powernow-k8.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172
  1. /*
  2. * (c) 2003, 2004, 2005 Advanced Micro Devices, Inc.
  3. * Your use of this code is subject to the terms and conditions of the
  4. * GNU general public license version 2. See "COPYING" or
  5. * http://www.gnu.org/licenses/gpl.html
  6. *
  7. * Support : mark.langsdorf@amd.com
  8. *
  9. * Based on the powernow-k7.c module written by Dave Jones.
  10. * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
  11. * (C) 2004 Dominik Brodowski <linux@brodo.de>
  12. * (C) 2004 Pavel Machek <pavel@suse.cz>
  13. * Licensed under the terms of the GNU GPL License version 2.
  14. * Based upon datasheets & sample CPUs kindly provided by AMD.
  15. *
  16. * Valuable input gratefully received from Dave Jones, Pavel Machek,
  17. * Dominik Brodowski, and others.
  18. * Originally developed by Paul Devriendt.
  19. * Processor information obtained from Chapter 9 (Power and Thermal Management)
  20. * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
  21. * Opteron Processors" available for download from www.amd.com
  22. *
  23. * Tables for specific CPUs can be infrerred from
  24. * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
  25. */
  26. #include <linux/kernel.h>
  27. #include <linux/smp.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/cpufreq.h>
  31. #include <linux/slab.h>
  32. #include <linux/string.h>
  33. #include <linux/cpumask.h>
  34. #include <linux/sched.h> /* for current / set_cpus_allowed() */
  35. #include <asm/msr.h>
  36. #include <asm/io.h>
  37. #include <asm/delay.h>
  38. #ifdef CONFIG_X86_POWERNOW_K8_ACPI
  39. #include <linux/acpi.h>
  40. #include <linux/mutex.h>
  41. #include <acpi/processor.h>
  42. #endif
  43. #define PFX "powernow-k8: "
  44. #define BFX PFX "BIOS error: "
  45. #define VERSION "version 1.60.1"
  46. #include "powernow-k8.h"
  47. /* serialize freq changes */
  48. static DEFINE_MUTEX(fidvid_mutex);
  49. static struct powernow_k8_data *powernow_data[NR_CPUS];
  50. #ifndef CONFIG_SMP
  51. static cpumask_t cpu_core_map[1] = { CPU_MASK_ALL };
  52. #endif
  53. /* Return a frequency in MHz, given an input fid */
  54. static u32 find_freq_from_fid(u32 fid)
  55. {
  56. return 800 + (fid * 100);
  57. }
  58. /* Return a frequency in KHz, given an input fid */
  59. static u32 find_khz_freq_from_fid(u32 fid)
  60. {
  61. return 1000 * find_freq_from_fid(fid);
  62. }
  63. /* Return a voltage in miliVolts, given an input vid */
  64. static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid)
  65. {
  66. return 1550-vid*25;
  67. }
  68. /* Return the vco fid for an input fid
  69. *
  70. * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  71. * only from corresponding high fids. This returns "high" fid corresponding to
  72. * "low" one.
  73. */
  74. static u32 convert_fid_to_vco_fid(u32 fid)
  75. {
  76. if (fid < HI_FID_TABLE_BOTTOM)
  77. return 8 + (2 * fid);
  78. else
  79. return fid;
  80. }
  81. /*
  82. * Return 1 if the pending bit is set. Unless we just instructed the processor
  83. * to transition to a new state, seeing this bit set is really bad news.
  84. */
  85. static int pending_bit_stuck(void)
  86. {
  87. u32 lo, hi;
  88. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  89. return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
  90. }
  91. /*
  92. * Update the global current fid / vid values from the status msr.
  93. * Returns 1 on error.
