vmalloc.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/slab.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/debugobjects.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/list.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/pfn.h>
  27. #include <asm/atomic.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/tlbflush.h>
  30. /*** Page table manipulation functions ***/
  31. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  32. {
  33. pte_t *pte;
  34. pte = pte_offset_kernel(pmd, addr);
  35. do {
  36. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  37. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  38. } while (pte++, addr += PAGE_SIZE, addr != end);
  39. }
  40. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  41. {
  42. pmd_t *pmd;
  43. unsigned long next;
  44. pmd = pmd_offset(pud, addr);
  45. do {
  46. next = pmd_addr_end(addr, end);
  47. if (pmd_none_or_clear_bad(pmd))
  48. continue;
  49. vunmap_pte_range(pmd, addr, next);
  50. } while (pmd++, addr = next, addr != end);
  51. }
  52. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  53. {
  54. pud_t *pud;
  55. unsigned long next;
  56. pud = pud_offset(pgd, addr);
  57. do {
  58. next = pud_addr_end(addr, end);
  59. if (pud_none_or_clear_bad(pud))
  60. continue;
  61. vunmap_pmd_range(pud, addr, next);
  62. } while (pud++, addr = next, addr != end);
  63. }
  64. static void vunmap_page_range(unsigned long addr, unsigned long end)
  65. {
  66. pgd_t *pgd;
  67. unsigned long next;
  68. BUG_ON(addr >= end);
  69. pgd = pgd_offset_k(addr);
  70. do {
  71. next = pgd_addr_end(addr, end);
  72. if (pgd_none_or_clear_bad(pgd))
  73. continue;
  74. vunmap_pud_range(pgd, addr, next);
  75. } while (pgd++, addr = next, addr != end);
  76. }
  77. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  78. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  79. {
  80. pte_t *pte;
  81. /*
  82. * nr is a running index into the array which helps higher level
  83. * callers keep track of where we're up to.
  84. */
  85. pte = pte_alloc_kernel(pmd, addr);
  86. if (!pte)
  87. return -ENOMEM;
  88. do {
  89. struct page *page = pages[*nr];
  90. if (WARN_ON(!pte_none(*pte)))
  91. return -EBUSY;
  92. if (WARN_ON(!page))
  93. return -ENOMEM;
  94. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  95. (*nr)++;
  96. } while (pte++, addr += PAGE_SIZE, addr != end);
  97. return 0;
  98. }
  99. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  100. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  101. {
  102. pmd_t *pmd;
  103. unsigned long next;
  104. pmd = pmd_alloc(&init_mm, pud, addr);
  105. if (!pmd)
  106. return -ENOMEM;
  107. do {
  108. next = pmd_addr_end(addr, end);
  109. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  110. return -ENOMEM;
  111. } while (pmd++, addr = next, addr != end);
  112. return 0;
  113. }
  114. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  115. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  116. {
  117. pud_t *pud;
  118. unsigned long next;
  119. pud = pud_alloc(&init_mm, pgd, addr);
  120. if (!pud)
  121. return -ENOMEM;
  122. do {
  123. next = pud_addr_end(addr, end);
  124. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  125. return -ENOMEM;
  126. } while (pud++, addr = next, addr != end);
  127. return 0;
  128. }
  129. /*
  130. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  131. * will have pfns corresponding to the "pages" array.
  132. *
  133. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  134. */
  135. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  136. pgprot_t prot, struct page **pages)
  137. {
  138. pgd_t *pgd;
  139. unsigned long next;
  140. unsigned long addr = start;
  141. int err = 0;
  142. int nr = 0;
  143. BUG_ON(addr >= end);
  144. pgd = pgd_offset_k(addr);
  145. do {
  146. next = pgd_addr_end(addr, end);
  147. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  148. if (err)
  149. break;
  150. } while (pgd++, addr = next, addr != end);
  151. if (unlikely(err))
  152. return err;
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. static inline int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. void *private;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static struct rb_root vmap_area_root = RB_ROOT;
  231. static LIST_HEAD(vmap_area_list);
  232. static struct vmap_area *__find_vmap_area(unsigned long addr)
  233. {
  234. struct rb_node *n = vmap_area_root.rb_node;
  235. while (n) {
  236. struct vmap_area *va;
  237. va = rb_entry(n, struct vmap_area, rb_node);
  238. if (addr < va->va_start)
  239. n = n->rb_left;
  240. else if (addr > va->va_start)
  241. n = n->rb_right;
  242. else
  243. return va;
  244. }
  245. return NULL;
  246. }
  247. static void __insert_vmap_area(struct vmap_area *va)
  248. {
  249. struct rb_node **p = &vmap_area_root.rb_node;
  250. struct rb_node *parent = NULL;
  251. struct rb_node *tmp;
  252. while (*p) {
  253. struct vmap_area *tmp;
  254. parent = *p;
  255. tmp = rb_entry(parent, struct vmap_area, rb_node);
  256. if (va->va_start < tmp->va_end)
  257. p = &(*p)->rb_left;
  258. else if (va->va_end > tmp->va_start)
  259. p = &(*p)->rb_right;
  260. else
  261. BUG();
  262. }
  263. rb_link_node(&va->rb_node, parent, p);
  264. rb_insert_color(&va->rb_node, &vmap_area_root);
  265. /* address-sort this list so it is usable like the vmlist */
  266. tmp = rb_prev(&va->rb_node);
  267. if (tmp) {
  268. struct vmap_area *prev;
  269. prev = rb_entry(tmp, struct vmap_area, rb_node);
  270. list_add_rcu(&va->list, &prev->list);
  271. } else
  272. list_add_rcu(&va->list, &vmap_area_list);
  273. }
  274. static void purge_vmap_area_lazy(void);
  275. /*
  276. * Allocate a region of KVA of the specified size and alignment, within the
  277. * vstart and vend.
