = mddev->patch_version;
  666. sb->gvalid_words = 0; /* ignored */
  667. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  668. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  669. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  670. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  671. sb->ctime = mddev->ctime;
  672. sb->level = mddev->level;
  673. sb->size = mddev->size;
  674. sb->raid_disks = mddev->raid_disks;
  675. sb->md_minor = mddev->md_minor;
  676. sb->not_persistent = !mddev->persistent;
  677. sb->utime = mddev->utime;
  678. sb->state = 0;
  679. sb->events_hi = (mddev->events>>32);
  680. sb->events_lo = (u32)mddev->events;
  681. if (mddev->in_sync)
  682. {
  683. sb->recovery_cp = mddev->recovery_cp;
  684. sb->cp_events_hi = (mddev->events>>32);
  685. sb->cp_events_lo = (u32)mddev->events;
  686. if (mddev->recovery_cp == MaxSector)
  687. sb->state = (1<< MD_SB_CLEAN);
  688. } else
  689. sb->recovery_cp = 0;
  690. sb->layout = mddev->layout;
  691. sb->chunk_size = mddev->chunk_size;
  692. if (mddev->bitmap && mddev->bitmap_file == NULL)
  693. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  694. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  695. ITERATE_RDEV(mddev,rdev2,tmp) {
  696. mdp_disk_t *d;
  697. int desc_nr;
  698. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  699. && !test_bit(Faulty, &rdev2->flags))
  700. desc_nr = rdev2->raid_disk;
  701. else
  702. desc_nr = next_spare++;
  703. rdev2->desc_nr = desc_nr;
  704. d = &sb->disks[rdev2->desc_nr];
  705. nr_disks++;
  706. d->number = rdev2->desc_nr;
  707. d->major = MAJOR(rdev2->bdev->bd_dev);
  708. d->minor = MINOR(rdev2->bdev->bd_dev);
  709. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  710. && !test_bit(Faulty, &rdev2->flags))
  711. d->raid_disk = rdev2->raid_disk;
  712. else
  713. d->raid_disk = rdev2->desc_nr; /* compatibility */
  714. if (test_bit(Faulty, &rdev2->flags)) {
  715. d->state = (1<<MD_DISK_FAULTY);
  716. failed++;
  717. } else if (test_bit(In_sync, &rdev2->flags)) {
  718. d->state = (1<<MD_DISK_ACTIVE);
  719. d->state |= (1<<MD_DISK_SYNC);
  720. active++;
  721. working++;
  722. } else {
  723. d->state = 0;
  724. spare++;
  725. working++;
  726. }
  727. if (test_bit(WriteMostly, &rdev2->flags))
  728. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  729. }
  730. /* now set the "removed" and "faulty" bits on any missing devices */
  731. for (i=0 ; i < mddev->raid_disks ; i++) {
  732. mdp_disk_t *d = &sb->disks[i];
  733. if (d->state == 0 && d->number == 0) {
  734. d->number = i;
  735. d->raid_disk = i;
  736. d->state = (1<<MD_DISK_REMOVED);
  737. d->state |= (1<<MD_DISK_FAULTY);
  738. failed++;
  739. }
  740. }
  741. sb->nr_disks = nr_disks;
  742. sb->active_disks = active;
  743. sb->working_disks = working;
  744. sb->failed_disks = failed;
  745. sb->spare_disks = spare;
  746. sb->this_disk = sb->disks[rdev->desc_nr];
  747. sb->sb_csum = calc_sb_csum(sb);
  748. }
  749. /*
  750. * version 1 superblock
  751. */
  752. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  753. {
  754. unsigned int disk_csum, csum;
  755. unsigned long long newcsum;
  756. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  757. unsigned int *isuper = (unsigned int*)sb;
  758. int i;
  759. disk_csum = sb->sb_csum;
  760. sb->sb_csum = 0;
  761. newcsum = 0;
  762. for (i=0; size>=4; size -= 4 )
  763. newcsum += le32_to_cpu(*isuper++);
  764. if (size == 2)
  765. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  766. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  767. sb->sb_csum = disk_csum;
  768. return cpu_to_le32(csum);
  769. }
  770. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  771. {
  772. struct mdp_superblock_1 *sb;
  773. int ret;
  774. sector_t sb_offset;
  775. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  776. int bmask;
  777. /*
  778. * Calculate the position of the superblock.
  779. * It is always aligned to a 4K boundary and
  780. * depeding on minor_version, it can be:
  781. * 0: At least 8K, but less than 12K, from end of device
  782. * 1: At start of device
  783. * 2: 4K from start of device.
  784. */
  785. switch(minor_version) {
  786. case 0:
  787. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  788. sb_offset -= 8*2;
  789. sb_offset &= ~(sector_t)(4*2-1);
  790. /* convert from sectors to K */
  791. sb_offset /= 2;
  792. break;
  793. case 1:
  794. sb_offset = 0;
  795. break;
  796. case 2:
  797. sb_offset = 4;
  798. break;
  799. default:
  800. return -EINVAL;
  801. }
  802. rdev->sb_offset = sb_offset;
  803. /* superblock is rarely larger than 1K, but it can be larger,
  804. * and it is safe to read 4k, so we do that
  805. */
  806. ret = read_disk_sb(rdev, 4096);
  807. if (ret) return ret;
  808. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  809. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  810. sb->major_version != cpu_to_le32(1) ||
  811. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  812. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  813. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  814. return -EINVAL;
  815. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  816. printk("md: invalid superblock checksum on %s\n",
  817. bdevname(rdev->bdev,b));
  818. return -EINVAL;
  819. }
  820. if (le64_to_cpu(sb->data_size) < 10) {
  821. printk("md: data_size too small on %s\n",
  822. bdevname(rdev->bdev,b));
  823. return -EINVAL;
  824. }
  825. rdev->preferred_minor = 0xffff;
  826. rdev->data_offset = le64_to_cpu(sb->data_offset);
  827. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  828. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  829. if (rdev->sb_size & bmask)
  830. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  831. if (refdev == 0)
  832. return 1;
  833. else {
  834. __u64 ev1, ev2;
  835. struct mdp_superblock_1 *refsb =
  836. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  837. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  838. sb->level != refsb->level ||
  839. sb->layout != refsb->layout ||
  840. sb->chunksize != refsb->chunksize) {
  841. printk(KERN_WARNING "md: %s has strangely different"
  842. " superblock to %s\n",
  843. bdevname(rdev->bdev,b),
  844. bdevname(refdev->bdev,b2));
  845. return -EINVAL;
  846. }
  847. ev1 = le64_to_cpu(sb->events);
  848. ev2 = le64_to_cpu(refsb->events);
  849. if (ev1 > ev2)
  850. return 1;
  851. }
  852. if (minor_version)
  853. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  854. else
  855. rdev->size = rdev->sb_offset;
  856. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  857. return -EINVAL;
  858. rdev->size = le64_to_cpu(sb->data_size)/2;
  859. if (le32_to_cpu(sb->chunksize))
  860. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  861. return 0;
  862. }
  863. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  864. {
  865. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  866. rdev->raid_disk = -1;
  867. rdev->flags = 0;
  868. if (mddev->raid_disks == 0) {
  869. mddev->major_version = 1;
  870. mddev->patch_version = 0;
  871. mddev->persistent = 1;
  872. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  873. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  874. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  875. mddev->level = le32_to_cpu(sb->level);
  876. mddev->layout = le32_to_cpu(sb->layout);
  877. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  878. mddev->size = le64_to_cpu(sb->size)/2;
  879. mddev->events = le64_to_cpu(sb->events);
  880. mddev->bitmap_offset = 0;
  881. mddev->default_bitmap_offset = 0;
  882. mddev->default_bitmap_offset = 1024;
  883. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  884. memcpy(mddev->uuid, sb->set_uuid, 16);
  885. mddev->max_disks = (4096-256)/2;
  886. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  887. mddev->bitmap_file == NULL ) {
  888. if (mddev->level != 1) {
  889. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  890. return -EINVAL;
  891. }
  892. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  893. }
  894. } else if (mddev->pers == NULL) {
  895. /* Insist of good event counter while assembling */
  896. __u64 ev1 = le64_to_cpu(sb->events);
  897. ++ev1;
  898. if (ev1 < mddev->events)
  899. return -EINVAL;
  900. } else if (mddev->bitmap) {
  901. /* If adding to array with a bitmap, then we can accept an
  902. * older device, but not too old.
  903. */
  904. __u64 ev1 = le64_to_cpu(sb->events);
  905. if (ev1 < mddev->bitmap->events_cleared)
  906. return 0;
  907. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  908. return 0;
  909. if (mddev->level != LEVEL_MULTIPATH) {
  910. int role;
  911. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  912. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  913. switch(role) {
  914. case 0xffff: /* spare */
  915. break;
  916. case 0xfffe: /* faulty */
  917. set_bit(Faulty, &rdev->flags);
  918. break;
  919. default:
  920. set_bit(In_sync, &rdev->flags);
  921. rdev->raid_disk = role;
  922. break;
  923. }
  924. if (sb->devflags & WriteMostly1)
  925. set_bit(WriteMostly, &rdev->flags);
  926. } else /* MULTIPATH are always insync */
  927. set_bit(In_sync, &rdev->flags);
  928. return 0;
  929. }
  930. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  931. {
  932. struct mdp_superblock_1 *sb;
  933. struct list_head *tmp;
  934. mdk_rdev_t *rdev2;
  935. int max_dev, i;
  936. /* make rdev->sb match mddev and rdev data. */
  937. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  938. sb->feature_map = 0;
  939. sb->pad0 = 0;
  940. memset(sb->pad1, 0, sizeof(sb->pad1));
  941. memset(sb->pad2, 0, sizeof(sb->pad2));
  942. memset(sb->pad3, 0, sizeof(sb->pad3));
  943. sb->utime = cpu_to_le64((__u64)mddev->utime);
  944. sb->events = cpu_to_le64(mddev->events);
  945. if (mddev->in_sync)
  946. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  947. else
  948. sb->resync_offset = cpu_to_le64(0);
  949. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  950. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  951. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  952. }
  953. max_dev = 0;
  954. ITERATE_RDEV(mddev,rdev2,tmp)
  955. if (rdev2->desc_nr+1 > max_dev)
  956. max_dev = rdev2->desc_nr+1;
  957. sb->max_dev = cpu_to_le32(max_dev);
  958. for (i=0; i<max_dev;i++)
  959. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  960. ITERATE_RDEV(mddev,rdev2,tmp) {
  961. i = rdev2->desc_nr;
  962. if (test_bit(Faulty, &rdev2->flags))
  963. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  964. else if (test_bit(In_sync, &rdev2->flags))
  965. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  966. else
  967. sb->dev_roles[i] = cpu_to_le16(0xffff);
  968. }
  969. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  970. sb->sb_csum = calc_sb_1_csum(sb);
  971. }
  972. static struct super_type super_types[] = {
  973. [0] = {
  974. .name = "0.90.0",
  975. .owner = THIS_MODULE,
  976. .load_super = super_90_load,
  977. .validate_super = super_90_validate,
  978. .sync_super = super_90_sync,
  979. },
  980. [1] = {
  981. .name = "md-1",
  982. .owner = THIS_MODULE,
  983. .load_super = super_1_load,
  984. .validate_super = super_1_validate,
  985. .sync_super = super_1_sync,
  986. },
  987. };
  988. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  989. {
  990. struct list_head *tmp;
  991. mdk_rdev_t *rdev;
  992. ITERATE_RDEV(mddev,rdev,tmp)
  993. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  994. return rdev;
  995. return NULL;
  996. }
  997. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  998. {
  999. struct list_head *tmp;
  1000. mdk_rdev_t *rdev;
  1001. ITERATE_RDEV(mddev1,rdev,tmp)
  1002. if (match_dev_unit(mddev2, rdev))
  1003. return 1;
  1004. return 0;
  1005. }
  1006. static LIST_HEAD(pending_raid_disks);
  1007. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1008. {
  1009. mdk_rdev_t *same_pdev;
  1010. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1011. struct kobject *ko;
  1012. if (rdev->mddev) {
  1013. MD_BUG();
  1014. return -EINVAL;
  1015. }
  1016. same_pdev = match_dev_unit(mddev, rdev);
  1017. if (same_pdev)
  1018. printk(KERN_WARNING
  1019. "%s: WARNING: %s appears to be on the same physical"
  1020. " disk as %s. True\n protection against single-disk"
  1021. " failure might be compromised.\n",
  1022. mdname(mddev), bdevname(rdev->bdev,b),
  1023. bdevname(same_pdev->bdev,b2));
  1024. /* Verify rdev->desc_nr is unique.
  1025. * If it is -1, assign a free number, else
  1026. * check number is not in use
  1027. */
  1028. if (rdev->desc_nr < 0) {
  1029. int choice = 0;
  1030. if (mddev->pers) choice = mddev->raid_disks;
  1031. while (find_rdev_nr(mddev, choice))
  1032. choice++;
  1033. rdev->desc_nr = choice;
  1034. } else {
  1035. if (find_rdev_nr(mddev, rdev->desc_nr))
  1036. return -EBUSY;
  1037. }
  1038. bdevname(rdev->bdev,b);
  1039. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1040. return -ENOMEM;
  1041. list_add(&rdev->same_set, &mddev->disks);
  1042. rdev->mddev = mddev;
  1043. printk(KERN_INFO "md: bind<%s>\n", b);
  1044. rdev->kobj.parent = &mddev->kobj;
  1045. kobject_add(&rdev->kobj);
  1046. if (rdev->bdev->bd_part)
  1047. ko = &rdev->bdev->bd_part->kobj;
  1048. else
  1049. ko = &rdev->bdev->bd_disk->kobj;
  1050. sysfs_create_link(&rdev->kobj, ko, "block");
  1051. return 0;
  1052. }
  1053. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1054. {
  1055. char b[BDEVNAME_SIZE];
  1056. if (!rdev->mddev) {
  1057. MD_BUG();
  1058. return;
  1059. }
  1060. list_del_init(&rdev->same_set);
  1061. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1062. rdev->mddev = NULL;
  1063. sysfs_remove_link(&rdev->kobj, "block");
  1064. kobject_del(&rdev->kobj);
  1065. }
  1066. /*
  1067. * prevent the device from being mounted, repartitioned or
  1068. * otherwise reused by a RAID array (or any other kernel
  1069. * subsystem), by bd_claiming the device.