  94. */
  95. static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
  96. {
  97. u32 lo, hi;
  98. u32 i = 0;
  99. do {
  100. if (i++ > 10000) {
  101. dprintk("detected change pending stuck\n");
  102. return 1;
  103. }
  104. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  105. } while (lo & MSR_S_LO_CHANGE_PENDING);
  106. data->currvid = hi & MSR_S_HI_CURRENT_VID;
  107. data->currfid = lo & MSR_S_LO_CURRENT_FID;
  108. return 0;
  109. }
  110. /* the isochronous relief time */
  111. static void count_off_irt(struct powernow_k8_data *data)
  112. {
  113. udelay((1 << data->irt) * 10);
  114. return;
  115. }
  116. /* the voltage stabalization time */
  117. static void count_off_vst(struct powernow_k8_data *data)
  118. {
  119. udelay(data->vstable * VST_UNITS_20US);
  120. return;
  121. }
  122. /* need to init the control msr to a safe value (for each cpu) */
  123. static void fidvid_msr_init(void)
  124. {
  125. u32 lo, hi;
  126. u8 fid, vid;
  127. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  128. vid = hi & MSR_S_HI_CURRENT_VID;
  129. fid = lo & MSR_S_LO_CURRENT_FID;
  130. lo = fid | (vid << MSR_C_LO_VID_SHIFT);
  131. hi = MSR_C_HI_STP_GNT_BENIGN;
  132. dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
  133. wrmsr(MSR_FIDVID_CTL, lo, hi);
  134. }
  135. /* write the new fid value along with the other control fields to the msr */
  136. static int write_new_fid(struct powernow_k8_data *data, u32 fid)
  137. {
  138. u32 lo;
  139. u32 savevid = data->currvid;
  140. u32 i = 0;
  141. if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
  142. printk(KERN_ERR PFX "internal error - overflow on fid write\n");
  143. return 1;
  144. }
  145. lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
  146. dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
  147. fid, lo, data->plllock * PLL_LOCK_CONVERSION);
  148. do {
  149. wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
  150. if (i++ > 100) {
  151. printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
  152. return 1;
  153. }
  154. } while (query_current_values_with_pending_wait(data));
  155. count_off_irt(data);
  156. if (savevid != data->currvid) {
  157. printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
  158. savevid, data->currvid);
  159. return 1;
  160. }
  161. if (fid != data->currfid) {
  162. printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
  163. data->currfid);
  164. return 1;
  165. }
  166. return 0;
  167. }
  168. /* Write a new vid to the hardware */
  169. static int write_new_vid(struct powernow_k8_data *data, u32 vid)
  170. {
  171. u32 lo;
  172. u32 savefid = data->currfid;
  173. int i = 0;
  174. if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
  175. printk(KERN_ERR PFX "internal error - overflow on vid write\n");
  176. return 1;
  177. }
  178. lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
  179. dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
  180. vid, lo, STOP_GRANT_5NS);
  181. do {
  182. wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
  183. if (i++ > 100) {
  184. printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
  185. return 1;
  186. }
  187. } while (query_current_values_with_pending_wait(data));
  188. if (savefid != data->currfid) {
  189. printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
  190. savefid, data->currfid);
  191. return 1;
  192. }
  193. if (vid != data->currvid) {
  194. printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
  195. data->currvid);
  196. return 1;
  197. }
  198. return 0;
  199. }
  200. /*
  201. * Reduce the vid by the max of step or reqvid.
