memory.c 114 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <asm/io.h>
  57. #include <asm/pgalloc.h>
  58. #include <asm/uaccess.h>
  59. #include <asm/tlb.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/pgtable.h>
  62. #include "internal.h"
  63. #ifndef CONFIG_NEED_MULTIPLE_NODES
  64. /* use the per-pgdat data instead for discontigmem - mbligh */
  65. unsigned long max_mapnr;
  66. struct page *mem_map;
  67. EXPORT_SYMBOL(max_mapnr);
  68. EXPORT_SYMBOL(mem_map);
  69. #endif
  70. unsigned long num_physpages;
  71. /*
  72. * A number of key systems in x86 including ioremap() rely on the assumption
  73. * that high_memory defines the upper bound on direct map memory, then end
  74. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  75. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  76. * and ZONE_HIGHMEM.
  77. */
  78. void * high_memory;
  79. EXPORT_SYMBOL(num_physpages);
  80. EXPORT_SYMBOL(high_memory);
  81. /*
  82. * Randomize the address space (stacks, mmaps, brk, etc.).
  83. *
  84. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  85. * as ancient (libc5 based) binaries can segfault. )
  86. */
  87. int randomize_va_space __read_mostly =
  88. #ifdef CONFIG_COMPAT_BRK
  89. 1;
  90. #else
  91. 2;
  92. #endif
  93. static int __init disable_randmaps(char *s)
  94. {
  95. randomize_va_space = 0;
  96. return 1;
  97. }
  98. __setup("norandmaps", disable_randmaps);
  99. unsigned long zero_pfn __read_mostly;
  100. unsigned long highest_memmap_pfn __read_mostly;
  101. /*
  102. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  103. */
  104. static int __init init_zero_pfn(void)
  105. {
  106. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  107. return 0;
  108. }
  109. core_initcall(init_zero_pfn);
  110. #if defined(SPLIT_RSS_COUNTING)
  111. void sync_mm_rss(struct mm_struct *mm)
  112. {
  113. int i;
  114. for (i = 0; i < NR_MM_COUNTERS; i++) {
  115. if (current->rss_stat.count[i]) {
  116. add_mm_counter(mm, i, current->rss_stat.count[i]);
  117. current->rss_stat.count[i] = 0;
  118. }
  119. }
  120. current->rss_stat.events = 0;
  121. }
  122. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  123. {
  124. struct task_struct *task = current;
  125. if (likely(task->mm == mm))
  126. task->rss_stat.count[member] += val;
  127. else
  128. add_mm_counter(mm, member, val);
  129. }
  130. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  131. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  132. /* sync counter once per 64 page faults */
  133. #define TASK_RSS_EVENTS_THRESH (64)
  134. static void check_sync_rss_stat(struct task_struct *task)
  135. {
  136. if (unlikely(task != current))
  137. return;
  138. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  139. sync_mm_rss(task->mm);
  140. }
  141. #else /* SPLIT_RSS_COUNTING */
  142. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  143. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  144. static void check_sync_rss_stat(struct task_struct *task)
  145. {
  146. }
  147. #endif /* SPLIT_RSS_COUNTING */
  148. #ifdef HAVE_GENERIC_MMU_GATHER
  149. static int tlb_next_batch(struct mmu_gather *tlb)
  150. {
  151. struct mmu_gather_batch *batch;
  152. batch = tlb->active;
  153. if (batch->next) {
  154. tlb->active = batch->next;
  155. return 1;
  156. }
  157. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  158. if (!batch)
  159. return 0;
  160. batch->next = NULL;
  161. batch->nr = 0;
  162. batch->max = MAX_GATHER_BATCH;
  163. tlb->active->next = batch;
  164. tlb->active = batch;
  165. return 1;
  166. }
  167. /* tlb_gather_mmu
  168. * Called to initialize an (on-stack) mmu_gather structure for page-table
  169. * tear-down from @mm. The @fullmm argument is used when @mm is without
  170. * users and we're going to destroy the full address space (exit/execve).
  171. */
  172. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  173. {
  174. tlb->mm = mm;
  175. tlb->fullmm = fullmm;
  176. tlb->start = -1UL;
  177. tlb->end = 0;
  178. tlb->need_flush = 0;
  179. tlb->fast_mode = (num_possible_cpus() == 1);
  180. tlb->local.next = NULL;
  181. tlb->local.nr = 0;
  182. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  183. tlb->active = &tlb->local;
  184. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  185. tlb->batch = NULL;
  186. #endif
  187. }
  188. void tlb_flush_mmu(struct mmu_gather *tlb)
  189. {
  190. struct mmu_gather_batch *batch;
  191. if (!tlb->need_flush)
  192. return;
  193. tlb->need_flush = 0;
  194. tlb_flush(tlb);
  195. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  196. tlb_table_flush(tlb);
  197. #endif
  198. if (tlb_fast_mode(tlb))
  199. return;
  200. for (batch = &tlb->local; batch; batch = batch->next) {
  201. free_pages_and_swap_cache(batch->pages, batch->nr);
  202. batch->nr = 0;
  203. }
  204. tlb->active = &tlb->local;
  205. }
  206. /* tlb_finish_mmu
  207. * Called at the end of the shootdown operation to free up any resources
  208. * that were required.
  209. */
  210. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  211. {
  212. struct mmu_gather_batch *batch, *next;
  213. tlb->start = start;
  214. tlb->end = end;
  215. tlb_flush_mmu(tlb);
  216. /* keep the page table cache within bounds */
  217. check_pgt_cache();
  218. for (batch = tlb->local.next; batch; batch = next) {
  219. next = batch->next;
  220. free_pages((unsigned long)batch, 0);
  221. }
  222. tlb->local.next = NULL;
  223. }
  224. /* __tlb_remove_page
  225. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  226. * handling the additional races in SMP caused by other CPUs caching valid
  227. * mappings in their TLBs. Returns the number of free page slots left.
  228. * When out of page slots we must call tlb_flush_mmu().
  229. */
  230. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  231. {
  232. struct mmu_gather_batch *batch;
  233. VM_BUG_ON(!tlb->need_flush);
  234. if (tlb_fast_mode(tlb)) {
  235. free_page_and_swap_cache(page);
  236. return 1; /* avoid calling tlb_flush_mmu() */
  237. }
  238. batch = tlb->active;
  239. batch->pages[batch->nr++] = page;
  240. if (batch->nr == batch->max) {
  241. if (!tlb_next_batch(tlb))
  242. return 0;
  243. batch = tlb->active;
  244. }
  245. VM_BUG_ON(batch->nr > batch->max);
  246. return batch->max - batch->nr;
  247. }
  248. #endif /* HAVE_GENERIC_MMU_GATHER */
  249. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  250. /*
  251. * See the comment near struct mmu_table_batch.
  252. */
  253. static void tlb_remove_table_smp_sync(void *arg)
  254. {
  255. /* Simply deliver the interrupt */
  256. }
  257. static void tlb_remove_table_one(void *table)
  258. {
  259. /*
  260. * This isn't an RCU grace period and hence the page-tables cannot be
  261. * assumed to be actually RCU-freed.
  262. *
  263. * It is however sufficient for software page-table walkers that rely on
  264. * IRQ disabling. See the comment near struct mmu_table_batch.
  265. */
  266. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  267. __tlb_remove_table(table);
  268. }
  269. static void tlb_remove_table_rcu(struct rcu_head *head)
  270. {
  271. struct mmu_table_batch *batch;
  272. int i;
  273. batch = container_of(head, struct mmu_table_batch, rcu);
  274. for (i = 0; i < batch->nr; i++)
  275. __tlb_remove_table(batch->tables[i]);
  276. free_page((unsigned long)batch);
  277. }
  278. void tlb_table_flush(struct mmu_gather *tlb)
  279. {
  280. struct mmu_table_batch **batch = &tlb->batch;
  281. if (*batch) {
  282. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  283. *batch = NULL;
  284. }
  285. }
  286. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  287. {
  288. struct mmu_table_batch **batch = &tlb->batch;
  289. tlb->need_flush = 1;
  290. /*
  291. * When there's less then two users of this mm there cannot be a
  292. * concurrent page-table walk.
  293. */
  294. if (atomic_read(&tlb->mm->mm_users) < 2) {
  295. __tlb_remove_table(table);
  296. return;
  297. }
  298. if (*batch == NULL) {
  299. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  300. if (*batch == NULL) {
  301. tlb_remove_table_one(table);
  302. return;
  303. }
  304. (*batch)->nr = 0;
  305. }
  306. (*batch)->tables[(*batch)->nr++] = table;
  307. if ((*batch)->nr == MAX_TABLE_BATCH)
  308. tlb_table_flush(tlb);
  309. }
  310. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  311. /*
  312. * If a p?d_bad entry is found while walking page tables, report
  313. * the error, before resetting entry to p?d_none. Usually (but
  314. * very seldom) called out from the p?d_none_or_clear_bad macros.
  315. */
  316. void pgd_clear_bad(pgd_t *pgd)
  317. {
  318. pgd_ERROR(*pgd);
  319. pgd_clear(pgd);
  320. }
  321. void pud_clear_bad(pud_t *pud)
  322. {
  323. pud_ERROR(*pud);
  324. pud_clear(pud);
  325. }
  326. void pmd_clear_bad(pmd_t *pmd)
  327. {
  328. pmd_ERROR(*pmd);
  329. pmd_clear(pmd);
  330. }
  331. /*
  332. * Note: this doesn't free the actual pages themselves. That
  333. * has been handled earlier when unmapping all the memory regions.
  334. */
  335. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  336. unsigned long addr)
  337. {
  338. pgtable_t token = pmd_pgtable(*pmd);
  339. pmd_clear(pmd);
  340. pte_free_tlb(tlb, token, addr);
  341. tlb->mm->nr_ptes--;
  342. }
  343. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  344. unsigned long addr, unsigned long end,
  345. unsigned long floor, unsigned long ceiling)
  346. {
  347. pmd_t *pmd;
  348. unsigned long next;
  349. unsigned long start;
  350. start = addr;
  351. pmd = pmd_offset(pud, addr);
  352. do {
  353. next = pmd_addr_end(addr, end);
  354. if (pmd_none_or_clear_bad(pmd))
  355. continue;
  356. free_pte_range(tlb, pmd, addr);
  357. } while (pmd++, addr = next, addr != end);
  358. start &= PUD_MASK;
  359. if (start < floor)
  360. return;
  361. if (ceiling) {
  362. ceiling &= PUD_MASK;
  363. if (!ceiling)
  364. return;
  365. }
  366. if (end - 1 > ceiling - 1)
  367. return;
  368. pmd = pmd_offset(pud, start);
  369. pud_clear(pud);
  370. pmd_free_tlb(tlb, pmd, start);
  371. }
  372. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  373. unsigned long addr, unsigned long end,
  374. unsigned long floor, unsigned long ceiling)
  375. {
  376. pud_t *pud;
  377. unsigned long next;
  378. unsigned long start;
  379. start = addr;
  380. pud = pud_offset(pgd, addr);
  381. do {
  382. next = pud_addr_end(addr, end);
  383. if (pud_none_or_clear_bad(pud))
  384. continue;
  385. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  386. } while (pud++, addr = next, addr != end);
  387. start &= PGDIR_MASK;
  388. if (start < floor)
  389. return;
  390. if (ceiling) {
  391. ceiling &= PGDIR_MASK;
  392. if (!ceiling)
  393. return;
  394. }
  395. if (end - 1 > ceiling - 1)
  396. return;
  397. pud = pud_offset(pgd, start);
  398. pgd_clear(pgd);
  399. pud_free_tlb(tlb, pud, start);
  400. }
  401. /*
  402. * This function frees user-level page tables of a process.
  403. *
  404. * Must be called with pagetable lock held.
  405. */
  406. void free_pgd_range(struct mmu_gather *tlb,
  407. unsigned long addr, unsigned long end,
  408. unsigned long floor, unsigned long ceiling)
  409. {
  410. pgd_t *pgd;
  411. unsigned long next;
  412. /*
  413. * The next few lines have given us lots of grief...
  414. *
  415. * Why are we testing PMD* at this top level? Because often
  416. * there will be no work to do at all, and we'd prefer not to
  417. * go all the way down to the bottom just to discover that.
  418. *
  419. * Why all these "- 1"s? Because 0 represents both the bottom
  420. * of the address space and the top of it (using -1 for the
  421. * top wouldn't help much: the masks would do the wrong thing).
  422. * The rule is that addr 0 and floor 0 refer to the bottom of
  423. * the address space, but end 0 and ceiling 0 refer to the top
  424. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  425. * that end 0 case should be mythical).
  426. *
  427. * Wherever addr is brought up or ceiling brought down, we must
  428. * be careful to reject "the opposite 0" before it confuses the
  429. * subsequent tests. But what about where end is brought down
  430. * by PMD_SIZE below? no, end can't go down to 0 there.
  431. *
  432. * Whereas we round start (addr) and ceiling down, by different
  433. * masks at different levels, in order to test whether a table
  434. * now has no other vmas using it, so can be freed, we don't
  435. * bother to round floor or end up - the tests don't need that.
  436. */
  437. addr &= PMD_MASK;
  438. if (addr < floor) {
  439. addr += PMD_SIZE;
  440. if (!addr)
  441. return;
  442. }
  443. if (ceiling) {
  444. ceiling &= PMD_MASK;
  445. if (!ceiling)
  446. return;
  447. }
  448. if (end - 1 > ceiling - 1)
  449. end -= PMD_SIZE;
  450. if (addr > end - 1)
  451. return;
  452. pgd = pgd_offset(tlb->mm, addr);
  453. do {
  454. next = pgd_addr_end(addr, end);
  455. if (pgd_none_or_clear_bad(pgd))
  456. continue;
  457. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  458. } while (pgd++, addr = next, addr != end);
  459. }
  460. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  461. unsigned long floor, unsigned long ceiling)
  462. {
  463. while (vma) {
  464. struct vm_area_struct *next = vma->vm_next;
  465. unsigned long addr = vma->vm_start;
  466. /*
  467. * Hide vma from rmap and truncate_pagecache before freeing
  468. * pgtables
  469. */
  470. unlink_anon_vmas(vma);
  471. unlink_file_vma(vma);
  472. if (is_vm_hugetlb_page(vma)) {
  473. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  474. floor, next? next->vm_start: ceiling);
  475. } else {
  476. /*
  477. * Optimization: gather nearby vmas into one call down
  478. */
  479. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  480. && !is_vm_hugetlb_page(next)) {
  481. vma = next;
  482. next = vma->vm_next;
  483. unlink_anon_vmas(vma);
  484. unlink_file_vma(vma);
  485. }
  486. free_pgd_range(tlb, addr, vma->vm_end,
  487. floor, next? next->vm_start: ceiling);
  488. }
  489. vma = next;
  490. }
  491. }
  492. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  493. pmd_t *pmd, unsigned long address)
  494. {
  495. pgtable_t new = pte_alloc_one(mm, address);
  496. int wait_split_huge_page;
  497. if (!new)
  498. return -ENOMEM;
  499. /*
  500. * Ensure all pte setup (eg. pte page lock and page clearing) are
  501. * visible before the pte is made visible to other CPUs by being
  502. * put into page tables.
  503. *
  504. * The other side of the story is the pointer chasing in the page
  505. * table walking code (when walking the page table without locking;
  506. * ie. most of the time). Fortunately, these data accesses consist
  507. * of a chain of data-dependent loads, meaning most CPUs (alpha
  508. * being the notable exception) will already guarantee loads are
  509. * seen in-order. See the alpha page table accessors for the
  510. * smp_read_barrier_depends() barriers in page table walking code.
