write.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <asm/uaccess.h>
  22. #include "delegation.h"
  23. #include "internal.h"
  24. #include "iostat.h"
  25. #include "nfs4_fs.h"
  26. #include "fscache.h"
  27. #include "pnfs.h"
  28. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  29. #define MIN_POOL_WRITE (32)
  30. #define MIN_POOL_COMMIT (4)
  31. /*
  32. * Local function declarations
  33. */
  34. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  35. struct inode *inode, int ioflags);
  36. static void nfs_redirty_request(struct nfs_page *req);
  37. static const struct rpc_call_ops nfs_write_partial_ops;
  38. static const struct rpc_call_ops nfs_write_full_ops;
  39. static const struct rpc_call_ops nfs_commit_ops;
  40. static struct kmem_cache *nfs_wdata_cachep;
  41. static mempool_t *nfs_wdata_mempool;
  42. static mempool_t *nfs_commit_mempool;
  43. struct nfs_write_data *nfs_commitdata_alloc(void)
  44. {
  45. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  46. if (p) {
  47. memset(p, 0, sizeof(*p));
  48. INIT_LIST_HEAD(&p->pages);
  49. }
  50. return p;
  51. }
  52. EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
  53. void nfs_commit_free(struct nfs_write_data *p)
  54. {
  55. if (p && (p->pagevec != &p->page_array[0]))
  56. kfree(p->pagevec);
  57. mempool_free(p, nfs_commit_mempool);
  58. }
  59. EXPORT_SYMBOL_GPL(nfs_commit_free);
  60. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  61. {
  62. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  63. if (p) {
  64. memset(p, 0, sizeof(*p));
  65. INIT_LIST_HEAD(&p->pages);
  66. p->npages = pagecount;
  67. if (pagecount <= ARRAY_SIZE(p->page_array))
  68. p->pagevec = p->page_array;
  69. else {
  70. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  71. if (!p->pagevec) {
  72. mempool_free(p, nfs_wdata_mempool);
  73. p = NULL;
  74. }
  75. }
  76. }
  77. return p;
  78. }
  79. void nfs_writedata_free(struct nfs_write_data *p)
  80. {
  81. if (p && (p->pagevec != &p->page_array[0]))
  82. kfree(p->pagevec);
  83. mempool_free(p, nfs_wdata_mempool);
  84. }
  85. static void nfs_writedata_release(struct nfs_write_data *wdata)
  86. {
  87. put_lseg(wdata->lseg);
  88. put_nfs_open_context(wdata->args.context);
  89. nfs_writedata_free(wdata);
  90. }
  91. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  92. {
  93. ctx->error = error;
  94. smp_wmb();
  95. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  96. }
  97. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  98. {
  99. struct nfs_page *req = NULL;
  100. if (PagePrivate(page)) {
  101. req = (struct nfs_page *)page_private(page);
  102. if (req != NULL)
  103. kref_get(&req->wb_kref);
  104. }
  105. return req;
  106. }
  107. static struct nfs_page *nfs_page_find_request(struct page *page)
  108. {
  109. struct inode *inode = page->mapping->host;
  110. struct nfs_page *req = NULL;
  111. spin_lock(&inode->i_lock);
  112. req = nfs_page_find_request_locked(page);
  113. spin_unlock(&inode->i_lock);
  114. return req;
  115. }
  116. /* Adjust the file length if we're writing beyond the end */
  117. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  118. {
  119. struct inode *inode = page->mapping->host;
  120. loff_t end, i_size;
  121. pgoff_t end_index;
  122. spin_lock(&inode->i_lock);
  123. i_size = i_size_read(inode);
  124. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  125. if (i_size > 0 && page->index < end_index)
  126. goto out;
  127. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  128. if (i_size >= end)
  129. goto out;
  130. i_size_write(inode, end);
  131. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  132. out:
  133. spin_unlock(&inode->i_lock);
  134. }
  135. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  136. static void nfs_set_pageerror(struct page *page)
  137. {
  138. SetPageError(page);
  139. nfs_zap_mapping(page->mapping->host, page->mapping);
  140. }
  141. /* We can set the PG_uptodate flag if we see that a write request
  142. * covers the full page.
  143. */
  144. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  145. {
  146. if (PageUptodate(page))
  147. return;
  148. if (base != 0)
  149. return;
  150. if (count != nfs_page_length(page))
  151. return;
  152. SetPageUptodate(page);
  153. }
  154. static int wb_priority(struct writeback_control *wbc)
  155. {
  156. if (wbc->for_reclaim)
  157. return FLUSH_HIGHPRI | FLUSH_STABLE;
  158. if (wbc->for_kupdate || wbc->for_background)
  159. return FLUSH_LOWPRI | FLUSH_COND_STABLE;
  160. return FLUSH_COND_STABLE;
  161. }
  162. /*
  163. * NFS congestion control
  164. */
  165. int nfs_congestion_kb;
  166. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  167. #define NFS_CONGESTION_OFF_THRESH \
  168. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  169. static int nfs_set_page_writeback(struct page *page)
  170. {
  171. int ret = test_set_page_writeback(page);
  172. if (!ret) {
  173. struct inode *inode = page->mapping->host;
  174. struct nfs_server *nfss = NFS_SERVER(inode);
  175. page_cache_get(page);
  176. if (atomic_long_inc_return(&nfss->writeback) >
  177. NFS_CONGESTION_ON_THRESH) {
  178. set_bdi_congested(&nfss->backing_dev_info,
  179. BLK_RW_ASYNC);
  180. }
  181. }
  182. return ret;
  183. }
  184. static void nfs_end_page_writeback(struct page *page)
  185. {
  186. struct inode *inode = page->mapping->host;
  187. struct nfs_server *nfss = NFS_SERVER(inode);
  188. end_page_writeback(page);
  189. page_cache_release(page);
  190. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  191. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  192. }
  193. static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
  194. {
  195. struct inode *inode = page->mapping->host;
  196. struct nfs_page *req;
  197. int ret;
  198. spin_lock(&inode->i_lock);
  199. for (;;) {
  200. req = nfs_page_find_request_locked(page);
  201. if (req == NULL)
  202. break;
  203. if (nfs_set_page_tag_locked(req))
  204. break;
  205. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  206. * then the call to nfs_set_page_tag_locked() will always
  207. * succeed provided that someone hasn't already marked the
  208. * request as dirty (in which case we don't care).