  202. * Decreasing vid codes represent increasing voltages:
  203. * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
  204. */
  205. static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
  206. {
  207. if ((data->currvid - reqvid) > step)
  208. reqvid = data->currvid - step;
  209. if (write_new_vid(data, reqvid))
  210. return 1;
  211. count_off_vst(data);
  212. return 0;
  213. }
  214. /* Change the fid and vid, by the 3 phases. */
  215. static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
  216. {
  217. if (core_voltage_pre_transition(data, reqvid))
  218. return 1;
  219. if (core_frequency_transition(data, reqfid))
  220. return 1;
  221. if (core_voltage_post_transition(data, reqvid))
  222. return 1;
  223. if (query_current_values_with_pending_wait(data))
  224. return 1;
  225. if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
  226. printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
  227. smp_processor_id(),
  228. reqfid, reqvid, data->currfid, data->currvid);
  229. return 1;
  230. }
  231. dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
  232. smp_processor_id(), data->currfid, data->currvid);
  233. return 0;
  234. }
  235. /* Phase 1 - core voltage transition ... setup voltage */
  236. static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
  237. {
  238. u32 rvosteps = data->rvo;
  239. u32 savefid = data->currfid;
  240. u32 maxvid, lo;
  241. dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
  242. smp_processor_id(),
  243. data->currfid, data->currvid, reqvid, data->rvo);
  244. rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
  245. maxvid = 0x1f & (maxvid >> 16);
  246. dprintk("ph1 maxvid=0x%x\n", maxvid);
  247. if (reqvid < maxvid) /* lower numbers are higher voltages */
  248. reqvid = maxvid;
  249. while (data->currvid > reqvid) {
  250. dprintk("ph1: curr 0x%x, req vid 0x%x\n",
  251. data->currvid, reqvid);
  252. if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
  253. return 1;
  254. }
  255. while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
  256. if (data->currvid == maxvid) {
  257. rvosteps = 0;
  258. } else {
  259. dprintk("ph1: changing vid for rvo, req 0x%x\n",
  260. data->currvid - 1);
  261. if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
  262. return 1;
  263. rvosteps--;
  264. }
  265. }
  266. if (query_current_values_with_pending_wait(data))
  267. return 1;
  268. if (savefid != data->currfid) {
  269. printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
  270. return 1;
  271. }
  272. dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
  273. data->currfid, data->currvid);
  274. return 0;
  275. }
  276. /* Phase 2 - core frequency transition */
  277. static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
  278. {
  279. u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
  280. if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
  281. printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
  282. reqfid, data->currfid);
  283. return 1;
  284. }
  285. if (data->currfid == reqfid) {
  286. printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
  287. return 0;
  288. }
  289. dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
  290. smp_processor_id(),
  291. data->currfid, data->currvid, reqfid);
  292. vcoreqfid = convert_fid_to_vco_fid(reqfid);
  293. vcocurrfid = convert_fid_to_vco_fid(data->currfid);
  294. vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
  295. : vcoreqfid - vcocurrfid;
  296. while (vcofiddiff > 2) {
  297. (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
  298. if (reqfid > data->currfid) {
  299. if (data->currfid > LO_FID_TABLE_TOP) {
  300. if (write_new_fid(data, data->currfid + fid_interval)) {
  301. return 1;
  302. }
  303. } else {
  304. if (write_new_fid
  305. (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
  306. return 1;
  307. }
  308. }
  309. } else {
  310. if (write_new_fid(data, data->currfid - fid_interval))
  311. return 1;
  312. }
  313. vcocurrfid = convert_fid_to_vco_fid(data->currfid);
  314. vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
  315. : vcoreqfid - vcocurrfid;
  316. }
  317. if (write_new_fid(data, reqfid))
  318. return 1;
  319. if (query_current_values_with_pending_wait(data))
  320. return 1;
  321. if (data->currfid != reqfid) {
  322. printk(KERN_ERR PFX
  323. "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
  324. data->currfid, reqfid);
  325. return 1;
  326. }
  327. if (savevid != data->currvid) {