  511. */
  512. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  513. spin_lock(&mm->page_table_lock);
  514. wait_split_huge_page = 0;
  515. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  516. mm->nr_ptes++;
  517. pmd_populate(mm, pmd, new);
  518. new = NULL;
  519. } else if (unlikely(pmd_trans_splitting(*pmd)))
  520. wait_split_huge_page = 1;
  521. spin_unlock(&mm->page_table_lock);
  522. if (new)
  523. pte_free(mm, new);
  524. if (wait_split_huge_page)
  525. wait_split_huge_page(vma->anon_vma, pmd);
  526. return 0;
  527. }
  528. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  529. {
  530. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  531. if (!new)
  532. return -ENOMEM;
  533. smp_wmb(); /* See comment in __pte_alloc */
  534. spin_lock(&init_mm.page_table_lock);
  535. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  536. pmd_populate_kernel(&init_mm, pmd, new);
  537. new = NULL;
  538. } else
  539. VM_BUG_ON(pmd_trans_splitting(*pmd));
  540. spin_unlock(&init_mm.page_table_lock);
  541. if (new)
  542. pte_free_kernel(&init_mm, new);
  543. return 0;
  544. }
  545. static inline void init_rss_vec(int *rss)
  546. {
  547. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  548. }
  549. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  550. {
  551. int i;
  552. if (current->mm == mm)
  553. sync_mm_rss(mm);
  554. for (i = 0; i < NR_MM_COUNTERS; i++)
  555. if (rss[i])
  556. add_mm_counter(mm, i, rss[i]);
  557. }
  558. /*
  559. * This function is called to print an error when a bad pte
  560. * is found. For example, we might have a PFN-mapped pte in
  561. * a region that doesn't allow it.
  562. *
  563. * The calling function must still handle the error.
  564. */
  565. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  566. pte_t pte, struct page *page)
  567. {
  568. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  569. pud_t *pud = pud_offset(pgd, addr);
  570. pmd_t *pmd = pmd_offset(pud, addr);
  571. struct address_space *mapping;
  572. pgoff_t index;
  573. static unsigned long resume;
  574. static unsigned long nr_shown;
  575. static unsigned long nr_unshown;
  576. /*
  577. * Allow a burst of 60 reports, then keep quiet for that minute;
  578. * or allow a steady drip of one report per second.
  579. */
  580. if (nr_shown == 60) {
  581. if (time_before(jiffies, resume)) {
  582. nr_unshown++;
  583. return;
  584. }
  585. if (nr_unshown) {
  586. printk(KERN_ALERT
  587. "BUG: Bad page map: %lu messages suppressed\n",
  588. nr_unshown);
  589. nr_unshown = 0;
  590. }
  591. nr_shown = 0;
  592. }
  593. if (nr_shown++ == 0)
  594. resume = jiffies + 60 * HZ;
  595. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  596. index = linear_page_index(vma, addr);
  597. printk(KERN_ALERT
  598. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  599. current->comm,
  600. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  601. if (page)
  602. dump_page(page);
  603. printk(KERN_ALERT
  604. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  605. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  606. /*
  607. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  608. */
  609. if (vma->vm_ops)
  610. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  611. (unsigned long)vma->vm_ops->fault);
  612. if (vma->vm_file && vma->vm_file->f_op)
  613. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  614. (unsigned long)vma->vm_file->f_op->mmap);
  615. dump_stack();
  616. add_taint(TAINT_BAD_PAGE);
  617. }
  618. static inline bool is_cow_mapping(vm_flags_t flags)
  619. {
  620. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  621. }
  622. /*
  623. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  624. *
  625. * "Special" mappings do not wish to be associated with a "struct page" (either
  626. * it doesn't exist, or it exists but they don't want to touch it). In this
  627. * case, NULL is returned here. "Normal" mappings do have a struct page.
  628. *
  629. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  630. * pte bit, in which case this function is trivial. Secondly, an architecture
  631. * may not have a spare pte bit, which requires a more complicated scheme,
  632. * described below.
  633. *
  634. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  635. * special mapping (even if there are underlying and valid "struct pages").
  636. * COWed pages of a VM_PFNMAP are always normal.
  637. *
  638. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  639. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  640. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  641. * mapping will always honor the rule
  642. *
  643. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  644. *
  645. * And for normal mappings this is false.
  646. *
  647. * This restricts such mappings to be a linear translation from virtual address
  648. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  649. * as the vma is not a COW mapping; in that case, we know that all ptes are
  650. * special (because none can have been COWed).
  651. *
  652. *
  653. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  654. *
  655. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  656. * page" backing, however the difference is that _all_ pages with a struct
  657. * page (that is, those where pfn_valid is true) are refcounted and considered
  658. * normal pages by the VM. The disadvantage is that pages are refcounted
  659. * (which can be slower and simply not an option for some PFNMAP users). The
  660. * advantage is that we don't have to follow the strict linearity rule of
  661. * PFNMAP mappings in order to support COWable mappings.
  662. *
  663. */
  664. #ifdef __HAVE_ARCH_PTE_SPECIAL
  665. # define HAVE_PTE_SPECIAL 1
  666. #else
  667. # define HAVE_PTE_SPECIAL 0
  668. #endif
  669. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  670. pte_t pte)
  671. {
  672. unsigned long pfn = pte_pfn(pte);
  673. if (HAVE_PTE_SPECIAL) {
  674. if (likely(!pte_special(pte)))
  675. goto check_pfn;
  676. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  677. return NULL;
  678. if (!is_zero_pfn(pfn))
  679. print_bad_pte(vma, addr, pte, NULL);
  680. return NULL;
  681. }
  682. /* !HAVE_PTE_SPECIAL case follows: */
  683. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  684. if (vma->vm_flags & VM_MIXEDMAP) {
  685. if (!pfn_valid(pfn))
  686. return NULL;
  687. goto out;
  688. } else {
  689. unsigned long off;
  690. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  691. if (pfn == vma->vm_pgoff + off)
  692. return NULL;
  693. if (!is_cow_mapping(vma->vm_flags))
  694. return NULL;
  695. }
  696. }
  697. if (is_zero_pfn(pfn))
  698. return NULL;
  699. check_pfn:
  700. if (unlikely(pfn > highest_memmap_pfn)) {
  701. print_bad_pte(vma, addr, pte, NULL);
  702. return NULL;
  703. }
  704. /*
  705. * NOTE! We still have PageReserved() pages in the page tables.
  706. * eg. VDSO mappings can cause them to exist.
  707. */
  708. out:
  709. return pfn_to_page(pfn);
  710. }
  711. /*
  712. * copy one vm_area from one task to the other. Assumes the page tables
  713. * already present in the new task to be cleared in the whole range
  714. * covered by this vma.
  715. */
  716. static inline unsigned long
  717. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  718. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  719. unsigned long addr, int *rss)
  720. {
  721. unsigned long vm_flags = vma->vm_flags;
  722. pte_t pte = *src_pte;
  723. struct page *page;
  724. /* pte contains position in swap or file, so copy. */
  725. if (unlikely(!pte_present(pte))) {
  726. if (!pte_file(pte)) {
  727. swp_entry_t entry = pte_to_swp_entry(pte);
  728. if (swap_duplicate(entry) < 0)
  729. return entry.val;
  730. /* make sure dst_mm is on swapoff's mmlist. */
  731. if (unlikely(list_empty(&dst_mm->mmlist))) {
  732. spin_lock(&mmlist_lock);
  733. if (list_empty(&dst_mm->mmlist))
  734. list_add(&dst_mm->mmlist,
  735. &src_mm->mmlist);
  736. spin_unlock(&mmlist_lock);
  737. }
  738. if (likely(!non_swap_entry(entry)))
  739. rss[MM_SWAPENTS]++;
  740. else if (is_migration_entry(entry)) {
  741. page = migration_entry_to_page(entry);
  742. if (PageAnon(page))
  743. rss[MM_ANONPAGES]++;
  744. else
  745. rss[MM_FILEPAGES]++;
  746. if (is_write_migration_entry(entry) &&
  747. is_cow_mapping(vm_flags)) {
  748. /*
  749. * COW mappings require pages in both
  750. * parent and child to be set to read.
  751. */
  752. make_migration_entry_read(&entry);
  753. pte = swp_entry_to_pte(entry);
  754. set_pte_at(src_mm, addr, src_pte, pte);
  755. }
  756. }
  757. }
  758. goto out_set_pte;
  759. }
  760. /*
  761. * If it's a COW mapping, write protect it both
  762. * in the parent and the child
  763. */
  764. if (is_cow_mapping(vm_flags)) {
  765. ptep_set_wrprotect(src_mm, addr, src_pte);
  766. pte = pte_wrprotect(pte);
  767. }
  768. /*
  769. * If it's a shared mapping, mark it clean in
  770. * the child
  771. */
  772. if (vm_flags & VM_SHARED)
  773. pte = pte_mkclean(pte);
  774. pte = pte_mkold(pte);
  775. page = vm_normal_page(vma, addr, pte);
  776. if (page) {
  777. get_page(page);
  778. page_dup_rmap(page);
  779. if (PageAnon(page))
  780. rss[MM_ANONPAGES]++;
  781. else
  782. rss[MM_FILEPAGES]++;
  783. }
  784. out_set_pte:
  785. set_pte_at(dst_mm, addr, dst_pte, pte);
  786. return 0;
  787. }
  788. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  789. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  790. unsigned long addr, unsigned long end)
  791. {
  792. pte_t *orig_src_pte, *orig_dst_pte;
  793. pte_t *src_pte, *dst_pte;
  794. spinlock_t *src_ptl, *dst_ptl;
  795. int progress = 0;
  796. int rss[NR_MM_COUNTERS];
  797. swp_entry_t entry = (swp_entry_t){0};
  798. again:
  799. init_rss_vec(rss);
  800. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  801. if (!dst_pte)
  802. return -ENOMEM;
  803. src_pte = pte_offset_map(src_pmd, addr);
  804. src_ptl = pte_lockptr(src_mm, src_pmd);
  805. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  806. orig_src_pte = src_pte;
  807. orig_dst_pte = dst_pte;
  808. arch_enter_lazy_mmu_mode();
  809. do {
  810. /*
  811. * We are holding two locks at this point - either of them
  812. * could generate latencies in another task on another CPU.
  813. */
  814. if (progress >= 32) {
  815. progress = 0;
  816. if (need_resched() ||
  817. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  818. break;
  819. }
  820. if (pte_none(*src_pte)) {
  821. progress++;
  822. continue;
  823. }
  824. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  825. vma, addr, rss);
  826. if (entry.val)
  827. break;
  828. progress += 8;
  829. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  830. arch_leave_lazy_mmu_mode();
  831. spin_unlock(src_ptl);
  832. pte_unmap(orig_src_pte);
  833. add_mm_rss_vec(dst_mm, rss);
  834. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  835. cond_resched();
  836. if (entry.val) {
  837. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  838. return -ENOMEM;
  839. progress = 0;
  840. }
  841. if (addr != end)
  842. goto again;
  843. return 0;
  844. }
  845. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  846. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  847. unsigned long addr, unsigned long end)
  848. {
  849. pmd_t *src_pmd, *dst_pmd;
  850. unsigned long next;
  851. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  852. if (!dst_pmd)
  853. return -ENOMEM;
  854. src_pmd = pmd_offset(src_pud, addr);
  855. do {
  856. next = pmd_addr_end(addr, end);
  857. if (pmd_trans_huge(*src_pmd)) {
  858. int err;
  859. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  860. err = copy_huge_pmd(dst_mm, src_mm,
  861. dst_pmd, src_pmd, addr, vma);
  862. if (err == -ENOMEM)
  863. return -ENOMEM;
  864. if (!err)
  865. continue;
  866. /* fall through */
  867. }
  868. if (pmd_none_or_clear_bad(src_pmd))
  869. continue;
  870. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  871. vma, addr, next))
  872. return -ENOMEM;
  873. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  874. return 0;
  875. }
  876. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  877. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  878. unsigned long addr, unsigned long end)
  879. {
  880. pud_t *src_pud, *dst_pud;
  881. unsigned long next;
  882. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  883. if (!dst_pud)
  884. return -ENOMEM;
  885. src_pud = pud_offset(src_pgd, addr);
  886. do {
  887. next = pud_addr_end(addr, end);
  888. if (pud_none_or_clear_bad(src_pud))
  889. continue;
  890. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  891. vma, addr, next))
  892. return -ENOMEM;
  893. } while (dst_pud++, src_pud++, addr = next, addr != end);
  894. return 0;
  895. }
  896. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  897. struct vm_area_struct *vma)
  898. {
  899. pgd_t *src_pgd, *dst_pgd;
  900. unsigned long next;
  901. unsigned long addr = vma->vm_start;
  902. unsigned long end = vma->vm_end;
  903. unsigned long mmun_start; /* For mmu_notifiers */
  904. unsigned long mmun_end; /* For mmu_notifiers */
  905. bool is_cow;
  906. int ret;
  907. /*
  908. * Don't copy ptes where a page fault will fill them correctly.
  909. * Fork becomes much lighter when there are big shared or private
  910. * readonly mappings. The tradeoff is that copy_page_range is more
  911. * efficient than faulting.
  912. */
  913. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  914. VM_PFNMAP | VM_MIXEDMAP))) {
  915. if (!vma->anon_vma)
  916. return 0;
  917. }
  918. if (is_vm_hugetlb_page(vma))
  919. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  920. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  921. /*
  922. * We do not free on error cases below as remove_vma
  923. * gets called on error from higher level routine
  924. */
  925. ret = track_pfn_copy(vma);
  926. if (ret)
  927. return ret;
  928. }
  929. /*
  930. * We need to invalidate the secondary MMU mappings only when
  931. * there could be a permission downgrade on the ptes of the
  932. * parent mm. And a permission downgrade will only happen if
  933. * is_cow_mapping() returns true.
  934. */
  935. is_cow = is_cow_mapping(vma->vm_flags);
  936. mmun_start = addr;
  937. mmun_end = end;
  938. if (is_cow)
  939. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  940. mmun_end);
  941. ret = 0;
  942. dst_pgd = pgd_offset(dst_mm, addr);
  943. src_pgd = pgd_offset(src_mm, addr);
  944. do {
  945. next = pgd_addr_end(addr, end);
  946. if (pgd_none_or_clear_bad(src_pgd))
  947. continue;
  948. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  949. vma, addr, next))) {
  950. ret = -ENOMEM;
  951. break;
  952. }
  953. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  954. if (is_cow)
  955. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  956. return ret;
  957. }
  958. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  959. struct vm_area_struct *vma, pmd_t *pmd,
  960. unsigned long addr, unsigned long end,
  961. struct zap_details *details)
  962. {
  963. struct mm_struct *mm = tlb->mm;
  964. int force_flush = 0;
  965. int rss[NR_MM_COUNTERS];
  966. spinlock_t *ptl;
  967. pte_t *start_pte;
  968. pte_t *pte;
  969. again:
  970. init_rss_vec(rss);
  971. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  972. pte = start_pte;
  973. arch_enter_lazy_mmu_mode();
  974. do {
  975. pte_t ptent = *pte;
  976. if (pte_none(ptent)) {
  977. continue;
  978. }
  979. if (pte_present(ptent)) {
  980. struct page *page;
  981. page = vm_normal_page(vma, addr, ptent);
  982. if (unlikely(details) && page) {
  983. /*
  984. * unmap_shared_mapping_pages() wants to
  985. * invalidate cache without truncating:
  986. * unmap shared but keep private pages.
  987. */
  988. if (details->check_mapping &&
  989. details->check_mapping != page->mapping)
  990. continue;
  991. /*
  992. * Each page->index must be checked when
  993. * invalidating or truncating nonlinear.
