input.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  12. #include <linux/init.h>
  13. #include <linux/types.h>
  14. #include <linux/input/mt.h>
  15. #include <linux/module.h>
  16. #include <linux/slab.h>
  17. #include <linux/random.h>
  18. #include <linux/major.h>
  19. #include <linux/proc_fs.h>
  20. #include <linux/sched.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/poll.h>
  23. #include <linux/device.h>
  24. #include <linux/mutex.h>
  25. #include <linux/rcupdate.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. static LIST_HEAD(input_dev_list);
  32. static LIST_HEAD(input_handler_list);
  33. /*
  34. * input_mutex protects access to both input_dev_list and input_handler_list.
  35. * This also causes input_[un]register_device and input_[un]register_handler
  36. * be mutually exclusive which simplifies locking in drivers implementing
  37. * input handlers.
  38. */
  39. static DEFINE_MUTEX(input_mutex);
  40. static struct input_handler *input_table[8];
  41. static inline int is_event_supported(unsigned int code,
  42. unsigned long *bm, unsigned int max)
  43. {
  44. return code <= max && test_bit(code, bm);
  45. }
  46. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  47. {
  48. if (fuzz) {
  49. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  50. return old_val;
  51. if (value > old_val - fuzz && value < old_val + fuzz)
  52. return (old_val * 3 + value) / 4;
  53. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  54. return (old_val + value) / 2;
  55. }
  56. return value;
  57. }
  58. /*
  59. * Pass event first through all filters and then, if event has not been
  60. * filtered out, through all open handles. This function is called with
  61. * dev->event_lock held and interrupts disabled.
  62. */
  63. static void input_pass_event(struct input_dev *dev,
  64. unsigned int type, unsigned int code, int value)
  65. {
  66. struct input_handler *handler;
  67. struct input_handle *handle;
  68. rcu_read_lock();
  69. handle = rcu_dereference(dev->grab);
  70. if (handle)
  71. handle->handler->event(handle, type, code, value);
  72. else {
  73. bool filtered = false;
  74. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  75. if (!handle->open)
  76. continue;
  77. handler = handle->handler;
  78. if (!handler->filter) {
  79. if (filtered)
  80. break;
  81. handler->event(handle, type, code, value);
  82. } else if (handler->filter(handle, type, code, value))
  83. filtered = true;
  84. }
  85. }
  86. rcu_read_unlock();
  87. }
  88. /*
  89. * Generate software autorepeat event. Note that we take
  90. * dev->event_lock here to avoid racing with input_event
  91. * which may cause keys get "stuck".
  92. */
  93. static void input_repeat_key(unsigned long data)
  94. {
  95. struct input_dev *dev = (void *) data;
  96. unsigned long flags;
  97. spin_lock_irqsave(&dev->event_lock, flags);
  98. if (test_bit(dev->repeat_key, dev->key) &&
  99. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  100. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  101. if (dev->sync) {
  102. /*
  103. * Only send SYN_REPORT if we are not in a middle
  104. * of driver parsing a new hardware packet.
  105. * Otherwise assume that the driver will send
  106. * SYN_REPORT once it's done.
  107. */
  108. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  109. }
  110. if (dev->rep[REP_PERIOD])
  111. mod_timer(&dev->timer, jiffies +
  112. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  113. }
  114. spin_unlock_irqrestore(&dev->event_lock, flags);
  115. }
  116. static void input_start_autorepeat(struct input_dev *dev, int code)
  117. {
  118. if (test_bit(EV_REP, dev->evbit) &&
  119. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  120. dev->timer.data) {
  121. dev->repeat_key = code;
  122. mod_timer(&dev->timer,
  123. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  124. }
  125. }
  126. static void input_stop_autorepeat(struct input_dev *dev)
  127. {
  128. del_timer(&dev->timer);
  129. }
  130. #define INPUT_IGNORE_EVENT 0
  131. #define INPUT_PASS_TO_HANDLERS 1
  132. #define INPUT_PASS_TO_DEVICE 2
  133. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  134. static int input_handle_abs_event(struct input_dev *dev,
  135. unsigned int code, int *pval)
  136. {
  137. bool is_mt_event;
  138. int *pold;
  139. if (code == ABS_MT_SLOT) {
  140. /*
  141. * "Stage" the event; we'll flush it later, when we
  142. * get actual touch data.
  143. */
  144. if (*pval >= 0 && *pval < dev->mtsize)
  145. dev->slot = *pval;
  146. return INPUT_IGNORE_EVENT;
  147. }
  148. is_mt_event = input_is_mt_value(code);
  149. if (!is_mt_event) {
  150. pold = &dev->absinfo[code].value;
  151. } else if (dev->mt) {
  152. struct input_mt_slot *mtslot = &dev->mt[dev->slot];
  153. pold = &mtslot->abs[code - ABS_MT_FIRST];
  154. } else {
  155. /*
  156. * Bypass filtering for multi-touch events when
  157. * not employing slots.
  158. */
  159. pold = NULL;
  160. }
  161. if (pold) {
  162. *pval = input_defuzz_abs_event(*pval, *pold,
  163. dev->absinfo[code].fuzz);
  164. if (*pold == *pval)
  165. return INPUT_IGNORE_EVENT;
  166. *pold = *pval;
  167. }
  168. /* Flush pending "slot" event */
  169. if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
  170. input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
  171. input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
  172. }
  173. return INPUT_PASS_TO_HANDLERS;
  174. }
  175. static void input_handle_event(struct input_dev *dev,
  176. unsigned int type, unsigned int code, int value)
  177. {
  178. int disposition = INPUT_IGNORE_EVENT;
  179. switch (type) {
  180. case EV_SYN:
  181. switch (code) {
  182. case SYN_CONFIG:
  183. disposition = INPUT_PASS_TO_ALL;
  184. break;
  185. case SYN_REPORT:
  186. if (!dev->sync) {
  187. dev->sync = true;
  188. disposition = INPUT_PASS_TO_HANDLERS;
  189. }
  190. break;
  191. case SYN_MT_REPORT:
  192. dev->sync = false;
  193. disposition = INPUT_PASS_TO_HANDLERS;
  194. break;
  195. }
  196. break;
  197. case EV_KEY:
  198. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  199. !!test_bit(code, dev->key) != value) {
  200. if (value != 2) {
  201. __change_bit(code, dev->key);
  202. if (value)
  203. input_start_autorepeat(dev, code);
  204. else
  205. input_stop_autorepeat(dev);
  206. }
  207. disposition = INPUT_PASS_TO_HANDLERS;
  208. }
  209. break;
  210. case EV_SW:
  211. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  212. !!test_bit(code, dev->sw) != value) {
  213. __change_bit(code, dev->sw);
  214. disposition = INPUT_PASS_TO_HANDLERS;
  215. }
  216. break;
  217. case EV_ABS:
  218. if (is_event_supported(code, dev->absbit, ABS_MAX))
  219. disposition = input_handle_abs_event(dev, code, &value);
  220. break;
  221. case EV_REL:
  222. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  223. disposition = INPUT_PASS_TO_HANDLERS;
  224. break;
  225. case EV_MSC:
  226. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. case EV_LED:
  230. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  231. !!test_bit(code, dev->led) != value) {
  232. __change_bit(code, dev->led);
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_SND:
  237. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  238. if (!!test_bit(code, dev->snd) != !!value)
  239. __change_bit(code, dev->snd);
  240. disposition = INPUT_PASS_TO_ALL;
  241. }
  242. break;
  243. case EV_REP:
  244. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  245. dev->rep[code] = value;
  246. disposition = INPUT_PASS_TO_ALL;
  247. }
  248. break;
  249. case EV_FF:
  250. if (value >= 0)
  251. disposition = INPUT_PASS_TO_ALL;
  252. break;
  253. case EV_PWR:
  254. disposition = INPUT_PASS_TO_ALL;
  255. break;
  256. }
  257. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  258. dev->sync = false;
  259. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  260. dev->event(dev, type, code, value);
  261. if (disposition & INPUT_PASS_TO_HANDLERS)
  262. input_pass_event(dev, type, code, value);
  263. }
  264. /**
  265. * input_event() - report new input event
  266. * @dev: device that generated the event
  267. * @type: type of the event
  268. * @code: event code
  269. * @value: value of the event
  270. *
  271. * This function should be used by drivers implementing various input
  272. * devices to report input events. See also input_inject_event().