  1070. */
  1071. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1072. {
  1073. int err = 0;
  1074. struct block_device *bdev;
  1075. char b[BDEVNAME_SIZE];
  1076. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1077. if (IS_ERR(bdev)) {
  1078. printk(KERN_ERR "md: could not open %s.\n",
  1079. __bdevname(dev, b));
  1080. return PTR_ERR(bdev);
  1081. }
  1082. err = bd_claim(bdev, rdev);
  1083. if (err) {
  1084. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1085. bdevname(bdev, b));
  1086. blkdev_put(bdev);
  1087. return err;
  1088. }
  1089. rdev->bdev = bdev;
  1090. return err;
  1091. }
  1092. static void unlock_rdev(mdk_rdev_t *rdev)
  1093. {
  1094. struct block_device *bdev = rdev->bdev;
  1095. rdev->bdev = NULL;
  1096. if (!bdev)
  1097. MD_BUG();
  1098. bd_release(bdev);
  1099. blkdev_put(bdev);
  1100. }
  1101. void md_autodetect_dev(dev_t dev);
  1102. static void export_rdev(mdk_rdev_t * rdev)
  1103. {
  1104. char b[BDEVNAME_SIZE];
  1105. printk(KERN_INFO "md: export_rdev(%s)\n",
  1106. bdevname(rdev->bdev,b));
  1107. if (rdev->mddev)
  1108. MD_BUG();
  1109. free_disk_sb(rdev);
  1110. list_del_init(&rdev->same_set);
  1111. #ifndef MODULE
  1112. md_autodetect_dev(rdev->bdev->bd_dev);
  1113. #endif
  1114. unlock_rdev(rdev);
  1115. kobject_put(&rdev->kobj);
  1116. }
  1117. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1118. {
  1119. unbind_rdev_from_array(rdev);
  1120. export_rdev(rdev);
  1121. }
  1122. static void export_array(mddev_t *mddev)
  1123. {
  1124. struct list_head *tmp;
  1125. mdk_rdev_t *rdev;
  1126. ITERATE_RDEV(mddev,rdev,tmp) {
  1127. if (!rdev->mddev) {
  1128. MD_BUG();
  1129. continue;
  1130. }
  1131. kick_rdev_from_array(rdev);
  1132. }
  1133. if (!list_empty(&mddev->disks))
  1134. MD_BUG();
  1135. mddev->raid_disks = 0;
  1136. mddev->major_version = 0;
  1137. }
  1138. static void print_desc(mdp_disk_t *desc)
  1139. {
  1140. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1141. desc->major,desc->minor,desc->raid_disk,desc->state);
  1142. }
  1143. static void print_sb(mdp_super_t *sb)
  1144. {
  1145. int i;
  1146. printk(KERN_INFO
  1147. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1148. sb->major_version, sb->minor_version, sb->patch_version,
  1149. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1150. sb->ctime);
  1151. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1152. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1153. sb->md_minor, sb->layout, sb->chunk_size);
  1154. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1155. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1156. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1157. sb->failed_disks, sb->spare_disks,
  1158. sb->sb_csum, (unsigned long)sb->events_lo);
  1159. printk(KERN_INFO);
  1160. for (i = 0; i < MD_SB_DISKS; i++) {
  1161. mdp_disk_t *desc;
  1162. desc = sb->disks + i;
  1163. if (desc->number || desc->major || desc->minor ||
  1164. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1165. printk(" D %2d: ", i);
  1166. print_desc(desc);
  1167. }
  1168. }
  1169. printk(KERN_INFO "md: THIS: ");
  1170. print_desc(&sb->this_disk);
  1171. }
  1172. static void print_rdev(mdk_rdev_t *rdev)
  1173. {
  1174. char b[BDEVNAME_SIZE];
  1175. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1176. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1177. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1178. rdev->desc_nr);
  1179. if (rdev->sb_loaded) {
  1180. printk(KERN_INFO "md: rdev superblock:\n");
  1181. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1182. } else
  1183. printk(KERN_INFO "md: no rdev superblock!\n");
  1184. }
  1185. void md_print_devices(void)
  1186. {
  1187. struct list_head *tmp, *tmp2;
  1188. mdk_rdev_t *rdev;
  1189. mddev_t *mddev;
  1190. char b[BDEVNAME_SIZE];
  1191. printk("\n");
  1192. printk("md: **********************************\n");
  1193. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1194. printk("md: **********************************\n");
  1195. ITERATE_MDDEV(mddev,tmp) {
  1196. if (mddev->bitmap)
  1197. bitmap_print_sb(mddev->bitmap);
  1198. else
  1199. printk("%s: ", mdname(mddev));
  1200. ITERATE_RDEV(mddev,rdev,tmp2)
  1201. printk("<%s>", bdevname(rdev->bdev,b));
  1202. printk("\n");
  1203. ITERATE_RDEV(mddev,rdev,tmp2)
  1204. print_rdev(rdev);
  1205. }
  1206. printk("md: **********************************\n");
  1207. printk("\n");
  1208. }
  1209. static void sync_sbs(mddev_t * mddev)
  1210. {
  1211. mdk_rdev_t *rdev;
  1212. struct list_head *tmp;
  1213. ITERATE_RDEV(mddev,rdev,tmp) {
  1214. super_types[mddev->major_version].
  1215. sync_super(mddev, rdev);
  1216. rdev->sb_loaded = 1;
  1217. }
  1218. }
  1219. static void md_update_sb(mddev_t * mddev)
  1220. {
  1221. int err;
  1222. struct list_head *tmp;
  1223. mdk_rdev_t *rdev;
  1224. int sync_req;
  1225. repeat:
  1226. spin_lock_irq(&mddev->write_lock);
  1227. sync_req = mddev->in_sync;
  1228. mddev->utime = get_seconds();
  1229. mddev->events ++;
  1230. if (!mddev->events) {
  1231. /*
  1232. * oops, this 64-bit counter should never wrap.
  1233. * Either we are in around ~1 trillion A.C., assuming
  1234. * 1 reboot per second, or we have a bug:
  1235. */
  1236. MD_BUG();
  1237. mddev->events --;
  1238. }
  1239. mddev->sb_dirty = 2;
  1240. sync_sbs(mddev);
  1241. /*
  1242. * do not write anything to disk if using
  1243. * nonpersistent superblocks
  1244. */
  1245. if (!mddev->persistent) {
  1246. mddev->sb_dirty = 0;
  1247. spin_unlock_irq(&mddev->write_lock);
  1248. wake_up(&mddev->sb_wait);
  1249. return;
  1250. }
  1251. spin_unlock_irq(&mddev->write_lock);
  1252. dprintk(KERN_INFO
  1253. "md: updating %s RAID superblock on device (in sync %d)\n",
  1254. mdname(mddev),mddev->in_sync);
  1255. err = bitmap_update_sb(mddev->bitmap);
  1256. ITERATE_RDEV(mddev,rdev,tmp) {
  1257. char b[BDEVNAME_SIZE];
  1258. dprintk(KERN_INFO "md: ");
  1259. if (test_bit(Faulty, &rdev->flags))
  1260. dprintk("(skipping faulty ");
  1261. dprintk("%s ", bdevname(rdev->bdev,b));
  1262. if (!test_bit(Faulty, &rdev->flags)) {
  1263. md_super_write(mddev,rdev,
  1264. rdev->sb_offset<<1, rdev->sb_size,
  1265. rdev->sb_page);
  1266. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1267. bdevname(rdev->bdev,b),
  1268. (unsigned long long)rdev->sb_offset);
  1269. } else
  1270. dprintk(")\n");
  1271. if (mddev->level == LEVEL_MULTIPATH)
  1272. /* only need to write one superblock... */
  1273. break;
  1274. }
  1275. md_super_wait(mddev);
  1276. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1277. spin_lock_irq(&mddev->write_lock);
  1278. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1279. /* have to write it out again */
  1280. spin_unlock_irq(&mddev->write_lock);
  1281. goto repeat;
  1282. }
  1283. mddev->sb_dirty = 0;
  1284. spin_unlock_irq(&mddev->write_lock);
  1285. wake_up(&mddev->sb_wait);
  1286. }
  1287. struct rdev_sysfs_entry {
  1288. struct attribute attr;
  1289. ssize_t (*show)(mdk_rdev_t *, char *);
  1290. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1291. };
  1292. static ssize_t
  1293. state_show(mdk_rdev_t *rdev, char *page)
  1294. {
  1295. char *sep = "";
  1296. int len=0;
  1297. if (test_bit(Faulty, &rdev->flags)) {
  1298. len+= sprintf(page+len, "%sfaulty",sep);
  1299. sep = ",";
  1300. }
  1301. if (test_bit(In_sync, &rdev->flags)) {
  1302. len += sprintf(page+len, "%sin_sync",sep);
  1303. sep = ",";
  1304. }
  1305. if (!test_bit(Faulty, &rdev->flags) &&
  1306. !test_bit(In_sync, &rdev->flags)) {
  1307. len += sprintf(page+len, "%sspare", sep);
  1308. sep = ",";
  1309. }
  1310. return len+sprintf(page+len, "\n");
  1311. }
  1312. static struct rdev_sysfs_entry
  1313. rdev_state = __ATTR_RO(state);
  1314. static ssize_t
  1315. super_show(mdk_rdev_t *rdev, char *page)
  1316. {
  1317. if (rdev->sb_loaded && rdev->sb_size) {
  1318. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1319. return rdev->sb_size;
  1320. } else
  1321. return 0;
  1322. }
  1323. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1324. static struct attribute *rdev_default_attrs[] = {
  1325. &rdev_state.attr,
  1326. &rdev_super.attr,
  1327. NULL,
  1328. };
  1329. static ssize_t
  1330. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1331. {
  1332. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1333. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1334. if (!entry->show)
  1335. return -EIO;
  1336. return entry->show(rdev, page);
  1337. }
  1338. static ssize_t
  1339. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1340. const char *page, size_t length)
  1341. {
  1342. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1343. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1344. if (!entry->store)
  1345. return -EIO;
  1346. return entry->store(rdev, page, length);
  1347. }
  1348. static void rdev_free(struct kobject *ko)
  1349. {
  1350. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1351. kfree(rdev);
  1352. }
  1353. static struct sysfs_ops rdev_sysfs_ops = {
  1354. .show = rdev_attr_show,
  1355. .store = rdev_attr_store,
  1356. };
  1357. static struct kobj_type rdev_ktype = {
  1358. .release = rdev_free,
  1359. .sysfs_ops = &rdev_sysfs_ops,
  1360. .default_attrs = rdev_default_attrs,
  1361. };
  1362. /*
  1363. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1364. *
  1365. * mark the device faulty if:
  1366. *
  1367. * - the device is nonexistent (zero size)
  1368. * - the device has no valid superblock
  1369. *
  1370. * a faulty rdev _never_ has rdev->sb set.
  1371. */
  1372. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1373. {
  1374. char b[BDEVNAME_SIZE];
  1375. int err;
  1376. mdk_rdev_t *rdev;
  1377. sector_t size;
  1378. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1379. if (!rdev) {
  1380. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1381. return ERR_PTR(-ENOMEM);
  1382. }
  1383. memset(rdev, 0, sizeof(*rdev));
  1384. if ((err = alloc_disk_sb(rdev)))
  1385. goto abort_free;
  1386. err = lock_rdev(rdev, newdev);
  1387. if (err)
  1388. goto abort_free;
  1389. rdev->kobj.parent = NULL;
  1390. rdev->kobj.ktype = &rdev_ktype;
  1391. kobject_init(&rdev->kobj);
  1392. rdev->desc_nr = -1;
  1393. rdev->flags = 0;
  1394. rdev->data_offset = 0;
  1395. atomic_set(&rdev->nr_pending, 0);
  1396. atomic_set(&rdev->read_errors, 0);
  1397. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1398. if (!size) {
  1399. printk(KERN_WARNING
  1400. "md: %s has zero or unknown size, marking faulty!\n",
  1401. bdevname(rdev->bdev,b));
  1402. err = -EINVAL;
  1403. goto abort_free;
  1404. }
  1405. if (super_format >= 0) {
  1406. err = super_types[super_format].
  1407. load_super(rdev, NULL, super_minor);
  1408. if (err == -EINVAL) {
  1409. printk(KERN_WARNING
  1410. "md: %s has invalid sb, not importing!\n",
  1411. bdevname(rdev->bdev,b));
  1412. goto abort_free;
  1413. }
  1414. if (err < 0) {
  1415. printk(KERN_WARNING
  1416. "md: could not read %s's sb, not importing!\n",
  1417. bdevname(rdev->bdev,b));
  1418. goto abort_free;
  1419. }
  1420. }
  1421. INIT_LIST_HEAD(&rdev->same_set);
  1422. return rdev;
  1423. abort_free:
  1424. if (rdev->sb_page) {
  1425. if (rdev->bdev)
  1426. unlock_rdev(rdev);
  1427. free_disk_sb(rdev);
  1428. }
  1429. kfree(rdev);
  1430. return ERR_PTR(err);
  1431. }
  1432. /*
  1433. * Check a full RAID array for plausibility
  1434. */
  1435. static void analyze_sbs(mddev_t * mddev)
  1436. {
  1437. int i;
  1438. struct list_head *tmp;
  1439. mdk_rdev_t *rdev, *freshest;
  1440. char b[BDEVNAME_SIZE];
  1441. freshest = NULL;
  1442. ITERATE_RDEV(mddev,rdev,tmp)
  1443. switch (super_types[mddev->major_version].
  1444. load_super(rdev, freshest, mddev->minor_version)) {
  1445. case 1:
  1446. freshest = rdev;
  1447. break;
  1448. case 0:
  1449. break;
  1450. default:
  1451. printk( KERN_ERR \
  1452. "md: fatal superblock inconsistency in %s"
  1453. " -- removing from array\n",
  1454. bdevname(rdev->bdev,b));
  1455. kick_rdev_from_array(rdev);
  1456. }
  1457. super_types[mddev->major_version].
  1458. validate_super(mddev, freshest);
  1459. i = 0;
  1460. ITERATE_RDEV(mddev,rdev,tmp) {
  1461. if (rdev != freshest)
  1462. if (super_types[mddev->major_version].