  994. */
  995. if (details->nonlinear_vma &&
  996. (page->index < details->first_index ||
  997. page->index > details->last_index))
  998. continue;
  999. }
  1000. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1001. tlb->fullmm);
  1002. tlb_remove_tlb_entry(tlb, pte, addr);
  1003. if (unlikely(!page))
  1004. continue;
  1005. if (unlikely(details) && details->nonlinear_vma
  1006. && linear_page_index(details->nonlinear_vma,
  1007. addr) != page->index)
  1008. set_pte_at(mm, addr, pte,
  1009. pgoff_to_pte(page->index));
  1010. if (PageAnon(page))
  1011. rss[MM_ANONPAGES]--;
  1012. else {
  1013. if (pte_dirty(ptent))
  1014. set_page_dirty(page);
  1015. if (pte_young(ptent) &&
  1016. likely(!VM_SequentialReadHint(vma)))
  1017. mark_page_accessed(page);
  1018. rss[MM_FILEPAGES]--;
  1019. }
  1020. page_remove_rmap(page);
  1021. if (unlikely(page_mapcount(page) < 0))
  1022. print_bad_pte(vma, addr, ptent, page);
  1023. force_flush = !__tlb_remove_page(tlb, page);
  1024. if (force_flush)
  1025. break;
  1026. continue;
  1027. }
  1028. /*
  1029. * If details->check_mapping, we leave swap entries;
  1030. * if details->nonlinear_vma, we leave file entries.
  1031. */
  1032. if (unlikely(details))
  1033. continue;
  1034. if (pte_file(ptent)) {
  1035. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1036. print_bad_pte(vma, addr, ptent, NULL);
  1037. } else {
  1038. swp_entry_t entry = pte_to_swp_entry(ptent);
  1039. if (!non_swap_entry(entry))
  1040. rss[MM_SWAPENTS]--;
  1041. else if (is_migration_entry(entry)) {
  1042. struct page *page;
  1043. page = migration_entry_to_page(entry);
  1044. if (PageAnon(page))
  1045. rss[MM_ANONPAGES]--;
  1046. else
  1047. rss[MM_FILEPAGES]--;
  1048. }
  1049. if (unlikely(!free_swap_and_cache(entry)))
  1050. print_bad_pte(vma, addr, ptent, NULL);
  1051. }
  1052. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1053. } while (pte++, addr += PAGE_SIZE, addr != end);
  1054. add_mm_rss_vec(mm, rss);
  1055. arch_leave_lazy_mmu_mode();
  1056. pte_unmap_unlock(start_pte, ptl);
  1057. /*
  1058. * mmu_gather ran out of room to batch pages, we break out of
  1059. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1060. * and page-free while holding it.
  1061. */
  1062. if (force_flush) {
  1063. force_flush = 0;
  1064. #ifdef HAVE_GENERIC_MMU_GATHER
  1065. tlb->start = addr;
  1066. tlb->end = end;
  1067. #endif
  1068. tlb_flush_mmu(tlb);
  1069. if (addr != end)
  1070. goto again;
  1071. }
  1072. return addr;
  1073. }
  1074. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1075. struct vm_area_struct *vma, pud_t *pud,
  1076. unsigned long addr, unsigned long end,
  1077. struct zap_details *details)
  1078. {
  1079. pmd_t *pmd;
  1080. unsigned long next;
  1081. pmd = pmd_offset(pud, addr);
  1082. do {
  1083. next = pmd_addr_end(addr, end);
  1084. if (pmd_trans_huge(*pmd)) {
  1085. if (next - addr != HPAGE_PMD_SIZE) {
  1086. #ifdef CONFIG_DEBUG_VM
  1087. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1088. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1089. __func__, addr, end,
  1090. vma->vm_start,
  1091. vma->vm_end);
  1092. BUG();
  1093. }
  1094. #endif
  1095. split_huge_page_pmd(vma, addr, pmd);
  1096. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1097. goto next;
  1098. /* fall through */
  1099. }
  1100. /*
  1101. * Here there can be other concurrent MADV_DONTNEED or
  1102. * trans huge page faults running, and if the pmd is
  1103. * none or trans huge it can change under us. This is
  1104. * because MADV_DONTNEED holds the mmap_sem in read
  1105. * mode.
  1106. */
  1107. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1108. goto next;
  1109. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1110. next:
  1111. cond_resched();
  1112. } while (pmd++, addr = next, addr != end);
  1113. return addr;
  1114. }
  1115. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1116. struct vm_area_struct *vma, pgd_t *pgd,
  1117. unsigned long addr, unsigned long end,
  1118. struct zap_details *details)
  1119. {
  1120. pud_t *pud;
  1121. unsigned long next;
  1122. pud = pud_offset(pgd, addr);
  1123. do {
  1124. next = pud_addr_end(addr, end);
  1125. if (pud_none_or_clear_bad(pud))
  1126. continue;
  1127. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1128. } while (pud++, addr = next, addr != end);
  1129. return addr;
  1130. }
  1131. static void unmap_page_range(struct mmu_gather *tlb,
  1132. struct vm_area_struct *vma,
  1133. unsigned long addr, unsigned long end,
  1134. struct zap_details *details)
  1135. {
  1136. pgd_t *pgd;
  1137. unsigned long next;
  1138. if (details && !details->check_mapping && !details->nonlinear_vma)
  1139. details = NULL;
  1140. BUG_ON(addr >= end);
  1141. mem_cgroup_uncharge_start();
  1142. tlb_start_vma(tlb, vma);
  1143. pgd = pgd_offset(vma->vm_mm, addr);
  1144. do {
  1145. next = pgd_addr_end(addr, end);
  1146. if (pgd_none_or_clear_bad(pgd))
  1147. continue;
  1148. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1149. } while (pgd++, addr = next, addr != end);
  1150. tlb_end_vma(tlb, vma);
  1151. mem_cgroup_uncharge_end();
  1152. }
  1153. static void unmap_single_vma(struct mmu_gather *tlb,
  1154. struct vm_area_struct *vma, unsigned long start_addr,
  1155. unsigned long end_addr,
  1156. struct zap_details *details)
  1157. {
  1158. unsigned long start = max(vma->vm_start, start_addr);
  1159. unsigned long end;
  1160. if (start >= vma->vm_end)
  1161. return;
  1162. end = min(vma->vm_end, end_addr);
  1163. if (end <= vma->vm_start)
  1164. return;
  1165. if (vma->vm_file)
  1166. uprobe_munmap(vma, start, end);
  1167. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1168. untrack_pfn(vma, 0, 0);
  1169. if (start != end) {
  1170. if (unlikely(is_vm_hugetlb_page(vma))) {
  1171. /*
  1172. * It is undesirable to test vma->vm_file as it
  1173. * should be non-null for valid hugetlb area.
  1174. * However, vm_file will be NULL in the error
  1175. * cleanup path of do_mmap_pgoff. When
  1176. * hugetlbfs ->mmap method fails,
  1177. * do_mmap_pgoff() nullifies vma->vm_file
  1178. * before calling this function to clean up.
  1179. * Since no pte has actually been setup, it is
  1180. * safe to do nothing in this case.
  1181. */
  1182. if (vma->vm_file) {
  1183. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1184. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1185. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1186. }
  1187. } else
  1188. unmap_page_range(tlb, vma, start, end, details);
  1189. }
  1190. }
  1191. /**
  1192. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1193. * @tlb: address of the caller's struct mmu_gather
  1194. * @vma: the starting vma
  1195. * @start_addr: virtual address at which to start unmapping
  1196. * @end_addr: virtual address at which to end unmapping
  1197. *
  1198. * Unmap all pages in the vma list.
  1199. *
  1200. * Only addresses between `start' and `end' will be unmapped.
  1201. *
  1202. * The VMA list must be sorted in ascending virtual address order.
  1203. *
  1204. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1205. * range after unmap_vmas() returns. So the only responsibility here is to
  1206. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1207. * drops the lock and schedules.
  1208. */
  1209. void unmap_vmas(struct mmu_gather *tlb,
  1210. struct vm_area_struct *vma, unsigned long start_addr,
  1211. unsigned long end_addr)
  1212. {
  1213. struct mm_struct *mm = vma->vm_mm;
  1214. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1215. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1216. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1217. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1218. }
  1219. /**
  1220. * zap_page_range - remove user pages in a given range
  1221. * @vma: vm_area_struct holding the applicable pages
  1222. * @start: starting address of pages to zap
  1223. * @size: number of bytes to zap
  1224. * @details: details of nonlinear truncation or shared cache invalidation
  1225. *
  1226. * Caller must protect the VMA list
  1227. */
  1228. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1229. unsigned long size, struct zap_details *details)
  1230. {
  1231. struct mm_struct *mm = vma->vm_mm;
  1232. struct mmu_gather tlb;
  1233. unsigned long end = start + size;
  1234. lru_add_drain();
  1235. tlb_gather_mmu(&tlb, mm, 0);
  1236. update_hiwater_rss(mm);
  1237. mmu_notifier_invalidate_range_start(mm, start, end);
  1238. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1239. unmap_single_vma(&tlb, vma, start, end, details);
  1240. mmu_notifier_invalidate_range_end(mm, start, end);
  1241. tlb_finish_mmu(&tlb, start, end);
  1242. }
  1243. /**
  1244. * zap_page_range_single - remove user pages in a given range
  1245. * @vma: vm_area_struct holding the applicable pages
  1246. * @address: starting address of pages to zap
  1247. * @size: number of bytes to zap
  1248. * @details: details of nonlinear truncation or shared cache invalidation
  1249. *
  1250. * The range must fit into one VMA.
  1251. */
  1252. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1253. unsigned long size, struct zap_details *details)
  1254. {
  1255. struct mm_struct *mm = vma->vm_mm;
  1256. struct mmu_gather tlb;
  1257. unsigned long end = address + size;
  1258. lru_add_drain();
  1259. tlb_gather_mmu(&tlb, mm, 0);
  1260. update_hiwater_rss(mm);
  1261. mmu_notifier_invalidate_range_start(mm, address, end);
  1262. unmap_single_vma(&tlb, vma, address, end, details);
  1263. mmu_notifier_invalidate_range_end(mm, address, end);
  1264. tlb_finish_mmu(&tlb, address, end);
  1265. }
  1266. /**
  1267. * zap_vma_ptes - remove ptes mapping the vma
  1268. * @vma: vm_area_struct holding ptes to be zapped
  1269. * @address: starting address of pages to zap
  1270. * @size: number of bytes to zap
  1271. *
  1272. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1273. *
  1274. * The entire address range must be fully contained within the vma.
  1275. *
  1276. * Returns 0 if successful.
  1277. */
  1278. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1279. unsigned long size)
  1280. {
  1281. if (address < vma->vm_start || address + size > vma->vm_end ||
  1282. !(vma->vm_flags & VM_PFNMAP))
  1283. return -1;
  1284. zap_page_range_single(vma, address, size, NULL);
  1285. return 0;
  1286. }
  1287. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1288. /**
  1289. * follow_page - look up a page descriptor from a user-virtual address
  1290. * @vma: vm_area_struct mapping @address
  1291. * @address: virtual address to look up
  1292. * @flags: flags modifying lookup behaviour
  1293. *
  1294. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1295. *
  1296. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1297. * an error pointer if there is a mapping to something not represented
  1298. * by a page descriptor (see also vm_normal_page()).
  1299. */
  1300. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1301. unsigned int flags)
  1302. {
  1303. pgd_t *pgd;
  1304. pud_t *pud;
  1305. pmd_t *pmd;
  1306. pte_t *ptep, pte;
  1307. spinlock_t *ptl;
  1308. struct page *page;
  1309. struct mm_struct *mm = vma->vm_mm;
  1310. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1311. if (!IS_ERR(page)) {
  1312. BUG_ON(flags & FOLL_GET);
  1313. goto out;
  1314. }
  1315. page = NULL;
  1316. pgd = pgd_offset(mm, address);
  1317. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1318. goto no_page_table;
  1319. pud = pud_offset(pgd, address);
  1320. if (pud_none(*pud))
  1321. goto no_page_table;
  1322. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1323. BUG_ON(flags & FOLL_GET);
  1324. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1325. goto out;
  1326. }
  1327. if (unlikely(pud_bad(*pud)))
  1328. goto no_page_table;
  1329. pmd = pmd_offset(pud, address);
  1330. if (pmd_none(*pmd))
  1331. goto no_page_table;
  1332. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1333. BUG_ON(flags & FOLL_GET);
  1334. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1335. goto out;
  1336. }
  1337. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1338. goto no_page_table;
  1339. if (pmd_trans_huge(*pmd)) {
  1340. if (flags & FOLL_SPLIT) {
  1341. split_huge_page_pmd(vma, address, pmd);
  1342. goto split_fallthrough;
  1343. }
  1344. spin_lock(&mm->page_table_lock);
  1345. if (likely(pmd_trans_huge(*pmd))) {
  1346. if (unlikely(pmd_trans_splitting(*pmd))) {
  1347. spin_unlock(&mm->page_table_lock);
  1348. wait_split_huge_page(vma->anon_vma, pmd);
  1349. } else {
  1350. page = follow_trans_huge_pmd(vma, address,
  1351. pmd, flags);
  1352. spin_unlock(&mm->page_table_lock);
  1353. goto out;
  1354. }
  1355. } else
  1356. spin_unlock(&mm->page_table_lock);
  1357. /* fall through */
  1358. }
  1359. split_fallthrough:
  1360. if (unlikely(pmd_bad(*pmd)))
  1361. goto no_page_table;
  1362. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1363. pte = *ptep;
  1364. if (!pte_present(pte))
  1365. goto no_page;
  1366. if ((flags & FOLL_NUMA) && pte_numa(pte))
  1367. goto no_page;
  1368. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1369. goto unlock;
  1370. page = vm_normal_page(vma, address, pte);
  1371. if (unlikely(!page)) {
  1372. if ((flags & FOLL_DUMP) ||
  1373. !is_zero_pfn(pte_pfn(pte)))
  1374. goto bad_page;
  1375. page = pte_page(pte);
  1376. }
  1377. if (flags & FOLL_GET)
  1378. get_page_foll(page);
  1379. if (flags & FOLL_TOUCH) {
  1380. if ((flags & FOLL_WRITE) &&
  1381. !pte_dirty(pte) && !PageDirty(page))
  1382. set_page_dirty(page);
  1383. /*
  1384. * pte_mkyoung() would be more correct here, but atomic care
  1385. * is needed to avoid losing the dirty bit: it is easier to use
  1386. * mark_page_accessed().
  1387. */
  1388. mark_page_accessed(page);
  1389. }
  1390. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1391. /*
  1392. * The preliminary mapping check is mainly to avoid the
  1393. * pointless overhead of lock_page on the ZERO_PAGE
  1394. * which might bounce very badly if there is contention.
  1395. *
  1396. * If the page is already locked, we don't need to
  1397. * handle it now - vmscan will handle it later if and
  1398. * when it attempts to reclaim the page.
  1399. */
  1400. if (page->mapping && trylock_page(page)) {
  1401. lru_add_drain(); /* push cached pages to LRU */
  1402. /*
  1403. * Because we lock page here, and migration is
  1404. * blocked by the pte's page reference, and we
  1405. * know the page is still mapped, we don't even
  1406. * need to check for file-cache page truncation.
  1407. */
  1408. mlock_vma_page(page);
  1409. unlock_page(page);
  1410. }
  1411. }
  1412. unlock:
  1413. pte_unmap_unlock(ptep, ptl);
  1414. out:
  1415. return page;
  1416. bad_page:
  1417. pte_unmap_unlock(ptep, ptl);
  1418. return ERR_PTR(-EFAULT);
  1419. no_page:
  1420. pte_unmap_unlock(ptep, ptl);
  1421. if (!pte_none(pte))
  1422. return page;
  1423. no_page_table:
  1424. /*
  1425. * When core dumping an enormous anonymous area that nobody
  1426. * has touched so far, we don't want to allocate unnecessary pages or
  1427. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1428. * then get_dump_page() will return NULL to leave a hole in the dump.
  1429. * But we can only make this optimization where a hole would surely
  1430. * be zero-filled if handle_mm_fault() actually did handle it.