  273. *
  274. * NOTE: input_event() may be safely used right after input device was
  275. * allocated with input_allocate_device(), even before it is registered
  276. * with input_register_device(), but the event will not reach any of the
  277. * input handlers. Such early invocation of input_event() may be used
  278. * to 'seed' initial state of a switch or initial position of absolute
  279. * axis, etc.
  280. */
  281. void input_event(struct input_dev *dev,
  282. unsigned int type, unsigned int code, int value)
  283. {
  284. unsigned long flags;
  285. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  286. spin_lock_irqsave(&dev->event_lock, flags);
  287. add_input_randomness(type, code, value);
  288. input_handle_event(dev, type, code, value);
  289. spin_unlock_irqrestore(&dev->event_lock, flags);
  290. }
  291. }
  292. EXPORT_SYMBOL(input_event);
  293. /**
  294. * input_inject_event() - send input event from input handler
  295. * @handle: input handle to send event through
  296. * @type: type of the event
  297. * @code: event code
  298. * @value: value of the event
  299. *
  300. * Similar to input_event() but will ignore event if device is
  301. * "grabbed" and handle injecting event is not the one that owns
  302. * the device.
  303. */
  304. void input_inject_event(struct input_handle *handle,
  305. unsigned int type, unsigned int code, int value)
  306. {
  307. struct input_dev *dev = handle->dev;
  308. struct input_handle *grab;
  309. unsigned long flags;
  310. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  311. spin_lock_irqsave(&dev->event_lock, flags);
  312. rcu_read_lock();
  313. grab = rcu_dereference(dev->grab);
  314. if (!grab || grab == handle)
  315. input_handle_event(dev, type, code, value);
  316. rcu_read_unlock();
  317. spin_unlock_irqrestore(&dev->event_lock, flags);
  318. }
  319. }
  320. EXPORT_SYMBOL(input_inject_event);
  321. /**
  322. * input_alloc_absinfo - allocates array of input_absinfo structs
  323. * @dev: the input device emitting absolute events
  324. *
  325. * If the absinfo struct the caller asked for is already allocated, this
  326. * functions will not do anything.
  327. */
  328. void input_alloc_absinfo(struct input_dev *dev)
  329. {
  330. if (!dev->absinfo)
  331. dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
  332. GFP_KERNEL);
  333. WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
  334. }
  335. EXPORT_SYMBOL(input_alloc_absinfo);
  336. void input_set_abs_params(struct input_dev *dev, unsigned int axis,
  337. int min, int max, int fuzz, int flat)
  338. {
  339. struct input_absinfo *absinfo;
  340. input_alloc_absinfo(dev);
  341. if (!dev->absinfo)
  342. return;
  343. absinfo = &dev->absinfo[axis];
  344. absinfo->minimum = min;
  345. absinfo->maximum = max;
  346. absinfo->fuzz = fuzz;
  347. absinfo->flat = flat;
  348. dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
  349. }
  350. EXPORT_SYMBOL(input_set_abs_params);
  351. /**
  352. * input_grab_device - grabs device for exclusive use
  353. * @handle: input handle that wants to own the device
  354. *
  355. * When a device is grabbed by an input handle all events generated by
  356. * the device are delivered only to this handle. Also events injected
  357. * by other input handles are ignored while device is grabbed.
  358. */
  359. int input_grab_device(struct input_handle *handle)
  360. {
  361. struct input_dev *dev = handle->dev;
  362. int retval;
  363. retval = mutex_lock_interruptible(&dev->mutex);
  364. if (retval)
  365. return retval;
  366. if (dev->grab) {
  367. retval = -EBUSY;
  368. goto out;
  369. }
  370. rcu_assign_pointer(dev->grab, handle);
  371. out:
  372. mutex_unlock(&dev->mutex);
  373. return retval;
  374. }
  375. EXPORT_SYMBOL(input_grab_device);
  376. static void __input_release_device(struct input_handle *handle)
  377. {
  378. struct input_dev *dev = handle->dev;
  379. if (dev->grab == handle) {
  380. rcu_assign_pointer(dev->grab, NULL);
  381. /* Make sure input_pass_event() notices that grab is gone */
  382. synchronize_rcu();
  383. list_for_each_entry(handle, &dev->h_list, d_node)
  384. if (handle->open && handle->handler->start)
  385. handle->handler->start(handle);
  386. }
  387. }
  388. /**
  389. * input_release_device - release previously grabbed device
  390. * @handle: input handle that owns the device
  391. *
  392. * Releases previously grabbed device so that other input handles can
  393. * start receiving input events. Upon release all handlers attached
  394. * to the device have their start() method called so they have a change
  395. * to synchronize device state with the rest of the system.
  396. */
  397. void input_release_device(struct input_handle *handle)
  398. {
  399. struct input_dev *dev = handle->dev;
  400. mutex_lock(&dev->mutex);
  401. __input_release_device(handle);
  402. mutex_unlock(&dev->mutex);
  403. }
  404. EXPORT_SYMBOL(input_release_device);
  405. /**
  406. * input_open_device - open input device
  407. * @handle: handle through which device is being accessed
  408. *
  409. * This function should be called by input handlers when they
  410. * want to start receive events from given input device.
  411. */
  412. int input_open_device(struct input_handle *handle)
  413. {
  414. struct input_dev *dev = handle->dev;
  415. int retval;
  416. retval = mutex_lock_interruptible(&dev->mutex);
  417. if (retval)
  418. return retval;
  419. if (dev->going_away) {
  420. retval = -ENODEV;
  421. goto out;
  422. }
  423. handle->open++;
  424. if (!dev->users++ && dev->open)
  425. retval = dev->open(dev);
  426. if (retval) {
  427. dev->users--;
  428. if (!--handle->open) {
  429. /*
  430. * Make sure we are not delivering any more events
  431. * through this handle
  432. */
  433. synchronize_rcu();
  434. }
  435. }
  436. out:
  437. mutex_unlock(&dev->mutex);
  438. return retval;
  439. }
  440. EXPORT_SYMBOL(input_open_device);
  441. int input_flush_device(struct input_handle *handle, struct file *file)
  442. {
  443. struct input_dev *dev = handle->dev;
  444. int retval;
  445. retval = mutex_lock_interruptible(&dev->mutex);
  446. if (retval)
  447. return retval;
  448. if (dev->flush)
  449. retval = dev->flush(dev, file);
  450. mutex_unlock(&dev->mutex);
  451. return retval;
  452. }
  453. EXPORT_SYMBOL(input_flush_device);
  454. /**
  455. * input_close_device - close input device
  456. * @handle: handle through which device is being accessed
  457. *
  458. * This function should be called by input handlers when they
  459. * want to stop receive events from given input device.
  460. */
  461. void input_close_device(struct input_handle *handle)
  462. {
  463. struct input_dev *dev = handle->dev;
  464. mutex_lock(&dev->mutex);
  465. __input_release_device(handle);
  466. if (!--dev->users && dev->close)
  467. dev->close(dev);
  468. if (!--handle->open) {
  469. /*
  470. * synchronize_rcu() makes sure that input_pass_event()
  471. * completed and that no more input events are delivered
  472. * through this handle
  473. */
  474. synchronize_rcu();
  475. }
  476. mutex_unlock(&dev->mutex);
  477. }
  478. EXPORT_SYMBOL(input_close_device);
  479. /*
  480. * Simulate keyup events for all keys that are marked as pressed.