  209. */
  210. spin_unlock(&inode->i_lock);
  211. if (!nonblock)
  212. ret = nfs_wait_on_request(req);
  213. else
  214. ret = -EAGAIN;
  215. nfs_release_request(req);
  216. if (ret != 0)
  217. return ERR_PTR(ret);
  218. spin_lock(&inode->i_lock);
  219. }
  220. spin_unlock(&inode->i_lock);
  221. return req;
  222. }
  223. /*
  224. * Find an associated nfs write request, and prepare to flush it out
  225. * May return an error if the user signalled nfs_wait_on_request().
  226. */
  227. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  228. struct page *page, bool nonblock)
  229. {
  230. struct nfs_page *req;
  231. int ret = 0;
  232. req = nfs_find_and_lock_request(page, nonblock);
  233. if (!req)
  234. goto out;
  235. ret = PTR_ERR(req);
  236. if (IS_ERR(req))
  237. goto out;
  238. ret = nfs_set_page_writeback(page);
  239. BUG_ON(ret != 0);
  240. BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
  241. if (!nfs_pageio_add_request(pgio, req)) {
  242. nfs_redirty_request(req);
  243. ret = pgio->pg_error;
  244. }
  245. out:
  246. return ret;
  247. }
  248. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  249. {
  250. struct inode *inode = page->mapping->host;
  251. int ret;
  252. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  253. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  254. nfs_pageio_cond_complete(pgio, page->index);
  255. ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
  256. if (ret == -EAGAIN) {
  257. redirty_page_for_writepage(wbc, page);
  258. ret = 0;
  259. }
  260. return ret;
  261. }
  262. /*
  263. * Write an mmapped page to the server.
  264. */
  265. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  266. {
  267. struct nfs_pageio_descriptor pgio;
  268. int err;
  269. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  270. err = nfs_do_writepage(page, wbc, &pgio);
  271. nfs_pageio_complete(&pgio);
  272. if (err < 0)
  273. return err;
  274. if (pgio.pg_error < 0)
  275. return pgio.pg_error;
  276. return 0;
  277. }
  278. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  279. {
  280. int ret;
  281. ret = nfs_writepage_locked(page, wbc);
  282. unlock_page(page);
  283. return ret;
  284. }
  285. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  286. {
  287. int ret;
  288. ret = nfs_do_writepage(page, wbc, data);
  289. unlock_page(page);
  290. return ret;
  291. }
  292. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  293. {
  294. struct inode *inode = mapping->host;
  295. unsigned long *bitlock = &NFS_I(inode)->flags;
  296. struct nfs_pageio_descriptor pgio;
  297. int err;
  298. /* Stop dirtying of new pages while we sync */
  299. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  300. nfs_wait_bit_killable, TASK_KILLABLE);
  301. if (err)
  302. goto out_err;
  303. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  304. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  305. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  306. nfs_pageio_complete(&pgio);
  307. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  308. smp_mb__after_clear_bit();
  309. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  310. if (err < 0)
  311. goto out_err;
  312. err = pgio.pg_error;
  313. if (err < 0)
  314. goto out_err;
  315. return 0;
  316. out_err:
  317. return err;
  318. }
  319. /*
  320. * Insert a write request into an inode
  321. */
  322. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  323. {
  324. struct nfs_inode *nfsi = NFS_I(inode);
  325. int error;
  326. error = radix_tree_preload(GFP_NOFS);
  327. if (error != 0)
  328. goto out;
  329. /* Lock the request! */
  330. nfs_lock_request_dontget(req);
  331. spin_lock(&inode->i_lock);
  332. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  333. BUG_ON(error);
  334. if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
  335. nfsi->change_attr++;
  336. set_bit(PG_MAPPED, &req->wb_flags);
  337. SetPagePrivate(req->wb_page);
  338. set_page_private(req->wb_page, (unsigned long)req);
  339. nfsi->npages++;
  340. kref_get(&req->wb_kref);
  341. radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
  342. NFS_PAGE_TAG_LOCKED);
  343. spin_unlock(&inode->i_lock);
  344. radix_tree_preload_end();
  345. out:
  346. return error;
  347. }
  348. /*
  349. * Remove a write request from an inode
  350. */
  351. static void nfs_inode_remove_request(struct nfs_page *req)
  352. {
  353. struct inode *inode = req->wb_context->path.dentry->d_inode;
  354. struct nfs_inode *nfsi = NFS_I(inode);
  355. BUG_ON (!NFS_WBACK_BUSY(req));
  356. spin_lock(&inode->i_lock);
  357. set_page_private(req->wb_page, 0);
  358. ClearPagePrivate(req->wb_page);
  359. clear_bit(PG_MAPPED, &req->wb_flags);
  360. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  361. nfsi->npages--;
  362. spin_unlock(&inode->i_lock);
  363. nfs_release_request(req);
  364. }
  365. static void
  366. nfs_mark_request_dirty(struct nfs_page *req)
  367. {
  368. __set_page_dirty_nobuffers(req->wb_page);
  369. __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
  370. }
  371. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  372. /*
  373. * Add a request to the inode's commit list.
  374. */
  375. static void
  376. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  377. {
  378. struct inode *inode = req->wb_context->path.dentry->d_inode;
  379. struct nfs_inode *nfsi = NFS_I(inode);
  380. spin_lock(&inode->i_lock);
  381. set_bit(PG_CLEAN, &(req)->wb_flags);
  382. radix_tree_tag_set(&nfsi->nfs_page_tree,
  383. req->wb_index,
  384. NFS_PAGE_TAG_COMMIT);
  385. nfsi->ncommit++;
  386. spin_unlock(&inode->i_lock);
  387. pnfs_mark_request_commit(req, lseg);
  388. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  389. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  390. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  391. }
  392. static int
  393. nfs_clear_request_commit(struct nfs_page *req)
  394. {
  395. struct page *page = req->wb_page;
  396. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  397. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  398. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  399. return 1;
  400. }
  401. return 0;
  402. }
  403. static inline
  404. int nfs_write_need_commit(struct nfs_write_data *data)
  405. {
  406. if (data->verf.committed == NFS_DATA_SYNC)
  407. return data->lseg == NULL;
  408. else
  409. return data->verf.committed != NFS_FILE_SYNC;
  410. }
  411. static inline
  412. int nfs_reschedule_unstable_write(struct nfs_page *req,
  413. struct nfs_write_data *data)
  414. {
  415. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  416. nfs_mark_request_commit(req, data->lseg);
  417. return 1;
  418. }
  419. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  420. nfs_mark_request_dirty(req);
  421. return 1;
  422. }
  423. return 0;
  424. }
  425. #else
  426. static inline void
  427. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  428. {
  429. }
  430. static inline int
  431. nfs_clear_request_commit(struct nfs_page *req)
  432. {
  433. return 0;
  434. }
  435. static inline
  436. int nfs_write_need_commit(struct nfs_write_data *data)
  437. {
  438. return 0;
  439. }
  440. static inline
  441. int nfs_reschedule_unstable_write(struct nfs_page *req,
  442. struct nfs_write_data *data)
  443. {
  444. return 0;
  445. }
  446. #endif
  447. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  448. static int
  449. nfs_need_commit(struct nfs_inode *nfsi)
  450. {
  451. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  452. }
  453. /*
  454. * nfs_scan_commit - Scan an inode for commit requests
  455. * @inode: NFS inode to scan
  456. * @dst: destination list
  457. * @idx_start: lower bound of page->index to scan.