  1431. */
  1432. if ((flags & FOLL_DUMP) &&
  1433. (!vma->vm_ops || !vma->vm_ops->fault))
  1434. return ERR_PTR(-EFAULT);
  1435. return page;
  1436. }
  1437. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1438. {
  1439. return stack_guard_page_start(vma, addr) ||
  1440. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1441. }
  1442. /**
  1443. * __get_user_pages() - pin user pages in memory
  1444. * @tsk: task_struct of target task
  1445. * @mm: mm_struct of target mm
  1446. * @start: starting user address
  1447. * @nr_pages: number of pages from start to pin
  1448. * @gup_flags: flags modifying pin behaviour
  1449. * @pages: array that receives pointers to the pages pinned.
  1450. * Should be at least nr_pages long. Or NULL, if caller
  1451. * only intends to ensure the pages are faulted in.
  1452. * @vmas: array of pointers to vmas corresponding to each page.
  1453. * Or NULL if the caller does not require them.
  1454. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1455. *
  1456. * Returns number of pages pinned. This may be fewer than the number
  1457. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1458. * were pinned, returns -errno. Each page returned must be released
  1459. * with a put_page() call when it is finished with. vmas will only
  1460. * remain valid while mmap_sem is held.
  1461. *
  1462. * Must be called with mmap_sem held for read or write.
  1463. *
  1464. * __get_user_pages walks a process's page tables and takes a reference to
  1465. * each struct page that each user address corresponds to at a given
  1466. * instant. That is, it takes the page that would be accessed if a user
  1467. * thread accesses the given user virtual address at that instant.
  1468. *
  1469. * This does not guarantee that the page exists in the user mappings when
  1470. * __get_user_pages returns, and there may even be a completely different
  1471. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1472. * and subsequently re faulted). However it does guarantee that the page
  1473. * won't be freed completely. And mostly callers simply care that the page
  1474. * contains data that was valid *at some point in time*. Typically, an IO
  1475. * or similar operation cannot guarantee anything stronger anyway because
  1476. * locks can't be held over the syscall boundary.
  1477. *
  1478. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1479. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1480. * appropriate) must be called after the page is finished with, and
  1481. * before put_page is called.
  1482. *
  1483. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1484. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1485. * *@nonblocking will be set to 0.
  1486. *
  1487. * In most cases, get_user_pages or get_user_pages_fast should be used
  1488. * instead of __get_user_pages. __get_user_pages should be used only if
  1489. * you need some special @gup_flags.
  1490. */
  1491. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1492. unsigned long start, int nr_pages, unsigned int gup_flags,
  1493. struct page **pages, struct vm_area_struct **vmas,
  1494. int *nonblocking)
  1495. {
  1496. int i;
  1497. unsigned long vm_flags;
  1498. if (nr_pages <= 0)
  1499. return 0;
  1500. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1501. /*
  1502. * Require read or write permissions.
  1503. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1504. */
  1505. vm_flags = (gup_flags & FOLL_WRITE) ?
  1506. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1507. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1508. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1509. /*
  1510. * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
  1511. * would be called on PROT_NONE ranges. We must never invoke
  1512. * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
  1513. * page faults would unprotect the PROT_NONE ranges if
  1514. * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
  1515. * bitflag. So to avoid that, don't set FOLL_NUMA if
  1516. * FOLL_FORCE is set.
  1517. */
  1518. if (!(gup_flags & FOLL_FORCE))
  1519. gup_flags |= FOLL_NUMA;
  1520. i = 0;
  1521. do {
  1522. struct vm_area_struct *vma;
  1523. vma = find_extend_vma(mm, start);
  1524. if (!vma && in_gate_area(mm, start)) {
  1525. unsigned long pg = start & PAGE_MASK;
  1526. pgd_t *pgd;
  1527. pud_t *pud;
  1528. pmd_t *pmd;
  1529. pte_t *pte;
  1530. /* user gate pages are read-only */
  1531. if (gup_flags & FOLL_WRITE)
  1532. return i ? : -EFAULT;
  1533. if (pg > TASK_SIZE)
  1534. pgd = pgd_offset_k(pg);
  1535. else
  1536. pgd = pgd_offset_gate(mm, pg);
  1537. BUG_ON(pgd_none(*pgd));
  1538. pud = pud_offset(pgd, pg);
  1539. BUG_ON(pud_none(*pud));
  1540. pmd = pmd_offset(pud, pg);
  1541. if (pmd_none(*pmd))
  1542. return i ? : -EFAULT;
  1543. VM_BUG_ON(pmd_trans_huge(*pmd));
  1544. pte = pte_offset_map(pmd, pg);
  1545. if (pte_none(*pte)) {
  1546. pte_unmap(pte);
  1547. return i ? : -EFAULT;
  1548. }
  1549. vma = get_gate_vma(mm);
  1550. if (pages) {
  1551. struct page *page;
  1552. page = vm_normal_page(vma, start, *pte);
  1553. if (!page) {
  1554. if (!(gup_flags & FOLL_DUMP) &&
  1555. is_zero_pfn(pte_pfn(*pte)))
  1556. page = pte_page(*pte);
  1557. else {
  1558. pte_unmap(pte);
  1559. return i ? : -EFAULT;
  1560. }
  1561. }
  1562. pages[i] = page;
  1563. get_page(page);
  1564. }
  1565. pte_unmap(pte);
  1566. goto next_page;
  1567. }
  1568. if (!vma ||
  1569. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1570. !(vm_flags & vma->vm_flags))
  1571. return i ? : -EFAULT;
  1572. if (is_vm_hugetlb_page(vma)) {
  1573. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1574. &start, &nr_pages, i, gup_flags);
  1575. continue;
  1576. }
  1577. do {
  1578. struct page *page;
  1579. unsigned int foll_flags = gup_flags;
  1580. /*
  1581. * If we have a pending SIGKILL, don't keep faulting
  1582. * pages and potentially allocating memory.
  1583. */
  1584. if (unlikely(fatal_signal_pending(current)))
  1585. return i ? i : -ERESTARTSYS;
  1586. cond_resched();
  1587. while (!(page = follow_page(vma, start, foll_flags))) {
  1588. int ret;
  1589. unsigned int fault_flags = 0;
  1590. /* For mlock, just skip the stack guard page. */
  1591. if (foll_flags & FOLL_MLOCK) {
  1592. if (stack_guard_page(vma, start))
  1593. goto next_page;
  1594. }
  1595. if (foll_flags & FOLL_WRITE)
  1596. fault_flags |= FAULT_FLAG_WRITE;
  1597. if (nonblocking)
  1598. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1599. if (foll_flags & FOLL_NOWAIT)
  1600. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1601. ret = handle_mm_fault(mm, vma, start,
  1602. fault_flags);
  1603. if (ret & VM_FAULT_ERROR) {
  1604. if (ret & VM_FAULT_OOM)
  1605. return i ? i : -ENOMEM;
  1606. if (ret & (VM_FAULT_HWPOISON |
  1607. VM_FAULT_HWPOISON_LARGE)) {
  1608. if (i)
  1609. return i;
  1610. else if (gup_flags & FOLL_HWPOISON)
  1611. return -EHWPOISON;
  1612. else
  1613. return -EFAULT;
  1614. }
  1615. if (ret & VM_FAULT_SIGBUS)
  1616. return i ? i : -EFAULT;
  1617. BUG();
  1618. }
  1619. if (tsk) {
  1620. if (ret & VM_FAULT_MAJOR)
  1621. tsk->maj_flt++;
  1622. else
  1623. tsk->min_flt++;
  1624. }
  1625. if (ret & VM_FAULT_RETRY) {
  1626. if (nonblocking)
  1627. *nonblocking = 0;
  1628. return i;
  1629. }
  1630. /*
  1631. * The VM_FAULT_WRITE bit tells us that
  1632. * do_wp_page has broken COW when necessary,
  1633. * even if maybe_mkwrite decided not to set
  1634. * pte_write. We can thus safely do subsequent
  1635. * page lookups as if they were reads. But only
  1636. * do so when looping for pte_write is futile:
  1637. * in some cases userspace may also be wanting
  1638. * to write to the gotten user page, which a
  1639. * read fault here might prevent (a readonly
  1640. * page might get reCOWed by userspace write).
  1641. */
  1642. if ((ret & VM_FAULT_WRITE) &&
  1643. !(vma->vm_flags & VM_WRITE))
  1644. foll_flags &= ~FOLL_WRITE;
  1645. cond_resched();
  1646. }
  1647. if (IS_ERR(page))
  1648. return i ? i : PTR_ERR(page);
  1649. if (pages) {
  1650. pages[i] = page;
  1651. flush_anon_page(vma, page, start);
  1652. flush_dcache_page(page);
  1653. }
  1654. next_page:
  1655. if (vmas)
  1656. vmas[i] = vma;
  1657. i++;
  1658. start += PAGE_SIZE;
  1659. nr_pages--;
  1660. } while (nr_pages && start < vma->vm_end);
  1661. } while (nr_pages);
  1662. return i;
  1663. }
  1664. EXPORT_SYMBOL(__get_user_pages);
  1665. /*
  1666. * fixup_user_fault() - manually resolve a user page fault
  1667. * @tsk: the task_struct to use for page fault accounting, or
  1668. * NULL if faults are not to be recorded.
  1669. * @mm: mm_struct of target mm
  1670. * @address: user address
  1671. * @fault_flags:flags to pass down to handle_mm_fault()
  1672. *
  1673. * This is meant to be called in the specific scenario where for locking reasons
  1674. * we try to access user memory in atomic context (within a pagefault_disable()
  1675. * section), this returns -EFAULT, and we want to resolve the user fault before
  1676. * trying again.
  1677. *
  1678. * Typically this is meant to be used by the futex code.
  1679. *
  1680. * The main difference with get_user_pages() is that this function will
  1681. * unconditionally call handle_mm_fault() which will in turn perform all the
  1682. * necessary SW fixup of the dirty and young bits in the PTE, while
  1683. * handle_mm_fault() only guarantees to update these in the struct page.
  1684. *
  1685. * This is important for some architectures where those bits also gate the
  1686. * access permission to the page because they are maintained in software. On
  1687. * such architectures, gup() will not be enough to make a subsequent access
  1688. * succeed.
  1689. *
  1690. * This should be called with the mm_sem held for read.
  1691. */
  1692. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1693. unsigned long address, unsigned int fault_flags)
  1694. {
  1695. struct vm_area_struct *vma;
  1696. int ret;
  1697. vma = find_extend_vma(mm, address);
  1698. if (!vma || address < vma->vm_start)
  1699. return -EFAULT;
  1700. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1701. if (ret & VM_FAULT_ERROR) {
  1702. if (ret & VM_FAULT_OOM)
  1703. return -ENOMEM;
  1704. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1705. return -EHWPOISON;
  1706. if (ret & VM_FAULT_SIGBUS)
  1707. return -EFAULT;
  1708. BUG();
  1709. }
  1710. if (tsk) {
  1711. if (ret & VM_FAULT_MAJOR)
  1712. tsk->maj_flt++;
  1713. else
  1714. tsk->min_flt++;
  1715. }
  1716. return 0;
  1717. }
  1718. /*
  1719. * get_user_pages() - pin user pages in memory
  1720. * @tsk: the task_struct to use for page fault accounting, or
  1721. * NULL if faults are not to be recorded.
  1722. * @mm: mm_struct of target mm
  1723. * @start: starting user address
  1724. * @nr_pages: number of pages from start to pin
  1725. * @write: whether pages will be written to by the caller
  1726. * @force: whether to force write access even if user mapping is
  1727. * readonly. This will result in the page being COWed even
  1728. * in MAP_SHARED mappings. You do not want this.
  1729. * @pages: array that receives pointers to the pages pinned.
  1730. * Should be at least nr_pages long. Or NULL, if caller
  1731. * only intends to ensure the pages are faulted in.
  1732. * @vmas: array of pointers to vmas corresponding to each page.
  1733. * Or NULL if the caller does not require them.
  1734. *
  1735. * Returns number of pages pinned. This may be fewer than the number
  1736. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1737. * were pinned, returns -errno. Each page returned must be released
  1738. * with a put_page() call when it is finished with. vmas will only
  1739. * remain valid while mmap_sem is held.
  1740. *
  1741. * Must be called with mmap_sem held for read or write.
  1742. *
  1743. * get_user_pages walks a process's page tables and takes a reference to
  1744. * each struct page that each user address corresponds to at a given
  1745. * instant. That is, it takes the page that would be accessed if a user
  1746. * thread accesses the given user virtual address at that instant.
  1747. *
  1748. * This does not guarantee that the page exists in the user mappings when
  1749. * get_user_pages returns, and there may even be a completely different
  1750. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1751. * and subsequently re faulted). However it does guarantee that the page
  1752. * won't be freed completely. And mostly callers simply care that the page
  1753. * contains data that was valid *at some point in time*. Typically, an IO
  1754. * or similar operation cannot guarantee anything stronger anyway because
  1755. * locks can't be held over the syscall boundary.
  1756. *
  1757. * If write=0, the page must not be written to. If the page is written to,
  1758. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1759. * after the page is finished with, and before put_page is called.
  1760. *
  1761. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1762. * handle on the memory by some means other than accesses via the user virtual
  1763. * addresses. The pages may be submitted for DMA to devices or accessed via
  1764. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1765. * use the correct cache flushing APIs.
  1766. *
  1767. * See also get_user_pages_fast, for performance critical applications.
  1768. */
  1769. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1770. unsigned long start, int nr_pages, int write, int force,
  1771. struct page **pages, struct vm_area_struct **vmas)
  1772. {
  1773. int flags = FOLL_TOUCH;
  1774. if (pages)
  1775. flags |= FOLL_GET;
  1776. if (write)
  1777. flags |= FOLL_WRITE;
  1778. if (force)
  1779. flags |= FOLL_FORCE;
  1780. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1781. NULL);
  1782. }
  1783. EXPORT_SYMBOL(get_user_pages);
  1784. /**
  1785. * get_dump_page() - pin user page in memory while writing it to core dump
  1786. * @addr: user address
  1787. *
  1788. * Returns struct page pointer of user page pinned for dump,
  1789. * to be freed afterwards by page_cache_release() or put_page().
  1790. *
  1791. * Returns NULL on any kind of failure - a hole must then be inserted into
  1792. * the corefile, to preserve alignment with its headers; and also returns
  1793. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1794. * allowing a hole to be left in the corefile to save diskspace.
  1795. *
  1796. * Called without mmap_sem, but after all other threads have been killed.
  1797. */
  1798. #ifdef CONFIG_ELF_CORE
  1799. struct page *get_dump_page(unsigned long addr)
  1800. {
  1801. struct vm_area_struct *vma;
  1802. struct page *page;
  1803. if (__get_user_pages(current, current->mm, addr, 1,
  1804. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1805. NULL) < 1)
  1806. return NULL;
  1807. flush_cache_page(vma, addr, page_to_pfn(page));
  1808. return page;
  1809. }
  1810. #endif /* CONFIG_ELF_CORE */
  1811. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1812. spinlock_t **ptl)
  1813. {
  1814. pgd_t * pgd = pgd_offset(mm, addr);
  1815. pud_t * pud = pud_alloc(mm, pgd, addr);
  1816. if (pud) {
  1817. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1818. if (pmd) {
  1819. VM_BUG_ON(pmd_trans_huge(*pmd));
  1820. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1821. }
  1822. }
  1823. return NULL;
  1824. }
  1825. /*
  1826. * This is the old fallback for page remapping.
  1827. *
  1828. * For historical reasons, it only allows reserved pages. Only
  1829. * old drivers should use this, and they needed to mark their
  1830. * pages reserved for the old functions anyway.