  481. * The function must be called with dev->event_lock held.
  482. */
  483. static void input_dev_release_keys(struct input_dev *dev)
  484. {
  485. int code;
  486. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  487. for (code = 0; code <= KEY_MAX; code++) {
  488. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  489. __test_and_clear_bit(code, dev->key)) {
  490. input_pass_event(dev, EV_KEY, code, 0);
  491. }
  492. }
  493. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  494. }
  495. }
  496. /*
  497. * Prepare device for unregistering
  498. */
  499. static void input_disconnect_device(struct input_dev *dev)
  500. {
  501. struct input_handle *handle;
  502. /*
  503. * Mark device as going away. Note that we take dev->mutex here
  504. * not to protect access to dev->going_away but rather to ensure
  505. * that there are no threads in the middle of input_open_device()
  506. */
  507. mutex_lock(&dev->mutex);
  508. dev->going_away = true;
  509. mutex_unlock(&dev->mutex);
  510. spin_lock_irq(&dev->event_lock);
  511. /*
  512. * Simulate keyup events for all pressed keys so that handlers
  513. * are not left with "stuck" keys. The driver may continue
  514. * generate events even after we done here but they will not
  515. * reach any handlers.
  516. */
  517. input_dev_release_keys(dev);
  518. list_for_each_entry(handle, &dev->h_list, d_node)
  519. handle->open = 0;
  520. spin_unlock_irq(&dev->event_lock);
  521. }
  522. /**
  523. * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
  524. * @ke: keymap entry containing scancode to be converted.
  525. * @scancode: pointer to the location where converted scancode should
  526. * be stored.
  527. *
  528. * This function is used to convert scancode stored in &struct keymap_entry
  529. * into scalar form understood by legacy keymap handling methods. These
  530. * methods expect scancodes to be represented as 'unsigned int'.
  531. */
  532. int input_scancode_to_scalar(const struct input_keymap_entry *ke,
  533. unsigned int *scancode)
  534. {
  535. switch (ke->len) {
  536. case 1:
  537. *scancode = *((u8 *)ke->scancode);
  538. break;
  539. case 2:
  540. *scancode = *((u16 *)ke->scancode);
  541. break;
  542. case 4:
  543. *scancode = *((u32 *)ke->scancode);
  544. break;
  545. default:
  546. return -EINVAL;
  547. }
  548. return 0;
  549. }
  550. EXPORT_SYMBOL(input_scancode_to_scalar);
  551. /*
  552. * Those routines handle the default case where no [gs]etkeycode() is
  553. * defined. In this case, an array indexed by the scancode is used.
  554. */
  555. static unsigned int input_fetch_keycode(struct input_dev *dev,
  556. unsigned int index)
  557. {
  558. switch (dev->keycodesize) {
  559. case 1:
  560. return ((u8 *)dev->keycode)[index];
  561. case 2:
  562. return ((u16 *)dev->keycode)[index];
  563. default:
  564. return ((u32 *)dev->keycode)[index];
  565. }
  566. }
  567. static int input_default_getkeycode(struct input_dev *dev,
  568. struct input_keymap_entry *ke)
  569. {
  570. unsigned int index;
  571. int error;
  572. if (!dev->keycodesize)
  573. return -EINVAL;
  574. if (ke->flags & INPUT_KEYMAP_BY_INDEX)
  575. index = ke->index;
  576. else {
  577. error = input_scancode_to_scalar(ke, &index);
  578. if (error)
  579. return error;
  580. }
  581. if (index >= dev->keycodemax)
  582. return -EINVAL;
  583. ke->keycode = input_fetch_keycode(dev, index);
  584. ke->index = index;
  585. ke->len = sizeof(index);
  586. memcpy(ke->scancode, &index, sizeof(index));
  587. return 0;
  588. }
  589. static int input_default_setkeycode(struct input_dev *dev,
  590. const struct input_keymap_entry *ke,
  591. unsigned int *old_keycode)
  592. {
  593. unsigned int index;
  594. int error;
  595. int i;
  596. if (!dev->keycodesize)
  597. return -EINVAL;
  598. if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
  599. index = ke->index;
  600. } else {
  601. error = input_scancode_to_scalar(ke, &index);
  602. if (error)
  603. return error;
  604. }
  605. if (index >= dev->keycodemax)
  606. return -EINVAL;
  607. if (dev->keycodesize < sizeof(ke->keycode) &&
  608. (ke->keycode >> (dev->keycodesize * 8)))
  609. return -EINVAL;
  610. switch (dev->keycodesize) {
  611. case 1: {
  612. u8 *k = (u8 *)dev->keycode;
  613. *old_keycode = k[index];
  614. k[index] = ke->keycode;
  615. break;
  616. }
  617. case 2: {
  618. u16 *k = (u16 *)dev->keycode;
  619. *old_keycode = k[index];
  620. k[index] = ke->keycode;
  621. break;
  622. }
  623. default: {
  624. u32 *k = (u32 *)dev->keycode;
  625. *old_keycode = k[index];
  626. k[index] = ke->keycode;
  627. break;
  628. }
  629. }
  630. __clear_bit(*old_keycode, dev->keybit);
  631. __set_bit(ke->keycode, dev->keybit);
  632. for (i = 0; i < dev->keycodemax; i++) {
  633. if (input_fetch_keycode(dev, i) == *old_keycode) {
  634. __set_bit(*old_keycode, dev->keybit);
  635. break; /* Setting the bit twice is useless, so break */
  636. }
  637. }
  638. return 0;
  639. }
  640. /**
  641. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  642. * @dev: input device which keymap is being queried
  643. * @ke: keymap entry
  644. *
  645. * This function should be called by anyone interested in retrieving current
  646. * keymap. Presently evdev handlers use it.
  647. */
  648. int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
  649. {
  650. unsigned long flags;
  651. int retval;
  652. spin_lock_irqsave(&dev->event_lock, flags);
  653. retval = dev->getkeycode(dev, ke);
  654. spin_unlock_irqrestore(&dev->event_lock, flags);
  655. return retval;
  656. }
  657. EXPORT_SYMBOL(input_get_keycode);
  658. /**
  659. * input_set_keycode - attribute a keycode to a given scancode
  660. * @dev: input device which keymap is being updated
  661. * @ke: new keymap entry
  662. *
  663. * This function should be called by anyone needing to update current
  664. * keymap. Presently keyboard and evdev handlers use it.