  1463. validate_super(mddev, rdev)) {
  1464. printk(KERN_WARNING "md: kicking non-fresh %s"
  1465. " from array!\n",
  1466. bdevname(rdev->bdev,b));
  1467. kick_rdev_from_array(rdev);
  1468. continue;
  1469. }
  1470. if (mddev->level == LEVEL_MULTIPATH) {
  1471. rdev->desc_nr = i++;
  1472. rdev->raid_disk = rdev->desc_nr;
  1473. set_bit(In_sync, &rdev->flags);
  1474. }
  1475. }
  1476. if (mddev->recovery_cp != MaxSector &&
  1477. mddev->level >= 1)
  1478. printk(KERN_ERR "md: %s: raid array is not clean"
  1479. " -- starting background reconstruction\n",
  1480. mdname(mddev));
  1481. }
  1482. static ssize_t
  1483. level_show(mddev_t *mddev, char *page)
  1484. {
  1485. mdk_personality_t *p = mddev->pers;
  1486. if (p == NULL && mddev->raid_disks == 0)
  1487. return 0;
  1488. if (mddev->level >= 0)
  1489. return sprintf(page, "RAID-%d\n", mddev->level);
  1490. else
  1491. return sprintf(page, "%s\n", p->name);
  1492. }
  1493. static struct md_sysfs_entry md_level = __ATTR_RO(level);
  1494. static ssize_t
  1495. raid_disks_show(mddev_t *mddev, char *page)
  1496. {
  1497. if (mddev->raid_disks == 0)
  1498. return 0;
  1499. return sprintf(page, "%d\n", mddev->raid_disks);
  1500. }
  1501. static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
  1502. static ssize_t
  1503. action_show(mddev_t *mddev, char *page)
  1504. {
  1505. char *type = "idle";
  1506. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1507. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  1508. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1509. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1510. type = "resync";
  1511. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1512. type = "check";
  1513. else
  1514. type = "repair";
  1515. } else
  1516. type = "recover";
  1517. }
  1518. return sprintf(page, "%s\n", type);
  1519. }
  1520. static ssize_t
  1521. action_store(mddev_t *mddev, const char *page, size_t len)
  1522. {
  1523. if (!mddev->pers || !mddev->pers->sync_request)
  1524. return -EINVAL;
  1525. if (strcmp(page, "idle")==0 || strcmp(page, "idle\n")==0) {
  1526. if (mddev->sync_thread) {
  1527. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1528. md_unregister_thread(mddev->sync_thread);
  1529. mddev->sync_thread = NULL;
  1530. mddev->recovery = 0;
  1531. }
  1532. return len;
  1533. }
  1534. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1535. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  1536. return -EBUSY;
  1537. if (strcmp(page, "resync")==0 || strcmp(page, "resync\n")==0 ||
  1538. strcmp(page, "recover")==0 || strcmp(page, "recover\n")==0)
  1539. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1540. else {
  1541. if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
  1542. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  1543. else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
  1544. return -EINVAL;
  1545. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  1546. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  1547. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1548. }
  1549. md_wakeup_thread(mddev->thread);
  1550. return len;
  1551. }
  1552. static ssize_t
  1553. mismatch_cnt_show(mddev_t *mddev, char *page)
  1554. {
  1555. return sprintf(page, "%llu\n",
  1556. (unsigned long long) mddev->resync_mismatches);
  1557. }
  1558. static struct md_sysfs_entry
  1559. md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  1560. static struct md_sysfs_entry
  1561. md_mismatches = __ATTR_RO(mismatch_cnt);
  1562. static struct attribute *md_default_attrs[] = {
  1563. &md_level.attr,
  1564. &md_raid_disks.attr,
  1565. NULL,
  1566. };
  1567. static struct attribute *md_redundancy_attrs[] = {
  1568. &md_scan_mode.attr,
  1569. &md_mismatches.attr,
  1570. NULL,
  1571. };
  1572. static struct attribute_group md_redundancy_group = {
  1573. .name = NULL,
  1574. .attrs = md_redundancy_attrs,
  1575. };
  1576. static ssize_t
  1577. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1578. {
  1579. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1580. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1581. ssize_t rv;
  1582. if (!entry->show)
  1583. return -EIO;
  1584. mddev_lock(mddev);
  1585. rv = entry->show(mddev, page);
  1586. mddev_unlock(mddev);
  1587. return rv;
  1588. }
  1589. static ssize_t
  1590. md_attr_store(struct kobject *kobj, struct attribute *attr,
  1591. const char *page, size_t length)
  1592. {
  1593. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1594. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1595. ssize_t rv;
  1596. if (!entry->store)
  1597. return -EIO;
  1598. mddev_lock(mddev);
  1599. rv = entry->store(mddev, page, length);
  1600. mddev_unlock(mddev);
  1601. return rv;
  1602. }
  1603. static void md_free(struct kobject *ko)
  1604. {
  1605. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  1606. kfree(mddev);
  1607. }
  1608. static struct sysfs_ops md_sysfs_ops = {
  1609. .show = md_attr_show,
  1610. .store = md_attr_store,
  1611. };
  1612. static struct kobj_type md_ktype = {
  1613. .release = md_free,
  1614. .sysfs_ops = &md_sysfs_ops,
  1615. .default_attrs = md_default_attrs,
  1616. };
  1617. int mdp_major = 0;
  1618. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1619. {
  1620. static DECLARE_MUTEX(disks_sem);
  1621. mddev_t *mddev = mddev_find(dev);
  1622. struct gendisk *disk;
  1623. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1624. int shift = partitioned ? MdpMinorShift : 0;
  1625. int unit = MINOR(dev) >> shift;
  1626. if (!mddev)
  1627. return NULL;
  1628. down(&disks_sem);
  1629. if (mddev->gendisk) {
  1630. up(&disks_sem);
  1631. mddev_put(mddev);
  1632. return NULL;
  1633. }
  1634. disk = alloc_disk(1 << shift);
  1635. if (!disk) {
  1636. up(&disks_sem);
  1637. mddev_put(mddev);
  1638. return NULL;
  1639. }
  1640. disk->major = MAJOR(dev);
  1641. disk->first_minor = unit << shift;
  1642. if (partitioned) {
  1643. sprintf(disk->disk_name, "md_d%d", unit);
  1644. sprintf(disk->devfs_name, "md/d%d", unit);
  1645. } else {
  1646. sprintf(disk->disk_name, "md%d", unit);
  1647. sprintf(disk->devfs_name, "md/%d", unit);
  1648. }
  1649. disk->fops = &md_fops;
  1650. disk->private_data = mddev;
  1651. disk->queue = mddev->queue;
  1652. add_disk(disk);
  1653. mddev->gendisk = disk;
  1654. up(&disks_sem);
  1655. mddev->kobj.parent = &disk->kobj;
  1656. mddev->kobj.k_name = NULL;
  1657. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  1658. mddev->kobj.ktype = &md_ktype;
  1659. kobject_register(&mddev->kobj);
  1660. return NULL;
  1661. }
  1662. void md_wakeup_thread(mdk_thread_t *thread);
  1663. static void md_safemode_timeout(unsigned long data)
  1664. {
  1665. mddev_t *mddev = (mddev_t *) data;
  1666. mddev->safemode = 1;
  1667. md_wakeup_thread(mddev->thread);
  1668. }
  1669. static int do_md_run(mddev_t * mddev)
  1670. {
  1671. int pnum, err;
  1672. int chunk_size;
  1673. struct list_head *tmp;
  1674. mdk_rdev_t *rdev;
  1675. struct gendisk *disk;
  1676. char b[BDEVNAME_SIZE];
  1677. if (list_empty(&mddev->disks))
  1678. /* cannot run an array with no devices.. */
  1679. return -EINVAL;
  1680. if (mddev->pers)
  1681. return -EBUSY;
  1682. /*
  1683. * Analyze all RAID superblock(s)
  1684. */
  1685. if (!mddev->raid_disks)
  1686. analyze_sbs(mddev);
  1687. chunk_size = mddev->chunk_size;
  1688. pnum = level_to_pers(mddev->level);
  1689. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1690. if (!chunk_size) {
  1691. /*
  1692. * 'default chunksize' in the old md code used to
  1693. * be PAGE_SIZE, baaad.
  1694. * we abort here to be on the safe side. We don't
  1695. * want to continue the bad practice.
  1696. */
  1697. printk(KERN_ERR
  1698. "no chunksize specified, see 'man raidtab'\n");
  1699. return -EINVAL;
  1700. }
  1701. if (chunk_size > MAX_CHUNK_SIZE) {
  1702. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1703. chunk_size, MAX_CHUNK_SIZE);
  1704. return -EINVAL;
  1705. }
  1706. /*
  1707. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1708. */
  1709. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1710. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1711. return -EINVAL;
  1712. }
  1713. if (chunk_size < PAGE_SIZE) {
  1714. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1715. chunk_size, PAGE_SIZE);
  1716. return -EINVAL;
  1717. }
  1718. /* devices must have minimum size of one chunk */
  1719. ITERATE_RDEV(mddev,rdev,tmp) {
  1720. if (test_bit(Faulty, &rdev->flags))
  1721. continue;
  1722. if (rdev->size < chunk_size / 1024) {
  1723. printk(KERN_WARNING
  1724. "md: Dev %s smaller than chunk_size:"
  1725. " %lluk < %dk\n",
  1726. bdevname(rdev->bdev,b),
  1727. (unsigned long long)rdev->size,
  1728. chunk_size / 1024);
  1729. return -EINVAL;
  1730. }
  1731. }
  1732. }
  1733. #ifdef CONFIG_KMOD
  1734. if (!pers[pnum])
  1735. {
  1736. request_module("md-personality-%d", pnum);
  1737. }
  1738. #endif
  1739. /*
  1740. * Drop all container device buffers, from now on
  1741. * the only valid external interface is through the md
  1742. * device.
  1743. * Also find largest hardsector size
  1744. */
  1745. ITERATE_RDEV(mddev,rdev,tmp) {
  1746. if (test_bit(Faulty, &rdev->flags))
  1747. continue;
  1748. sync_blockdev(rdev->bdev);
  1749. invalidate_bdev(rdev->bdev, 0);
  1750. }
  1751. md_probe(mddev->unit, NULL, NULL);
  1752. disk = mddev->gendisk;
  1753. if (!disk)
  1754. return -ENOMEM;
  1755. spin_lock(&pers_lock);
  1756. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1757. spin_unlock(&pers_lock);
  1758. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1759. pnum);
  1760. return -EINVAL;
  1761. }
  1762. mddev->pers = pers[pnum];
  1763. spin_unlock(&pers_lock);
  1764. mddev->recovery = 0;
  1765. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1766. mddev->barriers_work = 1;
  1767. if (start_readonly)
  1768. mddev->ro = 2; /* read-only, but switch on first write */
  1769. /* before we start the array running, initialise the bitmap */
  1770. err = bitmap_create(mddev);
  1771. if (err)
  1772. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1773. mdname(mddev), err);
  1774. else
  1775. err = mddev->pers->run(mddev);
  1776. if (err) {
  1777. printk(KERN_ERR "md: pers->run() failed ...\n");
  1778. module_put(mddev->pers->owner);
  1779. mddev->pers = NULL;
  1780. bitmap_destroy(mddev);
  1781. return err;
  1782. }
  1783. if (mddev->pers->sync_request)
  1784. sysfs_create_group(&mddev->kobj, &md_redundancy_group);
  1785. else if (mddev->ro == 2) /* auto-readonly not meaningful */
  1786. mddev->ro = 0;
  1787. atomic_set(&mddev->writes_pending,0);
  1788. mddev->safemode = 0;
  1789. mddev->safemode_timer.function = md_safemode_timeout;
  1790. mddev->safemode_timer.data = (unsigned long) mddev;
  1791. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1792. mddev->in_sync = 1;
  1793. ITERATE_RDEV(mddev,rdev,tmp)
  1794. if (rdev->raid_disk >= 0) {
  1795. char nm[20];
  1796. sprintf(nm, "rd%d", rdev->raid_disk);
  1797. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  1798. }
  1799. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1800. md_wakeup_thread(mddev->thread);
  1801. if (mddev->sb_dirty)
  1802. md_update_sb(mddev);
  1803. set_capacity(disk, mddev->array_size<<1);
  1804. /* If we call blk_queue_make_request here, it will
  1805. * re-initialise max_sectors etc which may have been
  1806. * refined inside -> run. So just set the bits we need to set.
  1807. * Most initialisation happended when we called
  1808. * blk_queue_make_request(..., md_fail_request)
  1809. * earlier.
  1810. */
  1811. mddev->queue->queuedata = mddev;
  1812. mddev->queue->make_request_fn = mddev->pers->make_request;
  1813. mddev->changed = 1;
  1814. return 0;
  1815. }
  1816. static int restart_array(mddev_t *mddev)
  1817. {
  1818. struct gendisk *disk = mddev->gendisk;
  1819. int err;
  1820. /*
  1821. * Complain if it has no devices
  1822. */
  1823. err = -ENXIO;
  1824. if (list_empty(&mddev->disks))
  1825. goto out;
  1826. if (mddev->pers) {
  1827. err = -EBUSY;
  1828. if (!mddev->ro)
  1829. goto out;
  1830. mddev->safemode = 0;
  1831. mddev->ro = 0;
  1832. set_disk_ro(disk, 0);
  1833. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1834. mdname(mddev));
  1835. /*
  1836. * Kick recovery or resync if necessary
  1837. */
  1838. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1839. md_wakeup_thread(mddev->thread);
  1840. err = 0;
  1841. } else {
  1842. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1843. mdname(mddev));
  1844. err = -EINVAL;
  1845. }
  1846. out:
  1847. return err;
  1848. }
  1849. static int do_md_stop(mddev_t * mddev, int ro)
  1850. {
  1851. int err = 0;
  1852. struct gendisk *disk = mddev->gendisk;
  1853. if (mddev->pers) {
  1854. if (atomic_read(&mddev->active)>2) {
  1855. printk("md: %s still in use.\n",mdname(mddev));
  1856. return -EBUSY;
  1857. }
  1858. if (mddev->sync_thread) {
  1859. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1860. md_unregister_thread(mddev->sync_thread);
  1861. mddev->sync_thread = NULL;
  1862. }
  1863. del_timer_sync(&mddev->safemode_timer);
  1864. invalidate_partition(disk, 0);
  1865. if (ro) {
  1866. err = -ENXIO;
  1867. if (mddev->ro==1)
  1868. goto out;
  1869. mddev->ro = 1;
  1870. } else {
  1871. bitmap_flush(mddev);
  1872. md_super_wait(mddev);
  1873. if (mddev->ro)
  1874. set_disk_ro(disk, 0);
  1875. blk_queue_make_request(mddev->queue, md_fail_request);
  1876. mddev->pers->stop(mddev);
  1877. if (mddev->pers->sync_request)
  1878. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  1879. module_put(mddev->pers->owner);
  1880. mddev->pers = NULL;
  1881. if (mddev->ro)
  1882. mddev->ro = 0;
  1883. }
  1884. if (!mddev->in_sync) {
  1885. /* mark array as shutdown cleanly */
  1886. mddev->in_sync = 1;
  1887. md_update_sb(mddev);
  1888. }
  1889. if (ro)
  1890. set_disk_ro(disk, 1);
  1891. }
  1892. bitmap_destroy(mddev);
  1893. if (mddev->bitmap_file) {
  1894. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1895. fput(mddev->bitmap_file);
  1896. mddev->bitmap_file = NULL;
  1897. }
  1898. mddev->bitmap_offset = 0;
  1899. /*
  1900. * Free resources if final stop
  1901. */
  1902. if (!ro) {
  1903. mdk_rdev_t *rdev;
  1904. struct list_head *tmp;
  1905. struct gendisk *disk;
  1906. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1907. ITERATE_RDEV(mddev,rdev,tmp)
  1908. if (rdev->raid_disk >= 0) {
  1909. char nm[20];
  1910. sprintf(nm, "rd%d", rdev->raid_disk);
  1911. sysfs_remove_link(&mddev->kobj, nm);
  1912. }
  1913. export_array(mddev);
  1914. mddev->array_size = 0;
  1915. disk = mddev->gendisk;
  1916. if (disk)
  1917. set_capacity(disk, 0);
  1918. mddev->changed = 1;
  1919. } else
  1920. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1921. mdname(mddev));
  1922. err = 0;
  1923. out:
  1924. return err;
  1925. }
  1926. static void autorun_array(mddev_t *mddev)
  1927. {
  1928. mdk_rdev_t *rdev;
  1929. struct list_head *tmp;
  1930. int err;
  1931. if (list_empty(&mddev->disks))
  1932. return;
  1933. printk(KERN_INFO "md: running: ");
  1934. ITERATE_RDEV(mddev,rdev,tmp) {
  1935. char b[BDEVNAME_SIZE];
  1936. printk("<%s>", bdevname(rdev->bdev,b));
  1937. }
  1938. printk("\n");
  1939. err = do_md_run (mddev);
  1940. if (err) {
  1941. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1942. do_md_stop (mddev, 0);
  1943. }
  1944. }
  1945. /*
  1946. * lets try to run arrays based on all disks that have arrived
  1947. * until now. (those are in pending_raid_disks)
  1948. *
  1949. * the method: pick the first pending disk, collect all disks with
  1950. * the same UUID, remove all from the pending list and put them into
  1951. * the 'same_array' list. Then order this list based on superblock
  1952. * update time (freshest comes first), kick out 'old' disks and
  1953. * compare superblocks. If everything's fine then run it.