  328. printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
  329. savevid, data->currvid);
  330. return 1;
  331. }
  332. dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
  333. data->currfid, data->currvid);
  334. return 0;
  335. }
  336. /* Phase 3 - core voltage transition flow ... jump to the final vid. */
  337. static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
  338. {
  339. u32 savefid = data->currfid;
  340. u32 savereqvid = reqvid;
  341. dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
  342. smp_processor_id(),
  343. data->currfid, data->currvid);
  344. if (reqvid != data->currvid) {
  345. if (write_new_vid(data, reqvid))
  346. return 1;
  347. if (savefid != data->currfid) {
  348. printk(KERN_ERR PFX
  349. "ph3: bad fid change, save 0x%x, curr 0x%x\n",
  350. savefid, data->currfid);
  351. return 1;
  352. }
  353. if (data->currvid != reqvid) {
  354. printk(KERN_ERR PFX
  355. "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
  356. reqvid, data->currvid);
  357. return 1;
  358. }
  359. }
  360. if (query_current_values_with_pending_wait(data))
  361. return 1;
  362. if (savereqvid != data->currvid) {
  363. dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
  364. return 1;
  365. }
  366. if (savefid != data->currfid) {
  367. dprintk("ph3 failed, currfid changed 0x%x\n",
  368. data->currfid);
  369. return 1;
  370. }
  371. dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
  372. data->currfid, data->currvid);
  373. return 0;
  374. }
  375. static int check_supported_cpu(unsigned int cpu)
  376. {
  377. cpumask_t oldmask = CPU_MASK_ALL;
  378. u32 eax, ebx, ecx, edx;
  379. unsigned int rc = 0;
  380. oldmask = current->cpus_allowed;
  381. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  382. if (smp_processor_id() != cpu) {
  383. printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
  384. goto out;
  385. }
  386. if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
  387. goto out;
  388. eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  389. if ((eax & CPUID_XFAM) != CPUID_XFAM_K8)
  390. goto out;
  391. if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
  392. ((eax & CPUID_XMOD) > CPUID_XMOD_REV_G)) {
  393. printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
  394. goto out;
  395. }
  396. eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
  397. if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
  398. printk(KERN_INFO PFX
  399. "No frequency change capabilities detected\n");
  400. goto out;
  401. }
  402. cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
  403. if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
  404. printk(KERN_INFO PFX "Power state transitions not supported\n");
  405. goto out;
  406. }
  407. rc = 1;
  408. out:
  409. set_cpus_allowed(current, oldmask);
  410. return rc;
  411. }
  412. static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
  413. {
  414. unsigned int j;
  415. u8 lastfid = 0xff;
  416. for (j = 0; j < data->numps; j++) {
  417. if (pst[j].vid > LEAST_VID) {
  418. printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
  419. return -EINVAL;
  420. }
  421. if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
  422. printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
  423. return -ENODEV;
  424. }
  425. if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
  426. printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
  427. return -ENODEV;
  428. }
  429. if (pst[j].fid > MAX_FID) {
  430. printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
  431. return -ENODEV;
  432. }
  433. if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
  434. /* Only first fid is allowed to be in "low" range */
  435. printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
  436. return -EINVAL;
  437. }
  438. if (pst[j].fid < lastfid)
  439. lastfid = pst[j].fid;
  440. }
  441. if (lastfid & 1) {
  442. printk(KERN_ERR BFX "lastfid invalid\n");
  443. return -EINVAL;
  444. }
  445. if (lastfid > LO_FID_TABLE_TOP)
  446. printk(KERN_INFO BFX "first fid not from lo freq table\n");
  447. return 0;
  448. }
  449. static void print_basics(struct powernow_k8_data *data)
  450. {
  451. int j;
  452. for (j = 0; j < data->numps; j++) {
  453. if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID)
  454. printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j,
  455. data->powernow_table[j].index & 0xff,
  456. data->powernow_table[j].frequency/1000,