  278. */
  279. static struct vmap_area *alloc_vmap_area(unsigned long size,
  280. unsigned long align,
  281. unsigned long vstart, unsigned long vend,
  282. int node, gfp_t gfp_mask)
  283. {
  284. struct vmap_area *va;
  285. struct rb_node *n;
  286. unsigned long addr;
  287. int purged = 0;
  288. BUG_ON(size & ~PAGE_MASK);
  289. va = kmalloc_node(sizeof(struct vmap_area),
  290. gfp_mask & GFP_RECLAIM_MASK, node);
  291. if (unlikely(!va))
  292. return ERR_PTR(-ENOMEM);
  293. retry:
  294. addr = ALIGN(vstart, align);
  295. spin_lock(&vmap_area_lock);
  296. /* XXX: could have a last_hole cache */
  297. n = vmap_area_root.rb_node;
  298. if (n) {
  299. struct vmap_area *first = NULL;
  300. do {
  301. struct vmap_area *tmp;
  302. tmp = rb_entry(n, struct vmap_area, rb_node);
  303. if (tmp->va_end >= addr) {
  304. if (!first && tmp->va_start < addr + size)
  305. first = tmp;
  306. n = n->rb_left;
  307. } else {
  308. first = tmp;
  309. n = n->rb_right;
  310. }
  311. } while (n);
  312. if (!first)
  313. goto found;
  314. if (first->va_end < addr) {
  315. n = rb_next(&first->rb_node);
  316. if (n)
  317. first = rb_entry(n, struct vmap_area, rb_node);
  318. else
  319. goto found;
  320. }
  321. while (addr + size > first->va_start && addr + size <= vend) {
  322. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  323. n = rb_next(&first->rb_node);
  324. if (n)
  325. first = rb_entry(n, struct vmap_area, rb_node);
  326. else
  327. goto found;
  328. }
  329. }
  330. found:
  331. if (addr + size > vend) {
  332. spin_unlock(&vmap_area_lock);
  333. if (!purged) {
  334. purge_vmap_area_lazy();
  335. purged = 1;
  336. goto retry;
  337. }
  338. if (printk_ratelimit())
  339. printk(KERN_WARNING
  340. "vmap allocation for size %lu failed: "
  341. "use vmalloc=<size> to increase size.\n", size);
  342. return ERR_PTR(-EBUSY);
  343. }
  344. BUG_ON(addr & (align-1));
  345. va->va_start = addr;
  346. va->va_end = addr + size;
  347. va->flags = 0;
  348. __insert_vmap_area(va);
  349. spin_unlock(&vmap_area_lock);
  350. return va;
  351. }
  352. static void rcu_free_va(struct rcu_head *head)
  353. {
  354. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  355. kfree(va);
  356. }
  357. static void __free_vmap_area(struct vmap_area *va)
  358. {
  359. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  360. rb_erase(&va->rb_node, &vmap_area_root);
  361. RB_CLEAR_NODE(&va->rb_node);
  362. list_del_rcu(&va->list);
  363. call_rcu(&va->rcu_head, rcu_free_va);
  364. }
  365. /*
  366. * Free a region of KVA allocated by alloc_vmap_area
  367. */
  368. static void free_vmap_area(struct vmap_area *va)
  369. {
  370. spin_lock(&vmap_area_lock);
  371. __free_vmap_area(va);
  372. spin_unlock(&vmap_area_lock);
  373. }
  374. /*
  375. * Clear the pagetable entries of a given vmap_area
  376. */
  377. static void unmap_vmap_area(struct vmap_area *va)
  378. {
  379. vunmap_page_range(va->va_start, va->va_end);
  380. }
  381. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  382. {
  383. /*
  384. * Unmap page tables and force a TLB flush immediately if
  385. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  386. * bugs similarly to those in linear kernel virtual address
  387. * space after a page has been freed.
  388. *
  389. * All the lazy freeing logic is still retained, in order to
  390. * minimise intrusiveness of this debugging feature.
  391. *
  392. * This is going to be *slow* (linear kernel virtual address
  393. * debugging doesn't do a broadcast TLB flush so it is a lot
  394. * faster).
  395. */
  396. #ifdef CONFIG_DEBUG_PAGEALLOC
  397. vunmap_page_range(start, end);
  398. flush_tlb_kernel_range(start, end);
  399. #endif
  400. }
  401. /*
  402. * lazy_max_pages is the maximum amount of virtual address space we gather up
  403. * before attempting to purge with a TLB flush.
  404. *
  405. * There is a tradeoff here: a larger number will cover more kernel page tables
  406. * and take slightly longer to purge, but it will linearly reduce the number of
  407. * global TLB flushes that must be performed. It would seem natural to scale
  408. * this number up linearly with the number of CPUs (because vmapping activity
  409. * could also scale linearly with the number of CPUs), however it is likely
  410. * that in practice, workloads might be constrained in other ways that mean
  411. * vmap activity will not scale linearly with CPUs. Also, I want to be
  412. * conservative and not introduce a big latency on huge systems, so go with
  413. * a less aggressive log scale. It will still be an improvement over the old
  414. * code, and it will be simple to change the scale factor if we find that it
  415. * becomes a problem on bigger systems.
  416. */
  417. static unsigned long lazy_max_pages(void)
  418. {
  419. unsigned int log;
  420. log = fls(num_online_cpus());
  421. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  422. }
  423. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  424. /*
  425. * Purges all lazily-freed vmap areas.
  426. *
  427. * If sync is 0 then don't purge if there is already a purge in progress.
  428. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  429. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  430. * their own TLB flushing).
  431. * Returns with *start = min(*start, lowest purged address)
  432. * *end = max(*end, highest purged address)
  433. */
  434. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  435. int sync, int force_flush)
  436. {
  437. static DEFINE_SPINLOCK(purge_lock);
  438. LIST_HEAD(valist);
  439. struct vmap_area *va;
  440. int nr = 0;
  441. /*
  442. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  443. * should not expect such behaviour. This just simplifies locking for
  444. * the case that isn't actually used at the moment anyway.
  445. */
  446. if (!sync && !force_flush) {
  447. if (!spin_trylock(&purge_lock))
  448. return;
  449. } else
  450. spin_lock(&purge_lock);
  451. rcu_read_lock();
  452. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  453. if (va->flags & VM_LAZY_FREE) {
  454. if (va->va_start < *start)
  455. *start = va->va_start;
  456. if (va->va_end > *end)
  457. *end = va->va_end;
  458. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  459. unmap_vmap_area(va);
  460. list_add_tail(&va->purge_list, &valist);
  461. va->flags |= VM_LAZY_FREEING;
  462. va->flags &= ~VM_LAZY_FREE;
  463. }
  464. }
  465. rcu_read_unlock();
  466. if (nr) {
  467. BUG_ON(nr > atomic_read(&vmap_lazy_nr));
  468. atomic_sub(nr, &vmap_lazy_nr);
  469. }
  470. if (nr || force_flush)
  471. flush_tlb_kernel_range(*start, *end);
  472. if (nr) {
  473. spin_lock(&vmap_area_lock);
  474. list_for_each_entry(va, &valist, purge_list)
  475. __free_vmap_area(va);
  476. spin_unlock(&vmap_area_lock);
  477. }
  478. spin_unlock(&purge_lock);
  479. }
  480. /*
  481. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  482. * is already purging.