  1954. *
  1955. * If "unit" is allocated, then bump its reference count
  1956. */
  1957. static void autorun_devices(int part)
  1958. {
  1959. struct list_head candidates;
  1960. struct list_head *tmp;
  1961. mdk_rdev_t *rdev0, *rdev;
  1962. mddev_t *mddev;
  1963. char b[BDEVNAME_SIZE];
  1964. printk(KERN_INFO "md: autorun ...\n");
  1965. while (!list_empty(&pending_raid_disks)) {
  1966. dev_t dev;
  1967. rdev0 = list_entry(pending_raid_disks.next,
  1968. mdk_rdev_t, same_set);
  1969. printk(KERN_INFO "md: considering %s ...\n",
  1970. bdevname(rdev0->bdev,b));
  1971. INIT_LIST_HEAD(&candidates);
  1972. ITERATE_RDEV_PENDING(rdev,tmp)
  1973. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1974. printk(KERN_INFO "md: adding %s ...\n",
  1975. bdevname(rdev->bdev,b));
  1976. list_move(&rdev->same_set, &candidates);
  1977. }
  1978. /*
  1979. * now we have a set of devices, with all of them having
  1980. * mostly sane superblocks. It's time to allocate the
  1981. * mddev.
  1982. */
  1983. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1984. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1985. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1986. break;
  1987. }
  1988. if (part)
  1989. dev = MKDEV(mdp_major,
  1990. rdev0->preferred_minor << MdpMinorShift);
  1991. else
  1992. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1993. md_probe(dev, NULL, NULL);
  1994. mddev = mddev_find(dev);
  1995. if (!mddev) {
  1996. printk(KERN_ERR
  1997. "md: cannot allocate memory for md drive.\n");
  1998. break;
  1999. }
  2000. if (mddev_lock(mddev))
  2001. printk(KERN_WARNING "md: %s locked, cannot run\n",
  2002. mdname(mddev));
  2003. else if (mddev->raid_disks || mddev->major_version
  2004. || !list_empty(&mddev->disks)) {
  2005. printk(KERN_WARNING
  2006. "md: %s already running, cannot run %s\n",
  2007. mdname(mddev), bdevname(rdev0->bdev,b));
  2008. mddev_unlock(mddev);
  2009. } else {
  2010. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  2011. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  2012. list_del_init(&rdev->same_set);
  2013. if (bind_rdev_to_array(rdev, mddev))
  2014. export_rdev(rdev);
  2015. }
  2016. autorun_array(mddev);
  2017. mddev_unlock(mddev);
  2018. }
  2019. /* on success, candidates will be empty, on error
  2020. * it won't...
  2021. */
  2022. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  2023. export_rdev(rdev);
  2024. mddev_put(mddev);
  2025. }
  2026. printk(KERN_INFO "md: ... autorun DONE.\n");
  2027. }
  2028. /*
  2029. * import RAID devices based on one partition
  2030. * if possible, the array gets run as well.
  2031. */
  2032. static int autostart_array(dev_t startdev)
  2033. {
  2034. char b[BDEVNAME_SIZE];
  2035. int err = -EINVAL, i;
  2036. mdp_super_t *sb = NULL;
  2037. mdk_rdev_t *start_rdev = NULL, *rdev;
  2038. start_rdev = md_import_device(startdev, 0, 0);
  2039. if (IS_ERR(start_rdev))
  2040. return err;
  2041. /* NOTE: this can only work for 0.90.0 superblocks */
  2042. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  2043. if (sb->major_version != 0 ||
  2044. sb->minor_version != 90 ) {
  2045. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  2046. export_rdev(start_rdev);
  2047. return err;
  2048. }
  2049. if (test_bit(Faulty, &start_rdev->flags)) {
  2050. printk(KERN_WARNING
  2051. "md: can not autostart based on faulty %s!\n",
  2052. bdevname(start_rdev->bdev,b));
  2053. export_rdev(start_rdev);
  2054. return err;
  2055. }
  2056. list_add(&start_rdev->same_set, &pending_raid_disks);
  2057. for (i = 0; i < MD_SB_DISKS; i++) {
  2058. mdp_disk_t *desc = sb->disks + i;
  2059. dev_t dev = MKDEV(desc->major, desc->minor);
  2060. if (!dev)
  2061. continue;
  2062. if (dev == startdev)
  2063. continue;
  2064. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  2065. continue;
  2066. rdev = md_import_device(dev, 0, 0);
  2067. if (IS_ERR(rdev))
  2068. continue;
  2069. list_add(&rdev->same_set, &pending_raid_disks);
  2070. }
  2071. /*
  2072. * possibly return codes
  2073. */
  2074. autorun_devices(0);
  2075. return 0;
  2076. }
  2077. static int get_version(void __user * arg)
  2078. {
  2079. mdu_version_t ver;
  2080. ver.major = MD_MAJOR_VERSION;
  2081. ver.minor = MD_MINOR_VERSION;
  2082. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  2083. if (copy_to_user(arg, &ver, sizeof(ver)))
  2084. return -EFAULT;
  2085. return 0;
  2086. }
  2087. static int get_array_info(mddev_t * mddev, void __user * arg)
  2088. {
  2089. mdu_array_info_t info;
  2090. int nr,working,active,failed,spare;
  2091. mdk_rdev_t *rdev;
  2092. struct list_head *tmp;
  2093. nr=working=active=failed=spare=0;
  2094. ITERATE_RDEV(mddev,rdev,tmp) {
  2095. nr++;
  2096. if (test_bit(Faulty, &rdev->flags))
  2097. failed++;
  2098. else {
  2099. working++;
  2100. if (test_bit(In_sync, &rdev->flags))
  2101. active++;
  2102. else
  2103. spare++;
  2104. }
  2105. }
  2106. info.major_version = mddev->major_version;
  2107. info.minor_version = mddev->minor_version;
  2108. info.patch_version = MD_PATCHLEVEL_VERSION;
  2109. info.ctime = mddev->ctime;
  2110. info.level = mddev->level;
  2111. info.size = mddev->size;
  2112. info.nr_disks = nr;
  2113. info.raid_disks = mddev->raid_disks;
  2114. info.md_minor = mddev->md_minor;
  2115. info.not_persistent= !mddev->persistent;
  2116. info.utime = mddev->utime;
  2117. info.state = 0;
  2118. if (mddev->in_sync)
  2119. info.state = (1<<MD_SB_CLEAN);
  2120. if (mddev->bitmap && mddev->bitmap_offset)
  2121. info.state = (1<<MD_SB_BITMAP_PRESENT);
  2122. info.active_disks = active;
  2123. info.working_disks = working;
  2124. info.failed_disks = failed;
  2125. info.spare_disks = spare;
  2126. info.layout = mddev->layout;
  2127. info.chunk_size = mddev->chunk_size;
  2128. if (copy_to_user(arg, &info, sizeof(info)))
  2129. return -EFAULT;
  2130. return 0;
  2131. }
  2132. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  2133. {
  2134. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  2135. char *ptr, *buf = NULL;
  2136. int err = -ENOMEM;
  2137. file = kmalloc(sizeof(*file), GFP_KERNEL);
  2138. if (!file)
  2139. goto out;
  2140. /* bitmap disabled, zero the first byte and copy out */
  2141. if (!mddev->bitmap || !mddev->bitmap->file) {
  2142. file->pathname[0] = '\0';
  2143. goto copy_out;
  2144. }
  2145. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  2146. if (!buf)
  2147. goto out;
  2148. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  2149. if (!ptr)
  2150. goto out;
  2151. strcpy(file->pathname, ptr);
  2152. copy_out:
  2153. err = 0;
  2154. if (copy_to_user(arg, file, sizeof(*file)))
  2155. err = -EFAULT;
  2156. out:
  2157. kfree(buf);
  2158. kfree(file);
  2159. return err;
  2160. }
  2161. static int get_disk_info(mddev_t * mddev, void __user * arg)
  2162. {
  2163. mdu_disk_info_t info;
  2164. unsigned int nr;
  2165. mdk_rdev_t *rdev;
  2166. if (copy_from_user(&info, arg, sizeof(info)))
  2167. return -EFAULT;
  2168. nr = info.number;
  2169. rdev = find_rdev_nr(mddev, nr);
  2170. if (rdev) {
  2171. info.major = MAJOR(rdev->bdev->bd_dev);
  2172. info.minor = MINOR(rdev->bdev->bd_dev);
  2173. info.raid_disk = rdev->raid_disk;
  2174. info.state = 0;
  2175. if (test_bit(Faulty, &rdev->flags))
  2176. info.state |= (1<<MD_DISK_FAULTY);
  2177. else if (test_bit(In_sync, &rdev->flags)) {
  2178. info.state |= (1<<MD_DISK_ACTIVE);
  2179. info.state |= (1<<MD_DISK_SYNC);
  2180. }
  2181. if (test_bit(WriteMostly, &rdev->flags))
  2182. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  2183. } else {
  2184. info.major = info.minor = 0;
  2185. info.raid_disk = -1;
  2186. info.state = (1<<MD_DISK_REMOVED);
  2187. }
  2188. if (copy_to_user(arg, &info, sizeof(info)))
  2189. return -EFAULT;
  2190. return 0;
  2191. }
  2192. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  2193. {
  2194. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2195. mdk_rdev_t *rdev;
  2196. dev_t dev = MKDEV(info->major,info->minor);
  2197. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  2198. return -EOVERFLOW;
  2199. if (!mddev->raid_disks) {
  2200. int err;
  2201. /* expecting a device which has a superblock */
  2202. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  2203. if (IS_ERR(rdev)) {
  2204. printk(KERN_WARNING
  2205. "md: md_import_device returned %ld\n",
  2206. PTR_ERR(rdev));
  2207. return PTR_ERR(rdev);
  2208. }
  2209. if (!list_empty(&mddev->disks)) {
  2210. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2211. mdk_rdev_t, same_set);
  2212. int err = super_types[mddev->major_version]
  2213. .load_super(rdev, rdev0, mddev->minor_version);
  2214. if (err < 0) {
  2215. printk(KERN_WARNING
  2216. "md: %s has different UUID to %s\n",
  2217. bdevname(rdev->bdev,b),
  2218. bdevname(rdev0->bdev,b2));
  2219. export_rdev(rdev);
  2220. return -EINVAL;
  2221. }
  2222. }
  2223. err = bind_rdev_to_array(rdev, mddev);
  2224. if (err)
  2225. export_rdev(rdev);
  2226. return err;
  2227. }
  2228. /*
  2229. * add_new_disk can be used once the array is assembled
  2230. * to add "hot spares". They must already have a superblock
  2231. * written
  2232. */
  2233. if (mddev->pers) {
  2234. int err;
  2235. if (!mddev->pers->hot_add_disk) {
  2236. printk(KERN_WARNING
  2237. "%s: personality does not support diskops!\n",
  2238. mdname(mddev));
  2239. return -EINVAL;
  2240. }
  2241. if (mddev->persistent)
  2242. rdev = md_import_device(dev, mddev->major_version,
  2243. mddev->minor_version);
  2244. else
  2245. rdev = md_import_device(dev, -1, -1);
  2246. if (IS_ERR(rdev)) {
  2247. printk(KERN_WARNING
  2248. "md: md_import_device returned %ld\n",
  2249. PTR_ERR(rdev));
  2250. return PTR_ERR(rdev);
  2251. }
  2252. /* set save_raid_disk if appropriate */
  2253. if (!mddev->persistent) {
  2254. if (info->state & (1<<MD_DISK_SYNC) &&
  2255. info->raid_disk < mddev->raid_disks)
  2256. rdev->raid_disk = info->raid_disk;
  2257. else
  2258. rdev->raid_disk = -1;
  2259. } else
  2260. super_types[mddev->major_version].