  458. * @npages: idx_start + npages sets the upper bound to scan.
  459. *
  460. * Moves requests from the inode's 'commit' request list.
  461. * The requests are *not* checked to ensure that they form a contiguous set.
  462. */
  463. static int
  464. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  465. {
  466. struct nfs_inode *nfsi = NFS_I(inode);
  467. int ret;
  468. if (!nfs_need_commit(nfsi))
  469. return 0;
  470. spin_lock(&inode->i_lock);
  471. ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  472. if (ret > 0)
  473. nfsi->ncommit -= ret;
  474. spin_unlock(&inode->i_lock);
  475. if (nfs_need_commit(NFS_I(inode)))
  476. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  477. return ret;
  478. }
  479. #else
  480. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  481. {
  482. return 0;
  483. }
  484. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  485. {
  486. return 0;
  487. }
  488. #endif
  489. /*
  490. * Search for an existing write request, and attempt to update
  491. * it to reflect a new dirty region on a given page.
  492. *
  493. * If the attempt fails, then the existing request is flushed out
  494. * to disk.
  495. */
  496. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  497. struct page *page,
  498. unsigned int offset,
  499. unsigned int bytes)
  500. {
  501. struct nfs_page *req;
  502. unsigned int rqend;
  503. unsigned int end;
  504. int error;
  505. if (!PagePrivate(page))
  506. return NULL;
  507. end = offset + bytes;
  508. spin_lock(&inode->i_lock);
  509. for (;;) {
  510. req = nfs_page_find_request_locked(page);
  511. if (req == NULL)
  512. goto out_unlock;
  513. rqend = req->wb_offset + req->wb_bytes;
  514. /*
  515. * Tell the caller to flush out the request if
  516. * the offsets are non-contiguous.
  517. * Note: nfs_flush_incompatible() will already
  518. * have flushed out requests having wrong owners.
  519. */
  520. if (offset > rqend
  521. || end < req->wb_offset)
  522. goto out_flushme;
  523. if (nfs_set_page_tag_locked(req))
  524. break;
  525. /* The request is locked, so wait and then retry */
  526. spin_unlock(&inode->i_lock);
  527. error = nfs_wait_on_request(req);
  528. nfs_release_request(req);
  529. if (error != 0)
  530. goto out_err;
  531. spin_lock(&inode->i_lock);
  532. }
  533. if (nfs_clear_request_commit(req) &&
  534. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  535. req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
  536. NFS_I(inode)->ncommit--;
  537. pnfs_clear_request_commit(req);
  538. }
  539. /* Okay, the request matches. Update the region */
  540. if (offset < req->wb_offset) {
  541. req->wb_offset = offset;
  542. req->wb_pgbase = offset;
  543. }
  544. if (end > rqend)
  545. req->wb_bytes = end - req->wb_offset;
  546. else
  547. req->wb_bytes = rqend - req->wb_offset;
  548. out_unlock:
  549. spin_unlock(&inode->i_lock);
  550. return req;
  551. out_flushme:
  552. spin_unlock(&inode->i_lock);
  553. nfs_release_request(req);
  554. error = nfs_wb_page(inode, page);
  555. out_err:
  556. return ERR_PTR(error);
  557. }
  558. /*
  559. * Try to update an existing write request, or create one if there is none.
  560. *
  561. * Note: Should always be called with the Page Lock held to prevent races
  562. * if we have to add a new request. Also assumes that the caller has
  563. * already called nfs_flush_incompatible() if necessary.
  564. */
  565. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  566. struct page *page, unsigned int offset, unsigned int bytes)
  567. {
  568. struct inode *inode = page->mapping->host;
  569. struct nfs_page *req;
  570. int error;
  571. req = nfs_try_to_update_request(inode, page, offset, bytes);
  572. if (req != NULL)
  573. goto out;
  574. req = nfs_create_request(ctx, inode, page, offset, bytes);
  575. if (IS_ERR(req))
  576. goto out;
  577. error = nfs_inode_add_request(inode, req);
  578. if (error != 0) {
  579. nfs_release_request(req);
  580. req = ERR_PTR(error);
  581. }
  582. out:
  583. return req;
  584. }
  585. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  586. unsigned int offset, unsigned int count)
  587. {
  588. struct nfs_page *req;
  589. req = nfs_setup_write_request(ctx, page, offset, count);
  590. if (IS_ERR(req))
  591. return PTR_ERR(req);
  592. /* Update file length */
  593. nfs_grow_file(page, offset, count);
  594. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  595. nfs_mark_request_dirty(req);
  596. nfs_clear_page_tag_locked(req);
  597. return 0;
  598. }
  599. int nfs_flush_incompatible(struct file *file, struct page *page)
  600. {
  601. struct nfs_open_context *ctx = nfs_file_open_context(file);
  602. struct nfs_page *req;
  603. int do_flush, status;
  604. /*
  605. * Look for a request corresponding to this page. If there
  606. * is one, and it belongs to another file, we flush it out
  607. * before we try to copy anything into the page. Do this
  608. * due to the lack of an ACCESS-type call in NFSv2.
  609. * Also do the same if we find a request from an existing
  610. * dropped page.
  611. */
  612. do {
  613. req = nfs_page_find_request(page);
  614. if (req == NULL)
  615. return 0;
  616. do_flush = req->wb_page != page || req->wb_context != ctx ||
  617. req->wb_lock_context->lockowner != current->files ||
  618. req->wb_lock_context->pid != current->tgid;
  619. nfs_release_request(req);
  620. if (!do_flush)
  621. return 0;
  622. status = nfs_wb_page(page->mapping->host, page);
  623. } while (status == 0);
  624. return status;
  625. }
  626. /*
  627. * If the page cache is marked as unsafe or invalid, then we can't rely on
  628. * the PageUptodate() flag. In this case, we will need to turn off
  629. * write optimisations that depend on the page contents being correct.