  1831. */
  1832. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1833. struct page *page, pgprot_t prot)
  1834. {
  1835. struct mm_struct *mm = vma->vm_mm;
  1836. int retval;
  1837. pte_t *pte;
  1838. spinlock_t *ptl;
  1839. retval = -EINVAL;
  1840. if (PageAnon(page))
  1841. goto out;
  1842. retval = -ENOMEM;
  1843. flush_dcache_page(page);
  1844. pte = get_locked_pte(mm, addr, &ptl);
  1845. if (!pte)
  1846. goto out;
  1847. retval = -EBUSY;
  1848. if (!pte_none(*pte))
  1849. goto out_unlock;
  1850. /* Ok, finally just insert the thing.. */
  1851. get_page(page);
  1852. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1853. page_add_file_rmap(page);
  1854. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1855. retval = 0;
  1856. pte_unmap_unlock(pte, ptl);
  1857. return retval;
  1858. out_unlock:
  1859. pte_unmap_unlock(pte, ptl);
  1860. out:
  1861. return retval;
  1862. }
  1863. /**
  1864. * vm_insert_page - insert single page into user vma
  1865. * @vma: user vma to map to
  1866. * @addr: target user address of this page
  1867. * @page: source kernel page
  1868. *
  1869. * This allows drivers to insert individual pages they've allocated
  1870. * into a user vma.
  1871. *
  1872. * The page has to be a nice clean _individual_ kernel allocation.
  1873. * If you allocate a compound page, you need to have marked it as
  1874. * such (__GFP_COMP), or manually just split the page up yourself
  1875. * (see split_page()).
  1876. *
  1877. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1878. * took an arbitrary page protection parameter. This doesn't allow
  1879. * that. Your vma protection will have to be set up correctly, which
  1880. * means that if you want a shared writable mapping, you'd better
  1881. * ask for a shared writable mapping!
  1882. *
  1883. * The page does not need to be reserved.
  1884. *
  1885. * Usually this function is called from f_op->mmap() handler
  1886. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1887. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1888. * function from other places, for example from page-fault handler.
  1889. */
  1890. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1891. struct page *page)
  1892. {
  1893. if (addr < vma->vm_start || addr >= vma->vm_end)
  1894. return -EFAULT;
  1895. if (!page_count(page))
  1896. return -EINVAL;
  1897. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1898. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1899. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1900. vma->vm_flags |= VM_MIXEDMAP;
  1901. }
  1902. return insert_page(vma, addr, page, vma->vm_page_prot);
  1903. }
  1904. EXPORT_SYMBOL(vm_insert_page);
  1905. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1906. unsigned long pfn, pgprot_t prot)
  1907. {
  1908. struct mm_struct *mm = vma->vm_mm;
  1909. int retval;
  1910. pte_t *pte, entry;
  1911. spinlock_t *ptl;
  1912. retval = -ENOMEM;
  1913. pte = get_locked_pte(mm, addr, &ptl);
  1914. if (!pte)
  1915. goto out;
  1916. retval = -EBUSY;
  1917. if (!pte_none(*pte))
  1918. goto out_unlock;
  1919. /* Ok, finally just insert the thing.. */
  1920. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1921. set_pte_at(mm, addr, pte, entry);
  1922. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1923. retval = 0;
  1924. out_unlock:
  1925. pte_unmap_unlock(pte, ptl);
  1926. out:
  1927. return retval;
  1928. }
  1929. /**
  1930. * vm_insert_pfn - insert single pfn into user vma
  1931. * @vma: user vma to map to
  1932. * @addr: target user address of this page
  1933. * @pfn: source kernel pfn
  1934. *
  1935. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1936. * they've allocated into a user vma. Same comments apply.
  1937. *
  1938. * This function should only be called from a vm_ops->fault handler, and
  1939. * in that case the handler should return NULL.
  1940. *
  1941. * vma cannot be a COW mapping.
  1942. *
  1943. * As this is called only for pages that do not currently exist, we
  1944. * do not need to flush old virtual caches or the TLB.
  1945. */
  1946. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1947. unsigned long pfn)
  1948. {
  1949. int ret;
  1950. pgprot_t pgprot = vma->vm_page_prot;
  1951. /*
  1952. * Technically, architectures with pte_special can avoid all these
  1953. * restrictions (same for remap_pfn_range). However we would like
  1954. * consistency in testing and feature parity among all, so we should
  1955. * try to keep these invariants in place for everybody.
  1956. */
  1957. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1958. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1959. (VM_PFNMAP|VM_MIXEDMAP));
  1960. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1961. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1962. if (addr < vma->vm_start || addr >= vma->vm_end)
  1963. return -EFAULT;
  1964. if (track_pfn_insert(vma, &pgprot, pfn))
  1965. return -EINVAL;
  1966. ret = insert_pfn(vma, addr, pfn, pgprot);
  1967. return ret;
  1968. }
  1969. EXPORT_SYMBOL(vm_insert_pfn);
  1970. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1971. unsigned long pfn)
  1972. {
  1973. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1974. if (addr < vma->vm_start || addr >= vma->vm_end)
  1975. return -EFAULT;
  1976. /*
  1977. * If we don't have pte special, then we have to use the pfn_valid()
  1978. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1979. * refcount the page if pfn_valid is true (hence insert_page rather
  1980. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1981. * without pte special, it would there be refcounted as a normal page.
  1982. */
  1983. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1984. struct page *page;
  1985. page = pfn_to_page(pfn);
  1986. return insert_page(vma, addr, page, vma->vm_page_prot);
  1987. }
  1988. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1989. }
  1990. EXPORT_SYMBOL(vm_insert_mixed);
  1991. /*
  1992. * maps a range of physical memory into the requested pages. the old
  1993. * mappings are removed. any references to nonexistent pages results
  1994. * in null mappings (currently treated as "copy-on-access")
  1995. */
  1996. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1997. unsigned long addr, unsigned long end,
  1998. unsigned long pfn, pgprot_t prot)
  1999. {
  2000. pte_t *pte;
  2001. spinlock_t *ptl;
  2002. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2003. if (!pte)
  2004. return -ENOMEM;
  2005. arch_enter_lazy_mmu_mode();
  2006. do {
  2007. BUG_ON(!pte_none(*pte));
  2008. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  2009. pfn++;
  2010. } while (pte++, addr += PAGE_SIZE, addr != end);
  2011. arch_leave_lazy_mmu_mode();
  2012. pte_unmap_unlock(pte - 1, ptl);
  2013. return 0;
  2014. }
  2015. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2016. unsigned long addr, unsigned long end,
  2017. unsigned long pfn, pgprot_t prot)
  2018. {
  2019. pmd_t *pmd;
  2020. unsigned long next;
  2021. pfn -= addr >> PAGE_SHIFT;
  2022. pmd = pmd_alloc(mm, pud, addr);
  2023. if (!pmd)
  2024. return -ENOMEM;
  2025. VM_BUG_ON(pmd_trans_huge(*pmd));
  2026. do {
  2027. next = pmd_addr_end(addr, end);
  2028. if (remap_pte_range(mm, pmd, addr, next,
  2029. pfn + (addr >> PAGE_SHIFT), prot))
  2030. return -ENOMEM;
  2031. } while (pmd++, addr = next, addr != end);
  2032. return 0;
  2033. }
  2034. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2035. unsigned long addr, unsigned long end,
  2036. unsigned long pfn, pgprot_t prot)
  2037. {
  2038. pud_t *pud;
  2039. unsigned long next;
  2040. pfn -= addr >> PAGE_SHIFT;
  2041. pud = pud_alloc(mm, pgd, addr);
  2042. if (!pud)
  2043. return -ENOMEM;
  2044. do {
  2045. next = pud_addr_end(addr, end);
  2046. if (remap_pmd_range(mm, pud, addr, next,
  2047. pfn + (addr >> PAGE_SHIFT), prot))
  2048. return -ENOMEM;
  2049. } while (pud++, addr = next, addr != end);
  2050. return 0;
  2051. }
  2052. /**
  2053. * remap_pfn_range - remap kernel memory to userspace
  2054. * @vma: user vma to map to
  2055. * @addr: target user address to start at
  2056. * @pfn: physical address of kernel memory
  2057. * @size: size of map area
  2058. * @prot: page protection flags for this mapping
  2059. *
  2060. * Note: this is only safe if the mm semaphore is held when called.
  2061. */
  2062. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2063. unsigned long pfn, unsigned long size, pgprot_t prot)
  2064. {
  2065. pgd_t *pgd;
  2066. unsigned long next;
  2067. unsigned long end = addr + PAGE_ALIGN(size);
  2068. struct mm_struct *mm = vma->vm_mm;
  2069. int err;
  2070. /*
  2071. * Physically remapped pages are special. Tell the
  2072. * rest of the world about it:
  2073. * VM_IO tells people not to look at these pages
  2074. * (accesses can have side effects).
  2075. * VM_PFNMAP tells the core MM that the base pages are just
  2076. * raw PFN mappings, and do not have a "struct page" associated
  2077. * with them.
  2078. * VM_DONTEXPAND
  2079. * Disable vma merging and expanding with mremap().
  2080. * VM_DONTDUMP
  2081. * Omit vma from core dump, even when VM_IO turned off.
  2082. *
  2083. * There's a horrible special case to handle copy-on-write
  2084. * behaviour that some programs depend on. We mark the "original"
  2085. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2086. * See vm_normal_page() for details.
  2087. */
  2088. if (is_cow_mapping(vma->vm_flags)) {
  2089. if (addr != vma->vm_start || end != vma->vm_end)
  2090. return -EINVAL;
  2091. vma->vm_pgoff = pfn;
  2092. }
  2093. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2094. if (err)
  2095. return -EINVAL;
  2096. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2097. BUG_ON(addr >= end);
  2098. pfn -= addr >> PAGE_SHIFT;
  2099. pgd = pgd_offset(mm, addr);
  2100. flush_cache_range(vma, addr, end);
  2101. do {
  2102. next = pgd_addr_end(addr, end);
  2103. err = remap_pud_range(mm, pgd, addr, next,
  2104. pfn + (addr >> PAGE_SHIFT), prot);
  2105. if (err)
  2106. break;
  2107. } while (pgd++, addr = next, addr != end);
  2108. if (err)
  2109. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2110. return err;
  2111. }
  2112. EXPORT_SYMBOL(remap_pfn_range);
  2113. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2114. unsigned long addr, unsigned long end,
  2115. pte_fn_t fn, void *data)
  2116. {
  2117. pte_t *pte;
  2118. int err;
  2119. pgtable_t token;
  2120. spinlock_t *uninitialized_var(ptl);
  2121. pte = (mm == &init_mm) ?
  2122. pte_alloc_kernel(pmd, addr) :
  2123. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2124. if (!pte)
  2125. return -ENOMEM;
  2126. BUG_ON(pmd_huge(*pmd));
  2127. arch_enter_lazy_mmu_mode();
  2128. token = pmd_pgtable(*pmd);
  2129. do {
  2130. err = fn(pte++, token, addr, data);
  2131. if (err)
  2132. break;
  2133. } while (addr += PAGE_SIZE, addr != end);
  2134. arch_leave_lazy_mmu_mode();
  2135. if (mm != &init_mm)
  2136. pte_unmap_unlock(pte-1, ptl);
  2137. return err;
  2138. }
  2139. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2140. unsigned long addr, unsigned long end,
  2141. pte_fn_t fn, void *data)
  2142. {
  2143. pmd_t *pmd;
  2144. unsigned long next;
  2145. int err;
  2146. BUG_ON(pud_huge(*pud));
  2147. pmd = pmd_alloc(mm, pud, addr);
  2148. if (!pmd)
  2149. return -ENOMEM;
  2150. do {
  2151. next = pmd_addr_end(addr, end);
  2152. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2153. if (err)
  2154. break;
  2155. } while (pmd++, addr = next, addr != end);
  2156. return err;
  2157. }
  2158. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2159. unsigned long addr, unsigned long end,
  2160. pte_fn_t fn, void *data)
  2161. {
  2162. pud_t *pud;
  2163. unsigned long next;
  2164. int err;
  2165. pud = pud_alloc(mm, pgd, addr);
  2166. if (!pud)
  2167. return -ENOMEM;
  2168. do {
  2169. next = pud_addr_end(addr, end);
  2170. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2171. if (err)
  2172. break;
  2173. } while (pud++, addr = next, addr != end);
  2174. return err;
  2175. }
  2176. /*
  2177. * Scan a region of virtual memory, filling in page tables as necessary
  2178. * and calling a provided function on each leaf page table.
  2179. */
  2180. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2181. unsigned long size, pte_fn_t fn, void *data)
  2182. {
  2183. pgd_t *pgd;
  2184. unsigned long next;
  2185. unsigned long end = addr + size;
  2186. int err;
  2187. BUG_ON(addr >= end);
  2188. pgd = pgd_offset(mm, addr);
  2189. do {
  2190. next = pgd_addr_end(addr, end);
  2191. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2192. if (err)
  2193. break;
  2194. } while (pgd++, addr = next, addr != end);
  2195. return err;
  2196. }
  2197. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2198. /*
  2199. * handle_pte_fault chooses page fault handler according to an entry
  2200. * which was read non-atomically. Before making any commitment, on
  2201. * those architectures or configurations (e.g. i386 with PAE) which
  2202. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2203. * must check under lock before unmapping the pte and proceeding
  2204. * (but do_wp_page is only called after already making such a check;
  2205. * and do_anonymous_page can safely check later on).
  2206. */
  2207. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2208. pte_t *page_table, pte_t orig_pte)
  2209. {
  2210. int same = 1;
  2211. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2212. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2213. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2214. spin_lock(ptl);
  2215. same = pte_same(*page_table, orig_pte);
  2216. spin_unlock(ptl);
  2217. }
  2218. #endif
  2219. pte_unmap(page_table);
  2220. return same;
  2221. }
  2222. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2223. {
  2224. /*
  2225. * If the source page was a PFN mapping, we don't have
  2226. * a "struct page" for it. We do a best-effort copy by
  2227. * just copying from the original user address. If that
  2228. * fails, we just zero-fill it. Live with it.
  2229. */
  2230. if (unlikely(!src)) {
  2231. void *kaddr = kmap_atomic(dst);
  2232. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2233. /*
  2234. * This really shouldn't fail, because the page is there
  2235. * in the page tables. But it might just be unreadable,
  2236. * in which case we just give up and fill the result with
  2237. * zeroes.
  2238. */
  2239. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2240. clear_page(kaddr);
  2241. kunmap_atomic(kaddr);
  2242. flush_dcache_page(dst);
  2243. } else
  2244. copy_user_highpage(dst, src, va, vma);
  2245. }
  2246. /*
  2247. * This routine handles present pages, when users try to write
  2248. * to a shared page. It is done by copying the page to a new address
  2249. * and decrementing the shared-page counter for the old page.
  2250. *
  2251. * Note that this routine assumes that the protection checks have been
  2252. * done by the caller (the low-level page fault routine in most cases).
  2253. * Thus we can safely just mark it writable once we've done any necessary
  2254. * COW.
  2255. *
  2256. * We also mark the page dirty at this point even though the page will
  2257. * change only once the write actually happens. This avoids a few races,
  2258. * and potentially makes it more efficient.
  2259. *
  2260. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2261. * but allow concurrent faults), with pte both mapped and locked.
  2262. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2263. */
  2264. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2265. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2266. spinlock_t *ptl, pte_t orig_pte)
  2267. __releases(ptl)
  2268. {
  2269. struct page *old_page, *new_page = NULL;
  2270. pte_t entry;
  2271. int ret = 0;
  2272. int page_mkwrite = 0;
  2273. struct page *dirty_page = NULL;
  2274. unsigned long mmun_start = 0; /* For mmu_notifiers */
  2275. unsigned long mmun_end = 0; /* For mmu_notifiers */
  2276. old_page = vm_normal_page(vma, address, orig_pte);
  2277. if (!old_page) {
  2278. /*
  2279. * VM_MIXEDMAP !pfn_valid() case
  2280. *
  2281. * We should not cow pages in a shared writeable mapping.