  2261. validate_super(mddev, rdev);
  2262. rdev->saved_raid_disk = rdev->raid_disk;
  2263. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  2264. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2265. set_bit(WriteMostly, &rdev->flags);
  2266. rdev->raid_disk = -1;
  2267. err = bind_rdev_to_array(rdev, mddev);
  2268. if (err)
  2269. export_rdev(rdev);
  2270. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2271. md_wakeup_thread(mddev->thread);
  2272. return err;
  2273. }
  2274. /* otherwise, add_new_disk is only allowed
  2275. * for major_version==0 superblocks
  2276. */
  2277. if (mddev->major_version != 0) {
  2278. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  2279. mdname(mddev));
  2280. return -EINVAL;
  2281. }
  2282. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  2283. int err;
  2284. rdev = md_import_device (dev, -1, 0);
  2285. if (IS_ERR(rdev)) {
  2286. printk(KERN_WARNING
  2287. "md: error, md_import_device() returned %ld\n",
  2288. PTR_ERR(rdev));
  2289. return PTR_ERR(rdev);
  2290. }
  2291. rdev->desc_nr = info->number;
  2292. if (info->raid_disk < mddev->raid_disks)
  2293. rdev->raid_disk = info->raid_disk;
  2294. else
  2295. rdev->raid_disk = -1;
  2296. rdev->flags = 0;
  2297. if (rdev->raid_disk < mddev->raid_disks)
  2298. if (info->state & (1<<MD_DISK_SYNC))
  2299. set_bit(In_sync, &rdev->flags);
  2300. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2301. set_bit(WriteMostly, &rdev->flags);
  2302. err = bind_rdev_to_array(rdev, mddev);
  2303. if (err) {
  2304. export_rdev(rdev);
  2305. return err;
  2306. }
  2307. if (!mddev->persistent) {
  2308. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  2309. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2310. } else
  2311. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2312. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  2313. if (!mddev->size || (mddev->size > rdev->size))
  2314. mddev->size = rdev->size;
  2315. }
  2316. return 0;
  2317. }
  2318. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2319. {
  2320. char b[BDEVNAME_SIZE];
  2321. mdk_rdev_t *rdev;
  2322. if (!mddev->pers)
  2323. return -ENODEV;
  2324. rdev = find_rdev(mddev, dev);
  2325. if (!rdev)
  2326. return -ENXIO;
  2327. if (rdev->raid_disk >= 0)
  2328. goto busy;
  2329. kick_rdev_from_array(rdev);
  2330. md_update_sb(mddev);
  2331. return 0;
  2332. busy:
  2333. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2334. bdevname(rdev->bdev,b), mdname(mddev));
  2335. return -EBUSY;
  2336. }
  2337. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2338. {
  2339. char b[BDEVNAME_SIZE];
  2340. int err;
  2341. unsigned int size;
  2342. mdk_rdev_t *rdev;
  2343. if (!mddev->pers)
  2344. return -ENODEV;
  2345. if (mddev->major_version != 0) {
  2346. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2347. " version-0 superblocks.\n",
  2348. mdname(mddev));
  2349. return -EINVAL;
  2350. }
  2351. if (!mddev->pers->hot_add_disk) {
  2352. printk(KERN_WARNING
  2353. "%s: personality does not support diskops!\n",
  2354. mdname(mddev));
  2355. return -EINVAL;
  2356. }
  2357. rdev = md_import_device (dev, -1, 0);
  2358. if (IS_ERR(rdev)) {
  2359. printk(KERN_WARNING
  2360. "md: error, md_import_device() returned %ld\n",
  2361. PTR_ERR(rdev));
  2362. return -EINVAL;
  2363. }
  2364. if (mddev->persistent)
  2365. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2366. else
  2367. rdev->sb_offset =
  2368. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2369. size = calc_dev_size(rdev, mddev->chunk_size);
  2370. rdev->size = size;
  2371. if (size < mddev->size) {
  2372. printk(KERN_WARNING
  2373. "%s: disk size %llu blocks < array size %llu\n",
  2374. mdname(mddev), (unsigned long long)size,
  2375. (unsigned long long)mddev->size);
  2376. err = -ENOSPC;
  2377. goto abort_export;
  2378. }
  2379. if (test_bit(Faulty, &rdev->flags)) {
  2380. printk(KERN_WARNING
  2381. "md: can not hot-add faulty %s disk to %s!\n",
  2382. bdevname(rdev->bdev,b), mdname(mddev));
  2383. err = -EINVAL;
  2384. goto abort_export;
  2385. }
  2386. clear_bit(In_sync, &rdev->flags);
  2387. rdev->desc_nr = -1;
  2388. bind_rdev_to_array(rdev, mddev);
  2389. /*
  2390. * The rest should better be atomic, we can have disk failures
  2391. * noticed in interrupt contexts ...
  2392. */
  2393. if (rdev->desc_nr == mddev->max_disks) {
  2394. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2395. mdname(mddev));
  2396. err = -EBUSY;
  2397. goto abort_unbind_export;
  2398. }
  2399. rdev->raid_disk = -1;
  2400. md_update_sb(mddev);
  2401. /*
  2402. * Kick recovery, maybe this spare has to be added to the
  2403. * array immediately.
  2404. */
  2405. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2406. md_wakeup_thread(mddev->thread);
  2407. return 0;
  2408. abort_unbind_export:
  2409. unbind_rdev_from_array(rdev);
  2410. abort_export:
  2411. export_rdev(rdev);
  2412. return err;
  2413. }
  2414. /* similar to deny_write_access, but accounts for our holding a reference
  2415. * to the file ourselves */
  2416. static int deny_bitmap_write_access(struct file * file)
  2417. {
  2418. struct inode *inode = file->f_mapping->host;
  2419. spin_lock(&inode->i_lock);
  2420. if (atomic_read(&inode->i_writecount) > 1) {
  2421. spin_unlock(&inode->i_lock);
  2422. return -ETXTBSY;
  2423. }
  2424. atomic_set(&inode->i_writecount, -1);
  2425. spin_unlock(&inode->i_lock);
  2426. return 0;
  2427. }
  2428. static int set_bitmap_file(mddev_t *mddev, int fd)
  2429. {
  2430. int err;
  2431. if (mddev->pers) {
  2432. if (!mddev->pers->quiesce)
  2433. return -EBUSY;
  2434. if (mddev->recovery || mddev->sync_thread)
  2435. return -EBUSY;
  2436. /* we should be able to change the bitmap.. */
  2437. }
  2438. if (fd >= 0) {
  2439. if (mddev->bitmap)
  2440. return -EEXIST; /* cannot add when bitmap is present */
  2441. mddev->bitmap_file = fget(fd);
  2442. if (mddev->bitmap_file == NULL) {
  2443. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2444. mdname(mddev));
  2445. return -EBADF;
  2446. }
  2447. err = deny_bitmap_write_access(mddev->bitmap_file);
  2448. if (err) {
  2449. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2450. mdname(mddev));
  2451. fput(mddev->bitmap_file);
  2452. mddev->bitmap_file = NULL;
  2453. return err;
  2454. }
  2455. mddev->bitmap_offset = 0; /* file overrides offset */
  2456. } else if (mddev->bitmap == NULL)
  2457. return -ENOENT; /* cannot remove what isn't there */
  2458. err = 0;
  2459. if (mddev->pers) {
  2460. mddev->pers->quiesce(mddev, 1);
  2461. if (fd >= 0)
  2462. err = bitmap_create(mddev);
  2463. if (fd < 0 || err)
  2464. bitmap_destroy(mddev);
  2465. mddev->pers->quiesce(mddev, 0);
  2466. } else if (fd < 0) {
  2467. if (mddev->bitmap_file)
  2468. fput(mddev->bitmap_file);
  2469. mddev->bitmap_file = NULL;
  2470. }
  2471. return err;
  2472. }
  2473. /*
  2474. * set_array_info is used two different ways
  2475. * The original usage is when creating a new array.
  2476. * In this usage, raid_disks is > 0 and it together with
  2477. * level, size, not_persistent,layout,chunksize determine the
  2478. * shape of the array.
  2479. * This will always create an array with a type-0.90.0 superblock.
  2480. * The newer usage is when assembling an array.
  2481. * In this case raid_disks will be 0, and the major_version field is
  2482. * use to determine which style super-blocks are to be found on the devices.
  2483. * The minor and patch _version numbers are also kept incase the
  2484. * super_block handler wishes to interpret them.
  2485. */
  2486. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2487. {
  2488. if (info->raid_disks == 0) {
  2489. /* just setting version number for superblock loading */
  2490. if (info->major_version < 0 ||
  2491. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2492. super_types[info->major_version].name == NULL) {
  2493. /* maybe try to auto-load a module? */
  2494. printk(KERN_INFO
  2495. "md: superblock version %d not known\n",
  2496. info->major_version);
  2497. return -EINVAL;
  2498. }
  2499. mddev->major_version = info->major_version;
  2500. mddev->minor_version = info->minor_version;
  2501. mddev->patch_version = info->patch_version;
  2502. return 0;
  2503. }
  2504. mddev->major_version = MD_MAJOR_VERSION;
  2505. mddev->minor_version = MD_MINOR_VERSION;
  2506. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2507. mddev->ctime = get_seconds();
  2508. mddev->level = info->level;
  2509. mddev->size = info->size;
  2510. mddev->raid_disks = info->raid_disks;
  2511. /* don't set md_minor, it is determined by which /dev/md* was
  2512. * openned
  2513. */
  2514. if (info->state & (1<<MD_SB_CLEAN))
  2515. mddev->recovery_cp = MaxSector;
  2516. else
  2517. mddev->recovery_cp = 0;
  2518. mddev->persistent = ! info->not_persistent;
  2519. mddev->layout = info->layout;
  2520. mddev->chunk_size = info->chunk_size;
  2521. mddev->max_disks = MD_SB_DISKS;
  2522. mddev->sb_dirty = 1;
  2523. /*
  2524. * Generate a 128 bit UUID
  2525. */
  2526. get_random_bytes(mddev->uuid, 16);
  2527. return 0;
  2528. }
  2529. /*
  2530. * update_array_info is used to change the configuration of an
  2531. * on-line array.
  2532. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2533. * fields in the info are checked against the array.
  2534. * Any differences that cannot be handled will cause an error.
  2535. * Normally, only one change can be managed at a time.
  2536. */
  2537. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2538. {
  2539. int rv = 0;
  2540. int cnt = 0;
  2541. int state = 0;
  2542. /* calculate expected state,ignoring low bits */
  2543. if (mddev->bitmap && mddev->bitmap_offset)
  2544. state |= (1 << MD_SB_BITMAP_PRESENT);
  2545. if (mddev->major_version != info->major_version ||
  2546. mddev->minor_version != info->minor_version ||
  2547. /* mddev->patch_version != info->patch_version || */
  2548. mddev->ctime != info->ctime ||
  2549. mddev->level != info->level ||
  2550. /* mddev->layout != info->layout || */
  2551. !mddev->persistent != info->not_persistent||
  2552. mddev->chunk_size != info->chunk_size ||
  2553. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2554. ((state^info->state) & 0xfffffe00)
  2555. )
  2556. return -EINVAL;
  2557. /* Check there is only one change */
  2558. if (mddev->size != info->size) cnt++;
  2559. if (mddev->raid_disks != info->raid_disks) cnt++;
  2560. if (mddev->layout != info->layout) cnt++;
  2561. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2562. if (cnt == 0) return 0;
  2563. if (cnt > 1) return -EINVAL;
  2564. if (mddev->layout != info->layout) {
  2565. /* Change layout
  2566. * we don't need to do anything at the md level, the
  2567. * personality will take care of it all.
  2568. */
  2569. if (mddev->pers->reconfig == NULL)
  2570. return -EINVAL;
  2571. else
  2572. return mddev->pers->reconfig(mddev, info->layout, -1);
  2573. }
  2574. if (mddev->size != info->size) {
  2575. mdk_rdev_t * rdev;
  2576. struct list_head *tmp;
  2577. if (mddev->pers->resize == NULL)
  2578. return -EINVAL;
  2579. /* The "size" is the amount of each device that is used.
  2580. * This can only make sense for arrays with redundancy.
  2581. * linear and raid0 always use whatever space is available
  2582. * We can only consider changing the size if no resync
  2583. * or reconstruction is happening, and if the new size
  2584. * is acceptable. It must fit before the sb_offset or,
  2585. * if that is <data_offset, it must fit before the
  2586. * size of each device.
  2587. * If size is zero, we find the largest size that fits.