  457. data->powernow_table[j].index >> 8,
  458. find_millivolts_from_vid(data, data->powernow_table[j].index >> 8));
  459. }
  460. if (data->batps)
  461. printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
  462. }
  463. static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
  464. {
  465. struct cpufreq_frequency_table *powernow_table;
  466. unsigned int j;
  467. if (data->batps) { /* use ACPI support to get full speed on mains power */
  468. printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
  469. data->numps = data->batps;
  470. }
  471. for ( j=1; j<data->numps; j++ ) {
  472. if (pst[j-1].fid >= pst[j].fid) {
  473. printk(KERN_ERR PFX "PST out of sequence\n");
  474. return -EINVAL;
  475. }
  476. }
  477. if (data->numps < 2) {
  478. printk(KERN_ERR PFX "no p states to transition\n");
  479. return -ENODEV;
  480. }
  481. if (check_pst_table(data, pst, maxvid))
  482. return -EINVAL;
  483. powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
  484. * (data->numps + 1)), GFP_KERNEL);
  485. if (!powernow_table) {
  486. printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
  487. return -ENOMEM;
  488. }
  489. for (j = 0; j < data->numps; j++) {
  490. powernow_table[j].index = pst[j].fid; /* lower 8 bits */
  491. powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
  492. powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
  493. }
  494. powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
  495. powernow_table[data->numps].index = 0;
  496. if (query_current_values_with_pending_wait(data)) {
  497. kfree(powernow_table);
  498. return -EIO;
  499. }
  500. dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
  501. data->powernow_table = powernow_table;
  502. print_basics(data);
  503. for (j = 0; j < data->numps; j++)
  504. if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
  505. return 0;
  506. dprintk("currfid/vid do not match PST, ignoring\n");
  507. return 0;
  508. }
  509. /* Find and validate the PSB/PST table in BIOS. */
  510. static int find_psb_table(struct powernow_k8_data *data)
  511. {
  512. struct psb_s *psb;
  513. unsigned int i;
  514. u32 mvs;
  515. u8 maxvid;
  516. u32 cpst = 0;
  517. u32 thiscpuid;
  518. for (i = 0xc0000; i < 0xffff0; i += 0x10) {
  519. /* Scan BIOS looking for the signature. */
  520. /* It can not be at ffff0 - it is too big. */
  521. psb = phys_to_virt(i);
  522. if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
  523. continue;
  524. dprintk("found PSB header at 0x%p\n", psb);
  525. dprintk("table vers: 0x%x\n", psb->tableversion);
  526. if (psb->tableversion != PSB_VERSION_1_4) {
  527. printk(KERN_ERR BFX "PSB table is not v1.4\n");
  528. return -ENODEV;
  529. }
  530. dprintk("flags: 0x%x\n", psb->flags1);
  531. if (psb->flags1) {
  532. printk(KERN_ERR BFX "unknown flags\n");
  533. return -ENODEV;
  534. }
  535. data->vstable = psb->vstable;
  536. dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
  537. dprintk("flags2: 0x%x\n", psb->flags2);
  538. data->rvo = psb->flags2 & 3;
  539. data->irt = ((psb->flags2) >> 2) & 3;
  540. mvs = ((psb->flags2) >> 4) & 3;
  541. data->vidmvs = 1 << mvs;
  542. data->batps = ((psb->flags2) >> 6) & 3;
  543. dprintk("ramp voltage offset: %d\n", data->rvo);
  544. dprintk("isochronous relief time: %d\n", data->irt);
  545. dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
  546. dprintk("numpst: 0x%x\n", psb->num_tables);
  547. cpst = psb->num_tables;
  548. if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
  549. thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  550. if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
  551. cpst = 1;
  552. }
  553. }
  554. if (cpst != 1) {
  555. printk(KERN_ERR BFX "numpst must be 1\n");
  556. return -ENODEV;
  557. }
  558. data->plllock = psb->plllocktime;
  559. dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
  560. dprintk("maxfid: 0x%x\n", psb->maxfid);
  561. dprintk("maxvid: 0x%x\n", psb->maxvid);
  562. maxvid = psb->maxvid;
  563. data->numps = psb->numps;
  564. dprintk("numpstates: 0x%x\n", data->numps);
  565. return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
  566. }
  567. /*
  568. * If you see this message, complain to BIOS manufacturer. If
  569. * he tells you "we do not support Linux" or some similar
  570. * nonsense, remember that Windows 2000 uses the same legacy
  571. * mechanism that the old Linux PSB driver uses. Tell them it
  572. * is broken with Windows 2000.