  483. */
  484. static void try_purge_vmap_area_lazy(void)
  485. {
  486. unsigned long start = ULONG_MAX, end = 0;
  487. __purge_vmap_area_lazy(&start, &end, 0, 0);
  488. }
  489. /*
  490. * Kick off a purge of the outstanding lazy areas.
  491. */
  492. static void purge_vmap_area_lazy(void)
  493. {
  494. unsigned long start = ULONG_MAX, end = 0;
  495. __purge_vmap_area_lazy(&start, &end, 1, 0);
  496. }
  497. /*
  498. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  499. * called for the correct range previously.
  500. */
  501. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  502. {
  503. va->flags |= VM_LAZY_FREE;
  504. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  505. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  506. try_purge_vmap_area_lazy();
  507. }
  508. /*
  509. * Free and unmap a vmap area
  510. */
  511. static void free_unmap_vmap_area(struct vmap_area *va)
  512. {
  513. flush_cache_vunmap(va->va_start, va->va_end);
  514. free_unmap_vmap_area_noflush(va);
  515. }
  516. static struct vmap_area *find_vmap_area(unsigned long addr)
  517. {
  518. struct vmap_area *va;
  519. spin_lock(&vmap_area_lock);
  520. va = __find_vmap_area(addr);
  521. spin_unlock(&vmap_area_lock);
  522. return va;
  523. }
  524. static void free_unmap_vmap_area_addr(unsigned long addr)
  525. {
  526. struct vmap_area *va;
  527. va = find_vmap_area(addr);
  528. BUG_ON(!va);
  529. free_unmap_vmap_area(va);
  530. }
  531. /*** Per cpu kva allocator ***/
  532. /*
  533. * vmap space is limited especially on 32 bit architectures. Ensure there is
  534. * room for at least 16 percpu vmap blocks per CPU.
  535. */
  536. /*
  537. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  538. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  539. * instead (we just need a rough idea)
  540. */
  541. #if BITS_PER_LONG == 32
  542. #define VMALLOC_SPACE (128UL*1024*1024)
  543. #else
  544. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  545. #endif
  546. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  547. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  548. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  549. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  550. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  551. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  552. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  553. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  554. VMALLOC_PAGES / NR_CPUS / 16))
  555. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  556. static bool vmap_initialized __read_mostly = false;
  557. struct vmap_block_queue {
  558. spinlock_t lock;
  559. struct list_head free;
  560. struct list_head dirty;
  561. unsigned int nr_dirty;
  562. };
  563. struct vmap_block {
  564. spinlock_t lock;
  565. struct vmap_area *va;
  566. struct vmap_block_queue *vbq;
  567. unsigned long free, dirty;
  568. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  569. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  570. union {
  571. struct {
  572. struct list_head free_list;
  573. struct list_head dirty_list;
  574. };
  575. struct rcu_head rcu_head;
  576. };
  577. };
  578. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  579. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  580. /*
  581. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  582. * in the free path. Could get rid of this if we change the API to return a
  583. * "cookie" from alloc, to be passed to free. But no big deal yet.
  584. */
  585. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  586. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  587. /*
  588. * We should probably have a fallback mechanism to allocate virtual memory
  589. * out of partially filled vmap blocks. However vmap block sizing should be
  590. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  591. * big problem.
  592. */
  593. static unsigned long addr_to_vb_idx(unsigned long addr)
  594. {
  595. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  596. addr /= VMAP_BLOCK_SIZE;
  597. return addr;
  598. }
  599. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  600. {
  601. struct vmap_block_queue *vbq;
  602. struct vmap_block *vb;
  603. struct vmap_area *va;
  604. unsigned long vb_idx;
  605. int node, err;
  606. node = numa_node_id();
  607. vb = kmalloc_node(sizeof(struct vmap_block),
  608. gfp_mask & GFP_RECLAIM_MASK, node);
  609. if (unlikely(!vb))
  610. return ERR_PTR(-ENOMEM);
  611. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  612. VMALLOC_START, VMALLOC_END,
  613. node, gfp_mask);
  614. if (unlikely(IS_ERR(va))) {
  615. kfree(vb);
  616. return ERR_PTR(PTR_ERR(va));
  617. }
  618. err = radix_tree_preload(gfp_mask);
  619. if (unlikely(err)) {
  620. kfree(vb);
  621. free_vmap_area(va);
  622. return ERR_PTR(err);
  623. }
  624. spin_lock_init(&vb->lock);
  625. vb->va = va;
  626. vb->free = VMAP_BBMAP_BITS;
  627. vb->dirty = 0;
  628. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  629. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  630. INIT_LIST_HEAD(&vb->free_list);
  631. INIT_LIST_HEAD(&vb->dirty_list);
  632. vb_idx = addr_to_vb_idx(va->va_start);
  633. spin_lock(&vmap_block_tree_lock);
  634. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  635. spin_unlock(&vmap_block_tree_lock);
  636. BUG_ON(err);
  637. radix_tree_preload_end();
  638. vbq = &get_cpu_var(vmap_block_queue);
  639. vb->vbq = vbq;
  640. spin_lock(&vbq->lock);
  641. list_add(&vb->free_list, &vbq->free);
  642. spin_unlock(&vbq->lock);
  643. put_cpu_var(vmap_cpu_blocks);
  644. return vb;
  645. }
  646. static void rcu_free_vb(struct rcu_head *head)
  647. {
  648. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  649. kfree(vb);
  650. }
  651. static void free_vmap_block(struct vmap_block *vb)
  652. {
  653. struct vmap_block *tmp;
  654. unsigned long vb_idx;
  655. spin_lock(&vb->vbq->lock);
  656. if (!list_empty(&vb->free_list))
  657. list_del(&vb->free_list);
  658. if (!list_empty(&vb->dirty_list))
  659. list_del(&vb->dirty_list);
  660. spin_unlock(&vb->vbq->lock);
  661. vb_idx = addr_to_vb_idx(vb->va->va_start);
  662. spin_lock(&vmap_block_tree_lock);
  663. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  664. spin_unlock(&vmap_block_tree_lock);
  665. BUG_ON(tmp != vb);
  666. free_unmap_vmap_area_noflush(vb->va);