  630. */
  631. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  632. {
  633. return PageUptodate(page) &&
  634. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  635. }
  636. /*
  637. * Update and possibly write a cached page of an NFS file.
  638. *
  639. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  640. * things with a page scheduled for an RPC call (e.g. invalidate it).
  641. */
  642. int nfs_updatepage(struct file *file, struct page *page,
  643. unsigned int offset, unsigned int count)
  644. {
  645. struct nfs_open_context *ctx = nfs_file_open_context(file);
  646. struct inode *inode = page->mapping->host;
  647. int status = 0;
  648. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  649. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  650. file->f_path.dentry->d_parent->d_name.name,
  651. file->f_path.dentry->d_name.name, count,
  652. (long long)(page_offset(page) + offset));
  653. /* If we're not using byte range locks, and we know the page
  654. * is up to date, it may be more efficient to extend the write
  655. * to cover the entire page in order to avoid fragmentation
  656. * inefficiencies.
  657. */
  658. if (nfs_write_pageuptodate(page, inode) &&
  659. inode->i_flock == NULL &&
  660. !(file->f_flags & O_DSYNC)) {
  661. count = max(count + offset, nfs_page_length(page));
  662. offset = 0;
  663. }
  664. status = nfs_writepage_setup(ctx, page, offset, count);
  665. if (status < 0)
  666. nfs_set_pageerror(page);
  667. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  668. status, (long long)i_size_read(inode));
  669. return status;
  670. }
  671. static void nfs_writepage_release(struct nfs_page *req,
  672. struct nfs_write_data *data)
  673. {
  674. struct page *page = req->wb_page;
  675. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
  676. nfs_inode_remove_request(req);
  677. nfs_clear_page_tag_locked(req);
  678. nfs_end_page_writeback(page);
  679. }
  680. static int flush_task_priority(int how)
  681. {
  682. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  683. case FLUSH_HIGHPRI:
  684. return RPC_PRIORITY_HIGH;
  685. case FLUSH_LOWPRI:
  686. return RPC_PRIORITY_LOW;
  687. }
  688. return RPC_PRIORITY_NORMAL;
  689. }
  690. int nfs_initiate_write(struct nfs_write_data *data,
  691. struct rpc_clnt *clnt,
  692. const struct rpc_call_ops *call_ops,
  693. int how)
  694. {
  695. struct inode *inode = data->inode;
  696. int priority = flush_task_priority(how);
  697. struct rpc_task *task;
  698. struct rpc_message msg = {
  699. .rpc_argp = &data->args,
  700. .rpc_resp = &data->res,
  701. .rpc_cred = data->cred,
  702. };
  703. struct rpc_task_setup task_setup_data = {
  704. .rpc_client = clnt,
  705. .task = &data->task,
  706. .rpc_message = &msg,
  707. .callback_ops = call_ops,
  708. .callback_data = data,
  709. .workqueue = nfsiod_workqueue,
  710. .flags = RPC_TASK_ASYNC,
  711. .priority = priority,
  712. };
  713. int ret = 0;
  714. /* Set up the initial task struct. */
  715. NFS_PROTO(inode)->write_setup(data, &msg);
  716. dprintk("NFS: %5u initiated write call "
  717. "(req %s/%lld, %u bytes @ offset %llu)\n",
  718. data->task.tk_pid,
  719. inode->i_sb->s_id,
  720. (long long)NFS_FILEID(inode),
  721. data->args.count,
  722. (unsigned long long)data->args.offset);
  723. task = rpc_run_task(&task_setup_data);
  724. if (IS_ERR(task)) {
  725. ret = PTR_ERR(task);
  726. goto out;
  727. }
  728. if (how & FLUSH_SYNC) {
  729. ret = rpc_wait_for_completion_task(task);
  730. if (ret == 0)
  731. ret = task->tk_status;
  732. }
  733. rpc_put_task(task);
  734. out:
  735. return ret;
  736. }
  737. EXPORT_SYMBOL_GPL(nfs_initiate_write);
  738. /*
  739. * Set up the argument/result storage required for the RPC call.
  740. */
  741. static int nfs_write_rpcsetup(struct nfs_page *req,
  742. struct nfs_write_data *data,
  743. const struct rpc_call_ops *call_ops,
  744. unsigned int count, unsigned int offset,
  745. struct pnfs_layout_segment *lseg,
  746. int how)
  747. {
  748. struct inode *inode = req->wb_context->path.dentry->d_inode;
  749. /* Set up the RPC argument and reply structs
  750. * NB: take care not to mess about with data->commit et al. */
  751. data->req = req;
  752. data->inode = inode = req->wb_context->path.dentry->d_inode;
  753. data->cred = req->wb_context->cred;
  754. data->lseg = get_lseg(lseg);
  755. data->args.fh = NFS_FH(inode);
  756. data->args.offset = req_offset(req) + offset;
  757. data->args.pgbase = req->wb_pgbase + offset;
  758. data->args.pages = data->pagevec;
  759. data->args.count = count;
  760. data->args.context = get_nfs_open_context(req->wb_context);
  761. data->args.lock_context = req->wb_lock_context;
  762. data->args.stable = NFS_UNSTABLE;
  763. if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
  764. data->args.stable = NFS_DATA_SYNC;
  765. if (!nfs_need_commit(NFS_I(inode)))
  766. data->args.stable = NFS_FILE_SYNC;
  767. }
  768. data->res.fattr = &data->fattr;
  769. data->res.count = count;
  770. data->res.verf = &data->verf;
  771. nfs_fattr_init(&data->fattr);
  772. if (data->lseg &&
  773. (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
  774. return 0;
  775. return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
  776. }
  777. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  778. * call this on each, which will prepare them to be retried on next
  779. * writeback using standard nfs.
  780. */
  781. static void nfs_redirty_request(struct nfs_page *req)
  782. {
  783. struct page *page = req->wb_page;
  784. nfs_mark_request_dirty(req);
  785. nfs_clear_page_tag_locked(req);
  786. nfs_end_page_writeback(page);
  787. }
  788. /*
  789. * Generate multiple small requests to write out a single
  790. * contiguous dirty area on one page.