  2282. * Just mark the pages writable as we can't do any dirty
  2283. * accounting on raw pfn maps.
  2284. */
  2285. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2286. (VM_WRITE|VM_SHARED))
  2287. goto reuse;
  2288. goto gotten;
  2289. }
  2290. /*
  2291. * Take out anonymous pages first, anonymous shared vmas are
  2292. * not dirty accountable.
  2293. */
  2294. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2295. if (!trylock_page(old_page)) {
  2296. page_cache_get(old_page);
  2297. pte_unmap_unlock(page_table, ptl);
  2298. lock_page(old_page);
  2299. page_table = pte_offset_map_lock(mm, pmd, address,
  2300. &ptl);
  2301. if (!pte_same(*page_table, orig_pte)) {
  2302. unlock_page(old_page);
  2303. goto unlock;
  2304. }
  2305. page_cache_release(old_page);
  2306. }
  2307. if (reuse_swap_page(old_page)) {
  2308. /*
  2309. * The page is all ours. Move it to our anon_vma so
  2310. * the rmap code will not search our parent or siblings.
  2311. * Protected against the rmap code by the page lock.
  2312. */
  2313. page_move_anon_rmap(old_page, vma, address);
  2314. unlock_page(old_page);
  2315. goto reuse;
  2316. }
  2317. unlock_page(old_page);
  2318. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2319. (VM_WRITE|VM_SHARED))) {
  2320. /*
  2321. * Only catch write-faults on shared writable pages,
  2322. * read-only shared pages can get COWed by
  2323. * get_user_pages(.write=1, .force=1).
  2324. */
  2325. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2326. struct vm_fault vmf;
  2327. int tmp;
  2328. vmf.virtual_address = (void __user *)(address &
  2329. PAGE_MASK);
  2330. vmf.pgoff = old_page->index;
  2331. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2332. vmf.page = old_page;
  2333. /*
  2334. * Notify the address space that the page is about to
  2335. * become writable so that it can prohibit this or wait
  2336. * for the page to get into an appropriate state.
  2337. *
  2338. * We do this without the lock held, so that it can
  2339. * sleep if it needs to.
  2340. */
  2341. page_cache_get(old_page);
  2342. pte_unmap_unlock(page_table, ptl);
  2343. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2344. if (unlikely(tmp &
  2345. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2346. ret = tmp;
  2347. goto unwritable_page;
  2348. }
  2349. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2350. lock_page(old_page);
  2351. if (!old_page->mapping) {
  2352. ret = 0; /* retry the fault */
  2353. unlock_page(old_page);
  2354. goto unwritable_page;
  2355. }
  2356. } else
  2357. VM_BUG_ON(!PageLocked(old_page));
  2358. /*
  2359. * Since we dropped the lock we need to revalidate
  2360. * the PTE as someone else may have changed it. If
  2361. * they did, we just return, as we can count on the
  2362. * MMU to tell us if they didn't also make it writable.
  2363. */
  2364. page_table = pte_offset_map_lock(mm, pmd, address,
  2365. &ptl);
  2366. if (!pte_same(*page_table, orig_pte)) {
  2367. unlock_page(old_page);
  2368. goto unlock;
  2369. }
  2370. page_mkwrite = 1;
  2371. }
  2372. dirty_page = old_page;
  2373. get_page(dirty_page);
  2374. reuse:
  2375. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2376. entry = pte_mkyoung(orig_pte);
  2377. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2378. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2379. update_mmu_cache(vma, address, page_table);
  2380. pte_unmap_unlock(page_table, ptl);
  2381. ret |= VM_FAULT_WRITE;
  2382. if (!dirty_page)
  2383. return ret;
  2384. /*
  2385. * Yes, Virginia, this is actually required to prevent a race
  2386. * with clear_page_dirty_for_io() from clearing the page dirty
  2387. * bit after it clear all dirty ptes, but before a racing
  2388. * do_wp_page installs a dirty pte.
  2389. *
  2390. * __do_fault is protected similarly.
  2391. */
  2392. if (!page_mkwrite) {
  2393. wait_on_page_locked(dirty_page);
  2394. set_page_dirty_balance(dirty_page, page_mkwrite);
  2395. /* file_update_time outside page_lock */
  2396. if (vma->vm_file)
  2397. file_update_time(vma->vm_file);
  2398. }
  2399. put_page(dirty_page);
  2400. if (page_mkwrite) {
  2401. struct address_space *mapping = dirty_page->mapping;
  2402. set_page_dirty(dirty_page);
  2403. unlock_page(dirty_page);
  2404. page_cache_release(dirty_page);
  2405. if (mapping) {
  2406. /*
  2407. * Some device drivers do not set page.mapping
  2408. * but still dirty their pages
  2409. */
  2410. balance_dirty_pages_ratelimited(mapping);
  2411. }
  2412. }
  2413. return ret;
  2414. }
  2415. /*
  2416. * Ok, we need to copy. Oh, well..
  2417. */
  2418. page_cache_get(old_page);
  2419. gotten:
  2420. pte_unmap_unlock(page_table, ptl);
  2421. if (unlikely(anon_vma_prepare(vma)))
  2422. goto oom;
  2423. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2424. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2425. if (!new_page)
  2426. goto oom;
  2427. } else {
  2428. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2429. if (!new_page)
  2430. goto oom;
  2431. cow_user_page(new_page, old_page, address, vma);
  2432. }
  2433. __SetPageUptodate(new_page);
  2434. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2435. goto oom_free_new;
  2436. mmun_start = address & PAGE_MASK;
  2437. mmun_end = mmun_start + PAGE_SIZE;
  2438. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2439. /*
  2440. * Re-check the pte - we dropped the lock
  2441. */
  2442. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2443. if (likely(pte_same(*page_table, orig_pte))) {
  2444. if (old_page) {
  2445. if (!PageAnon(old_page)) {
  2446. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2447. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2448. }
  2449. } else
  2450. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2451. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2452. entry = mk_pte(new_page, vma->vm_page_prot);
  2453. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2454. /*
  2455. * Clear the pte entry and flush it first, before updating the
  2456. * pte with the new entry. This will avoid a race condition
  2457. * seen in the presence of one thread doing SMC and another
  2458. * thread doing COW.
  2459. */
  2460. ptep_clear_flush(vma, address, page_table);
  2461. page_add_new_anon_rmap(new_page, vma, address);
  2462. /*
  2463. * We call the notify macro here because, when using secondary
  2464. * mmu page tables (such as kvm shadow page tables), we want the
  2465. * new page to be mapped directly into the secondary page table.
  2466. */
  2467. set_pte_at_notify(mm, address, page_table, entry);
  2468. update_mmu_cache(vma, address, page_table);
  2469. if (old_page) {
  2470. /*
  2471. * Only after switching the pte to the new page may
  2472. * we remove the mapcount here. Otherwise another
  2473. * process may come and find the rmap count decremented
  2474. * before the pte is switched to the new page, and
  2475. * "reuse" the old page writing into it while our pte
  2476. * here still points into it and can be read by other
  2477. * threads.
  2478. *
  2479. * The critical issue is to order this
  2480. * page_remove_rmap with the ptp_clear_flush above.
  2481. * Those stores are ordered by (if nothing else,)
  2482. * the barrier present in the atomic_add_negative
  2483. * in page_remove_rmap.
  2484. *
  2485. * Then the TLB flush in ptep_clear_flush ensures that
  2486. * no process can access the old page before the
  2487. * decremented mapcount is visible. And the old page
  2488. * cannot be reused until after the decremented
  2489. * mapcount is visible. So transitively, TLBs to
  2490. * old page will be flushed before it can be reused.
  2491. */
  2492. page_remove_rmap(old_page);
  2493. }
  2494. /* Free the old page.. */
  2495. new_page = old_page;
  2496. ret |= VM_FAULT_WRITE;
  2497. } else
  2498. mem_cgroup_uncharge_page(new_page);
  2499. if (new_page)
  2500. page_cache_release(new_page);
  2501. unlock:
  2502. pte_unmap_unlock(page_table, ptl);
  2503. if (mmun_end > mmun_start)
  2504. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2505. if (old_page) {
  2506. /*
  2507. * Don't let another task, with possibly unlocked vma,
  2508. * keep the mlocked page.
  2509. */
  2510. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2511. lock_page(old_page); /* LRU manipulation */
  2512. munlock_vma_page(old_page);
  2513. unlock_page(old_page);
  2514. }
  2515. page_cache_release(old_page);
  2516. }
  2517. return ret;
  2518. oom_free_new:
  2519. page_cache_release(new_page);
  2520. oom:
  2521. if (old_page)
  2522. page_cache_release(old_page);
  2523. return VM_FAULT_OOM;
  2524. unwritable_page:
  2525. page_cache_release(old_page);
  2526. return ret;
  2527. }
  2528. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2529. unsigned long start_addr, unsigned long end_addr,
  2530. struct zap_details *details)
  2531. {
  2532. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2533. }
  2534. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2535. struct zap_details *details)
  2536. {
  2537. struct vm_area_struct *vma;
  2538. pgoff_t vba, vea, zba, zea;
  2539. vma_interval_tree_foreach(vma, root,
  2540. details->first_index, details->last_index) {
  2541. vba = vma->vm_pgoff;
  2542. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2543. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2544. zba = details->first_index;
  2545. if (zba < vba)
  2546. zba = vba;
  2547. zea = details->last_index;
  2548. if (zea > vea)
  2549. zea = vea;
  2550. unmap_mapping_range_vma(vma,
  2551. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2552. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2553. details);
  2554. }
  2555. }
  2556. static inline void unmap_mapping_range_list(struct list_head *head,
  2557. struct zap_details *details)
  2558. {
  2559. struct vm_area_struct *vma;
  2560. /*
  2561. * In nonlinear VMAs there is no correspondence between virtual address
  2562. * offset and file offset. So we must perform an exhaustive search
  2563. * across *all* the pages in each nonlinear VMA, not just the pages
  2564. * whose virtual address lies outside the file truncation point.
  2565. */
  2566. list_for_each_entry(vma, head, shared.nonlinear) {
  2567. details->nonlinear_vma = vma;
  2568. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2569. }
  2570. }
  2571. /**
  2572. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2573. * @mapping: the address space containing mmaps to be unmapped.
  2574. * @holebegin: byte in first page to unmap, relative to the start of
  2575. * the underlying file. This will be rounded down to a PAGE_SIZE
  2576. * boundary. Note that this is different from truncate_pagecache(), which
  2577. * must keep the partial page. In contrast, we must get rid of
  2578. * partial pages.
  2579. * @holelen: size of prospective hole in bytes. This will be rounded
  2580. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2581. * end of the file.
  2582. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2583. * but 0 when invalidating pagecache, don't throw away private data.
  2584. */
  2585. void unmap_mapping_range(struct address_space *mapping,
  2586. loff_t const holebegin, loff_t const holelen, int even_cows)
  2587. {
  2588. struct zap_details details;
  2589. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2590. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2591. /* Check for overflow. */
  2592. if (sizeof(holelen) > sizeof(hlen)) {
  2593. long long holeend =
  2594. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2595. if (holeend & ~(long long)ULONG_MAX)
  2596. hlen = ULONG_MAX - hba + 1;
  2597. }
  2598. details.check_mapping = even_cows? NULL: mapping;
  2599. details.nonlinear_vma = NULL;
  2600. details.first_index = hba;
  2601. details.last_index = hba + hlen - 1;
  2602. if (details.last_index < details.first_index)
  2603. details.last_index = ULONG_MAX;
  2604. mutex_lock(&mapping->i_mmap_mutex);
  2605. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2606. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2607. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2608. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2609. mutex_unlock(&mapping->i_mmap_mutex);
  2610. }
  2611. EXPORT_SYMBOL(unmap_mapping_range);
  2612. /*
  2613. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2614. * but allow concurrent faults), and pte mapped but not yet locked.
  2615. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2616. */
  2617. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2618. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2619. unsigned int flags, pte_t orig_pte)
  2620. {
  2621. spinlock_t *ptl;
  2622. struct page *page, *swapcache = NULL;
  2623. swp_entry_t entry;
  2624. pte_t pte;
  2625. int locked;
  2626. struct mem_cgroup *ptr;
  2627. int exclusive = 0;
  2628. int ret = 0;
  2629. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2630. goto out;
  2631. entry = pte_to_swp_entry(orig_pte);
  2632. if (unlikely(non_swap_entry(entry))) {
  2633. if (is_migration_entry(entry)) {
  2634. migration_entry_wait(mm, pmd, address);
  2635. } else if (is_hwpoison_entry(entry)) {
  2636. ret = VM_FAULT_HWPOISON;
  2637. } else {
  2638. print_bad_pte(vma, address, orig_pte, NULL);
  2639. ret = VM_FAULT_SIGBUS;
  2640. }
  2641. goto out;
  2642. }
  2643. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2644. page = lookup_swap_cache(entry);
  2645. if (!page) {
  2646. page = swapin_readahead(entry,
  2647. GFP_HIGHUSER_MOVABLE, vma, address);
  2648. if (!page) {
  2649. /*
  2650. * Back out if somebody else faulted in this pte
  2651. * while we released the pte lock.
  2652. */
  2653. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2654. if (likely(pte_same(*page_table, orig_pte)))
  2655. ret = VM_FAULT_OOM;
  2656. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2657. goto unlock;
  2658. }
  2659. /* Had to read the page from swap area: Major fault */
  2660. ret = VM_FAULT_MAJOR;
  2661. count_vm_event(PGMAJFAULT);
  2662. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2663. } else if (PageHWPoison(page)) {
  2664. /*
  2665. * hwpoisoned dirty swapcache pages are kept for killing
  2666. * owner processes (which may be unknown at hwpoison time)
  2667. */
  2668. ret = VM_FAULT_HWPOISON;
  2669. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2670. goto out_release;
  2671. }
  2672. locked = lock_page_or_retry(page, mm, flags);
  2673. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2674. if (!locked) {
  2675. ret |= VM_FAULT_RETRY;
  2676. goto out_release;
  2677. }
  2678. /*
  2679. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2680. * release the swapcache from under us. The page pin, and pte_same
  2681. * test below, are not enough to exclude that. Even if it is still
  2682. * swapcache, we need to check that the page's swap has not changed.
  2683. */
  2684. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2685. goto out_page;
  2686. if (ksm_might_need_to_copy(page, vma, address)) {
  2687. swapcache = page;
  2688. page = ksm_does_need_to_copy(page, vma, address);
  2689. if (unlikely(!page)) {
  2690. ret = VM_FAULT_OOM;
  2691. page = swapcache;
  2692. swapcache = NULL;
  2693. goto out_page;
  2694. }
  2695. }
  2696. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2697. ret = VM_FAULT_OOM;
  2698. goto out_page;
  2699. }
  2700. /*
  2701. * Back out if somebody else already faulted in this pte.
  2702. */
  2703. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2704. if (unlikely(!pte_same(*page_table, orig_pte)))
  2705. goto out_nomap;
  2706. if (unlikely(!PageUptodate(page))) {
  2707. ret = VM_FAULT_SIGBUS;
  2708. goto out_nomap;
  2709. }
  2710. /*
  2711. * The page isn't present yet, go ahead with the fault.
  2712. *
  2713. * Be careful about the sequence of operations here.
  2714. * To get its accounting right, reuse_swap_page() must be called
  2715. * while the page is counted on swap but not yet in mapcount i.e.
  2716. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2717. * must be called after the swap_free(), or it will never succeed.
  2718. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2719. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2720. * in page->private. In this case, a record in swap_cgroup is silently
  2721. * discarded at swap_free().