  2588. */
  2589. if (mddev->sync_thread)
  2590. return -EBUSY;
  2591. ITERATE_RDEV(mddev,rdev,tmp) {
  2592. sector_t avail;
  2593. int fit = (info->size == 0);
  2594. if (rdev->sb_offset > rdev->data_offset)
  2595. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2596. else
  2597. avail = get_capacity(rdev->bdev->bd_disk)
  2598. - rdev->data_offset;
  2599. if (fit && (info->size == 0 || info->size > avail/2))
  2600. info->size = avail/2;
  2601. if (avail < ((sector_t)info->size << 1))
  2602. return -ENOSPC;
  2603. }
  2604. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2605. if (!rv) {
  2606. struct block_device *bdev;
  2607. bdev = bdget_disk(mddev->gendisk, 0);
  2608. if (bdev) {
  2609. down(&bdev->bd_inode->i_sem);
  2610. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2611. up(&bdev->bd_inode->i_sem);
  2612. bdput(bdev);
  2613. }
  2614. }
  2615. }
  2616. if (mddev->raid_disks != info->raid_disks) {
  2617. /* change the number of raid disks */
  2618. if (mddev->pers->reshape == NULL)
  2619. return -EINVAL;
  2620. if (info->raid_disks <= 0 ||
  2621. info->raid_disks >= mddev->max_disks)
  2622. return -EINVAL;
  2623. if (mddev->sync_thread)
  2624. return -EBUSY;
  2625. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2626. if (!rv) {
  2627. struct block_device *bdev;
  2628. bdev = bdget_disk(mddev->gendisk, 0);
  2629. if (bdev) {
  2630. down(&bdev->bd_inode->i_sem);
  2631. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2632. up(&bdev->bd_inode->i_sem);
  2633. bdput(bdev);
  2634. }
  2635. }
  2636. }
  2637. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2638. if (mddev->pers->quiesce == NULL)
  2639. return -EINVAL;
  2640. if (mddev->recovery || mddev->sync_thread)
  2641. return -EBUSY;
  2642. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2643. /* add the bitmap */
  2644. if (mddev->bitmap)
  2645. return -EEXIST;
  2646. if (mddev->default_bitmap_offset == 0)
  2647. return -EINVAL;
  2648. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2649. mddev->pers->quiesce(mddev, 1);
  2650. rv = bitmap_create(mddev);
  2651. if (rv)
  2652. bitmap_destroy(mddev);
  2653. mddev->pers->quiesce(mddev, 0);
  2654. } else {
  2655. /* remove the bitmap */
  2656. if (!mddev->bitmap)
  2657. return -ENOENT;
  2658. if (mddev->bitmap->file)
  2659. return -EINVAL;
  2660. mddev->pers->quiesce(mddev, 1);
  2661. bitmap_destroy(mddev);
  2662. mddev->pers->quiesce(mddev, 0);
  2663. mddev->bitmap_offset = 0;
  2664. }
  2665. }
  2666. md_update_sb(mddev);
  2667. return rv;
  2668. }
  2669. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2670. {
  2671. mdk_rdev_t *rdev;
  2672. if (mddev->pers == NULL)
  2673. return -ENODEV;
  2674. rdev = find_rdev(mddev, dev);
  2675. if (!rdev)
  2676. return -ENODEV;
  2677. md_error(mddev, rdev);
  2678. return 0;
  2679. }
  2680. static int md_ioctl(struct inode *inode, struct file *file,
  2681. unsigned int cmd, unsigned long arg)
  2682. {
  2683. int err = 0;
  2684. void __user *argp = (void __user *)arg;
  2685. struct hd_geometry __user *loc = argp;
  2686. mddev_t *mddev = NULL;
  2687. if (!capable(CAP_SYS_ADMIN))
  2688. return -EACCES;
  2689. /*
  2690. * Commands dealing with the RAID driver but not any
  2691. * particular array:
  2692. */
  2693. switch (cmd)
  2694. {
  2695. case RAID_VERSION:
  2696. err = get_version(argp);
  2697. goto done;
  2698. case PRINT_RAID_DEBUG:
  2699. err = 0;
  2700. md_print_devices();
  2701. goto done;
  2702. #ifndef MODULE
  2703. case RAID_AUTORUN:
  2704. err = 0;
  2705. autostart_arrays(arg);
  2706. goto done;
  2707. #endif
  2708. default:;
  2709. }
  2710. /*
  2711. * Commands creating/starting a new array:
  2712. */
  2713. mddev = inode->i_bdev->bd_disk->private_data;
  2714. if (!mddev) {
  2715. BUG();
  2716. goto abort;
  2717. }
  2718. if (cmd == START_ARRAY) {
  2719. /* START_ARRAY doesn't need to lock the array as autostart_array
  2720. * does the locking, and it could even be a different array
  2721. */
  2722. static int cnt = 3;
  2723. if (cnt > 0 ) {
  2724. printk(KERN_WARNING
  2725. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2726. "This will not be supported beyond July 2006\n",
  2727. current->comm, current->pid);
  2728. cnt--;
  2729. }
  2730. err = autostart_array(new_decode_dev(arg));
  2731. if (err) {
  2732. printk(KERN_WARNING "md: autostart failed!\n");
  2733. goto abort;
  2734. }
  2735. goto done;
  2736. }
  2737. err = mddev_lock(mddev);
  2738. if (err) {
  2739. printk(KERN_INFO
  2740. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2741. err, cmd);
  2742. goto abort;
  2743. }
  2744. switch (cmd)
  2745. {
  2746. case SET_ARRAY_INFO:
  2747. {
  2748. mdu_array_info_t info;
  2749. if (!arg)
  2750. memset(&info, 0, sizeof(info));
  2751. else if (copy_from_user(&info, argp, sizeof(info))) {
  2752. err = -EFAULT;
  2753. goto abort_unlock;
  2754. }
  2755. if (mddev->pers) {
  2756. err = update_array_info(mddev, &info);
  2757. if (err) {
  2758. printk(KERN_WARNING "md: couldn't update"
  2759. " array info. %d\n", err);
  2760. goto abort_unlock;
  2761. }
  2762. goto done_unlock;
  2763. }
  2764. if (!list_empty(&mddev->disks)) {
  2765. printk(KERN_WARNING
  2766. "md: array %s already has disks!\n",
  2767. mdname(mddev));
  2768. err = -EBUSY;
  2769. goto abort_unlock;
  2770. }
  2771. if (mddev->raid_disks) {
  2772. printk(KERN_WARNING
  2773. "md: array %s already initialised!\n",
  2774. mdname(mddev));
  2775. err = -EBUSY;
  2776. goto abort_unlock;
  2777. }
  2778. err = set_array_info(mddev, &info);
  2779. if (err) {
  2780. printk(KERN_WARNING "md: couldn't set"
  2781. " array info. %d\n", err);
  2782. goto abort_unlock;
  2783. }
  2784. }
  2785. goto done_unlock;
  2786. default:;
  2787. }
  2788. /*
  2789. * Commands querying/configuring an existing array:
  2790. */
  2791. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2792. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2793. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2794. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2795. err = -ENODEV;
  2796. goto abort_unlock;
  2797. }
  2798. /*
  2799. * Commands even a read-only array can execute:
  2800. */
  2801. switch (cmd)
  2802. {
  2803. case GET_ARRAY_INFO:
  2804. err = get_array_info(mddev, argp);
  2805. goto done_unlock;
  2806. case GET_BITMAP_FILE:
  2807. err = get_bitmap_file(mddev, argp);
  2808. goto done_unlock;
  2809. case GET_DISK_INFO:
  2810. err = get_disk_info(mddev, argp);
  2811. goto done_unlock;
  2812. case RESTART_ARRAY_RW:
  2813. err = restart_array(mddev);
  2814. goto done_unlock;
  2815. case STOP_ARRAY:
  2816. err = do_md_stop (mddev, 0);
  2817. goto done_unlock;
  2818. case STOP_ARRAY_RO:
  2819. err = do_md_stop (mddev, 1);
  2820. goto done_unlock;
  2821. /*
  2822. * We have a problem here : there is no easy way to give a CHS
  2823. * virtual geometry. We currently pretend that we have a 2 heads
  2824. * 4 sectors (with a BIG number of cylinders...). This drives
  2825. * dosfs just mad... ;-)
  2826. */
  2827. case HDIO_GETGEO:
  2828. if (!loc) {
  2829. err = -EINVAL;
  2830. goto abort_unlock;
  2831. }
  2832. err = put_user (2, (char __user *) &loc->heads);
  2833. if (err)
  2834. goto abort_unlock;
  2835. err = put_user (4, (char __user *) &loc->sectors);
  2836. if (err)
  2837. goto abort_unlock;
  2838. err = put_user(get_capacity(mddev->gendisk)/8,
  2839. (short __user *) &loc->cylinders);
  2840. if (err)
  2841. goto abort_unlock;
  2842. err = put_user (get_start_sect(inode->i_bdev),
  2843. (long __user *) &loc->start);
  2844. goto done_unlock;
  2845. }
  2846. /*
  2847. * The remaining ioctls are changing the state of the
  2848. * superblock, so we do not allow them on read-only arrays.
  2849. * However non-MD ioctls (e.g. get-size) will still come through
  2850. * here and hit the 'default' below, so only disallow
  2851. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  2852. */
  2853. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  2854. mddev->ro && mddev->pers) {
  2855. if (mddev->ro == 2) {
  2856. mddev->ro = 0;
  2857. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2858. md_wakeup_thread(mddev->thread);
  2859. } else {
  2860. err = -EROFS;
  2861. goto abort_unlock;
  2862. }
  2863. }
  2864. switch (cmd)
  2865. {
  2866. case ADD_NEW_DISK:
  2867. {
  2868. mdu_disk_info_t info;
  2869. if (copy_from_user(&info, argp, sizeof(info)))
  2870. err = -EFAULT;
  2871. else
  2872. err = add_new_disk(mddev, &info);
  2873. goto done_unlock;
  2874. }
  2875. case HOT_REMOVE_DISK:
  2876. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2877. goto done_unlock;
  2878. case HOT_ADD_DISK:
  2879. err = hot_add_disk(mddev, new_decode_dev(arg));
  2880. goto done_unlock;
  2881. case SET_DISK_FAULTY:
  2882. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2883. goto done_unlock;
  2884. case RUN_ARRAY:
  2885. err = do_md_run (mddev);
  2886. goto done_unlock;
  2887. case SET_BITMAP_FILE:
  2888. err = set_bitmap_file(mddev, (int)arg);
  2889. goto done_unlock;
  2890. default:
  2891. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2892. printk(KERN_WARNING "md: %s(pid %d) used"
  2893. " obsolete MD ioctl, upgrade your"
  2894. " software to use new ictls.\n",
  2895. current->comm, current->pid);
  2896. err = -EINVAL;
  2897. goto abort_unlock;
  2898. }
  2899. done_unlock:
  2900. abort_unlock:
  2901. mddev_unlock(mddev);
  2902. return err;
  2903. done:
  2904. if (err)
  2905. MD_BUG();
  2906. abort:
  2907. return err;
  2908. }
  2909. static int md_open(struct inode *inode, struct file *file)
  2910. {
  2911. /*
  2912. * Succeed if we can lock the mddev, which confirms that
  2913. * it isn't being stopped right now.
  2914. */
  2915. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2916. int err;
  2917. if ((err = mddev_lock(mddev)))
  2918. goto out;
  2919. err = 0;
  2920. mddev_get(mddev);
  2921. mddev_unlock(mddev);
  2922. check_disk_change(inode->i_bdev);
  2923. out:
  2924. return err;
  2925. }
  2926. static int md_release(struct inode *inode, struct file * file)
  2927. {
  2928. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2929. if (!mddev)
  2930. BUG();
  2931. mddev_put(mddev);
  2932. return 0;
  2933. }
  2934. static int md_media_changed(struct gendisk *disk)
  2935. {
  2936. mddev_t *mddev = disk->private_data;
  2937. return mddev->changed;
  2938. }
  2939. static int md_revalidate(struct gendisk *disk)
  2940. {
  2941. mddev_t *mddev = disk->private_data;
  2942. mddev->changed = 0;
  2943. return 0;
  2944. }
  2945. static struct block_device_operations md_fops =
  2946. {
  2947. .owner = THIS_MODULE,
  2948. .open = md_open,
  2949. .release = md_release,
  2950. .ioctl = md_ioctl,
  2951. .media_changed = md_media_changed,
  2952. .revalidate_disk= md_revalidate,
  2953. };
  2954. static int md_thread(void * arg)
  2955. {
  2956. mdk_thread_t *thread = arg;
  2957. /*
  2958. * md_thread is a 'system-thread', it's priority should be very
  2959. * high. We avoid resource deadlocks individually in each
  2960. * raid personality. (RAID5 does preallocation) We also use RR and
  2961. * the very same RT priority as kswapd, thus we will never get
  2962. * into a priority inversion deadlock.
  2963. *
  2964. * we definitely have to have equal or higher priority than
  2965. * bdflush, otherwise bdflush will deadlock if there are too
  2966. * many dirty RAID5 blocks.
  2967. */
  2968. allow_signal(SIGKILL);
  2969. while (!kthread_should_stop()) {
  2970. /* We need to wait INTERRUPTIBLE so that
  2971. * we don't add to the load-average.
  2972. * That means we need to be sure no signals are
  2973. * pending
  2974. */
  2975. if (signal_pending(current))
  2976. flush_signals(current);
  2977. wait_event_interruptible_timeout
  2978. (thread->wqueue,
  2979. test_bit(THREAD_WAKEUP, &thread->flags)
  2980. || kthread_should_stop(),
  2981. thread->timeout);
  2982. try_to_freeze();
  2983. clear_bit(THREAD_WAKEUP, &thread->flags);
  2984. thread->run(thread->mddev);
  2985. }
  2986. return 0;
  2987. }
  2988. void md_wakeup_thread(mdk_thread_t *thread)
  2989. {
  2990. if (thread) {
  2991. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2992. set_bit(THREAD_WAKEUP, &thread->flags);
  2993. wake_up(&thread->wqueue);
  2994. }
  2995. }
  2996. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2997. const char *name)
  2998. {
  2999. mdk_thread_t *thread;
  3000. thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  3001. if (!thread)
  3002. return NULL;
  3003. memset(thread, 0, sizeof(mdk_thread_t));
  3004. init_waitqueue_head(&thread->wqueue);
  3005. thread->run = run;
  3006. thread->mddev = mddev;
  3007. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  3008. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  3009. if (IS_ERR(thread->tsk)) {
  3010. kfree(thread);
  3011. return NULL;
  3012. }
  3013. return thread;
  3014. }
  3015. void md_unregister_thread(mdk_thread_t *thread)
  3016. {
  3017. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  3018. kthread_stop(thread->tsk);
  3019. kfree(thread);
  3020. }
  3021. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  3022. {
  3023. if (!mddev) {
  3024. MD_BUG();
  3025. return;
  3026. }
  3027. if (!rdev || test_bit(Faulty, &rdev->flags))
  3028. return;
  3029. /*
  3030. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  3031. mdname(mddev),
  3032. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  3033. __builtin_return_address(0),__builtin_return_address(1),
  3034. __builtin_return_address(2),__builtin_return_address(3));
  3035. */
  3036. if (!mddev->pers->error_handler)
  3037. return;
  3038. mddev->pers->error_handler(mddev,rdev);
  3039. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3040. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3041. md_wakeup_thread(mddev->thread);
  3042. }
  3043. /* seq_file implementation /proc/mdstat */
  3044. static void status_unused(struct seq_file *seq)
  3045. {
  3046. int i = 0;
  3047. mdk_rdev_t *rdev;
  3048. struct list_head *tmp;
  3049. seq_printf(seq, "unused devices: ");
  3050. ITERATE_RDEV_PENDING(rdev,tmp) {
  3051. char b[BDEVNAME_SIZE];
  3052. i++;
  3053. seq_printf(seq, "%s ",
  3054. bdevname(rdev->bdev,b));
  3055. }
  3056. if (!i)
  3057. seq_printf(seq, "<none>");
  3058. seq_printf(seq, "\n");
  3059. }
  3060. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  3061. {
  3062. unsigned long max_blocks, resync, res, dt, db, rt;
  3063. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  3064. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3065. max_blocks = mddev->resync_max_sectors >> 1;
  3066. else
  3067. max_blocks = mddev->size;
  3068. /*
  3069. * Should not happen.
  3070. */
  3071. if (!max_blocks) {
  3072. MD_BUG();
  3073. return;
  3074. }
  3075. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  3076. {
  3077. int i, x = res/50, y = 20-x;
  3078. seq_printf(seq, "[");
  3079. for (i = 0; i < x; i++)
  3080. seq_printf(seq, "=");
  3081. seq_printf(seq, ">");
  3082. for (i = 0; i < y; i++)
  3083. seq_printf(seq, ".");
  3084. seq_printf(seq, "] ");
  3085. }
  3086. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  3087. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  3088. "resync" : "recovery"),
  3089. res/10, res % 10, resync, max_blocks);
  3090. /*
  3091. * We do not want to overflow, so the order of operands and
  3092. * the * 100 / 100 trick are important. We do a +1 to be
  3093. * safe against division by zero. We only estimate anyway.