  665. */
  666. int input_set_keycode(struct input_dev *dev,
  667. const struct input_keymap_entry *ke)
  668. {
  669. unsigned long flags;
  670. unsigned int old_keycode;
  671. int retval;
  672. if (ke->keycode > KEY_MAX)
  673. return -EINVAL;
  674. spin_lock_irqsave(&dev->event_lock, flags);
  675. retval = dev->setkeycode(dev, ke, &old_keycode);
  676. if (retval)
  677. goto out;
  678. /* Make sure KEY_RESERVED did not get enabled. */
  679. __clear_bit(KEY_RESERVED, dev->keybit);
  680. /*
  681. * Simulate keyup event if keycode is not present
  682. * in the keymap anymore
  683. */
  684. if (test_bit(EV_KEY, dev->evbit) &&
  685. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  686. __test_and_clear_bit(old_keycode, dev->key)) {
  687. input_pass_event(dev, EV_KEY, old_keycode, 0);
  688. if (dev->sync)
  689. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  690. }
  691. out:
  692. spin_unlock_irqrestore(&dev->event_lock, flags);
  693. return retval;
  694. }
  695. EXPORT_SYMBOL(input_set_keycode);
  696. static const struct input_device_id *input_match_device(struct input_handler *handler,
  697. struct input_dev *dev)
  698. {
  699. const struct input_device_id *id;
  700. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  701. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  702. if (id->bustype != dev->id.bustype)
  703. continue;
  704. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  705. if (id->vendor != dev->id.vendor)
  706. continue;
  707. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  708. if (id->product != dev->id.product)
  709. continue;
  710. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  711. if (id->version != dev->id.version)
  712. continue;
  713. if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
  714. continue;
  715. if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
  716. continue;
  717. if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
  718. continue;
  719. if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
  720. continue;
  721. if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
  722. continue;
  723. if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
  724. continue;
  725. if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
  726. continue;
  727. if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
  728. continue;
  729. if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
  730. continue;
  731. if (!handler->match || handler->match(handler, dev))
  732. return id;
  733. }
  734. return NULL;
  735. }
  736. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  737. {
  738. const struct input_device_id *id;
  739. int error;
  740. id = input_match_device(handler, dev);
  741. if (!id)
  742. return -ENODEV;
  743. error = handler->connect(handler, dev, id);
  744. if (error && error != -ENODEV)
  745. pr_err("failed to attach handler %s to device %s, error: %d\n",
  746. handler->name, kobject_name(&dev->dev.kobj), error);
  747. return error;
  748. }
  749. #ifdef CONFIG_COMPAT
  750. static int input_bits_to_string(char *buf, int buf_size,
  751. unsigned long bits, bool skip_empty)
  752. {
  753. int len = 0;
  754. if (INPUT_COMPAT_TEST) {
  755. u32 dword = bits >> 32;
  756. if (dword || !skip_empty)
  757. len += snprintf(buf, buf_size, "%x ", dword);
  758. dword = bits & 0xffffffffUL;
  759. if (dword || !skip_empty || len)
  760. len += snprintf(buf + len, max(buf_size - len, 0),
  761. "%x", dword);
  762. } else {
  763. if (bits || !skip_empty)
  764. len += snprintf(buf, buf_size, "%lx", bits);
  765. }
  766. return len;
  767. }
  768. #else /* !CONFIG_COMPAT */
  769. static int input_bits_to_string(char *buf, int buf_size,
  770. unsigned long bits, bool skip_empty)
  771. {
  772. return bits || !skip_empty ?
  773. snprintf(buf, buf_size, "%lx", bits) : 0;
  774. }
  775. #endif
  776. #ifdef CONFIG_PROC_FS
  777. static struct proc_dir_entry *proc_bus_input_dir;
  778. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  779. static int input_devices_state;
  780. static inline void input_wakeup_procfs_readers(void)
  781. {
  782. input_devices_state++;
  783. wake_up(&input_devices_poll_wait);
  784. }
  785. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  786. {
  787. poll_wait(file, &input_devices_poll_wait, wait);
  788. if (file->f_version != input_devices_state) {
  789. file->f_version = input_devices_state;
  790. return POLLIN | POLLRDNORM;
  791. }
  792. return 0;
  793. }
  794. union input_seq_state {
  795. struct {
  796. unsigned short pos;
  797. bool mutex_acquired;
  798. };
  799. void *p;
  800. };
  801. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  802. {
  803. union input_seq_state *state = (union input_seq_state *)&seq->private;
  804. int error;
  805. /* We need to fit into seq->private pointer */
  806. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  807. error = mutex_lock_interruptible(&input_mutex);
  808. if (error) {
  809. state->mutex_acquired = false;
  810. return ERR_PTR(error);
  811. }
  812. state->mutex_acquired = true;
  813. return seq_list_start(&input_dev_list, *pos);
  814. }
  815. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  816. {
  817. return seq_list_next(v, &input_dev_list, pos);
  818. }
  819. static void input_seq_stop(struct seq_file *seq, void *v)
  820. {
  821. union input_seq_state *state = (union input_seq_state *)&seq->private;
  822. if (state->mutex_acquired)
  823. mutex_unlock(&input_mutex);
  824. }
  825. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  826. unsigned long *bitmap, int max)
  827. {
  828. int i;
  829. bool skip_empty = true;
  830. char buf[18];
  831. seq_printf(seq, "B: %s=", name);
  832. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  833. if (input_bits_to_string(buf, sizeof(buf),
  834. bitmap[i], skip_empty)) {
  835. skip_empty = false;
  836. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  837. }
  838. }
  839. /*
  840. * If no output was produced print a single 0.
  841. */
  842. if (skip_empty)
  843. seq_puts(seq, "0");
  844. seq_putc(seq, '\n');
  845. }
  846. static int input_devices_seq_show(struct seq_file *seq, void *v)
  847. {
  848. struct input_dev *dev = container_of(v, struct input_dev, node);
  849. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  850. struct input_handle *handle;
  851. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  852. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  853. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  854. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  855. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  856. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  857. seq_printf(seq, "H: Handlers=");
  858. list_for_each_entry(handle, &dev->h_list, d_node)
  859. seq_printf(seq, "%s ", handle->name);
  860. seq_putc(seq, '\n');
  861. input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
  862. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  863. if (test_bit(EV_KEY, dev->evbit))
  864. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  865. if (test_bit(EV_REL, dev->evbit))
  866. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  867. if (test_bit(EV_ABS, dev->evbit))
  868. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  869. if (test_bit(EV_MSC, dev->evbit))
  870. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  871. if (test_bit(EV_LED, dev->evbit))
  872. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  873. if (test_bit(EV_SND, dev->evbit))
  874. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  875. if (test_bit(EV_FF, dev->evbit))
  876. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  877. if (test_bit(EV_SW, dev->evbit))
  878. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  879. seq_putc(seq, '\n');
  880. kfree(path);
  881. return 0;
  882. }
  883. static const struct seq_operations input_devices_seq_ops = {
  884. .start = input_devices_seq_start,
  885. .next = input_devices_seq_next,
  886. .stop = input_seq_stop,
  887. .show = input_devices_seq_show,
  888. };
  889. static int input_proc_devices_open(struct inode *inode, struct file *file)