  667. call_rcu(&vb->rcu_head, rcu_free_vb);
  668. }
  669. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  670. {
  671. struct vmap_block_queue *vbq;
  672. struct vmap_block *vb;
  673. unsigned long addr = 0;
  674. unsigned int order;
  675. BUG_ON(size & ~PAGE_MASK);
  676. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  677. order = get_order(size);
  678. again:
  679. rcu_read_lock();
  680. vbq = &get_cpu_var(vmap_block_queue);
  681. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  682. int i;
  683. spin_lock(&vb->lock);
  684. i = bitmap_find_free_region(vb->alloc_map,
  685. VMAP_BBMAP_BITS, order);
  686. if (i >= 0) {
  687. addr = vb->va->va_start + (i << PAGE_SHIFT);
  688. BUG_ON(addr_to_vb_idx(addr) !=
  689. addr_to_vb_idx(vb->va->va_start));
  690. vb->free -= 1UL << order;
  691. if (vb->free == 0) {
  692. spin_lock(&vbq->lock);
  693. list_del_init(&vb->free_list);
  694. spin_unlock(&vbq->lock);
  695. }
  696. spin_unlock(&vb->lock);
  697. break;
  698. }
  699. spin_unlock(&vb->lock);
  700. }
  701. put_cpu_var(vmap_cpu_blocks);
  702. rcu_read_unlock();
  703. if (!addr) {
  704. vb = new_vmap_block(gfp_mask);
  705. if (IS_ERR(vb))
  706. return vb;
  707. goto again;
  708. }
  709. return (void *)addr;
  710. }
  711. static void vb_free(const void *addr, unsigned long size)
  712. {
  713. unsigned long offset;
  714. unsigned long vb_idx;
  715. unsigned int order;
  716. struct vmap_block *vb;
  717. BUG_ON(size & ~PAGE_MASK);
  718. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  719. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  720. order = get_order(size);
  721. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  722. vb_idx = addr_to_vb_idx((unsigned long)addr);
  723. rcu_read_lock();
  724. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  725. rcu_read_unlock();
  726. BUG_ON(!vb);
  727. spin_lock(&vb->lock);
  728. bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
  729. if (!vb->dirty) {
  730. spin_lock(&vb->vbq->lock);
  731. list_add(&vb->dirty_list, &vb->vbq->dirty);
  732. spin_unlock(&vb->vbq->lock);
  733. }
  734. vb->dirty += 1UL << order;
  735. if (vb->dirty == VMAP_BBMAP_BITS) {
  736. BUG_ON(vb->free || !list_empty(&vb->free_list));
  737. spin_unlock(&vb->lock);
  738. free_vmap_block(vb);
  739. } else
  740. spin_unlock(&vb->lock);
  741. }
  742. /**
  743. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  744. *
  745. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  746. * to amortize TLB flushing overheads. What this means is that any page you
  747. * have now, may, in a former life, have been mapped into kernel virtual
  748. * address by the vmap layer and so there might be some CPUs with TLB entries
  749. * still referencing that page (additional to the regular 1:1 kernel mapping).
  750. *
  751. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  752. * be sure that none of the pages we have control over will have any aliases
  753. * from the vmap layer.
  754. */
  755. void vm_unmap_aliases(void)
  756. {
  757. unsigned long start = ULONG_MAX, end = 0;
  758. int cpu;
  759. int flush = 0;
  760. if (unlikely(!vmap_initialized))
  761. return;
  762. for_each_possible_cpu(cpu) {
  763. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  764. struct vmap_block *vb;
  765. rcu_read_lock();
  766. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  767. int i;
  768. spin_lock(&vb->lock);
  769. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  770. while (i < VMAP_BBMAP_BITS) {
  771. unsigned long s, e;
  772. int j;
  773. j = find_next_zero_bit(vb->dirty_map,
  774. VMAP_BBMAP_BITS, i);
  775. s = vb->va->va_start + (i << PAGE_SHIFT);
  776. e = vb->va->va_start + (j << PAGE_SHIFT);
  777. vunmap_page_range(s, e);
  778. flush = 1;
  779. if (s < start)
  780. start = s;
  781. if (e > end)
  782. end = e;
  783. i = j;
  784. i = find_next_bit(vb->dirty_map,
  785. VMAP_BBMAP_BITS, i);
  786. }
  787. spin_unlock(&vb->lock);
  788. }
  789. rcu_read_unlock();
  790. }
  791. __purge_vmap_area_lazy(&start, &end, 1, flush);
  792. }
  793. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  794. /**
  795. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  796. * @mem: the pointer returned by vm_map_ram
  797. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  798. */
  799. void vm_unmap_ram(const void *mem, unsigned int count)
  800. {
  801. unsigned long size = count << PAGE_SHIFT;
  802. unsigned long addr = (unsigned long)mem;
  803. BUG_ON(!addr);
  804. BUG_ON(addr < VMALLOC_START);
  805. BUG_ON(addr > VMALLOC_END);
  806. BUG_ON(addr & (PAGE_SIZE-1));
  807. debug_check_no_locks_freed(mem, size);
  808. vmap_debug_free_range(addr, addr+size);
  809. if (likely(count <= VMAP_MAX_ALLOC))
  810. vb_free(mem, size);
  811. else
  812. free_unmap_vmap_area_addr(addr);
  813. }
  814. EXPORT_SYMBOL(vm_unmap_ram);
  815. /**
  816. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  817. * @pages: an array of pointers to the pages to be mapped
  818. * @count: number of pages
  819. * @node: prefer to allocate data structures on this node
  820. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  821. *
  822. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  823. */
  824. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  825. {
  826. unsigned long size = count << PAGE_SHIFT;
  827. unsigned long addr;
  828. void *mem;
  829. if (likely(count <= VMAP_MAX_ALLOC)) {
  830. mem = vb_alloc(size, GFP_KERNEL);
  831. if (IS_ERR(mem))
  832. return NULL;
  833. addr = (unsigned long)mem;
  834. } else {
  835. struct vmap_area *va;
  836. va = alloc_vmap_area(size, PAGE_SIZE,
  837. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  838. if (IS_ERR(va))
  839. return NULL;
  840. addr = va->va_start;
  841. mem = (void *)addr;
  842. }
  843. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  844. vm_unmap_ram(mem, count);
  845. return NULL;
  846. }
  847. return mem;
  848. }
  849. EXPORT_SYMBOL(vm_map_ram);
  850. /**
  851. * vm_area_register_early - register vmap area early during boot
  852. * @vm: vm_struct to register
  853. * @align: requested alignment
  854. *
  855. * This function is used to register kernel vm area before
  856. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  857. * proper values on entry and other fields should be zero. On return,
  858. * vm->addr contains the allocated address.