  791. */
  792. static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
  793. {
  794. struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
  795. struct page *page = req->wb_page;
  796. struct nfs_write_data *data;
  797. size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
  798. unsigned int offset;
  799. int requests = 0;
  800. int ret = 0;
  801. struct pnfs_layout_segment *lseg;
  802. LIST_HEAD(list);
  803. nfs_list_remove_request(req);
  804. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  805. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
  806. desc->pg_count > wsize))
  807. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  808. nbytes = desc->pg_count;
  809. do {
  810. size_t len = min(nbytes, wsize);
  811. data = nfs_writedata_alloc(1);
  812. if (!data)
  813. goto out_bad;
  814. list_add(&data->pages, &list);
  815. requests++;
  816. nbytes -= len;
  817. } while (nbytes != 0);
  818. atomic_set(&req->wb_complete, requests);
  819. BUG_ON(desc->pg_lseg);
  820. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
  821. ClearPageError(page);
  822. offset = 0;
  823. nbytes = desc->pg_count;
  824. do {
  825. int ret2;
  826. data = list_entry(list.next, struct nfs_write_data, pages);
  827. list_del_init(&data->pages);
  828. data->pagevec[0] = page;
  829. if (nbytes < wsize)
  830. wsize = nbytes;
  831. ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
  832. wsize, offset, lseg, desc->pg_ioflags);
  833. if (ret == 0)
  834. ret = ret2;
  835. offset += wsize;
  836. nbytes -= wsize;
  837. } while (nbytes != 0);
  838. put_lseg(lseg);
  839. desc->pg_lseg = NULL;
  840. return ret;
  841. out_bad:
  842. while (!list_empty(&list)) {
  843. data = list_entry(list.next, struct nfs_write_data, pages);
  844. list_del(&data->pages);
  845. nfs_writedata_free(data);
  846. }
  847. nfs_redirty_request(req);
  848. return -ENOMEM;
  849. }
  850. /*
  851. * Create an RPC task for the given write request and kick it.
  852. * The page must have been locked by the caller.
  853. *
  854. * It may happen that the page we're passed is not marked dirty.
  855. * This is the case if nfs_updatepage detects a conflicting request
  856. * that has been written but not committed.
  857. */
  858. static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
  859. {
  860. struct nfs_page *req;
  861. struct page **pages;
  862. struct nfs_write_data *data;
  863. struct list_head *head = &desc->pg_list;
  864. struct pnfs_layout_segment *lseg = desc->pg_lseg;
  865. int ret;
  866. data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
  867. desc->pg_count));
  868. if (!data) {
  869. while (!list_empty(head)) {
  870. req = nfs_list_entry(head->next);
  871. nfs_list_remove_request(req);
  872. nfs_redirty_request(req);
  873. }
  874. ret = -ENOMEM;
  875. goto out;
  876. }
  877. pages = data->pagevec;
  878. while (!list_empty(head)) {
  879. req = nfs_list_entry(head->next);
  880. nfs_list_remove_request(req);
  881. nfs_list_add_request(req, &data->pages);
  882. ClearPageError(req->wb_page);
  883. *pages++ = req->wb_page;
  884. }
  885. req = nfs_list_entry(data->pages.next);
  886. if ((!lseg) && list_is_singular(&data->pages))
  887. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
  888. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  889. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
  890. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  891. /* Set up the argument struct */
  892. ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
  893. out:
  894. put_lseg(lseg); /* Cleans any gotten in ->pg_test */
  895. desc->pg_lseg = NULL;
  896. return ret;
  897. }
  898. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  899. struct inode *inode, int ioflags)
  900. {
  901. size_t wsize = NFS_SERVER(inode)->wsize;
  902. pnfs_pageio_init_write(pgio, inode);
  903. if (wsize < PAGE_CACHE_SIZE)
  904. nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
  905. else
  906. nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
  907. }
  908. /*
  909. * Handle a write reply that flushed part of a page.
  910. */
  911. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  912. {
  913. struct nfs_write_data *data = calldata;
  914. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  915. task->tk_pid,
  916. data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
  917. (long long)
  918. NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
  919. data->req->wb_bytes, (long long)req_offset(data->req));
  920. nfs_writeback_done(task, data);
  921. }
  922. static void nfs_writeback_release_partial(void *calldata)
  923. {
  924. struct nfs_write_data *data = calldata;
  925. struct nfs_page *req = data->req;
  926. struct page *page = req->wb_page;
  927. int status = data->task.tk_status;
  928. if (status < 0) {
  929. nfs_set_pageerror(page);
  930. nfs_context_set_write_error(req->wb_context, status);
  931. dprintk(", error = %d\n", status);
  932. goto out;
  933. }
  934. if (nfs_write_need_commit(data)) {
  935. struct inode *inode = page->mapping->host;
  936. spin_lock(&inode->i_lock);
  937. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  938. /* Do nothing we need to resend the writes */
  939. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  940. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  941. dprintk(" defer commit\n");
  942. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  943. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  944. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  945. dprintk(" server reboot detected\n");
  946. }
  947. spin_unlock(&inode->i_lock);
  948. } else
  949. dprintk(" OK\n");
  950. out:
  951. if (atomic_dec_and_test(&req->wb_complete))
  952. nfs_writepage_release(req, data);
  953. nfs_writedata_release(calldata);
  954. }
  955. #if defined(CONFIG_NFS_V4_1)
  956. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  957. {
  958. struct nfs_write_data *data = calldata;
  959. if (nfs4_setup_sequence(NFS_SERVER(data->inode),
  960. &data->args.seq_args,
  961. &data->res.seq_res, 1, task))
  962. return;
  963. rpc_call_start(task);
  964. }
  965. #endif /* CONFIG_NFS_V4_1 */
  966. static const struct rpc_call_ops nfs_write_partial_ops = {
  967. #if defined(CONFIG_NFS_V4_1)
  968. .rpc_call_prepare = nfs_write_prepare,
  969. #endif /* CONFIG_NFS_V4_1 */
  970. .rpc_call_done = nfs_writeback_done_partial,
  971. .rpc_release = nfs_writeback_release_partial,
  972. };
  973. /*
  974. * Handle a write reply that flushes a whole page.
  975. *
  976. * FIXME: There is an inherent race with invalidate_inode_pages and
  977. * writebacks since the page->count is kept > 1 for as long
  978. * as the page has a write request pending.