  890. {
  891. return seq_open(file, &input_devices_seq_ops);
  892. }
  893. static const struct file_operations input_devices_fileops = {
  894. .owner = THIS_MODULE,
  895. .open = input_proc_devices_open,
  896. .poll = input_proc_devices_poll,
  897. .read = seq_read,
  898. .llseek = seq_lseek,
  899. .release = seq_release,
  900. };
  901. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  902. {
  903. union input_seq_state *state = (union input_seq_state *)&seq->private;
  904. int error;
  905. /* We need to fit into seq->private pointer */
  906. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  907. error = mutex_lock_interruptible(&input_mutex);
  908. if (error) {
  909. state->mutex_acquired = false;
  910. return ERR_PTR(error);
  911. }
  912. state->mutex_acquired = true;
  913. state->pos = *pos;
  914. return seq_list_start(&input_handler_list, *pos);
  915. }
  916. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  917. {
  918. union input_seq_state *state = (union input_seq_state *)&seq->private;
  919. state->pos = *pos + 1;
  920. return seq_list_next(v, &input_handler_list, pos);
  921. }
  922. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  923. {
  924. struct input_handler *handler = container_of(v, struct input_handler, node);
  925. union input_seq_state *state = (union input_seq_state *)&seq->private;
  926. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  927. if (handler->filter)
  928. seq_puts(seq, " (filter)");
  929. if (handler->fops)
  930. seq_printf(seq, " Minor=%d", handler->minor);
  931. seq_putc(seq, '\n');
  932. return 0;
  933. }
  934. static const struct seq_operations input_handlers_seq_ops = {
  935. .start = input_handlers_seq_start,
  936. .next = input_handlers_seq_next,
  937. .stop = input_seq_stop,
  938. .show = input_handlers_seq_show,
  939. };
  940. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  941. {
  942. return seq_open(file, &input_handlers_seq_ops);
  943. }
  944. static const struct file_operations input_handlers_fileops = {
  945. .owner = THIS_MODULE,
  946. .open = input_proc_handlers_open,
  947. .read = seq_read,
  948. .llseek = seq_lseek,
  949. .release = seq_release,
  950. };
  951. static int __init input_proc_init(void)
  952. {
  953. struct proc_dir_entry *entry;
  954. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  955. if (!proc_bus_input_dir)
  956. return -ENOMEM;
  957. entry = proc_create("devices", 0, proc_bus_input_dir,
  958. &input_devices_fileops);
  959. if (!entry)
  960. goto fail1;
  961. entry = proc_create("handlers", 0, proc_bus_input_dir,
  962. &input_handlers_fileops);
  963. if (!entry)
  964. goto fail2;
  965. return 0;
  966. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  967. fail1: remove_proc_entry("bus/input", NULL);
  968. return -ENOMEM;
  969. }
  970. static void input_proc_exit(void)
  971. {
  972. remove_proc_entry("devices", proc_bus_input_dir);
  973. remove_proc_entry("handlers", proc_bus_input_dir);
  974. remove_proc_entry("bus/input", NULL);
  975. }
  976. #else /* !CONFIG_PROC_FS */
  977. static inline void input_wakeup_procfs_readers(void) { }
  978. static inline int input_proc_init(void) { return 0; }
  979. static inline void input_proc_exit(void) { }
  980. #endif
  981. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  982. static ssize_t input_dev_show_##name(struct device *dev, \
  983. struct device_attribute *attr, \
  984. char *buf) \
  985. { \
  986. struct input_dev *input_dev = to_input_dev(dev); \
  987. \
  988. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  989. input_dev->name ? input_dev->name : ""); \
  990. } \
  991. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  992. INPUT_DEV_STRING_ATTR_SHOW(name);
  993. INPUT_DEV_STRING_ATTR_SHOW(phys);
  994. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  995. static int input_print_modalias_bits(char *buf, int size,
  996. char name, unsigned long *bm,
  997. unsigned int min_bit, unsigned int max_bit)
  998. {
  999. int len = 0, i;
  1000. len += snprintf(buf, max(size, 0), "%c", name);
  1001. for (i = min_bit; i < max_bit; i++)
  1002. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  1003. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  1004. return len;
  1005. }
  1006. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  1007. int add_cr)
  1008. {
  1009. int len;
  1010. len = snprintf(buf, max(size, 0),
  1011. "input:b%04Xv%04Xp%04Xe%04X-",
  1012. id->id.bustype, id->id.vendor,
  1013. id->id.product, id->id.version);
  1014. len += input_print_modalias_bits(buf + len, size - len,
  1015. 'e', id->evbit, 0, EV_MAX);
  1016. len += input_print_modalias_bits(buf + len, size - len,
  1017. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  1018. len += input_print_modalias_bits(buf + len, size - len,
  1019. 'r', id->relbit, 0, REL_MAX);
  1020. len += input_print_modalias_bits(buf + len, size - len,
  1021. 'a', id->absbit, 0, ABS_MAX);
  1022. len += input_print_modalias_bits(buf + len, size - len,
  1023. 'm', id->mscbit, 0, MSC_MAX);
  1024. len += input_print_modalias_bits(buf + len, size - len,
  1025. 'l', id->ledbit, 0, LED_MAX);
  1026. len += input_print_modalias_bits(buf + len, size - len,
  1027. 's', id->sndbit, 0, SND_MAX);
  1028. len += input_print_modalias_bits(buf + len, size - len,
  1029. 'f', id->ffbit, 0, FF_MAX);
  1030. len += input_print_modalias_bits(buf + len, size - len,
  1031. 'w', id->swbit, 0, SW_MAX);
  1032. if (add_cr)
  1033. len += snprintf(buf + len, max(size - len, 0), "\n");
  1034. return len;
  1035. }
  1036. static ssize_t input_dev_show_modalias(struct device *dev,
  1037. struct device_attribute *attr,
  1038. char *buf)
  1039. {
  1040. struct input_dev *id = to_input_dev(dev);
  1041. ssize_t len;
  1042. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  1043. return min_t(int, len, PAGE_SIZE);
  1044. }
  1045. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  1046. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1047. int max, int add_cr);
  1048. static ssize_t input_dev_show_properties(struct device *dev,
  1049. struct device_attribute *attr,
  1050. char *buf)
  1051. {
  1052. struct input_dev *input_dev = to_input_dev(dev);
  1053. int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
  1054. INPUT_PROP_MAX, true);
  1055. return min_t(int, len, PAGE_SIZE);
  1056. }
  1057. static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
  1058. static struct attribute *input_dev_attrs[] = {
  1059. &dev_attr_name.attr,
  1060. &dev_attr_phys.attr,
  1061. &dev_attr_uniq.attr,
  1062. &dev_attr_modalias.attr,
  1063. &dev_attr_properties.attr,
  1064. NULL
  1065. };
  1066. static struct attribute_group input_dev_attr_group = {
  1067. .attrs = input_dev_attrs,
  1068. };
  1069. #define INPUT_DEV_ID_ATTR(name) \
  1070. static ssize_t input_dev_show_id_##name(struct device *dev, \
  1071. struct device_attribute *attr, \
  1072. char *buf) \
  1073. { \
  1074. struct input_dev *input_dev = to_input_dev(dev); \
  1075. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  1076. } \
  1077. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  1078. INPUT_DEV_ID_ATTR(bustype);
  1079. INPUT_DEV_ID_ATTR(vendor);
  1080. INPUT_DEV_ID_ATTR(product);
  1081. INPUT_DEV_ID_ATTR(version);
  1082. static struct attribute *input_dev_id_attrs[] = {
  1083. &dev_attr_bustype.attr,
  1084. &dev_attr_vendor.attr,
  1085. &dev_attr_product.attr,
  1086. &dev_attr_version.attr,
  1087. NULL
  1088. };
  1089. static struct attribute_group input_dev_id_attr_group = {
  1090. .name = "id",
  1091. .attrs = input_dev_id_attrs,
  1092. };
  1093. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1094. int max, int add_cr)
  1095. {
  1096. int i;
  1097. int len = 0;
  1098. bool skip_empty = true;
  1099. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  1100. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  1101. bitmap[i], skip_empty);
  1102. if (len) {
  1103. skip_empty = false;
  1104. if (i > 0)
  1105. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  1106. }
  1107. }
  1108. /*
  1109. * If no output was produced print a single 0.