  859. *
  860. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  861. */
  862. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  863. {
  864. static size_t vm_init_off __initdata;
  865. unsigned long addr;
  866. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  867. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  868. vm->addr = (void *)addr;
  869. vm->next = vmlist;
  870. vmlist = vm;
  871. }
  872. void __init vmalloc_init(void)
  873. {
  874. struct vmap_area *va;
  875. struct vm_struct *tmp;
  876. int i;
  877. for_each_possible_cpu(i) {
  878. struct vmap_block_queue *vbq;
  879. vbq = &per_cpu(vmap_block_queue, i);
  880. spin_lock_init(&vbq->lock);
  881. INIT_LIST_HEAD(&vbq->free);
  882. INIT_LIST_HEAD(&vbq->dirty);
  883. vbq->nr_dirty = 0;
  884. }
  885. /* Import existing vmlist entries. */
  886. for (tmp = vmlist; tmp; tmp = tmp->next) {
  887. va = alloc_bootmem(sizeof(struct vmap_area));
  888. va->flags = tmp->flags | VM_VM_AREA;
  889. va->va_start = (unsigned long)tmp->addr;
  890. va->va_end = va->va_start + tmp->size;
  891. __insert_vmap_area(va);
  892. }
  893. vmap_initialized = true;
  894. }
  895. /**
  896. * map_kernel_range_noflush - map kernel VM area with the specified pages
  897. * @addr: start of the VM area to map
  898. * @size: size of the VM area to map
  899. * @prot: page protection flags to use
  900. * @pages: pages to map
  901. *
  902. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  903. * specify should have been allocated using get_vm_area() and its
  904. * friends.
  905. *
  906. * NOTE:
  907. * This function does NOT do any cache flushing. The caller is
  908. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  909. * before calling this function.
  910. *
  911. * RETURNS:
  912. * The number of pages mapped on success, -errno on failure.
  913. */
  914. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  915. pgprot_t prot, struct page **pages)
  916. {
  917. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  918. }
  919. /**
  920. * unmap_kernel_range_noflush - unmap kernel VM area
  921. * @addr: start of the VM area to unmap
  922. * @size: size of the VM area to unmap
  923. *
  924. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  925. * specify should have been allocated using get_vm_area() and its
  926. * friends.
  927. *
  928. * NOTE:
  929. * This function does NOT do any cache flushing. The caller is
  930. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  931. * before calling this function and flush_tlb_kernel_range() after.
  932. */
  933. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  934. {
  935. vunmap_page_range(addr, addr + size);
  936. }
  937. /**
  938. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  939. * @addr: start of the VM area to unmap
  940. * @size: size of the VM area to unmap
  941. *
  942. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  943. * the unmapping and tlb after.
  944. */
  945. void unmap_kernel_range(unsigned long addr, unsigned long size)
  946. {
  947. unsigned long end = addr + size;
  948. flush_cache_vunmap(addr, end);
  949. vunmap_page_range(addr, end);
  950. flush_tlb_kernel_range(addr, end);
  951. }
  952. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  953. {
  954. unsigned long addr = (unsigned long)area->addr;
  955. unsigned long end = addr + area->size - PAGE_SIZE;
  956. int err;
  957. err = vmap_page_range(addr, end, prot, *pages);
  958. if (err > 0) {
  959. *pages += err;
  960. err = 0;
  961. }
  962. return err;
  963. }
  964. EXPORT_SYMBOL_GPL(map_vm_area);
  965. /*** Old vmalloc interfaces ***/
  966. DEFINE_RWLOCK(vmlist_lock);
  967. struct vm_struct *vmlist;
  968. static struct vm_struct *__get_vm_area_node(unsigned long size,
  969. unsigned long flags, unsigned long start, unsigned long end,
  970. int node, gfp_t gfp_mask, void *caller)
  971. {
  972. static struct vmap_area *va;
  973. struct vm_struct *area;
  974. struct vm_struct *tmp, **p;
  975. unsigned long align = 1;
  976. BUG_ON(in_interrupt());
  977. if (flags & VM_IOREMAP) {
  978. int bit = fls(size);
  979. if (bit > IOREMAP_MAX_ORDER)
  980. bit = IOREMAP_MAX_ORDER;
  981. else if (bit < PAGE_SHIFT)
  982. bit = PAGE_SHIFT;
  983. align = 1ul << bit;
  984. }
  985. size = PAGE_ALIGN(size);
  986. if (unlikely(!size))
  987. return NULL;
  988. area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  989. if (unlikely(!area))
  990. return NULL;
  991. /*
  992. * We always allocate a guard page.
  993. */
  994. size += PAGE_SIZE;
  995. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  996. if (IS_ERR(va)) {
  997. kfree(area);
  998. return NULL;
  999. }
  1000. area->flags = flags;
  1001. area->addr = (void *)va->va_start;
  1002. area->size = size;
  1003. area->pages = NULL;
  1004. area->nr_pages = 0;
  1005. area->phys_addr = 0;
  1006. area->caller = caller;
  1007. va->private = area;
  1008. va->flags |= VM_VM_AREA;
  1009. write_lock(&vmlist_lock);
  1010. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1011. if (tmp->addr >= area->addr)
  1012. break;
  1013. }
  1014. area->next = *p;
  1015. *p = area;
  1016. write_unlock(&vmlist_lock);
  1017. return area;
  1018. }
  1019. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1020. unsigned long start, unsigned long end)
  1021. {
  1022. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  1023. __builtin_return_address(0));
  1024. }
  1025. EXPORT_SYMBOL_GPL(__get_vm_area);
  1026. /**
  1027. * get_vm_area - reserve a contiguous kernel virtual area
  1028. * @size: size of the area
  1029. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1030. *
  1031. * Search an area of @size in the kernel virtual mapping area,
  1032. * and reserved it for out purposes. Returns the area descriptor
  1033. * on success or %NULL on failure.
  1034. */
  1035. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1036. {
  1037. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1038. -1, GFP_KERNEL, __builtin_return_address(0));
  1039. }
  1040. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1041. void *caller)
  1042. {
  1043. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1044. -1, GFP_KERNEL, caller);
  1045. }
  1046. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  1047. int node, gfp_t gfp_mask)
  1048. {
  1049. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
  1050. gfp_mask, __builtin_return_address(0));
  1051. }
  1052. static struct vm_struct *find_vm_area(const void *addr)
  1053. {
  1054. struct vmap_area *va;
  1055. va = find_vmap_area((unsigned long)addr);
  1056. if (va && va->flags & VM_VM_AREA)
  1057. return va->private;
  1058. return NULL;
  1059. }
  1060. /**
  1061. * remove_vm_area - find and remove a continuous kernel virtual area
  1062. * @addr: base address
  1063. *
  1064. * Search for the kernel VM area starting at @addr, and remove it.