  2722. */
  2723. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2724. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2725. pte = mk_pte(page, vma->vm_page_prot);
  2726. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2727. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2728. flags &= ~FAULT_FLAG_WRITE;
  2729. ret |= VM_FAULT_WRITE;
  2730. exclusive = 1;
  2731. }
  2732. flush_icache_page(vma, page);
  2733. set_pte_at(mm, address, page_table, pte);
  2734. do_page_add_anon_rmap(page, vma, address, exclusive);
  2735. /* It's better to call commit-charge after rmap is established */
  2736. mem_cgroup_commit_charge_swapin(page, ptr);
  2737. swap_free(entry);
  2738. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2739. try_to_free_swap(page);
  2740. unlock_page(page);
  2741. if (swapcache) {
  2742. /*
  2743. * Hold the lock to avoid the swap entry to be reused
  2744. * until we take the PT lock for the pte_same() check
  2745. * (to avoid false positives from pte_same). For
  2746. * further safety release the lock after the swap_free
  2747. * so that the swap count won't change under a
  2748. * parallel locked swapcache.
  2749. */
  2750. unlock_page(swapcache);
  2751. page_cache_release(swapcache);
  2752. }
  2753. if (flags & FAULT_FLAG_WRITE) {
  2754. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2755. if (ret & VM_FAULT_ERROR)
  2756. ret &= VM_FAULT_ERROR;
  2757. goto out;
  2758. }
  2759. /* No need to invalidate - it was non-present before */
  2760. update_mmu_cache(vma, address, page_table);
  2761. unlock:
  2762. pte_unmap_unlock(page_table, ptl);
  2763. out:
  2764. return ret;
  2765. out_nomap:
  2766. mem_cgroup_cancel_charge_swapin(ptr);
  2767. pte_unmap_unlock(page_table, ptl);
  2768. out_page:
  2769. unlock_page(page);
  2770. out_release:
  2771. page_cache_release(page);
  2772. if (swapcache) {
  2773. unlock_page(swapcache);
  2774. page_cache_release(swapcache);
  2775. }
  2776. return ret;
  2777. }
  2778. /*
  2779. * This is like a special single-page "expand_{down|up}wards()",
  2780. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2781. * doesn't hit another vma.
  2782. */
  2783. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2784. {
  2785. address &= PAGE_MASK;
  2786. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2787. struct vm_area_struct *prev = vma->vm_prev;
  2788. /*
  2789. * Is there a mapping abutting this one below?
  2790. *
  2791. * That's only ok if it's the same stack mapping
  2792. * that has gotten split..
  2793. */
  2794. if (prev && prev->vm_end == address)
  2795. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2796. expand_downwards(vma, address - PAGE_SIZE);
  2797. }
  2798. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2799. struct vm_area_struct *next = vma->vm_next;
  2800. /* As VM_GROWSDOWN but s/below/above/ */
  2801. if (next && next->vm_start == address + PAGE_SIZE)
  2802. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2803. expand_upwards(vma, address + PAGE_SIZE);
  2804. }
  2805. return 0;
  2806. }
  2807. /*
  2808. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2809. * but allow concurrent faults), and pte mapped but not yet locked.
  2810. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2811. */
  2812. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2813. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2814. unsigned int flags)
  2815. {
  2816. struct page *page;
  2817. spinlock_t *ptl;
  2818. pte_t entry;
  2819. pte_unmap(page_table);
  2820. /* Check if we need to add a guard page to the stack */
  2821. if (check_stack_guard_page(vma, address) < 0)
  2822. return VM_FAULT_SIGBUS;
  2823. /* Use the zero-page for reads */
  2824. if (!(flags & FAULT_FLAG_WRITE)) {
  2825. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2826. vma->vm_page_prot));
  2827. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2828. if (!pte_none(*page_table))
  2829. goto unlock;
  2830. goto setpte;
  2831. }
  2832. /* Allocate our own private page. */
  2833. if (unlikely(anon_vma_prepare(vma)))
  2834. goto oom;
  2835. page = alloc_zeroed_user_highpage_movable(vma, address);
  2836. if (!page)
  2837. goto oom;
  2838. __SetPageUptodate(page);
  2839. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2840. goto oom_free_page;
  2841. entry = mk_pte(page, vma->vm_page_prot);
  2842. if (vma->vm_flags & VM_WRITE)
  2843. entry = pte_mkwrite(pte_mkdirty(entry));
  2844. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2845. if (!pte_none(*page_table))
  2846. goto release;
  2847. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2848. page_add_new_anon_rmap(page, vma, address);
  2849. setpte:
  2850. set_pte_at(mm, address, page_table, entry);
  2851. /* No need to invalidate - it was non-present before */
  2852. update_mmu_cache(vma, address, page_table);
  2853. unlock:
  2854. pte_unmap_unlock(page_table, ptl);
  2855. return 0;
  2856. release:
  2857. mem_cgroup_uncharge_page(page);
  2858. page_cache_release(page);
  2859. goto unlock;
  2860. oom_free_page:
  2861. page_cache_release(page);
  2862. oom:
  2863. return VM_FAULT_OOM;
  2864. }
  2865. /*
  2866. * __do_fault() tries to create a new page mapping. It aggressively
  2867. * tries to share with existing pages, but makes a separate copy if
  2868. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2869. * the next page fault.
  2870. *
  2871. * As this is called only for pages that do not currently exist, we
  2872. * do not need to flush old virtual caches or the TLB.
  2873. *
  2874. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2875. * but allow concurrent faults), and pte neither mapped nor locked.
  2876. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2877. */
  2878. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2879. unsigned long address, pmd_t *pmd,
  2880. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2881. {
  2882. pte_t *page_table;
  2883. spinlock_t *ptl;
  2884. struct page *page;
  2885. struct page *cow_page;
  2886. pte_t entry;
  2887. int anon = 0;
  2888. struct page *dirty_page = NULL;
  2889. struct vm_fault vmf;
  2890. int ret;
  2891. int page_mkwrite = 0;
  2892. /*
  2893. * If we do COW later, allocate page befor taking lock_page()
  2894. * on the file cache page. This will reduce lock holding time.
  2895. */
  2896. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2897. if (unlikely(anon_vma_prepare(vma)))
  2898. return VM_FAULT_OOM;
  2899. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2900. if (!cow_page)
  2901. return VM_FAULT_OOM;
  2902. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2903. page_cache_release(cow_page);
  2904. return VM_FAULT_OOM;
  2905. }
  2906. } else
  2907. cow_page = NULL;
  2908. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2909. vmf.pgoff = pgoff;
  2910. vmf.flags = flags;
  2911. vmf.page = NULL;
  2912. ret = vma->vm_ops->fault(vma, &vmf);
  2913. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2914. VM_FAULT_RETRY)))
  2915. goto uncharge_out;
  2916. if (unlikely(PageHWPoison(vmf.page))) {
  2917. if (ret & VM_FAULT_LOCKED)
  2918. unlock_page(vmf.page);
  2919. ret = VM_FAULT_HWPOISON;
  2920. goto uncharge_out;
  2921. }
  2922. /*
  2923. * For consistency in subsequent calls, make the faulted page always
  2924. * locked.
  2925. */
  2926. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2927. lock_page(vmf.page);
  2928. else
  2929. VM_BUG_ON(!PageLocked(vmf.page));
  2930. /*
  2931. * Should we do an early C-O-W break?
  2932. */
  2933. page = vmf.page;
  2934. if (flags & FAULT_FLAG_WRITE) {
  2935. if (!(vma->vm_flags & VM_SHARED)) {
  2936. page = cow_page;
  2937. anon = 1;
  2938. copy_user_highpage(page, vmf.page, address, vma);
  2939. __SetPageUptodate(page);
  2940. } else {
  2941. /*
  2942. * If the page will be shareable, see if the backing
  2943. * address space wants to know that the page is about
  2944. * to become writable
  2945. */
  2946. if (vma->vm_ops->page_mkwrite) {
  2947. int tmp;
  2948. unlock_page(page);
  2949. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2950. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2951. if (unlikely(tmp &
  2952. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2953. ret = tmp;
  2954. goto unwritable_page;
  2955. }
  2956. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2957. lock_page(page);
  2958. if (!page->mapping) {
  2959. ret = 0; /* retry the fault */
  2960. unlock_page(page);
  2961. goto unwritable_page;
  2962. }
  2963. } else
  2964. VM_BUG_ON(!PageLocked(page));
  2965. page_mkwrite = 1;
  2966. }
  2967. }
  2968. }
  2969. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2970. /*
  2971. * This silly early PAGE_DIRTY setting removes a race
  2972. * due to the bad i386 page protection. But it's valid
  2973. * for other architectures too.
  2974. *
  2975. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2976. * an exclusive copy of the page, or this is a shared mapping,
  2977. * so we can make it writable and dirty to avoid having to
  2978. * handle that later.
  2979. */
  2980. /* Only go through if we didn't race with anybody else... */
  2981. if (likely(pte_same(*page_table, orig_pte))) {
  2982. flush_icache_page(vma, page);
  2983. entry = mk_pte(page, vma->vm_page_prot);
  2984. if (flags & FAULT_FLAG_WRITE)
  2985. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2986. if (anon) {
  2987. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2988. page_add_new_anon_rmap(page, vma, address);
  2989. } else {
  2990. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2991. page_add_file_rmap(page);
  2992. if (flags & FAULT_FLAG_WRITE) {
  2993. dirty_page = page;
  2994. get_page(dirty_page);
  2995. }
  2996. }
  2997. set_pte_at(mm, address, page_table, entry);
  2998. /* no need to invalidate: a not-present page won't be cached */
  2999. update_mmu_cache(vma, address, page_table);
  3000. } else {
  3001. if (cow_page)
  3002. mem_cgroup_uncharge_page(cow_page);
  3003. if (anon)
  3004. page_cache_release(page);
  3005. else
  3006. anon = 1; /* no anon but release faulted_page */
  3007. }
  3008. pte_unmap_unlock(page_table, ptl);
  3009. if (dirty_page) {
  3010. struct address_space *mapping = page->mapping;
  3011. int dirtied = 0;
  3012. if (set_page_dirty(dirty_page))
  3013. dirtied = 1;
  3014. unlock_page(dirty_page);
  3015. put_page(dirty_page);
  3016. if ((dirtied || page_mkwrite) && mapping) {
  3017. /*
  3018. * Some device drivers do not set page.mapping but still
  3019. * dirty their pages
  3020. */
  3021. balance_dirty_pages_ratelimited(mapping);
  3022. }
  3023. /* file_update_time outside page_lock */
  3024. if (vma->vm_file && !page_mkwrite)
  3025. file_update_time(vma->vm_file);
  3026. } else {
  3027. unlock_page(vmf.page);
  3028. if (anon)
  3029. page_cache_release(vmf.page);
  3030. }
  3031. return ret;
  3032. unwritable_page:
  3033. page_cache_release(page);
  3034. return ret;
  3035. uncharge_out:
  3036. /* fs's fault handler get error */
  3037. if (cow_page) {
  3038. mem_cgroup_uncharge_page(cow_page);
  3039. page_cache_release(cow_page);
  3040. }
  3041. return ret;
  3042. }
  3043. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3044. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3045. unsigned int flags, pte_t orig_pte)
  3046. {
  3047. pgoff_t pgoff = (((address & PAGE_MASK)
  3048. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3049. pte_unmap(page_table);
  3050. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3051. }
  3052. /*
  3053. * Fault of a previously existing named mapping. Repopulate the pte
  3054. * from the encoded file_pte if possible. This enables swappable
  3055. * nonlinear vmas.
  3056. *
  3057. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3058. * but allow concurrent faults), and pte mapped but not yet locked.
  3059. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3060. */
  3061. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3062. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3063. unsigned int flags, pte_t orig_pte)
  3064. {
  3065. pgoff_t pgoff;
  3066. flags |= FAULT_FLAG_NONLINEAR;
  3067. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3068. return 0;
  3069. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3070. /*
  3071. * Page table corrupted: show pte and kill process.
  3072. */
  3073. print_bad_pte(vma, address, orig_pte, NULL);
  3074. return VM_FAULT_SIGBUS;
  3075. }
  3076. pgoff = pte_to_pgoff(orig_pte);
  3077. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3078. }
  3079. int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  3080. unsigned long addr, int current_nid)
  3081. {
  3082. get_page(page);
  3083. count_vm_numa_event(NUMA_HINT_FAULTS);
  3084. if (current_nid == numa_node_id())
  3085. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  3086. return mpol_misplaced(page, vma, addr);
  3087. }
  3088. int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3089. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  3090. {
  3091. struct page *page = NULL;
  3092. spinlock_t *ptl;
  3093. int current_nid = -1;
  3094. int target_nid;
  3095. bool migrated = false;
  3096. /*
  3097. * The "pte" at this point cannot be used safely without
  3098. * validation through pte_unmap_same(). It's of NUMA type but
  3099. * the pfn may be screwed if the read is non atomic.
  3100. *
  3101. * ptep_modify_prot_start is not called as this is clearing
  3102. * the _PAGE_NUMA bit and it is not really expected that there
  3103. * would be concurrent hardware modifications to the PTE.
  3104. */
  3105. ptl = pte_lockptr(mm, pmd);
  3106. spin_lock(ptl);
  3107. if (unlikely(!pte_same(*ptep, pte))) {
  3108. pte_unmap_unlock(ptep, ptl);
  3109. goto out;
  3110. }
  3111. pte = pte_mknonnuma(pte);
  3112. set_pte_at(mm, addr, ptep, pte);
  3113. update_mmu_cache(vma, addr, ptep);
  3114. page = vm_normal_page(vma, addr, pte);
  3115. if (!page) {
  3116. pte_unmap_unlock(ptep, ptl);
  3117. return 0;
  3118. }
  3119. current_nid = page_to_nid(page);
  3120. target_nid = numa_migrate_prep(page, vma, addr, current_nid);
  3121. pte_unmap_unlock(ptep, ptl);
  3122. if (target_nid == -1) {
  3123. /*
  3124. * Account for the fault against the current node if it not
  3125. * being replaced regardless of where the page is located.
  3126. */
  3127. current_nid = numa_node_id();
  3128. put_page(page);
  3129. goto out;
  3130. }
  3131. /* Migrate to the requested node */
  3132. migrated = migrate_misplaced_page(page, target_nid);
  3133. if (migrated)
  3134. current_nid = target_nid;
  3135. out:
  3136. if (current_nid != -1)
  3137. task_numa_fault(current_nid, 1, migrated);
  3138. return 0;
  3139. }
  3140. /* NUMA hinting page fault entry point for regular pmds */
  3141. #ifdef CONFIG_NUMA_BALANCING
  3142. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3143. unsigned long addr, pmd_t *pmdp)
  3144. {
  3145. pmd_t pmd;
  3146. pte_t *pte, *orig_pte;
  3147. unsigned long _addr = addr & PMD_MASK;
  3148. unsigned long offset;
  3149. spinlock_t *ptl;
  3150. bool numa = false;
  3151. int local_nid = numa_node_id();
  3152. spin_lock(&mm->page_table_lock);
  3153. pmd = *pmdp;
  3154. if (pmd_numa(pmd)) {
  3155. set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
  3156. numa = true;
  3157. }
  3158. spin_unlock(&mm->page_table_lock);
  3159. if (!numa)
  3160. return 0;
  3161. /* we're in a page fault so some vma must be in the range */
  3162. BUG_ON(!vma);
  3163. BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
  3164. offset = max(_addr, vma->vm_start) & ~PMD_MASK;
  3165. VM_BUG_ON(offset >= PMD_SIZE);
  3166. orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
  3167. pte += offset >> PAGE_SHIFT;
  3168. for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
  3169. pte_t pteval = *pte;
  3170. struct page *page;
  3171. int curr_nid = local_nid;
  3172. int target_nid;
  3173. bool migrated;
  3174. if (!pte_present(pteval))
  3175. continue;
  3176. if (!pte_numa(pteval))
  3177. continue;
  3178. if (addr >= vma->vm_end) {
  3179. vma = find_vma(mm, addr);
  3180. /* there's a pte present so there must be a vma */
  3181. BUG_ON(!vma);
  3182. BUG_ON(addr < vma->vm_start);
  3183. }
  3184. if (pte_numa(pteval)) {
  3185. pteval = pte_mknonnuma(pteval);
  3186. set_pte_at(mm, addr, pte, pteval);
  3187. }
  3188. page = vm_normal_page(vma, addr, pteval);
  3189. if (unlikely(!page))
  3190. continue;
  3191. /* only check non-shared pages */
  3192. if (unlikely(page_mapcount(page) != 1))
  3193. continue;
  3194. /*
  3195. * Note that the NUMA fault is later accounted to either
  3196. * the node that is currently running or where the page is
  3197. * migrated to.