  573. *
  574. * The reference to the AMD documentation is chapter 9 in the
  575. * BIOS and Kernel Developer's Guide, which is available on
  576. * www.amd.com
  577. */
  578. printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
  579. return -ENODEV;
  580. }
  581. #ifdef CONFIG_X86_POWERNOW_K8_ACPI
  582. static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
  583. {
  584. if (!data->acpi_data.state_count)
  585. return;
  586. data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
  587. data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
  588. data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
  589. data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
  590. data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
  591. data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
  592. }
  593. static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
  594. {
  595. int i;
  596. int cntlofreq = 0;
  597. struct cpufreq_frequency_table *powernow_table;
  598. if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
  599. dprintk("register performance failed: bad ACPI data\n");
  600. return -EIO;
  601. }
  602. /* verify the data contained in the ACPI structures */
  603. if (data->acpi_data.state_count <= 1) {
  604. dprintk("No ACPI P-States\n");
  605. goto err_out;
  606. }
  607. if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
  608. (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
  609. dprintk("Invalid control/status registers (%x - %x)\n",
  610. data->acpi_data.control_register.space_id,
  611. data->acpi_data.status_register.space_id);
  612. goto err_out;
  613. }
  614. /* fill in data->powernow_table */
  615. powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
  616. * (data->acpi_data.state_count + 1)), GFP_KERNEL);
  617. if (!powernow_table) {
  618. dprintk("powernow_table memory alloc failure\n");
  619. goto err_out;
  620. }
  621. for (i = 0; i < data->acpi_data.state_count; i++) {
  622. u32 fid;
  623. u32 vid;
  624. if (data->exttype) {
  625. fid = data->acpi_data.states[i].status & FID_MASK;
  626. vid = (data->acpi_data.states[i].status >> VID_SHIFT) & VID_MASK;
  627. } else {
  628. fid = data->acpi_data.states[i].control & FID_MASK;
  629. vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
  630. }
  631. dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
  632. powernow_table[i].index = fid; /* lower 8 bits */
  633. powernow_table[i].index |= (vid << 8); /* upper 8 bits */
  634. powernow_table[i].frequency = find_khz_freq_from_fid(fid);
  635. /* verify frequency is OK */
  636. if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
  637. (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
  638. dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
  639. powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
  640. continue;
  641. }
  642. /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
  643. if (vid == VID_OFF) {
  644. dprintk("invalid vid %u, ignoring\n", vid);
  645. powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
  646. continue;
  647. }
  648. /* verify only 1 entry from the lo frequency table */
  649. if (fid < HI_FID_TABLE_BOTTOM) {
  650. if (cntlofreq) {
  651. /* if both entries are the same, ignore this one ... */
  652. if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
  653. (powernow_table[i].index != powernow_table[cntlofreq].index)) {
  654. printk(KERN_ERR PFX "Too many lo freq table entries\n");
  655. goto err_out_mem;
  656. }
  657. dprintk("double low frequency table entry, ignoring it.\n");
  658. powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
  659. continue;
  660. } else
  661. cntlofreq = i;
  662. }
  663. if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
  664. printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
  665. powernow_table[i].frequency,
  666. (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
  667. powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
  668. continue;
  669. }
  670. }
  671. powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
  672. powernow_table[data->acpi_data.state_count].index = 0;
  673. data->powernow_table = powernow_table;
  674. /* fill in data */
  675. data->numps = data->acpi_data.state_count;
  676. print_basics(data);
  677. powernow_k8_acpi_pst_values(data, 0);
  678. /* notify BIOS that we exist */
  679. acpi_processor_notify_smm(THIS_MODULE);
  680. return 0;
  681. err_out_mem:
  682. kfree(powernow_table);
  683. err_out:
  684. acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
  685. /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
  686. data->acpi_data.state_count = 0;
  687. return -ENODEV;
  688. }
  689. static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
  690. {
  691. if (data->acpi_data.state_count)
  692. acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
  693. }
  694. #else
  695. static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
  696. static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
  697. static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
  698. #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
  699. /* Take a frequency, and issue the fid/vid transition command */
  700. static int transition_frequency(struct powernow_k8_data *data, unsigned int index)
  701. {
  702. u32 fid;
  703. u32 vid;
  704. int res, i;
  705. struct cpufreq_freqs freqs;
  706. dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
  707. /* fid are the lower 8 bits of the index we stored into
  708. * the cpufreq frequency table in find_psb_table, vid are
  709. * the upper 8 bits.