  1065. * This function returns the found VM area, but using it is NOT safe
  1066. * on SMP machines, except for its size or flags.
  1067. */
  1068. struct vm_struct *remove_vm_area(const void *addr)
  1069. {
  1070. struct vmap_area *va;
  1071. va = find_vmap_area((unsigned long)addr);
  1072. if (va && va->flags & VM_VM_AREA) {
  1073. struct vm_struct *vm = va->private;
  1074. struct vm_struct *tmp, **p;
  1075. vmap_debug_free_range(va->va_start, va->va_end);
  1076. free_unmap_vmap_area(va);
  1077. vm->size -= PAGE_SIZE;
  1078. write_lock(&vmlist_lock);
  1079. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1080. ;
  1081. *p = tmp->next;
  1082. write_unlock(&vmlist_lock);
  1083. return vm;
  1084. }
  1085. return NULL;
  1086. }
  1087. static void __vunmap(const void *addr, int deallocate_pages)
  1088. {
  1089. struct vm_struct *area;
  1090. if (!addr)
  1091. return;
  1092. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1093. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1094. return;
  1095. }
  1096. area = remove_vm_area(addr);
  1097. if (unlikely(!area)) {
  1098. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1099. addr);
  1100. return;
  1101. }
  1102. debug_check_no_locks_freed(addr, area->size);
  1103. debug_check_no_obj_freed(addr, area->size);
  1104. if (deallocate_pages) {
  1105. int i;
  1106. for (i = 0; i < area->nr_pages; i++) {
  1107. struct page *page = area->pages[i];
  1108. BUG_ON(!page);
  1109. __free_page(page);
  1110. }
  1111. if (area->flags & VM_VPAGES)
  1112. vfree(area->pages);
  1113. else
  1114. kfree(area->pages);
  1115. }
  1116. kfree(area);
  1117. return;
  1118. }
  1119. /**
  1120. * vfree - release memory allocated by vmalloc()
  1121. * @addr: memory base address
  1122. *
  1123. * Free the virtually continuous memory area starting at @addr, as
  1124. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1125. * NULL, no operation is performed.
  1126. *
  1127. * Must not be called in interrupt context.
  1128. */
  1129. void vfree(const void *addr)
  1130. {
  1131. BUG_ON(in_interrupt());
  1132. __vunmap(addr, 1);
  1133. }
  1134. EXPORT_SYMBOL(vfree);
  1135. /**
  1136. * vunmap - release virtual mapping obtained by vmap()
  1137. * @addr: memory base address
  1138. *
  1139. * Free the virtually contiguous memory area starting at @addr,
  1140. * which was created from the page array passed to vmap().
  1141. *
  1142. * Must not be called in interrupt context.
  1143. */
  1144. void vunmap(const void *addr)
  1145. {
  1146. BUG_ON(in_interrupt());
  1147. __vunmap(addr, 0);
  1148. }
  1149. EXPORT_SYMBOL(vunmap);
  1150. /**
  1151. * vmap - map an array of pages into virtually contiguous space
  1152. * @pages: array of page pointers
  1153. * @count: number of pages to map
  1154. * @flags: vm_area->flags
  1155. * @prot: page protection for the mapping
  1156. *
  1157. * Maps @count pages from @pages into contiguous kernel virtual
  1158. * space.
  1159. */
  1160. void *vmap(struct page **pages, unsigned int count,
  1161. unsigned long flags, pgprot_t prot)
  1162. {
  1163. struct vm_struct *area;
  1164. if (count > num_physpages)
  1165. return NULL;
  1166. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1167. __builtin_return_address(0));
  1168. if (!area)
  1169. return NULL;
  1170. if (map_vm_area(area, prot, &pages)) {
  1171. vunmap(area->addr);
  1172. return NULL;
  1173. }
  1174. return area->addr;
  1175. }
  1176. EXPORT_SYMBOL(vmap);
  1177. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1178. int node, void *caller);
  1179. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1180. pgprot_t prot, int node, void *caller)
  1181. {
  1182. struct page **pages;
  1183. unsigned int nr_pages, array_size, i;
  1184. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1185. array_size = (nr_pages * sizeof(struct page *));
  1186. area->nr_pages = nr_pages;
  1187. /* Please note that the recursion is strictly bounded. */
  1188. if (array_size > PAGE_SIZE) {
  1189. pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
  1190. PAGE_KERNEL, node, caller);
  1191. area->flags |= VM_VPAGES;
  1192. } else {
  1193. pages = kmalloc_node(array_size,
  1194. (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
  1195. node);
  1196. }
  1197. area->pages = pages;
  1198. area->caller = caller;
  1199. if (!area->pages) {
  1200. remove_vm_area(area->addr);
  1201. kfree(area);
  1202. return NULL;
  1203. }
  1204. for (i = 0; i < area->nr_pages; i++) {
  1205. struct page *page;
  1206. if (node < 0)
  1207. page = alloc_page(gfp_mask);
  1208. else
  1209. page = alloc_pages_node(node, gfp_mask, 0);
  1210. if (unlikely(!page)) {
  1211. /* Successfully allocated i pages, free them in __vunmap() */
  1212. area->nr_pages = i;
  1213. goto fail;
  1214. }
  1215. area->pages[i] = page;
  1216. }
  1217. if (map_vm_area(area, prot, &pages))
  1218. goto fail;
  1219. return area->addr;
  1220. fail:
  1221. vfree(area->addr);
  1222. return NULL;
  1223. }
  1224. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1225. {
  1226. return __vmalloc_area_node(area, gfp_mask, prot, -1,
  1227. __builtin_return_address(0));
  1228. }
  1229. /**
  1230. * __vmalloc_node - allocate virtually contiguous memory
  1231. * @size: allocation size
  1232. * @gfp_mask: flags for the page level allocator
  1233. * @prot: protection mask for the allocated pages
  1234. * @node: node to use for allocation or -1
  1235. * @caller: caller's return address
  1236. *
  1237. * Allocate enough pages to cover @size from the page level
  1238. * allocator with @gfp_mask flags. Map them into contiguous
  1239. * kernel virtual space, using a pagetable protection of @prot.
  1240. */
  1241. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1242. int node, void *caller)
  1243. {
  1244. struct vm_struct *area;
  1245. size = PAGE_ALIGN(size);
  1246. if (!size || (size >> PAGE_SHIFT) > num_physpages)
  1247. return NULL;
  1248. area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
  1249. node, gfp_mask, caller);
  1250. if (!area)
  1251. return NULL;
  1252. return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1253. }
  1254. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1255. {
  1256. return __vmalloc_node(size, gfp_mask, prot, -1,
  1257. __builtin_return_address(0));
  1258. }
  1259. EXPORT_SYMBOL(__vmalloc);
  1260. /**
  1261. * vmalloc - allocate virtually contiguous memory
  1262. * @size: allocation size
  1263. * Allocate enough pages to cover @size from the page level
  1264. * allocator and map them into contiguous kernel virtual space.