  1110. */
  1111. if (len == 0)
  1112. len = snprintf(buf, buf_size, "%d", 0);
  1113. if (add_cr)
  1114. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1115. return len;
  1116. }
  1117. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1118. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1119. struct device_attribute *attr, \
  1120. char *buf) \
  1121. { \
  1122. struct input_dev *input_dev = to_input_dev(dev); \
  1123. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1124. input_dev->bm##bit, ev##_MAX, \
  1125. true); \
  1126. return min_t(int, len, PAGE_SIZE); \
  1127. } \
  1128. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1129. INPUT_DEV_CAP_ATTR(EV, ev);
  1130. INPUT_DEV_CAP_ATTR(KEY, key);
  1131. INPUT_DEV_CAP_ATTR(REL, rel);
  1132. INPUT_DEV_CAP_ATTR(ABS, abs);
  1133. INPUT_DEV_CAP_ATTR(MSC, msc);
  1134. INPUT_DEV_CAP_ATTR(LED, led);
  1135. INPUT_DEV_CAP_ATTR(SND, snd);
  1136. INPUT_DEV_CAP_ATTR(FF, ff);
  1137. INPUT_DEV_CAP_ATTR(SW, sw);
  1138. static struct attribute *input_dev_caps_attrs[] = {
  1139. &dev_attr_ev.attr,
  1140. &dev_attr_key.attr,
  1141. &dev_attr_rel.attr,
  1142. &dev_attr_abs.attr,
  1143. &dev_attr_msc.attr,
  1144. &dev_attr_led.attr,
  1145. &dev_attr_snd.attr,
  1146. &dev_attr_ff.attr,
  1147. &dev_attr_sw.attr,
  1148. NULL
  1149. };
  1150. static struct attribute_group input_dev_caps_attr_group = {
  1151. .name = "capabilities",
  1152. .attrs = input_dev_caps_attrs,
  1153. };
  1154. static const struct attribute_group *input_dev_attr_groups[] = {
  1155. &input_dev_attr_group,
  1156. &input_dev_id_attr_group,
  1157. &input_dev_caps_attr_group,
  1158. NULL
  1159. };
  1160. static void input_dev_release(struct device *device)
  1161. {
  1162. struct input_dev *dev = to_input_dev(device);
  1163. input_ff_destroy(dev);
  1164. input_mt_destroy_slots(dev);
  1165. kfree(dev->absinfo);
  1166. kfree(dev);
  1167. module_put(THIS_MODULE);
  1168. }
  1169. /*
  1170. * Input uevent interface - loading event handlers based on
  1171. * device bitfields.
  1172. */
  1173. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1174. const char *name, unsigned long *bitmap, int max)
  1175. {
  1176. int len;
  1177. if (add_uevent_var(env, "%s", name))
  1178. return -ENOMEM;
  1179. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1180. sizeof(env->buf) - env->buflen,
  1181. bitmap, max, false);
  1182. if (len >= (sizeof(env->buf) - env->buflen))
  1183. return -ENOMEM;
  1184. env->buflen += len;
  1185. return 0;
  1186. }
  1187. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1188. struct input_dev *dev)
  1189. {
  1190. int len;
  1191. if (add_uevent_var(env, "MODALIAS="))
  1192. return -ENOMEM;
  1193. len = input_print_modalias(&env->buf[env->buflen - 1],
  1194. sizeof(env->buf) - env->buflen,
  1195. dev, 0);
  1196. if (len >= (sizeof(env->buf) - env->buflen))
  1197. return -ENOMEM;
  1198. env->buflen += len;
  1199. return 0;
  1200. }
  1201. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1202. do { \
  1203. int err = add_uevent_var(env, fmt, val); \
  1204. if (err) \
  1205. return err; \
  1206. } while (0)
  1207. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1208. do { \
  1209. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1210. if (err) \
  1211. return err; \
  1212. } while (0)
  1213. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1214. do { \
  1215. int err = input_add_uevent_modalias_var(env, dev); \
  1216. if (err) \
  1217. return err; \
  1218. } while (0)
  1219. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1220. {
  1221. struct input_dev *dev = to_input_dev(device);
  1222. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1223. dev->id.bustype, dev->id.vendor,
  1224. dev->id.product, dev->id.version);
  1225. if (dev->name)
  1226. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1227. if (dev->phys)
  1228. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1229. if (dev->uniq)
  1230. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1231. INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
  1232. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1233. if (test_bit(EV_KEY, dev->evbit))
  1234. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1235. if (test_bit(EV_REL, dev->evbit))
  1236. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1237. if (test_bit(EV_ABS, dev->evbit))
  1238. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1239. if (test_bit(EV_MSC, dev->evbit))
  1240. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1241. if (test_bit(EV_LED, dev->evbit))
  1242. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1243. if (test_bit(EV_SND, dev->evbit))
  1244. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1245. if (test_bit(EV_FF, dev->evbit))
  1246. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1247. if (test_bit(EV_SW, dev->evbit))
  1248. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1249. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1250. return 0;
  1251. }
  1252. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1253. do { \
  1254. int i; \
  1255. bool active; \
  1256. \
  1257. if (!test_bit(EV_##type, dev->evbit)) \
  1258. break; \
  1259. \
  1260. for (i = 0; i < type##_MAX; i++) { \
  1261. if (!test_bit(i, dev->bits##bit)) \
  1262. continue; \
  1263. \
  1264. active = test_bit(i, dev->bits); \
  1265. if (!active && !on) \
  1266. continue; \
  1267. \
  1268. dev->event(dev, EV_##type, i, on ? active : 0); \
  1269. } \
  1270. } while (0)
  1271. static void input_dev_toggle(struct input_dev *dev, bool activate)
  1272. {
  1273. if (!dev->event)
  1274. return;
  1275. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1276. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1277. if (activate && test_bit(EV_REP, dev->evbit)) {
  1278. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1279. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1280. }
  1281. }
  1282. /**
  1283. * input_reset_device() - reset/restore the state of input device
  1284. * @dev: input device whose state needs to be reset
  1285. *
  1286. * This function tries to reset the state of an opened input device and
  1287. * bring internal state and state if the hardware in sync with each other.
  1288. * We mark all keys as released, restore LED state, repeat rate, etc.
  1289. */
  1290. void input_reset_device(struct input_dev *dev)
  1291. {
  1292. mutex_lock(&dev->mutex);
  1293. if (dev->users) {
  1294. input_dev_toggle(dev, true);
  1295. /*
  1296. * Keys that have been pressed at suspend time are unlikely
  1297. * to be still pressed when we resume.
  1298. */
  1299. spin_lock_irq(&dev->event_lock);
  1300. input_dev_release_keys(dev);
  1301. spin_unlock_irq(&dev->event_lock);
  1302. }
  1303. mutex_unlock(&dev->mutex);
  1304. }
  1305. EXPORT_SYMBOL(input_reset_device);
  1306. #ifdef CONFIG_PM
  1307. static int input_dev_suspend(struct device *dev)
  1308. {
  1309. struct input_dev *input_dev = to_input_dev(dev);
  1310. mutex_lock(&input_dev->mutex);
  1311. if (input_dev->users)
  1312. input_dev_toggle(input_dev, false);
  1313. mutex_unlock(&input_dev->mutex);
  1314. return 0;
  1315. }
  1316. static int input_dev_resume(struct device *dev)
  1317. {
  1318. struct input_dev *input_dev = to_input_dev(dev);
  1319. input_reset_device(input_dev);
  1320. return 0;
  1321. }
  1322. static const struct dev_pm_ops input_dev_pm_ops = {
  1323. .suspend = input_dev_suspend,
  1324. .resume = input_dev_resume,
  1325. .poweroff = input_dev_suspend,
  1326. .restore = input_dev_resume,
  1327. };
  1328. #endif /* CONFIG_PM */
  1329. static struct device_type input_dev_type = {
  1330. .groups = input_dev_attr_groups,
  1331. .release = input_dev_release,
  1332. .uevent = input_dev_uevent,
  1333. #ifdef CONFIG_PM
  1334. .pm = &input_dev_pm_ops,
  1335. #endif
  1336. };
  1337. static char *input_devnode(struct device *dev, umode_t *mode)
  1338. {
  1339. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1340. }
  1341. struct class input_class = {
  1342. .name = "input",
  1343. .devnode = input_devnode,
  1344. };
  1345. EXPORT_SYMBOL_GPL(input_class);
  1346. /**
  1347. * input_allocate_device - allocate memory for new input device
  1348. *
  1349. * Returns prepared struct input_dev or NULL.
  1350. *
  1351. * NOTE: Use input_free_device() to free devices that have not been
  1352. * registered; input_unregister_device() should be used for already
  1353. * registered devices.