  3094. *
  3095. * dt: time from mark until now
  3096. * db: blocks written from mark until now
  3097. * rt: remaining time
  3098. */
  3099. dt = ((jiffies - mddev->resync_mark) / HZ);
  3100. if (!dt) dt++;
  3101. db = resync - (mddev->resync_mark_cnt/2);
  3102. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  3103. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  3104. seq_printf(seq, " speed=%ldK/sec", db/dt);
  3105. }
  3106. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  3107. {
  3108. struct list_head *tmp;
  3109. loff_t l = *pos;
  3110. mddev_t *mddev;
  3111. if (l >= 0x10000)
  3112. return NULL;
  3113. if (!l--)
  3114. /* header */
  3115. return (void*)1;
  3116. spin_lock(&all_mddevs_lock);
  3117. list_for_each(tmp,&all_mddevs)
  3118. if (!l--) {
  3119. mddev = list_entry(tmp, mddev_t, all_mddevs);
  3120. mddev_get(mddev);
  3121. spin_unlock(&all_mddevs_lock);
  3122. return mddev;
  3123. }
  3124. spin_unlock(&all_mddevs_lock);
  3125. if (!l--)
  3126. return (void*)2;/* tail */
  3127. return NULL;
  3128. }
  3129. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  3130. {
  3131. struct list_head *tmp;
  3132. mddev_t *next_mddev, *mddev = v;
  3133. ++*pos;
  3134. if (v == (void*)2)
  3135. return NULL;
  3136. spin_lock(&all_mddevs_lock);
  3137. if (v == (void*)1)
  3138. tmp = all_mddevs.next;
  3139. else
  3140. tmp = mddev->all_mddevs.next;
  3141. if (tmp != &all_mddevs)
  3142. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  3143. else {
  3144. next_mddev = (void*)2;
  3145. *pos = 0x10000;
  3146. }
  3147. spin_unlock(&all_mddevs_lock);
  3148. if (v != (void*)1)
  3149. mddev_put(mddev);
  3150. return next_mddev;
  3151. }
  3152. static void md_seq_stop(struct seq_file *seq, void *v)
  3153. {
  3154. mddev_t *mddev = v;
  3155. if (mddev && v != (void*)1 && v != (void*)2)
  3156. mddev_put(mddev);
  3157. }
  3158. static int md_seq_show(struct seq_file *seq, void *v)
  3159. {
  3160. mddev_t *mddev = v;
  3161. sector_t size;
  3162. struct list_head *tmp2;
  3163. mdk_rdev_t *rdev;
  3164. int i;
  3165. struct bitmap *bitmap;
  3166. if (v == (void*)1) {
  3167. seq_printf(seq, "Personalities : ");
  3168. spin_lock(&pers_lock);
  3169. for (i = 0; i < MAX_PERSONALITY; i++)
  3170. if (pers[i])
  3171. seq_printf(seq, "[%s] ", pers[i]->name);
  3172. spin_unlock(&pers_lock);
  3173. seq_printf(seq, "\n");
  3174. return 0;
  3175. }
  3176. if (v == (void*)2) {
  3177. status_unused(seq);
  3178. return 0;
  3179. }
  3180. if (mddev_lock(mddev)!=0)
  3181. return -EINTR;
  3182. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  3183. seq_printf(seq, "%s : %sactive", mdname(mddev),
  3184. mddev->pers ? "" : "in");
  3185. if (mddev->pers) {
  3186. if (mddev->ro==1)
  3187. seq_printf(seq, " (read-only)");
  3188. if (mddev->ro==2)
  3189. seq_printf(seq, "(auto-read-only)");
  3190. seq_printf(seq, " %s", mddev->pers->name);
  3191. }
  3192. size = 0;
  3193. ITERATE_RDEV(mddev,rdev,tmp2) {
  3194. char b[BDEVNAME_SIZE];
  3195. seq_printf(seq, " %s[%d]",
  3196. bdevname(rdev->bdev,b), rdev->desc_nr);
  3197. if (test_bit(WriteMostly, &rdev->flags))
  3198. seq_printf(seq, "(W)");
  3199. if (test_bit(Faulty, &rdev->flags)) {
  3200. seq_printf(seq, "(F)");
  3201. continue;
  3202. } else if (rdev->raid_disk < 0)
  3203. seq_printf(seq, "(S)"); /* spare */
  3204. size += rdev->size;
  3205. }
  3206. if (!list_empty(&mddev->disks)) {
  3207. if (mddev->pers)
  3208. seq_printf(seq, "\n %llu blocks",
  3209. (unsigned long long)mddev->array_size);
  3210. else
  3211. seq_printf(seq, "\n %llu blocks",
  3212. (unsigned long long)size);
  3213. }
  3214. if (mddev->persistent) {
  3215. if (mddev->major_version != 0 ||
  3216. mddev->minor_version != 90) {
  3217. seq_printf(seq," super %d.%d",
  3218. mddev->major_version,
  3219. mddev->minor_version);
  3220. }
  3221. } else
  3222. seq_printf(seq, " super non-persistent");
  3223. if (mddev->pers) {
  3224. mddev->pers->status (seq, mddev);
  3225. seq_printf(seq, "\n ");
  3226. if (mddev->pers->sync_request) {
  3227. if (mddev->curr_resync > 2) {
  3228. status_resync (seq, mddev);
  3229. seq_printf(seq, "\n ");
  3230. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  3231. seq_printf(seq, "\tresync=DELAYED\n ");
  3232. else if (mddev->recovery_cp < MaxSector)
  3233. seq_printf(seq, "\tresync=PENDING\n ");
  3234. }
  3235. } else
  3236. seq_printf(seq, "\n ");
  3237. if ((bitmap = mddev->bitmap)) {
  3238. unsigned long chunk_kb;
  3239. unsigned long flags;
  3240. spin_lock_irqsave(&bitmap->lock, flags);
  3241. chunk_kb = bitmap->chunksize >> 10;
  3242. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  3243. "%lu%s chunk",
  3244. bitmap->pages - bitmap->missing_pages,
  3245. bitmap->pages,
  3246. (bitmap->pages - bitmap->missing_pages)
  3247. << (PAGE_SHIFT - 10),
  3248. chunk_kb ? chunk_kb : bitmap->chunksize,
  3249. chunk_kb ? "KB" : "B");
  3250. if (bitmap->file) {
  3251. seq_printf(seq, ", file: ");
  3252. seq_path(seq, bitmap->file->f_vfsmnt,
  3253. bitmap->file->f_dentry," \t\n");
  3254. }
  3255. seq_printf(seq, "\n");
  3256. spin_unlock_irqrestore(&bitmap->lock, flags);
  3257. }
  3258. seq_printf(seq, "\n");
  3259. }
  3260. mddev_unlock(mddev);
  3261. return 0;
  3262. }
  3263. static struct seq_operations md_seq_ops = {
  3264. .start = md_seq_start,
  3265. .next = md_seq_next,
  3266. .stop = md_seq_stop,
  3267. .show = md_seq_show,
  3268. };
  3269. static int md_seq_open(struct inode *inode, struct file *file)
  3270. {
  3271. int error;
  3272. error = seq_open(file, &md_seq_ops);
  3273. return error;
  3274. }
  3275. static struct file_operations md_seq_fops = {
  3276. .open = md_seq_open,
  3277. .read = seq_read,
  3278. .llseek = seq_lseek,
  3279. .release = seq_release,
  3280. };
  3281. int register_md_personality(int pnum, mdk_personality_t *p)
  3282. {
  3283. if (pnum >= MAX_PERSONALITY) {
  3284. printk(KERN_ERR
  3285. "md: tried to install personality %s as nr %d, but max is %lu\n",
  3286. p->name, pnum, MAX_PERSONALITY-1);
  3287. return -EINVAL;
  3288. }
  3289. spin_lock(&pers_lock);
  3290. if (pers[pnum]) {
  3291. spin_unlock(&pers_lock);
  3292. return -EBUSY;
  3293. }
  3294. pers[pnum] = p;
  3295. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  3296. spin_unlock(&pers_lock);
  3297. return 0;
  3298. }
  3299. int unregister_md_personality(int pnum)
  3300. {
  3301. if (pnum >= MAX_PERSONALITY)
  3302. return -EINVAL;
  3303. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  3304. spin_lock(&pers_lock);
  3305. pers[pnum] = NULL;
  3306. spin_unlock(&pers_lock);
  3307. return 0;
  3308. }
  3309. static int is_mddev_idle(mddev_t *mddev)
  3310. {
  3311. mdk_rdev_t * rdev;
  3312. struct list_head *tmp;
  3313. int idle;
  3314. unsigned long curr_events;
  3315. idle = 1;
  3316. ITERATE_RDEV(mddev,rdev,tmp) {
  3317. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  3318. curr_events = disk_stat_read(disk, sectors[0]) +
  3319. disk_stat_read(disk, sectors[1]) -
  3320. atomic_read(&disk->sync_io);
  3321. /* The difference between curr_events and last_events
  3322. * will be affected by any new non-sync IO (making
  3323. * curr_events bigger) and any difference in the amount of
  3324. * in-flight syncio (making current_events bigger or smaller)
  3325. * The amount in-flight is currently limited to
  3326. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  3327. * which is at most 4096 sectors.
  3328. * These numbers are fairly fragile and should be made
  3329. * more robust, probably by enforcing the
  3330. * 'window size' that md_do_sync sort-of uses.
  3331. *
  3332. * Note: the following is an unsigned comparison.
  3333. */
  3334. if ((curr_events - rdev->last_events + 4096) > 8192) {
  3335. rdev->last_events = curr_events;
  3336. idle = 0;
  3337. }
  3338. }
  3339. return idle;
  3340. }
  3341. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3342. {
  3343. /* another "blocks" (512byte) blocks have been synced */
  3344. atomic_sub(blocks, &mddev->recovery_active);
  3345. wake_up(&mddev->recovery_wait);
  3346. if (!ok) {
  3347. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3348. md_wakeup_thread(mddev->thread);
  3349. // stop recovery, signal do_sync ....
  3350. }
  3351. }
  3352. /* md_write_start(mddev, bi)
  3353. * If we need to update some array metadata (e.g. 'active' flag
  3354. * in superblock) before writing, schedule a superblock update
  3355. * and wait for it to complete.
  3356. */
  3357. void md_write_start(mddev_t *mddev, struct bio *bi)
  3358. {
  3359. if (bio_data_dir(bi) != WRITE)
  3360. return;
  3361. BUG_ON(mddev->ro == 1);
  3362. if (mddev->ro == 2) {
  3363. /* need to switch to read/write */
  3364. mddev->ro = 0;
  3365. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3366. md_wakeup_thread(mddev->thread);
  3367. }
  3368. atomic_inc(&mddev->writes_pending);
  3369. if (mddev->in_sync) {
  3370. spin_lock_irq(&mddev->write_lock);
  3371. if (mddev->in_sync) {
  3372. mddev->in_sync = 0;
  3373. mddev->sb_dirty = 1;
  3374. md_wakeup_thread(mddev->thread);
  3375. }
  3376. spin_unlock_irq(&mddev->write_lock);
  3377. }
  3378. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3379. }
  3380. void md_write_end(mddev_t *mddev)
  3381. {
  3382. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3383. if (mddev->safemode == 2)
  3384. md_wakeup_thread(mddev->thread);
  3385. else
  3386. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3387. }
  3388. }
  3389. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3390. #define SYNC_MARKS 10
  3391. #define SYNC_MARK_STEP (3*HZ)
  3392. static void md_do_sync(mddev_t *mddev)
  3393. {
  3394. mddev_t *mddev2;
  3395. unsigned int currspeed = 0,
  3396. window;
  3397. sector_t max_sectors,j, io_sectors;
  3398. unsigned long mark[SYNC_MARKS];
  3399. sector_t mark_cnt[SYNC_MARKS];
  3400. int last_mark,m;
  3401. struct list_head *tmp;
  3402. sector_t last_check;
  3403. int skipped = 0;
  3404. /* just incase thread restarts... */
  3405. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3406. return;
  3407. /* we overload curr_resync somewhat here.
  3408. * 0 == not engaged in resync at all
  3409. * 2 == checking that there is no conflict with another sync
  3410. * 1 == like 2, but have yielded to allow conflicting resync to
  3411. * commense
  3412. * other == active in resync - this many blocks
  3413. *
  3414. * Before starting a resync we must have set curr_resync to
  3415. * 2, and then checked that every "conflicting" array has curr_resync
  3416. * less than ours. When we find one that is the same or higher
  3417. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3418. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3419. * This will mean we have to start checking from the beginning again.
  3420. *
  3421. */
  3422. do {
  3423. mddev->curr_resync = 2;
  3424. try_again:
  3425. if (kthread_should_stop()) {
  3426. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3427. goto skip;
  3428. }
  3429. ITERATE_MDDEV(mddev2,tmp) {
  3430. if (mddev2 == mddev)
  3431. continue;
  3432. if (mddev2->curr_resync &&
  3433. match_mddev_units(mddev,mddev2)) {
  3434. DEFINE_WAIT(wq);
  3435. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3436. /* arbitrarily yield */
  3437. mddev->curr_resync = 1;
  3438. wake_up(&resync_wait);
  3439. }
  3440. if (mddev > mddev2 && mddev->curr_resync == 1)
  3441. /* no need to wait here, we can wait the next
  3442. * time 'round when curr_resync == 2
  3443. */
  3444. continue;
  3445. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  3446. if (!kthread_should_stop() &&
  3447. mddev2->curr_resync >= mddev->curr_resync) {
  3448. printk(KERN_INFO "md: delaying resync of %s"
  3449. " until %s has finished resync (they"
  3450. " share one or more physical units)\n",
  3451. mdname(mddev), mdname(mddev2));
  3452. mddev_put(mddev2);
  3453. schedule();
  3454. finish_wait(&resync_wait, &wq);
  3455. goto try_again;
  3456. }
  3457. finish_wait(&resync_wait, &wq);
  3458. }
  3459. }
  3460. } while (mddev->curr_resync < 2);
  3461. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3462. /* resync follows the size requested by the personality,
  3463. * which defaults to physical size, but can be virtual size
  3464. */
  3465. max_sectors = mddev->resync_max_sectors;
  3466. mddev->resync_mismatches = 0;
  3467. } else
  3468. /* recovery follows the physical size of devices */
  3469. max_sectors = mddev->size << 1;
  3470. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3471. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3472. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3473. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  3474. "(but not more than %d KB/sec) for reconstruction.\n",
  3475. sysctl_speed_limit_max);
  3476. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3477. /* we don't use the checkpoint if there's a bitmap */
  3478. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
  3479. && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3480. j = mddev->recovery_cp;
  3481. else
  3482. j = 0;
  3483. io_sectors = 0;
  3484. for (m = 0; m < SYNC_MARKS; m++) {
  3485. mark[m] = jiffies;
  3486. mark_cnt[m] = io_sectors;
  3487. }
  3488. last_mark = 0;
  3489. mddev->resync_mark = mark[last_mark];
  3490. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3491. /*
  3492. * Tune reconstruction:
  3493. */
  3494. window = 32*(PAGE_SIZE/512);
  3495. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3496. window/2,(unsigned long long) max_sectors/2);
  3497. atomic_set(&mddev->recovery_active, 0);
  3498. init_waitqueue_head(&mddev->recovery_wait);
  3499. last_check = 0;
  3500. if (j>2) {
  3501. printk(KERN_INFO
  3502. "md: resuming recovery of %s from checkpoint.\n",
  3503. mdname(mddev));
  3504. mddev->curr_resync = j;
  3505. }
  3506. while (j < max_sectors) {
  3507. sector_t sectors;
  3508. skipped = 0;
  3509. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3510. currspeed < sysctl_speed_limit_min);
  3511. if (sectors == 0) {
  3512. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3513. goto out;
  3514. }
  3515. if (!skipped) { /* actual IO requested */
  3516. io_sectors += sectors;
  3517. atomic_add(sectors, &mddev->recovery_active);
  3518. }
  3519. j += sectors;
  3520. if (j>1) mddev->curr_resync = j;
  3521. if (last_check + window > io_sectors || j == max_sectors)
  3522. continue;
  3523. last_check = io_sectors;
  3524. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3525. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3526. break;
  3527. repeat:
  3528. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3529. /* step marks */
  3530. int next = (last_mark+1) % SYNC_MARKS;
  3531. mddev->resync_mark = mark[next];
  3532. mddev->resync_mark_cnt = mark_cnt[next];
  3533. mark[next] = jiffies;
  3534. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3535. last_mark = next;
  3536. }
  3537. if (kthread_should_stop()) {
  3538. /*
  3539. * got a signal, exit.