  710. */
  711. fid = data->powernow_table[index].index & 0xFF;
  712. vid = (data->powernow_table[index].index & 0xFF00) >> 8;
  713. dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
  714. if (query_current_values_with_pending_wait(data))
  715. return 1;
  716. if ((data->currvid == vid) && (data->currfid == fid)) {
  717. dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
  718. fid, vid);
  719. return 0;
  720. }
  721. if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
  722. printk(KERN_ERR PFX
  723. "ignoring illegal change in lo freq table-%x to 0x%x\n",
  724. data->currfid, fid);
  725. return 1;
  726. }
  727. dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
  728. smp_processor_id(), fid, vid);
  729. freqs.cpu = data->cpu;
  730. freqs.old = find_khz_freq_from_fid(data->currfid);
  731. freqs.new = find_khz_freq_from_fid(fid);
  732. for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
  733. freqs.cpu = i;
  734. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  735. }
  736. res = transition_fid_vid(data, fid, vid);
  737. freqs.new = find_khz_freq_from_fid(data->currfid);
  738. for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
  739. freqs.cpu = i;
  740. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  741. }
  742. return res;
  743. }
  744. /* Driver entry point to switch to the target frequency */
  745. static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
  746. {
  747. cpumask_t oldmask = CPU_MASK_ALL;
  748. struct powernow_k8_data *data = powernow_data[pol->cpu];
  749. u32 checkfid = data->currfid;
  750. u32 checkvid = data->currvid;
  751. unsigned int newstate;
  752. int ret = -EIO;
  753. /* only run on specific CPU from here on */
  754. oldmask = current->cpus_allowed;
  755. set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
  756. if (smp_processor_id() != pol->cpu) {
  757. printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
  758. goto err_out;
  759. }
  760. if (pending_bit_stuck()) {
  761. printk(KERN_ERR PFX "failing targ, change pending bit set\n");
  762. goto err_out;
  763. }
  764. dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
  765. pol->cpu, targfreq, pol->min, pol->max, relation);
  766. if (query_current_values_with_pending_wait(data)) {
  767. ret = -EIO;
  768. goto err_out;
  769. }
  770. dprintk("targ: curr fid 0x%x, vid 0x%x\n",
  771. data->currfid, data->currvid);
  772. if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
  773. printk(KERN_INFO PFX
  774. "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
  775. checkfid, data->currfid, checkvid, data->currvid);
  776. }
  777. if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
  778. goto err_out;
  779. mutex_lock(&fidvid_mutex);
  780. powernow_k8_acpi_pst_values(data, newstate);
  781. if (transition_frequency(data, newstate)) {
  782. printk(KERN_ERR PFX "transition frequency failed\n");
  783. ret = 1;
  784. mutex_unlock(&fidvid_mutex);
  785. goto err_out;
  786. }
  787. mutex_unlock(&fidvid_mutex);
  788. pol->cur = find_khz_freq_from_fid(data->currfid);
  789. ret = 0;
  790. err_out:
  791. set_cpus_allowed(current, oldmask);
  792. return ret;
  793. }
  794. /* Driver entry point to verify the policy and range of frequencies */
  795. static int powernowk8_verify(struct cpufreq_policy *pol)
  796. {
  797. struct powernow_k8_data *data = powernow_data[pol->cpu];
  798. return cpufreq_frequency_table_verify(pol, data->powernow_table);
  799. }
  800. /* per CPU init entry point to the driver */
  801. static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
  802. {
  803. struct powernow_k8_data *data;
  804. cpumask_t oldmask = CPU_MASK_ALL;
  805. int rc, i;
  806. if (!cpu_online(pol->cpu))
  807. return -ENODEV;
  808. if (!check_supported_cpu(pol->cpu))
  809. return -ENODEV;
  810. data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
  811. if (!data) {
  812. printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
  813. return -ENOMEM;
  814. }
  815. data->cpu = pol->cpu;
  816. if (powernow_k8_cpu_init_acpi(data)) {
  817. /*
  818. * Use the PSB BIOS structure. This is only availabe on
  819. * an UP version, and is deprecated by AMD.
  820. */
  821. if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
  822. printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
  823. kfree(data);
  824. return -ENODEV;
  825. }
  826. if (pol->cpu != 0) {
  827. printk(KERN_ERR PFX "init not cpu 0\n");
  828. kfree(data);
  829. return -ENODEV;
  830. }
  831. rc = find_psb_table(data);
  832. if (rc) {
  833. kfree(data);
  834. return -ENODEV;
  835. }
  836. }
  837. /* only run on specific CPU from here on */
  838. oldmask = current->cpus_allowed;
  839. set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
  840. if (smp_processor_id() != pol->cpu) {
  841. printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
  842. goto err_out;
  843. }
  844. if (pending_bit_stuck()) {
  845. printk(KERN_ERR PFX "failing init, change pending bit set\n");
  846. goto err_out;
  847. }
  848. if (query_current_values_with_pending_wait(data))
  849. goto err_out;
  850. fidvid_msr_init();
  851. /* run on any CPU again */
  852. set_cpus_allowed(current, oldmask);
  853. pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
  854. pol->cpus = cpu_core_map[pol->cpu];
  855. /* Take a crude guess here.