  1354. */
  1355. struct input_dev *input_allocate_device(void)
  1356. {
  1357. struct input_dev *dev;
  1358. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1359. if (dev) {
  1360. dev->dev.type = &input_dev_type;
  1361. dev->dev.class = &input_class;
  1362. device_initialize(&dev->dev);
  1363. mutex_init(&dev->mutex);
  1364. spin_lock_init(&dev->event_lock);
  1365. INIT_LIST_HEAD(&dev->h_list);
  1366. INIT_LIST_HEAD(&dev->node);
  1367. __module_get(THIS_MODULE);
  1368. }
  1369. return dev;
  1370. }
  1371. EXPORT_SYMBOL(input_allocate_device);
  1372. /**
  1373. * input_free_device - free memory occupied by input_dev structure
  1374. * @dev: input device to free
  1375. *
  1376. * This function should only be used if input_register_device()
  1377. * was not called yet or if it failed. Once device was registered
  1378. * use input_unregister_device() and memory will be freed once last
  1379. * reference to the device is dropped.
  1380. *
  1381. * Device should be allocated by input_allocate_device().
  1382. *
  1383. * NOTE: If there are references to the input device then memory
  1384. * will not be freed until last reference is dropped.
  1385. */
  1386. void input_free_device(struct input_dev *dev)
  1387. {
  1388. if (dev)
  1389. input_put_device(dev);
  1390. }
  1391. EXPORT_SYMBOL(input_free_device);
  1392. /**
  1393. * input_set_capability - mark device as capable of a certain event
  1394. * @dev: device that is capable of emitting or accepting event
  1395. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1396. * @code: event code
  1397. *
  1398. * In addition to setting up corresponding bit in appropriate capability
  1399. * bitmap the function also adjusts dev->evbit.
  1400. */
  1401. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1402. {
  1403. switch (type) {
  1404. case EV_KEY:
  1405. __set_bit(code, dev->keybit);
  1406. break;
  1407. case EV_REL:
  1408. __set_bit(code, dev->relbit);
  1409. break;
  1410. case EV_ABS:
  1411. __set_bit(code, dev->absbit);
  1412. break;
  1413. case EV_MSC:
  1414. __set_bit(code, dev->mscbit);
  1415. break;
  1416. case EV_SW:
  1417. __set_bit(code, dev->swbit);
  1418. break;
  1419. case EV_LED:
  1420. __set_bit(code, dev->ledbit);
  1421. break;
  1422. case EV_SND:
  1423. __set_bit(code, dev->sndbit);
  1424. break;
  1425. case EV_FF:
  1426. __set_bit(code, dev->ffbit);
  1427. break;
  1428. case EV_PWR:
  1429. /* do nothing */
  1430. break;
  1431. default:
  1432. pr_err("input_set_capability: unknown type %u (code %u)\n",
  1433. type, code);
  1434. dump_stack();
  1435. return;
  1436. }
  1437. __set_bit(type, dev->evbit);
  1438. }
  1439. EXPORT_SYMBOL(input_set_capability);
  1440. static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
  1441. {
  1442. int mt_slots;
  1443. int i;
  1444. unsigned int events;
  1445. if (dev->mtsize) {
  1446. mt_slots = dev->mtsize;
  1447. } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
  1448. mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
  1449. dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
  1450. mt_slots = clamp(mt_slots, 2, 32);
  1451. } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
  1452. mt_slots = 2;
  1453. } else {
  1454. mt_slots = 0;
  1455. }
  1456. events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
  1457. for (i = 0; i < ABS_CNT; i++) {
  1458. if (test_bit(i, dev->absbit)) {
  1459. if (input_is_mt_axis(i))
  1460. events += mt_slots;
  1461. else
  1462. events++;
  1463. }
  1464. }
  1465. for (i = 0; i < REL_CNT; i++)
  1466. if (test_bit(i, dev->relbit))
  1467. events++;
  1468. return events;
  1469. }
  1470. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1471. do { \
  1472. if (!test_bit(EV_##type, dev->evbit)) \
  1473. memset(dev->bits##bit, 0, \
  1474. sizeof(dev->bits##bit)); \
  1475. } while (0)
  1476. static void input_cleanse_bitmasks(struct input_dev *dev)
  1477. {
  1478. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1479. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1480. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1481. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1482. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1483. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1484. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1485. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1486. }
  1487. /**
  1488. * input_register_device - register device with input core
  1489. * @dev: device to be registered
  1490. *
  1491. * This function registers device with input core. The device must be
  1492. * allocated with input_allocate_device() and all it's capabilities
  1493. * set up before registering.
  1494. * If function fails the device must be freed with input_free_device().
  1495. * Once device has been successfully registered it can be unregistered
  1496. * with input_unregister_device(); input_free_device() should not be
  1497. * called in this case.
  1498. */
  1499. int input_register_device(struct input_dev *dev)
  1500. {
  1501. static atomic_t input_no = ATOMIC_INIT(0);
  1502. struct input_handler *handler;
  1503. const char *path;
  1504. int error;
  1505. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1506. __set_bit(EV_SYN, dev->evbit);
  1507. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1508. __clear_bit(KEY_RESERVED, dev->keybit);
  1509. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1510. input_cleanse_bitmasks(dev);
  1511. if (!dev->hint_events_per_packet)
  1512. dev->hint_events_per_packet =
  1513. input_estimate_events_per_packet(dev);
  1514. /*
  1515. * If delay and period are pre-set by the driver, then autorepeating
  1516. * is handled by the driver itself and we don't do it in input.c.
  1517. */
  1518. init_timer(&dev->timer);
  1519. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1520. dev->timer.data = (long) dev;
  1521. dev->timer.function = input_repeat_key;
  1522. dev->rep[REP_DELAY] = 250;
  1523. dev->rep[REP_PERIOD] = 33;
  1524. }
  1525. if (!dev->getkeycode)
  1526. dev->getkeycode = input_default_getkeycode;
  1527. if (!dev->setkeycode)
  1528. dev->setkeycode = input_default_setkeycode;
  1529. dev_set_name(&dev->dev, "input%ld",
  1530. (unsigned long) atomic_inc_return(&input_no) - 1);
  1531. error = device_add(&dev->dev);
  1532. if (error)
  1533. return error;
  1534. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1535. pr_info("%s as %s\n",
  1536. dev->name ? dev->name : "Unspecified device",
  1537. path ? path : "N/A");
  1538. kfree(path);
  1539. error = mutex_lock_interruptible(&input_mutex);
  1540. if (error) {
  1541. device_del(&dev->dev);
  1542. return error;
  1543. }
  1544. list_add_tail(&dev->node, &input_dev_list);
  1545. list_for_each_entry(handler, &input_handler_list, node)
  1546. input_attach_handler(dev, handler);
  1547. input_wakeup_procfs_readers();
  1548. mutex_unlock(&input_mutex);
  1549. return 0;
  1550. }
  1551. EXPORT_SYMBOL(input_register_device);
  1552. /**
  1553. * input_unregister_device - unregister previously registered device
  1554. * @dev: device to be unregistered
  1555. *
  1556. * This function unregisters an input device. Once device is unregistered
  1557. * the caller should not try to access it as it may get freed at any moment.
  1558. */
  1559. void input_unregister_device(struct input_dev *dev)
  1560. {
  1561. struct input_handle *handle, *next;
  1562. input_disconnect_device(dev);
  1563. mutex_lock(&input_mutex);
  1564. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1565. handle->handler->disconnect(handle);
  1566. WARN_ON(!list_empty(&dev->h_list));
  1567. del_timer_sync(&dev->timer);
  1568. list_del_init(&dev->node);
  1569. input_wakeup_procfs_readers();
  1570. mutex_unlock(&input_mutex);
  1571. device_unregister(&dev->dev);
  1572. }
  1573. EXPORT_SYMBOL(input_unregister_device);
  1574. /**
  1575. * input_register_handler - register a new input handler
  1576. * @handler: handler to be registered
  1577. *
  1578. * This function registers a new input handler (interface) for input
  1579. * devices in the system and attaches it to all input devices that
  1580. * are compatible with the handler.