  1265. *
  1266. * For tight control over page level allocator and protection flags
  1267. * use __vmalloc() instead.
  1268. */
  1269. void *vmalloc(unsigned long size)
  1270. {
  1271. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1272. -1, __builtin_return_address(0));
  1273. }
  1274. EXPORT_SYMBOL(vmalloc);
  1275. /**
  1276. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1277. * @size: allocation size
  1278. *
  1279. * The resulting memory area is zeroed so it can be mapped to userspace
  1280. * without leaking data.
  1281. */
  1282. void *vmalloc_user(unsigned long size)
  1283. {
  1284. struct vm_struct *area;
  1285. void *ret;
  1286. ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1287. PAGE_KERNEL, -1, __builtin_return_address(0));
  1288. if (ret) {
  1289. area = find_vm_area(ret);
  1290. area->flags |= VM_USERMAP;
  1291. }
  1292. return ret;
  1293. }
  1294. EXPORT_SYMBOL(vmalloc_user);
  1295. /**
  1296. * vmalloc_node - allocate memory on a specific node
  1297. * @size: allocation size
  1298. * @node: numa node
  1299. *
  1300. * Allocate enough pages to cover @size from the page level
  1301. * allocator and map them into contiguous kernel virtual space.
  1302. *
  1303. * For tight control over page level allocator and protection flags
  1304. * use __vmalloc() instead.
  1305. */
  1306. void *vmalloc_node(unsigned long size, int node)
  1307. {
  1308. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1309. node, __builtin_return_address(0));
  1310. }
  1311. EXPORT_SYMBOL(vmalloc_node);
  1312. #ifndef PAGE_KERNEL_EXEC
  1313. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1314. #endif
  1315. /**
  1316. * vmalloc_exec - allocate virtually contiguous, executable memory
  1317. * @size: allocation size
  1318. *
  1319. * Kernel-internal function to allocate enough pages to cover @size
  1320. * the page level allocator and map them into contiguous and
  1321. * executable kernel virtual space.
  1322. *
  1323. * For tight control over page level allocator and protection flags
  1324. * use __vmalloc() instead.
  1325. */
  1326. void *vmalloc_exec(unsigned long size)
  1327. {
  1328. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1329. -1, __builtin_return_address(0));
  1330. }
  1331. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1332. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1333. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1334. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1335. #else
  1336. #define GFP_VMALLOC32 GFP_KERNEL
  1337. #endif
  1338. /**
  1339. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1340. * @size: allocation size
  1341. *
  1342. * Allocate enough 32bit PA addressable pages to cover @size from the
  1343. * page level allocator and map them into contiguous kernel virtual space.
  1344. */
  1345. void *vmalloc_32(unsigned long size)
  1346. {
  1347. return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
  1348. -1, __builtin_return_address(0));
  1349. }
  1350. EXPORT_SYMBOL(vmalloc_32);
  1351. /**
  1352. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1353. * @size: allocation size
  1354. *
  1355. * The resulting memory area is 32bit addressable and zeroed so it can be
  1356. * mapped to userspace without leaking data.
  1357. */
  1358. void *vmalloc_32_user(unsigned long size)
  1359. {
  1360. struct vm_struct *area;
  1361. void *ret;
  1362. ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1363. -1, __builtin_return_address(0));
  1364. if (ret) {
  1365. area = find_vm_area(ret);
  1366. area->flags |= VM_USERMAP;
  1367. }
  1368. return ret;
  1369. }
  1370. EXPORT_SYMBOL(vmalloc_32_user);
  1371. long vread(char *buf, char *addr, unsigned long count)
  1372. {
  1373. struct vm_struct *tmp;
  1374. char *vaddr, *buf_start = buf;
  1375. unsigned long n;
  1376. /* Don't allow overflow */
  1377. if ((unsigned long) addr + count < count)
  1378. count = -(unsigned long) addr;
  1379. read_lock(&vmlist_lock);
  1380. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1381. vaddr = (char *) tmp->addr;
  1382. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1383. continue;
  1384. while (addr < vaddr) {
  1385. if (count == 0)
  1386. goto finished;
  1387. *buf = '\0';
  1388. buf++;
  1389. addr++;
  1390. count--;
  1391. }
  1392. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1393. do {
  1394. if (count == 0)
  1395. goto finished;
  1396. *buf = *addr;
  1397. buf++;
  1398. addr++;
  1399. count--;
  1400. } while (--n > 0);
  1401. }
  1402. finished:
  1403. read_unlock(&vmlist_lock);
  1404. return buf - buf_start;
  1405. }
  1406. long vwrite(char *buf, char *addr, unsigned long count)
  1407. {
  1408. struct vm_struct *tmp;
  1409. char *vaddr, *buf_start = buf;
  1410. unsigned long n;
  1411. /* Don't allow overflow */
  1412. if ((unsigned long) addr + count < count)
  1413. count = -(unsigned long) addr;
  1414. read_lock(&vmlist_lock);
  1415. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1416. vaddr = (char *) tmp->addr;
  1417. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1418. continue;
  1419. while (addr < vaddr) {
  1420. if (count == 0)
  1421. goto finished;
  1422. buf++;
  1423. addr++;
  1424. count--;
  1425. }
  1426. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1427. do {
  1428. if (count == 0)
  1429. goto finished;
  1430. *addr = *buf;
  1431. buf++;
  1432. addr++;
  1433. count--;
  1434. } while (--n > 0);
  1435. }
  1436. finished:
  1437. read_unlock(&vmlist_lock);
  1438. return buf - buf_start;
  1439. }
  1440. /**
  1441. * remap_vmalloc_range - map vmalloc pages to userspace
  1442. * @vma: vma to cover (map full range of vma)
  1443. * @addr: vmalloc memory
  1444. * @pgoff: number of pages into addr before first page to map
  1445. *
  1446. * Returns: 0 for success, -Exxx on failure
  1447. *
  1448. * This function checks that addr is a valid vmalloc'ed area, and
  1449. * that it is big enough to cover the vma. Will return failure if
  1450. * that criteria isn't met.