  3540. */
  3541. printk(KERN_INFO
  3542. "md: md_do_sync() got signal ... exiting\n");
  3543. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3544. goto out;
  3545. }
  3546. /*
  3547. * this loop exits only if either when we are slower than
  3548. * the 'hard' speed limit, or the system was IO-idle for
  3549. * a jiffy.
  3550. * the system might be non-idle CPU-wise, but we only care
  3551. * about not overloading the IO subsystem. (things like an
  3552. * e2fsck being done on the RAID array should execute fast)
  3553. */
  3554. mddev->queue->unplug_fn(mddev->queue);
  3555. cond_resched();
  3556. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3557. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3558. if (currspeed > sysctl_speed_limit_min) {
  3559. if ((currspeed > sysctl_speed_limit_max) ||
  3560. !is_mddev_idle(mddev)) {
  3561. msleep(500);
  3562. goto repeat;
  3563. }
  3564. }
  3565. }
  3566. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3567. /*
  3568. * this also signals 'finished resyncing' to md_stop
  3569. */
  3570. out:
  3571. mddev->queue->unplug_fn(mddev->queue);
  3572. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3573. /* tell personality that we are finished */
  3574. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3575. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3576. mddev->curr_resync > 2 &&
  3577. mddev->curr_resync >= mddev->recovery_cp) {
  3578. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3579. printk(KERN_INFO
  3580. "md: checkpointing recovery of %s.\n",
  3581. mdname(mddev));
  3582. mddev->recovery_cp = mddev->curr_resync;
  3583. } else
  3584. mddev->recovery_cp = MaxSector;
  3585. }
  3586. skip:
  3587. mddev->curr_resync = 0;
  3588. wake_up(&resync_wait);
  3589. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3590. md_wakeup_thread(mddev->thread);
  3591. }
  3592. /*
  3593. * This routine is regularly called by all per-raid-array threads to
  3594. * deal with generic issues like resync and super-block update.
  3595. * Raid personalities that don't have a thread (linear/raid0) do not
  3596. * need this as they never do any recovery or update the superblock.
  3597. *
  3598. * It does not do any resync itself, but rather "forks" off other threads
  3599. * to do that as needed.
  3600. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3601. * "->recovery" and create a thread at ->sync_thread.
  3602. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3603. * and wakeups up this thread which will reap the thread and finish up.
  3604. * This thread also removes any faulty devices (with nr_pending == 0).
  3605. *
  3606. * The overall approach is:
  3607. * 1/ if the superblock needs updating, update it.
  3608. * 2/ If a recovery thread is running, don't do anything else.
  3609. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3610. * 4/ If there are any faulty devices, remove them.
  3611. * 5/ If array is degraded, try to add spares devices
  3612. * 6/ If array has spares or is not in-sync, start a resync thread.
  3613. */
  3614. void md_check_recovery(mddev_t *mddev)
  3615. {
  3616. mdk_rdev_t *rdev;
  3617. struct list_head *rtmp;
  3618. if (mddev->bitmap)
  3619. bitmap_daemon_work(mddev->bitmap);
  3620. if (mddev->ro)
  3621. return;
  3622. if (signal_pending(current)) {
  3623. if (mddev->pers->sync_request) {
  3624. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3625. mdname(mddev));
  3626. mddev->safemode = 2;
  3627. }
  3628. flush_signals(current);
  3629. }
  3630. if ( ! (
  3631. mddev->sb_dirty ||
  3632. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3633. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3634. (mddev->safemode == 1) ||
  3635. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3636. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3637. ))
  3638. return;
  3639. if (mddev_trylock(mddev)==0) {
  3640. int spares =0;
  3641. spin_lock_irq(&mddev->write_lock);
  3642. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3643. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3644. mddev->in_sync = 1;
  3645. mddev->sb_dirty = 1;
  3646. }
  3647. if (mddev->safemode == 1)
  3648. mddev->safemode = 0;
  3649. spin_unlock_irq(&mddev->write_lock);
  3650. if (mddev->sb_dirty)
  3651. md_update_sb(mddev);
  3652. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3653. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3654. /* resync/recovery still happening */
  3655. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3656. goto unlock;
  3657. }
  3658. if (mddev->sync_thread) {
  3659. /* resync has finished, collect result */
  3660. md_unregister_thread(mddev->sync_thread);
  3661. mddev->sync_thread = NULL;
  3662. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3663. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3664. /* success...*/
  3665. /* activate any spares */
  3666. mddev->pers->spare_active(mddev);
  3667. }
  3668. md_update_sb(mddev);
  3669. /* if array is no-longer degraded, then any saved_raid_disk
  3670. * information must be scrapped
  3671. */
  3672. if (!mddev->degraded)
  3673. ITERATE_RDEV(mddev,rdev,rtmp)
  3674. rdev->saved_raid_disk = -1;
  3675. mddev->recovery = 0;
  3676. /* flag recovery needed just to double check */
  3677. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3678. goto unlock;
  3679. }
  3680. /* Clear some bits that don't mean anything, but
  3681. * might be left set
  3682. */
  3683. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3684. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3685. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3686. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3687. /* no recovery is running.
  3688. * remove any failed drives, then
  3689. * add spares if possible.
  3690. * Spare are also removed and re-added, to allow
  3691. * the personality to fail the re-add.
  3692. */
  3693. ITERATE_RDEV(mddev,rdev,rtmp)
  3694. if (rdev->raid_disk >= 0 &&
  3695. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  3696. atomic_read(&rdev->nr_pending)==0) {
  3697. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  3698. char nm[20];
  3699. sprintf(nm,"rd%d", rdev->raid_disk);
  3700. sysfs_remove_link(&mddev->kobj, nm);
  3701. rdev->raid_disk = -1;
  3702. }
  3703. }
  3704. if (mddev->degraded) {
  3705. ITERATE_RDEV(mddev,rdev,rtmp)
  3706. if (rdev->raid_disk < 0
  3707. && !test_bit(Faulty, &rdev->flags)) {
  3708. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  3709. char nm[20];
  3710. sprintf(nm, "rd%d", rdev->raid_disk);
  3711. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  3712. spares++;
  3713. } else
  3714. break;
  3715. }
  3716. }
  3717. if (spares) {
  3718. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3719. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3720. } else if (mddev->recovery_cp < MaxSector) {
  3721. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3722. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3723. /* nothing to be done ... */
  3724. goto unlock;
  3725. if (mddev->pers->sync_request) {
  3726. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3727. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3728. /* We are adding a device or devices to an array
  3729. * which has the bitmap stored on all devices.
  3730. * So make sure all bitmap pages get written
  3731. */
  3732. bitmap_write_all(mddev->bitmap);
  3733. }
  3734. mddev->sync_thread = md_register_thread(md_do_sync,
  3735. mddev,
  3736. "%s_resync");
  3737. if (!mddev->sync_thread) {
  3738. printk(KERN_ERR "%s: could not start resync"
  3739. " thread...\n",
  3740. mdname(mddev));
  3741. /* leave the spares where they are, it shouldn't hurt */
  3742. mddev->recovery = 0;
  3743. } else {
  3744. md_wakeup_thread(mddev->sync_thread);
  3745. }
  3746. }
  3747. unlock:
  3748. mddev_unlock(mddev);
  3749. }
  3750. }
  3751. static int md_notify_reboot(struct notifier_block *this,
  3752. unsigned long code, void *x)
  3753. {
  3754. struct list_head *tmp;
  3755. mddev_t *mddev;
  3756. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3757. printk(KERN_INFO "md: stopping all md devices.\n");
  3758. ITERATE_MDDEV(mddev,tmp)
  3759. if (mddev_trylock(mddev)==0)
  3760. do_md_stop (mddev, 1);
  3761. /*
  3762. * certain more exotic SCSI devices are known to be
  3763. * volatile wrt too early system reboots. While the
  3764. * right place to handle this issue is the given
  3765. * driver, we do want to have a safe RAID driver ...
  3766. */
  3767. mdelay(1000*1);
  3768. }
  3769. return NOTIFY_DONE;
  3770. }
  3771. static struct notifier_block md_notifier = {
  3772. .notifier_call = md_notify_reboot,
  3773. .next = NULL,
  3774. .priority = INT_MAX, /* before any real devices */
  3775. };
  3776. static void md_geninit(void)
  3777. {
  3778. struct proc_dir_entry *p;
  3779. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3780. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3781. if (p)
  3782. p->proc_fops = &md_seq_fops;
  3783. }
  3784. static int __init md_init(void)
  3785. {
  3786. int minor;
  3787. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3788. " MD_SB_DISKS=%d\n",
  3789. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3790. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3791. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
  3792. BITMAP_MINOR);
  3793. if (register_blkdev(MAJOR_NR, "md"))
  3794. return -1;
  3795. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3796. unregister_blkdev(MAJOR_NR, "md");
  3797. return -1;
  3798. }
  3799. devfs_mk_dir("md");
  3800. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3801. md_probe, NULL, NULL);
  3802. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3803. md_probe, NULL, NULL);
  3804. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3805. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3806. S_IFBLK|S_IRUSR|S_IWUSR,
  3807. "md/%d", minor);
  3808. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3809. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3810. S_IFBLK|S_IRUSR|S_IWUSR,
  3811. "md/mdp%d", minor);
  3812. register_reboot_notifier(&md_notifier);
  3813. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3814. md_geninit();
  3815. return (0);
  3816. }
  3817. #ifndef MODULE
  3818. /*
  3819. * Searches all registered partitions for autorun RAID arrays
  3820. * at boot time.
  3821. */
  3822. static dev_t detected_devices[128];
  3823. static int dev_cnt;
  3824. void md_autodetect_dev(dev_t dev)
  3825. {
  3826. if (dev_cnt >= 0 && dev_cnt < 127)
  3827. detected_devices[dev_cnt++] = dev;
  3828. }
  3829. static void autostart_arrays(int part)
  3830. {
  3831. mdk_rdev_t *rdev;
  3832. int i;
  3833. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3834. for (i = 0; i < dev_cnt; i++) {
  3835. dev_t dev = detected_devices[i];
  3836. rdev = md_import_device(dev,0, 0);
  3837. if (IS_ERR(rdev))
  3838. continue;
  3839. if (test_bit(Faulty, &rdev->flags)) {
  3840. MD_BUG();
  3841. continue;
  3842. }
  3843. list_add(&rdev->same_set, &pending_raid_disks);
  3844. }
  3845. dev_cnt = 0;
  3846. autorun_devices(part);
  3847. }
  3848. #endif
  3849. static __exit void md_exit(void)
  3850. {
  3851. mddev_t *mddev;
  3852. struct list_head *tmp;
  3853. int i;
  3854. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3855. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3856. for (i=0; i < MAX_MD_DEVS; i++)
  3857. devfs_remove("md/%d", i);
  3858. for (i=0; i < MAX_MD_DEVS; i++)
  3859. devfs_remove("md/d%d", i);
  3860. devfs_remove("md");
  3861. unregister_blkdev(MAJOR_NR,"md");
  3862. unregister_blkdev(mdp_major, "mdp");
  3863. unregister_reboot_notifier(&md_notifier);
  3864. unregister_sysctl_table(raid_table_header);
  3865. remove_proc_entry("mdstat", NULL);
  3866. ITERATE_MDDEV(mddev,tmp) {
  3867. struct gendisk *disk = mddev->gendisk;
  3868. if (!disk)
  3869. continue;
  3870. export_array(mddev);
  3871. del_gendisk(disk);
  3872. put_disk(disk);
  3873. mddev->gendisk = NULL;
  3874. mddev_put(mddev);
  3875. }
  3876. }
  3877. module_init(md_init)
  3878. module_exit(md_exit)
  3879. static int get_ro(char *buffer, struct kernel_param *kp)
  3880. {
  3881. return sprintf(buffer, "%d", start_readonly);
  3882. }
  3883. static int set_ro(const char *val, struct kernel_param *kp)
  3884. {
  3885. char *e;
  3886. int num = simple_strtoul(val, &e, 10);
  3887. if (*val && (*e == '\0' || *e == '\n')) {
  3888. start_readonly = num;
  3889. return 0;;
  3890. }
  3891. return -EINVAL;
  3892. }
  3893. module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
  3894. EXPORT_SYMBOL(register_md_personality);
  3895. EXPORT_SYMBOL(unregister_md_personality);
  3896. EXPORT_SYMBOL(md_error);
  3897. EXPORT_SYMBOL(md_done_sync);
  3898. EXPORT_SYMBOL(md_write_start);
  3899. EXPORT_SYMBOL(md_write_end);
  3900. EXPORT_SYMBOL(md_register_thread);
  3901. EXPORT_SYMBOL(md_unregister_thread);
  3902. EXPORT_SYMBOL(md_wakeup_thread);
  3903. EXPORT_SYMBOL(md_print_devices);
  3904. EXPORT_SYMBOL(md_check_recovery);
  3905. MODULE_LICENSE("GPL");
  3906. MODULE_ALIAS("md");
  3907. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);