  1581. */
  1582. int input_register_handler(struct input_handler *handler)
  1583. {
  1584. struct input_dev *dev;
  1585. int retval;
  1586. retval = mutex_lock_interruptible(&input_mutex);
  1587. if (retval)
  1588. return retval;
  1589. INIT_LIST_HEAD(&handler->h_list);
  1590. if (handler->fops != NULL) {
  1591. if (input_table[handler->minor >> 5]) {
  1592. retval = -EBUSY;
  1593. goto out;
  1594. }
  1595. input_table[handler->minor >> 5] = handler;
  1596. }
  1597. list_add_tail(&handler->node, &input_handler_list);
  1598. list_for_each_entry(dev, &input_dev_list, node)
  1599. input_attach_handler(dev, handler);
  1600. input_wakeup_procfs_readers();
  1601. out:
  1602. mutex_unlock(&input_mutex);
  1603. return retval;
  1604. }
  1605. EXPORT_SYMBOL(input_register_handler);
  1606. /**
  1607. * input_unregister_handler - unregisters an input handler
  1608. * @handler: handler to be unregistered
  1609. *
  1610. * This function disconnects a handler from its input devices and
  1611. * removes it from lists of known handlers.
  1612. */
  1613. void input_unregister_handler(struct input_handler *handler)
  1614. {
  1615. struct input_handle *handle, *next;
  1616. mutex_lock(&input_mutex);
  1617. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1618. handler->disconnect(handle);
  1619. WARN_ON(!list_empty(&handler->h_list));
  1620. list_del_init(&handler->node);
  1621. if (handler->fops != NULL)
  1622. input_table[handler->minor >> 5] = NULL;
  1623. input_wakeup_procfs_readers();
  1624. mutex_unlock(&input_mutex);
  1625. }
  1626. EXPORT_SYMBOL(input_unregister_handler);
  1627. /**
  1628. * input_handler_for_each_handle - handle iterator
  1629. * @handler: input handler to iterate
  1630. * @data: data for the callback
  1631. * @fn: function to be called for each handle
  1632. *
  1633. * Iterate over @bus's list of devices, and call @fn for each, passing
  1634. * it @data and stop when @fn returns a non-zero value. The function is
  1635. * using RCU to traverse the list and therefore may be usind in atonic
  1636. * contexts. The @fn callback is invoked from RCU critical section and
  1637. * thus must not sleep.
  1638. */
  1639. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1640. int (*fn)(struct input_handle *, void *))
  1641. {
  1642. struct input_handle *handle;
  1643. int retval = 0;
  1644. rcu_read_lock();
  1645. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1646. retval = fn(handle, data);
  1647. if (retval)
  1648. break;
  1649. }
  1650. rcu_read_unlock();
  1651. return retval;
  1652. }
  1653. EXPORT_SYMBOL(input_handler_for_each_handle);
  1654. /**
  1655. * input_register_handle - register a new input handle
  1656. * @handle: handle to register
  1657. *
  1658. * This function puts a new input handle onto device's
  1659. * and handler's lists so that events can flow through
  1660. * it once it is opened using input_open_device().
  1661. *
  1662. * This function is supposed to be called from handler's
  1663. * connect() method.
  1664. */
  1665. int input_register_handle(struct input_handle *handle)
  1666. {
  1667. struct input_handler *handler = handle->handler;
  1668. struct input_dev *dev = handle->dev;
  1669. int error;
  1670. /*
  1671. * We take dev->mutex here to prevent race with
  1672. * input_release_device().
  1673. */
  1674. error = mutex_lock_interruptible(&dev->mutex);
  1675. if (error)
  1676. return error;
  1677. /*
  1678. * Filters go to the head of the list, normal handlers
  1679. * to the tail.
  1680. */
  1681. if (handler->filter)
  1682. list_add_rcu(&handle->d_node, &dev->h_list);
  1683. else
  1684. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1685. mutex_unlock(&dev->mutex);
  1686. /*
  1687. * Since we are supposed to be called from ->connect()
  1688. * which is mutually exclusive with ->disconnect()
  1689. * we can't be racing with input_unregister_handle()
  1690. * and so separate lock is not needed here.
  1691. */
  1692. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1693. if (handler->start)
  1694. handler->start(handle);
  1695. return 0;
  1696. }
  1697. EXPORT_SYMBOL(input_register_handle);
  1698. /**
  1699. * input_unregister_handle - unregister an input handle
  1700. * @handle: handle to unregister
  1701. *
  1702. * This function removes input handle from device's
  1703. * and handler's lists.
  1704. *
  1705. * This function is supposed to be called from handler's
  1706. * disconnect() method.
  1707. */
  1708. void input_unregister_handle(struct input_handle *handle)
  1709. {
  1710. struct input_dev *dev = handle->dev;
  1711. list_del_rcu(&handle->h_node);
  1712. /*
  1713. * Take dev->mutex to prevent race with input_release_device().
  1714. */
  1715. mutex_lock(&dev->mutex);
  1716. list_del_rcu(&handle->d_node);
  1717. mutex_unlock(&dev->mutex);
  1718. synchronize_rcu();
  1719. }
  1720. EXPORT_SYMBOL(input_unregister_handle);
  1721. static int input_open_file(struct inode *inode, struct file *file)
  1722. {
  1723. struct input_handler *handler;
  1724. const struct file_operations *old_fops, *new_fops = NULL;
  1725. int err;
  1726. err = mutex_lock_interruptible(&input_mutex);
  1727. if (err)
  1728. return err;
  1729. /* No load-on-demand here? */
  1730. handler = input_table[iminor(inode) >> 5];
  1731. if (handler)
  1732. new_fops = fops_get(handler->fops);
  1733. mutex_unlock(&input_mutex);
  1734. /*
  1735. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1736. * not "no device". Oh, well...
  1737. */
  1738. if (!new_fops || !new_fops->open) {
  1739. fops_put(new_fops);
  1740. err = -ENODEV;
  1741. goto out;
  1742. }
  1743. old_fops = file->f_op;
  1744. file->f_op = new_fops;
  1745. err = new_fops->open(inode, file);
  1746. if (err) {
  1747. fops_put(file->f_op);
  1748. file->f_op = fops_get(old_fops);
  1749. }
  1750. fops_put(old_fops);
  1751. out:
  1752. return err;
  1753. }
  1754. static const struct file_operations input_fops = {
  1755. .owner = THIS_MODULE,
  1756. .open = input_open_file,
  1757. .llseek = noop_llseek,
  1758. };
  1759. static int __init input_init(void)
  1760. {
  1761. int err;
  1762. err = class_register(&input_class);
  1763. if (err) {
  1764. pr_err("unable to register input_dev class\n");
  1765. return err;
  1766. }
  1767. err = input_proc_init();
  1768. if (err)
  1769. goto fail1;
  1770. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1771. if (err) {
  1772. pr_err("unable to register char major %d", INPUT_MAJOR);
  1773. goto fail2;
  1774. }
  1775. return 0;
  1776. fail2: input_proc_exit();
  1777. fail1: class_unregister(&input_class);
  1778. return err;
  1779. }
  1780. static void __exit input_exit(void)
  1781. {
  1782. input_proc_exit();
  1783. unregister_chrdev(INPUT_MAJOR, "input");
  1784. class_unregister(&input_class);
  1785. }
  1786. subsys_initcall(input_init);
  1787. module_exit(input_exit);