  979. */
  980. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  981. {
  982. struct nfs_write_data *data = calldata;
  983. nfs_writeback_done(task, data);
  984. }
  985. static void nfs_writeback_release_full(void *calldata)
  986. {
  987. struct nfs_write_data *data = calldata;
  988. int status = data->task.tk_status;
  989. /* Update attributes as result of writeback. */
  990. while (!list_empty(&data->pages)) {
  991. struct nfs_page *req = nfs_list_entry(data->pages.next);
  992. struct page *page = req->wb_page;
  993. nfs_list_remove_request(req);
  994. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  995. data->task.tk_pid,
  996. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  997. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  998. req->wb_bytes,
  999. (long long)req_offset(req));
  1000. if (status < 0) {
  1001. nfs_set_pageerror(page);
  1002. nfs_context_set_write_error(req->wb_context, status);
  1003. dprintk(", error = %d\n", status);
  1004. goto remove_request;
  1005. }
  1006. if (nfs_write_need_commit(data)) {
  1007. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  1008. nfs_mark_request_commit(req, data->lseg);
  1009. dprintk(" marked for commit\n");
  1010. goto next;
  1011. }
  1012. dprintk(" OK\n");
  1013. remove_request:
  1014. nfs_inode_remove_request(req);
  1015. next:
  1016. nfs_clear_page_tag_locked(req);
  1017. nfs_end_page_writeback(page);
  1018. }
  1019. nfs_writedata_release(calldata);
  1020. }
  1021. static const struct rpc_call_ops nfs_write_full_ops = {
  1022. #if defined(CONFIG_NFS_V4_1)
  1023. .rpc_call_prepare = nfs_write_prepare,
  1024. #endif /* CONFIG_NFS_V4_1 */
  1025. .rpc_call_done = nfs_writeback_done_full,
  1026. .rpc_release = nfs_writeback_release_full,
  1027. };
  1028. /*
  1029. * This function is called when the WRITE call is complete.
  1030. */
  1031. void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1032. {
  1033. struct nfs_writeargs *argp = &data->args;
  1034. struct nfs_writeres *resp = &data->res;
  1035. struct nfs_server *server = NFS_SERVER(data->inode);
  1036. int status;
  1037. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1038. task->tk_pid, task->tk_status);
  1039. /*
  1040. * ->write_done will attempt to use post-op attributes to detect
  1041. * conflicting writes by other clients. A strict interpretation
  1042. * of close-to-open would allow us to continue caching even if
  1043. * another writer had changed the file, but some applications
  1044. * depend on tighter cache coherency when writing.
  1045. */
  1046. status = NFS_PROTO(data->inode)->write_done(task, data);
  1047. if (status != 0)
  1048. return;
  1049. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1050. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1051. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1052. /* We tried a write call, but the server did not
  1053. * commit data to stable storage even though we
  1054. * requested it.
  1055. * Note: There is a known bug in Tru64 < 5.0 in which
  1056. * the server reports NFS_DATA_SYNC, but performs
  1057. * NFS_FILE_SYNC. We therefore implement this checking
  1058. * as a dprintk() in order to avoid filling syslog.
  1059. */
  1060. static unsigned long complain;
  1061. /* Note this will print the MDS for a DS write */
  1062. if (time_before(complain, jiffies)) {
  1063. dprintk("NFS: faulty NFS server %s:"
  1064. " (committed = %d) != (stable = %d)\n",
  1065. server->nfs_client->cl_hostname,
  1066. resp->verf->committed, argp->stable);
  1067. complain = jiffies + 300 * HZ;
  1068. }
  1069. }
  1070. #endif
  1071. /* Is this a short write? */
  1072. if (task->tk_status >= 0 && resp->count < argp->count) {
  1073. static unsigned long complain;
  1074. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1075. /* Has the server at least made some progress? */
  1076. if (resp->count != 0) {
  1077. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1078. if (resp->verf->committed != NFS_UNSTABLE) {
  1079. /* Resend from where the server left off */
  1080. data->mds_offset += resp->count;
  1081. argp->offset += resp->count;
  1082. argp->pgbase += resp->count;
  1083. argp->count -= resp->count;
  1084. } else {
  1085. /* Resend as a stable write in order to avoid
  1086. * headaches in the case of a server crash.
  1087. */
  1088. argp->stable = NFS_FILE_SYNC;
  1089. }
  1090. nfs_restart_rpc(task, server->nfs_client);
  1091. return;
  1092. }
  1093. if (time_before(complain, jiffies)) {
  1094. printk(KERN_WARNING
  1095. "NFS: Server wrote zero bytes, expected %u.\n",
  1096. argp->count);
  1097. complain = jiffies + 300 * HZ;
  1098. }
  1099. /* Can't do anything about it except throw an error. */
  1100. task->tk_status = -EIO;
  1101. }
  1102. return;
  1103. }
  1104. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1105. static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
  1106. {
  1107. int ret;
  1108. if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
  1109. return 1;
  1110. if (!may_wait)
  1111. return 0;
  1112. ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
  1113. NFS_INO_COMMIT,
  1114. nfs_wait_bit_killable,
  1115. TASK_KILLABLE);
  1116. return (ret < 0) ? ret : 1;
  1117. }
  1118. void nfs_commit_clear_lock(struct nfs_inode *nfsi)
  1119. {
  1120. clear_bit(NFS_INO_COMMIT, &nfsi->flags);
  1121. smp_mb__after_clear_bit();
  1122. wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
  1123. }
  1124. EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
  1125. void nfs_commitdata_release(void *data)
  1126. {
  1127. struct nfs_write_data *wdata = data;
  1128. put_lseg(wdata->lseg);
  1129. put_nfs_open_context(wdata->args.context);
  1130. nfs_commit_free(wdata);
  1131. }
  1132. EXPORT_SYMBOL_GPL(nfs_commitdata_release);
  1133. int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
  1134. const struct rpc_call_ops *call_ops,
  1135. int how)
  1136. {
  1137. struct rpc_task *task;
  1138. int priority = flush_task_priority(how);
  1139. struct rpc_message msg = {
  1140. .rpc_argp = &data->args,
  1141. .rpc_resp = &data->res,
  1142. .rpc_cred = data->cred,
  1143. };
  1144. struct rpc_task_setup task_setup_data = {
  1145. .task = &data->task,
  1146. .rpc_client = clnt,
  1147. .rpc_message = &msg,
  1148. .callback_ops = call_ops,
  1149. .callback_data = data,
  1150. .workqueue = nfsiod_workqueue,
  1151. .flags = RPC_TASK_ASYNC,
  1152. .priority = priority,
  1153. };
  1154. /* Set up the initial task struct. */
  1155. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  1156. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1157. task = rpc_run_task(&task_setup_data);
  1158. if (IS_ERR(task))
  1159. return PTR_ERR(task);
  1160. if (how & FLUSH_SYNC)
  1161. rpc_wait_for_completion_task(task);
  1162. rpc_put_task(task);
  1163. return 0;
  1164. }
  1165. EXPORT_SYMBOL_GPL(nfs_initiate_commit);
  1166. /*
  1167. * Set up the argument/result storage required for the RPC call.