  1451. *
  1452. * Similar to remap_pfn_range() (see mm/memory.c)
  1453. */
  1454. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1455. unsigned long pgoff)
  1456. {
  1457. struct vm_struct *area;
  1458. unsigned long uaddr = vma->vm_start;
  1459. unsigned long usize = vma->vm_end - vma->vm_start;
  1460. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1461. return -EINVAL;
  1462. area = find_vm_area(addr);
  1463. if (!area)
  1464. return -EINVAL;
  1465. if (!(area->flags & VM_USERMAP))
  1466. return -EINVAL;
  1467. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1468. return -EINVAL;
  1469. addr += pgoff << PAGE_SHIFT;
  1470. do {
  1471. struct page *page = vmalloc_to_page(addr);
  1472. int ret;
  1473. ret = vm_insert_page(vma, uaddr, page);
  1474. if (ret)
  1475. return ret;
  1476. uaddr += PAGE_SIZE;
  1477. addr += PAGE_SIZE;
  1478. usize -= PAGE_SIZE;
  1479. } while (usize > 0);
  1480. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1481. vma->vm_flags |= VM_RESERVED;
  1482. return 0;
  1483. }
  1484. EXPORT_SYMBOL(remap_vmalloc_range);
  1485. /*
  1486. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1487. * have one.
  1488. */
  1489. void __attribute__((weak)) vmalloc_sync_all(void)
  1490. {
  1491. }
  1492. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1493. {
  1494. /* apply_to_page_range() does all the hard work. */
  1495. return 0;
  1496. }
  1497. /**
  1498. * alloc_vm_area - allocate a range of kernel address space
  1499. * @size: size of the area
  1500. *
  1501. * Returns: NULL on failure, vm_struct on success
  1502. *
  1503. * This function reserves a range of kernel address space, and
  1504. * allocates pagetables to map that range. No actual mappings
  1505. * are created. If the kernel address space is not shared
  1506. * between processes, it syncs the pagetable across all
  1507. * processes.
  1508. */
  1509. struct vm_struct *alloc_vm_area(size_t size)
  1510. {
  1511. struct vm_struct *area;
  1512. area = get_vm_area_caller(size, VM_IOREMAP,
  1513. __builtin_return_address(0));
  1514. if (area == NULL)
  1515. return NULL;
  1516. /*
  1517. * This ensures that page tables are constructed for this region
  1518. * of kernel virtual address space and mapped into init_mm.
  1519. */
  1520. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1521. area->size, f, NULL)) {
  1522. free_vm_area(area);
  1523. return NULL;
  1524. }
  1525. /* Make sure the pagetables are constructed in process kernel
  1526. mappings */
  1527. vmalloc_sync_all();
  1528. return area;
  1529. }
  1530. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1531. void free_vm_area(struct vm_struct *area)
  1532. {
  1533. struct vm_struct *ret;
  1534. ret = remove_vm_area(area->addr);
  1535. BUG_ON(ret != area);
  1536. kfree(area);
  1537. }
  1538. EXPORT_SYMBOL_GPL(free_vm_area);
  1539. #ifdef CONFIG_PROC_FS
  1540. static void *s_start(struct seq_file *m, loff_t *pos)
  1541. {
  1542. loff_t n = *pos;
  1543. struct vm_struct *v;
  1544. read_lock(&vmlist_lock);
  1545. v = vmlist;
  1546. while (n > 0 && v) {
  1547. n--;
  1548. v = v->next;
  1549. }
  1550. if (!n)
  1551. return v;
  1552. return NULL;
  1553. }
  1554. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  1555. {
  1556. struct vm_struct *v = p;
  1557. ++*pos;
  1558. return v->next;
  1559. }
  1560. static void s_stop(struct seq_file *m, void *p)
  1561. {
  1562. read_unlock(&vmlist_lock);
  1563. }
  1564. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  1565. {
  1566. if (NUMA_BUILD) {
  1567. unsigned int nr, *counters = m->private;
  1568. if (!counters)
  1569. return;
  1570. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  1571. for (nr = 0; nr < v->nr_pages; nr++)
  1572. counters[page_to_nid(v->pages[nr])]++;
  1573. for_each_node_state(nr, N_HIGH_MEMORY)
  1574. if (counters[nr])
  1575. seq_printf(m, " N%u=%u", nr, counters[nr]);
  1576. }
  1577. }
  1578. static int s_show(struct seq_file *m, void *p)
  1579. {
  1580. struct vm_struct *v = p;
  1581. seq_printf(m, "0x%p-0x%p %7ld",
  1582. v->addr, v->addr + v->size, v->size);
  1583. if (v->caller) {
  1584. char buff[KSYM_SYMBOL_LEN];
  1585. seq_putc(m, ' ');
  1586. sprint_symbol(buff, (unsigned long)v->caller);
  1587. seq_puts(m, buff);
  1588. }
  1589. if (v->nr_pages)
  1590. seq_printf(m, " pages=%d", v->nr_pages);
  1591. if (v->phys_addr)
  1592. seq_printf(m, " phys=%lx", v->phys_addr);
  1593. if (v->flags & VM_IOREMAP)
  1594. seq_printf(m, " ioremap");
  1595. if (v->flags & VM_ALLOC)
  1596. seq_printf(m, " vmalloc");
  1597. if (v->flags & VM_MAP)
  1598. seq_printf(m, " vmap");
  1599. if (v->flags & VM_USERMAP)
  1600. seq_printf(m, " user");
  1601. if (v->flags & VM_VPAGES)
  1602. seq_printf(m, " vpages");
  1603. show_numa_info(m, v);
  1604. seq_putc(m, '\n');
  1605. return 0;
  1606. }
  1607. static const struct seq_operations vmalloc_op = {
  1608. .start = s_start,
  1609. .next = s_next,
  1610. .stop = s_stop,
  1611. .show = s_show,
  1612. };
  1613. static int vmalloc_open(struct inode *inode, struct file *file)
  1614. {
  1615. unsigned int *ptr = NULL;
  1616. int ret;
  1617. if (NUMA_BUILD)
  1618. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  1619. ret = seq_open(file, &vmalloc_op);
  1620. if (!ret) {
  1621. struct seq_file *m = file->private_data;
  1622. m->private = ptr;
  1623. } else
  1624. kfree(ptr);
  1625. return ret;
  1626. }
  1627. static const struct file_operations proc_vmalloc_operations = {
  1628. .open = vmalloc_open,
  1629. .read = seq_read,
  1630. .llseek = seq_lseek,
  1631. .release = seq_release_private,
  1632. };
  1633. static int __init proc_vmalloc_init(void)
  1634. {
  1635. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  1636. return 0;
  1637. }
  1638. module_init(proc_vmalloc_init);
  1639. #endif