  856. * That guess was in microseconds, so multiply with 1000 */
  857. pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
  858. + (3 * (1 << data->irt) * 10)) * 1000;
  859. pol->cur = find_khz_freq_from_fid(data->currfid);
  860. dprintk("policy current frequency %d kHz\n", pol->cur);
  861. /* min/max the cpu is capable of */
  862. if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
  863. printk(KERN_ERR PFX "invalid powernow_table\n");
  864. powernow_k8_cpu_exit_acpi(data);
  865. kfree(data->powernow_table);
  866. kfree(data);
  867. return -EINVAL;
  868. }
  869. cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
  870. printk("cpu_init done, current fid 0x%x, vid 0x%x\n",
  871. data->currfid, data->currvid);
  872. for_each_cpu_mask(i, cpu_core_map[pol->cpu])
  873. powernow_data[i] = data;
  874. return 0;
  875. err_out:
  876. set_cpus_allowed(current, oldmask);
  877. powernow_k8_cpu_exit_acpi(data);
  878. kfree(data);
  879. return -ENODEV;
  880. }
  881. static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
  882. {
  883. struct powernow_k8_data *data = powernow_data[pol->cpu];
  884. if (!data)
  885. return -EINVAL;
  886. powernow_k8_cpu_exit_acpi(data);
  887. cpufreq_frequency_table_put_attr(pol->cpu);
  888. kfree(data->powernow_table);
  889. kfree(data);
  890. return 0;
  891. }
  892. static unsigned int powernowk8_get (unsigned int cpu)
  893. {
  894. struct powernow_k8_data *data;
  895. cpumask_t oldmask = current->cpus_allowed;
  896. unsigned int khz = 0;
  897. data = powernow_data[first_cpu(cpu_core_map[cpu])];
  898. if (!data)
  899. return -EINVAL;
  900. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  901. if (smp_processor_id() != cpu) {
  902. printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
  903. set_cpus_allowed(current, oldmask);
  904. return 0;
  905. }
  906. if (query_current_values_with_pending_wait(data))
  907. goto out;
  908. khz = find_khz_freq_from_fid(data->currfid);
  909. out:
  910. set_cpus_allowed(current, oldmask);
  911. return khz;
  912. }
  913. static struct freq_attr* powernow_k8_attr[] = {
  914. &cpufreq_freq_attr_scaling_available_freqs,
  915. NULL,
  916. };
  917. static struct cpufreq_driver cpufreq_amd64_driver = {
  918. .verify = powernowk8_verify,
  919. .target = powernowk8_target,
  920. .init = powernowk8_cpu_init,
  921. .exit = __devexit_p(powernowk8_cpu_exit),
  922. .get = powernowk8_get,
  923. .name = "powernow-k8",
  924. .owner = THIS_MODULE,
  925. .attr = powernow_k8_attr,
  926. };
  927. /* driver entry point for init */
  928. static int __cpuinit powernowk8_init(void)
  929. {
  930. unsigned int i, supported_cpus = 0;
  931. for_each_online_cpu(i) {
  932. if (check_supported_cpu(i))
  933. supported_cpus++;
  934. }
  935. if (supported_cpus == num_online_cpus()) {
  936. printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron "
  937. "processors (" VERSION ")\n", supported_cpus);
  938. return cpufreq_register_driver(&cpufreq_amd64_driver);
  939. }
  940. return -ENODEV;
  941. }
  942. /* driver entry point for term */
  943. static void __exit powernowk8_exit(void)
  944. {
  945. dprintk("exit\n");
  946. cpufreq_unregister_driver(&cpufreq_amd64_driver);
  947. }
  948. MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
  949. MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
  950. MODULE_LICENSE("GPL");
  951. late_initcall(powernowk8_init);
  952. module_exit(powernowk8_exit);