  1168. */
  1169. void nfs_init_commit(struct nfs_write_data *data,
  1170. struct list_head *head,
  1171. struct pnfs_layout_segment *lseg)
  1172. {
  1173. struct nfs_page *first = nfs_list_entry(head->next);
  1174. struct inode *inode = first->wb_context->path.dentry->d_inode;
  1175. /* Set up the RPC argument and reply structs
  1176. * NB: take care not to mess about with data->commit et al. */
  1177. list_splice_init(head, &data->pages);
  1178. data->inode = inode;
  1179. data->cred = first->wb_context->cred;
  1180. data->lseg = lseg; /* reference transferred */
  1181. data->mds_ops = &nfs_commit_ops;
  1182. data->args.fh = NFS_FH(data->inode);
  1183. /* Note: we always request a commit of the entire inode */
  1184. data->args.offset = 0;
  1185. data->args.count = 0;
  1186. data->args.context = get_nfs_open_context(first->wb_context);
  1187. data->res.count = 0;
  1188. data->res.fattr = &data->fattr;
  1189. data->res.verf = &data->verf;
  1190. nfs_fattr_init(&data->fattr);
  1191. }
  1192. EXPORT_SYMBOL_GPL(nfs_init_commit);
  1193. void nfs_retry_commit(struct list_head *page_list,
  1194. struct pnfs_layout_segment *lseg)
  1195. {
  1196. struct nfs_page *req;
  1197. while (!list_empty(page_list)) {
  1198. req = nfs_list_entry(page_list->next);
  1199. nfs_list_remove_request(req);
  1200. nfs_mark_request_commit(req, lseg);
  1201. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1202. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1203. BDI_RECLAIMABLE);
  1204. nfs_clear_page_tag_locked(req);
  1205. }
  1206. }
  1207. EXPORT_SYMBOL_GPL(nfs_retry_commit);
  1208. /*
  1209. * Commit dirty pages
  1210. */
  1211. static int
  1212. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1213. {
  1214. struct nfs_write_data *data;
  1215. data = nfs_commitdata_alloc();
  1216. if (!data)
  1217. goto out_bad;
  1218. /* Set up the argument struct */
  1219. nfs_init_commit(data, head, NULL);
  1220. return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
  1221. out_bad:
  1222. nfs_retry_commit(head, NULL);
  1223. nfs_commit_clear_lock(NFS_I(inode));
  1224. return -ENOMEM;
  1225. }
  1226. /*
  1227. * COMMIT call returned
  1228. */
  1229. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1230. {
  1231. struct nfs_write_data *data = calldata;
  1232. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1233. task->tk_pid, task->tk_status);
  1234. /* Call the NFS version-specific code */
  1235. NFS_PROTO(data->inode)->commit_done(task, data);
  1236. }
  1237. void nfs_commit_release_pages(struct nfs_write_data *data)
  1238. {
  1239. struct nfs_page *req;
  1240. int status = data->task.tk_status;
  1241. while (!list_empty(&data->pages)) {
  1242. req = nfs_list_entry(data->pages.next);
  1243. nfs_list_remove_request(req);
  1244. nfs_clear_request_commit(req);
  1245. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1246. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  1247. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  1248. req->wb_bytes,
  1249. (long long)req_offset(req));
  1250. if (status < 0) {
  1251. nfs_context_set_write_error(req->wb_context, status);
  1252. nfs_inode_remove_request(req);
  1253. dprintk(", error = %d\n", status);
  1254. goto next;
  1255. }
  1256. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1257. * returned by the server against all stored verfs. */
  1258. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1259. /* We have a match */
  1260. nfs_inode_remove_request(req);
  1261. dprintk(" OK\n");
  1262. goto next;
  1263. }
  1264. /* We have a mismatch. Write the page again */
  1265. dprintk(" mismatch\n");
  1266. nfs_mark_request_dirty(req);
  1267. next:
  1268. nfs_clear_page_tag_locked(req);
  1269. }
  1270. }
  1271. EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
  1272. static void nfs_commit_release(void *calldata)
  1273. {
  1274. struct nfs_write_data *data = calldata;
  1275. nfs_commit_release_pages(data);
  1276. nfs_commit_clear_lock(NFS_I(data->inode));
  1277. nfs_commitdata_release(calldata);
  1278. }
  1279. static const struct rpc_call_ops nfs_commit_ops = {
  1280. #if defined(CONFIG_NFS_V4_1)
  1281. .rpc_call_prepare = nfs_write_prepare,
  1282. #endif /* CONFIG_NFS_V4_1 */
  1283. .rpc_call_done = nfs_commit_done,
  1284. .rpc_release = nfs_commit_release,
  1285. };
  1286. int nfs_commit_inode(struct inode *inode, int how)
  1287. {
  1288. LIST_HEAD(head);
  1289. int may_wait = how & FLUSH_SYNC;
  1290. int res;
  1291. res = nfs_commit_set_lock(NFS_I(inode), may_wait);
  1292. if (res <= 0)
  1293. goto out_mark_dirty;
  1294. res = nfs_scan_commit(inode, &head, 0, 0);
  1295. if (res) {
  1296. int error;
  1297. error = pnfs_commit_list(inode, &head, how);
  1298. if (error == PNFS_NOT_ATTEMPTED)
  1299. error = nfs_commit_list(inode, &head, how);
  1300. if (error < 0)
  1301. return error;
  1302. if (!may_wait)
  1303. goto out_mark_dirty;
  1304. error = wait_on_bit(&NFS_I(inode)->flags,
  1305. NFS_INO_COMMIT,
  1306. nfs_wait_bit_killable,
  1307. TASK_KILLABLE);
  1308. if (error < 0)
  1309. return error;
  1310. } else
  1311. nfs_commit_clear_lock(NFS_I(inode));
  1312. return res;
  1313. /* Note: If we exit without ensuring that the commit is complete,
  1314. * we must mark the inode as dirty. Otherwise, future calls to
  1315. * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
  1316. * that the data is on the disk.
  1317. */
  1318. out_mark_dirty:
  1319. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1320. return res;
  1321. }
  1322. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1323. {
  1324. struct nfs_inode *nfsi = NFS_I(inode);
  1325. int flags = FLUSH_SYNC;
  1326. int ret = 0;
  1327. if (wbc->sync_mode == WB_SYNC_NONE) {
  1328. /* Don't commit yet if this is a non-blocking flush and there
  1329. * are a lot of outstanding writes for this mapping.
  1330. */
  1331. if (nfsi->ncommit <= (nfsi->npages >> 1))
  1332. goto out_mark_dirty;
  1333. /* don't wait for the COMMIT response */
  1334. flags = 0;
  1335. }
  1336. ret = nfs_commit_inode(inode, flags);
  1337. if (ret >= 0) {
  1338. if (wbc->sync_mode == WB_SYNC_NONE) {
  1339. if (ret < wbc->nr_to_write)
  1340. wbc->nr_to_write -= ret;
  1341. else
  1342. wbc->nr_to_write = 0;
  1343. }
  1344. return 0;
  1345. }
  1346. out_mark_dirty:
  1347. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1348. return ret;
  1349. }
  1350. #else
  1351. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1352. {
  1353. return 0;
  1354. }
  1355. #endif
  1356. int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  1357. {
  1358. int ret;
  1359. ret = nfs_commit_unstable_pages(inode, wbc);
  1360. if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
  1361. int status;
  1362. bool sync = true;
  1363. if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking ||
  1364. wbc->for_background)
  1365. sync = false;
  1366. status = pnfs_layoutcommit_inode(inode, sync);
  1367. if (status < 0)
  1368. return status;
  1369. }
  1370. return ret;
  1371. }
  1372. /*
  1373. * flush the inode to disk.
  1374. */
  1375. int nfs_wb_all(struct inode *inode)
  1376. {
  1377. struct writeback_control wbc = {
  1378. .sync_mode = WB_SYNC_ALL,
  1379. .nr_to_write = LONG_MAX,
  1380. .range_start = 0,
  1381. .range_end = LLONG_MAX,
  1382. };
  1383. return sync_inode(inode, &wbc);
  1384. }
  1385. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1386. {
  1387. struct nfs_page *req;
  1388. int ret = 0;
  1389. BUG_ON(!PageLocked(page));
  1390. for (;;) {
  1391. wait_on_page_writeback(page);
  1392. req = nfs_page_find_request(page);
  1393. if (req == NULL)
  1394. break;
  1395. if (nfs_lock_request_dontget(req)) {
  1396. nfs_inode_remove_request(req);
  1397. /*
  1398. * In case nfs_inode_remove_request has marked the
  1399. * page as being dirty
  1400. */
  1401. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1402. nfs_unlock_request(req);
  1403. break;
  1404. }
  1405. ret = nfs_wait_on_request(req);
  1406. nfs_release_request(req);
  1407. if (ret < 0)
  1408. break;
  1409. }
  1410. return ret;
  1411. }
  1412. /*
  1413. * Write back all requests on one page - we do this before reading it.
  1414. */
  1415. int nfs_wb_page(struct inode *inode, struct page *page)
  1416. {
  1417. loff_t range_start = page_offset(page);
  1418. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1419. struct writeback_control wbc = {
  1420. .sync_mode = WB_SYNC_ALL,
  1421. .nr_to_write = 0,
  1422. .range_start = range_start,
  1423. .range_end = range_end,
  1424. };
  1425. int ret;
  1426. for (;;) {
  1427. wait_on_page_writeback(page);
  1428. if (clear_page_dirty_for_io(page)) {
  1429. ret = nfs_writepage_locked(page, &wbc);
  1430. if (ret < 0)
  1431. goto out_error;
  1432. continue;
  1433. }
  1434. if (!PagePrivate(page))
  1435. break;
  1436. ret = nfs_commit_inode(inode, FLUSH_SYNC);
  1437. if (ret < 0)
  1438. goto out_error;
  1439. }
  1440. return 0;
  1441. out_error:
  1442. return ret;
  1443. }
  1444. #ifdef CONFIG_MIGRATION
  1445. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1446. struct page *page)
  1447. {
  1448. struct nfs_page *req;
  1449. int ret;
  1450. nfs_fscache_release_page(page, GFP_KERNEL);
  1451. req = nfs_find_and_lock_request(page, false);
  1452. ret = PTR_ERR(req);
  1453. if (IS_ERR(req))
  1454. goto out;
  1455. ret = migrate_page(mapping, newpage, page);
  1456. if (!req)
  1457. goto out;
  1458. if (ret)
  1459. goto out_unlock;
  1460. page_cache_get(newpage);
  1461. spin_lock(&mapping->host->i_lock);
  1462. req->wb_page = newpage;
  1463. SetPagePrivate(newpage);
  1464. set_page_private(newpage, (unsigned long)req);
  1465. ClearPagePrivate(page);
  1466. set_page_private(page, 0);
  1467. spin_unlock(&mapping->host->i_lock);
  1468. page_cache_release(page);
  1469. out_unlock:
  1470. nfs_clear_page_tag_locked(req);
  1471. out:
  1472. return ret;
  1473. }
  1474. #endif
  1475. int __init nfs_init_writepagecache(void)
  1476. {
  1477. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1478. sizeof(struct nfs_write_data),
  1479. 0, SLAB_HWCACHE_ALIGN,
  1480. NULL);
  1481. if (nfs_wdata_cachep == NULL)
  1482. return -ENOMEM;
  1483. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1484. nfs_wdata_cachep);
  1485. if (nfs_wdata_mempool == NULL)
  1486. return -ENOMEM;
  1487. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1488. nfs_wdata_cachep);
  1489. if (nfs_commit_mempool == NULL)
  1490. return -ENOMEM;
  1491. /*
  1492. * NFS congestion size, scale with available memory.
  1493. *
  1494. * 64MB: 8192k
  1495. * 128MB: 11585k
  1496. * 256MB: 16384k
  1497. * 512MB: 23170k
  1498. * 1GB: 32768k
  1499. * 2GB: 46340k
  1500. * 4GB: 65536k
  1501. * 8GB: 92681k
  1502. * 16GB: 131072k
  1503. *
  1504. * This allows larger machines to have larger/more transfers.
  1505. * Limit the default to 256M
  1506. */
  1507. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1508. if (nfs_congestion_kb > 256*1024)
  1509. nfs_congestion_kb = 256*1024;
  1510. return 0;
  1511. }
  1512. void nfs_destroy_writepagecache(void)
  1513. {
  1514. mempool_destroy(nfs_commit_mempool);
  1515. mempool_destroy(nfs_wdata_mempool);
  1516. kmem_cache_destroy(nfs_wdata_cachep);
  1517. }