  3198. */
  3199. curr_nid = local_nid;
  3200. target_nid = numa_migrate_prep(page, vma, addr,
  3201. page_to_nid(page));
  3202. if (target_nid == -1) {
  3203. put_page(page);
  3204. continue;
  3205. }
  3206. /* Migrate to the requested node */
  3207. pte_unmap_unlock(pte, ptl);
  3208. migrated = migrate_misplaced_page(page, target_nid);
  3209. if (migrated)
  3210. curr_nid = target_nid;
  3211. task_numa_fault(curr_nid, 1, migrated);
  3212. pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
  3213. }
  3214. pte_unmap_unlock(orig_pte, ptl);
  3215. return 0;
  3216. }
  3217. #else
  3218. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3219. unsigned long addr, pmd_t *pmdp)
  3220. {
  3221. BUG();
  3222. return 0;
  3223. }
  3224. #endif /* CONFIG_NUMA_BALANCING */
  3225. /*
  3226. * These routines also need to handle stuff like marking pages dirty
  3227. * and/or accessed for architectures that don't do it in hardware (most
  3228. * RISC architectures). The early dirtying is also good on the i386.
  3229. *
  3230. * There is also a hook called "update_mmu_cache()" that architectures
  3231. * with external mmu caches can use to update those (ie the Sparc or
  3232. * PowerPC hashed page tables that act as extended TLBs).
  3233. *
  3234. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3235. * but allow concurrent faults), and pte mapped but not yet locked.
  3236. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3237. */
  3238. int handle_pte_fault(struct mm_struct *mm,
  3239. struct vm_area_struct *vma, unsigned long address,
  3240. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3241. {
  3242. pte_t entry;
  3243. spinlock_t *ptl;
  3244. entry = *pte;
  3245. if (!pte_present(entry)) {
  3246. if (pte_none(entry)) {
  3247. if (vma->vm_ops) {
  3248. if (likely(vma->vm_ops->fault))
  3249. return do_linear_fault(mm, vma, address,
  3250. pte, pmd, flags, entry);
  3251. }
  3252. return do_anonymous_page(mm, vma, address,
  3253. pte, pmd, flags);
  3254. }
  3255. if (pte_file(entry))
  3256. return do_nonlinear_fault(mm, vma, address,
  3257. pte, pmd, flags, entry);
  3258. return do_swap_page(mm, vma, address,
  3259. pte, pmd, flags, entry);
  3260. }
  3261. if (pte_numa(entry))
  3262. return do_numa_page(mm, vma, address, entry, pte, pmd);
  3263. ptl = pte_lockptr(mm, pmd);
  3264. spin_lock(ptl);
  3265. if (unlikely(!pte_same(*pte, entry)))
  3266. goto unlock;
  3267. if (flags & FAULT_FLAG_WRITE) {
  3268. if (!pte_write(entry))
  3269. return do_wp_page(mm, vma, address,
  3270. pte, pmd, ptl, entry);
  3271. entry = pte_mkdirty(entry);
  3272. }
  3273. entry = pte_mkyoung(entry);
  3274. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3275. update_mmu_cache(vma, address, pte);
  3276. } else {
  3277. /*
  3278. * This is needed only for protection faults but the arch code
  3279. * is not yet telling us if this is a protection fault or not.
  3280. * This still avoids useless tlb flushes for .text page faults
  3281. * with threads.
  3282. */
  3283. if (flags & FAULT_FLAG_WRITE)
  3284. flush_tlb_fix_spurious_fault(vma, address);
  3285. }
  3286. unlock:
  3287. pte_unmap_unlock(pte, ptl);
  3288. return 0;
  3289. }
  3290. /*
  3291. * By the time we get here, we already hold the mm semaphore
  3292. */
  3293. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3294. unsigned long address, unsigned int flags)
  3295. {
  3296. pgd_t *pgd;
  3297. pud_t *pud;
  3298. pmd_t *pmd;
  3299. pte_t *pte;
  3300. __set_current_state(TASK_RUNNING);
  3301. count_vm_event(PGFAULT);
  3302. mem_cgroup_count_vm_event(mm, PGFAULT);
  3303. /* do counter updates before entering really critical section. */
  3304. check_sync_rss_stat(current);
  3305. if (unlikely(is_vm_hugetlb_page(vma)))
  3306. return hugetlb_fault(mm, vma, address, flags);
  3307. retry:
  3308. pgd = pgd_offset(mm, address);
  3309. pud = pud_alloc(mm, pgd, address);
  3310. if (!pud)
  3311. return VM_FAULT_OOM;
  3312. pmd = pmd_alloc(mm, pud, address);
  3313. if (!pmd)
  3314. return VM_FAULT_OOM;
  3315. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3316. if (!vma->vm_ops)
  3317. return do_huge_pmd_anonymous_page(mm, vma, address,
  3318. pmd, flags);
  3319. } else {
  3320. pmd_t orig_pmd = *pmd;
  3321. int ret;
  3322. barrier();
  3323. if (pmd_trans_huge(orig_pmd)) {
  3324. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3325. if (pmd_numa(orig_pmd))
  3326. return do_huge_pmd_numa_page(mm, vma, address,
  3327. orig_pmd, pmd);
  3328. if (dirty && !pmd_write(orig_pmd)) {
  3329. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3330. orig_pmd);
  3331. /*
  3332. * If COW results in an oom, the huge pmd will
  3333. * have been split, so retry the fault on the
  3334. * pte for a smaller charge.
  3335. */
  3336. if (unlikely(ret & VM_FAULT_OOM))
  3337. goto retry;
  3338. return ret;
  3339. } else {
  3340. huge_pmd_set_accessed(mm, vma, address, pmd,
  3341. orig_pmd, dirty);
  3342. }
  3343. return 0;
  3344. }
  3345. }
  3346. if (pmd_numa(*pmd))
  3347. return do_pmd_numa_page(mm, vma, address, pmd);
  3348. /*
  3349. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3350. * run pte_offset_map on the pmd, if an huge pmd could
  3351. * materialize from under us from a different thread.
  3352. */
  3353. if (unlikely(pmd_none(*pmd)) &&
  3354. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3355. return VM_FAULT_OOM;
  3356. /* if an huge pmd materialized from under us just retry later */
  3357. if (unlikely(pmd_trans_huge(*pmd)))
  3358. return 0;
  3359. /*
  3360. * A regular pmd is established and it can't morph into a huge pmd
  3361. * from under us anymore at this point because we hold the mmap_sem
  3362. * read mode and khugepaged takes it in write mode. So now it's
  3363. * safe to run pte_offset_map().
  3364. */
  3365. pte = pte_offset_map(pmd, address);
  3366. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3367. }
  3368. #ifndef __PAGETABLE_PUD_FOLDED
  3369. /*
  3370. * Allocate page upper directory.
  3371. * We've already handled the fast-path in-line.
  3372. */
  3373. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3374. {
  3375. pud_t *new = pud_alloc_one(mm, address);
  3376. if (!new)
  3377. return -ENOMEM;
  3378. smp_wmb(); /* See comment in __pte_alloc */
  3379. spin_lock(&mm->page_table_lock);
  3380. if (pgd_present(*pgd)) /* Another has populated it */
  3381. pud_free(mm, new);
  3382. else
  3383. pgd_populate(mm, pgd, new);
  3384. spin_unlock(&mm->page_table_lock);
  3385. return 0;
  3386. }
  3387. #endif /* __PAGETABLE_PUD_FOLDED */
  3388. #ifndef __PAGETABLE_PMD_FOLDED
  3389. /*
  3390. * Allocate page middle directory.
  3391. * We've already handled the fast-path in-line.
  3392. */
  3393. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3394. {
  3395. pmd_t *new = pmd_alloc_one(mm, address);
  3396. if (!new)
  3397. return -ENOMEM;
  3398. smp_wmb(); /* See comment in __pte_alloc */
  3399. spin_lock(&mm->page_table_lock);
  3400. #ifndef __ARCH_HAS_4LEVEL_HACK
  3401. if (pud_present(*pud)) /* Another has populated it */
  3402. pmd_free(mm, new);
  3403. else
  3404. pud_populate(mm, pud, new);
  3405. #else
  3406. if (pgd_present(*pud)) /* Another has populated it */
  3407. pmd_free(mm, new);
  3408. else
  3409. pgd_populate(mm, pud, new);
  3410. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3411. spin_unlock(&mm->page_table_lock);
  3412. return 0;
  3413. }
  3414. #endif /* __PAGETABLE_PMD_FOLDED */
  3415. int make_pages_present(unsigned long addr, unsigned long end)
  3416. {
  3417. int ret, len, write;
  3418. struct vm_area_struct * vma;
  3419. vma = find_vma(current->mm, addr);
  3420. if (!vma)
  3421. return -ENOMEM;
  3422. /*
  3423. * We want to touch writable mappings with a write fault in order
  3424. * to break COW, except for shared mappings because these don't COW
  3425. * and we would not want to dirty them for nothing.
  3426. */
  3427. write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
  3428. BUG_ON(addr >= end);
  3429. BUG_ON(end > vma->vm_end);
  3430. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  3431. ret = get_user_pages(current, current->mm, addr,
  3432. len, write, 0, NULL, NULL);
  3433. if (ret < 0)
  3434. return ret;
  3435. return ret == len ? 0 : -EFAULT;
  3436. }
  3437. #if !defined(__HAVE_ARCH_GATE_AREA)
  3438. #if defined(AT_SYSINFO_EHDR)
  3439. static struct vm_area_struct gate_vma;
  3440. static int __init gate_vma_init(void)
  3441. {
  3442. gate_vma.vm_mm = NULL;
  3443. gate_vma.vm_start = FIXADDR_USER_START;
  3444. gate_vma.vm_end = FIXADDR_USER_END;
  3445. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3446. gate_vma.vm_page_prot = __P101;
  3447. return 0;
  3448. }
  3449. __initcall(gate_vma_init);
  3450. #endif
  3451. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3452. {
  3453. #ifdef AT_SYSINFO_EHDR
  3454. return &gate_vma;
  3455. #else
  3456. return NULL;
  3457. #endif
  3458. }
  3459. int in_gate_area_no_mm(unsigned long addr)
  3460. {
  3461. #ifdef AT_SYSINFO_EHDR
  3462. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3463. return 1;
  3464. #endif
  3465. return 0;
  3466. }
  3467. #endif /* __HAVE_ARCH_GATE_AREA */
  3468. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3469. pte_t **ptepp, spinlock_t **ptlp)
  3470. {
  3471. pgd_t *pgd;
  3472. pud_t *pud;
  3473. pmd_t *pmd;
  3474. pte_t *ptep;
  3475. pgd = pgd_offset(mm, address);
  3476. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3477. goto out;
  3478. pud = pud_offset(pgd, address);
  3479. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3480. goto out;
  3481. pmd = pmd_offset(pud, address);
  3482. VM_BUG_ON(pmd_trans_huge(*pmd));
  3483. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3484. goto out;
  3485. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3486. if (pmd_huge(*pmd))
  3487. goto out;
  3488. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3489. if (!ptep)
  3490. goto out;
  3491. if (!pte_present(*ptep))
  3492. goto unlock;
  3493. *ptepp = ptep;
  3494. return 0;
  3495. unlock:
  3496. pte_unmap_unlock(ptep, *ptlp);
  3497. out:
  3498. return -EINVAL;
  3499. }
  3500. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3501. pte_t **ptepp, spinlock_t **ptlp)
  3502. {
  3503. int res;
  3504. /* (void) is needed to make gcc happy */
  3505. (void) __cond_lock(*ptlp,
  3506. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3507. return res;
  3508. }
  3509. /**
  3510. * follow_pfn - look up PFN at a user virtual address
  3511. * @vma: memory mapping
  3512. * @address: user virtual address
  3513. * @pfn: location to store found PFN
  3514. *
  3515. * Only IO mappings and raw PFN mappings are allowed.
  3516. *
  3517. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3518. */
  3519. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3520. unsigned long *pfn)
  3521. {
  3522. int ret = -EINVAL;
  3523. spinlock_t *ptl;
  3524. pte_t *ptep;
  3525. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3526. return ret;
  3527. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3528. if (ret)
  3529. return ret;
  3530. *pfn = pte_pfn(*ptep);
  3531. pte_unmap_unlock(ptep, ptl);
  3532. return 0;
  3533. }
  3534. EXPORT_SYMBOL(follow_pfn);
  3535. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3536. int follow_phys(struct vm_area_struct *vma,
  3537. unsigned long address, unsigned int flags,
  3538. unsigned long *prot, resource_size_t *phys)
  3539. {
  3540. int ret = -EINVAL;
  3541. pte_t *ptep, pte;
  3542. spinlock_t *ptl;
  3543. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3544. goto out;
  3545. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3546. goto out;
  3547. pte = *ptep;
  3548. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3549. goto unlock;
  3550. *prot = pgprot_val(pte_pgprot(pte));
  3551. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3552. ret = 0;
  3553. unlock:
  3554. pte_unmap_unlock(ptep, ptl);
  3555. out:
  3556. return ret;
  3557. }
  3558. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3559. void *buf, int len, int write)
  3560. {
  3561. resource_size_t phys_addr;
  3562. unsigned long prot = 0;
  3563. void __iomem *maddr;
  3564. int offset = addr & (PAGE_SIZE-1);
  3565. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3566. return -EINVAL;
  3567. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3568. if (write)
  3569. memcpy_toio(maddr + offset, buf, len);
  3570. else
  3571. memcpy_fromio(buf, maddr + offset, len);
  3572. iounmap(maddr);
  3573. return len;
  3574. }
  3575. #endif
  3576. /*
  3577. * Access another process' address space as given in mm. If non-NULL, use the
  3578. * given task for page fault accounting.
  3579. */
  3580. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3581. unsigned long addr, void *buf, int len, int write)
  3582. {
  3583. struct vm_area_struct *vma;
  3584. void *old_buf = buf;
  3585. down_read(&mm->mmap_sem);
  3586. /* ignore errors, just check how much was successfully transferred */
  3587. while (len) {
  3588. int bytes, ret, offset;
  3589. void *maddr;
  3590. struct page *page = NULL;
  3591. ret = get_user_pages(tsk, mm, addr, 1,
  3592. write, 1, &page, &vma);
  3593. if (ret <= 0) {
  3594. /*
  3595. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3596. * we can access using slightly different code.
  3597. */
  3598. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3599. vma = find_vma(mm, addr);
  3600. if (!vma || vma->vm_start > addr)
  3601. break;
  3602. if (vma->vm_ops && vma->vm_ops->access)
  3603. ret = vma->vm_ops->access(vma, addr, buf,
  3604. len, write);
  3605. if (ret <= 0)
  3606. #endif
  3607. break;
  3608. bytes = ret;
  3609. } else {
  3610. bytes = len;
  3611. offset = addr & (PAGE_SIZE-1);
  3612. if (bytes > PAGE_SIZE-offset)
  3613. bytes = PAGE_SIZE-offset;
  3614. maddr = kmap(page);
  3615. if (write) {
  3616. copy_to_user_page(vma, page, addr,
  3617. maddr + offset, buf, bytes);
  3618. set_page_dirty_lock(page);
  3619. } else {
  3620. copy_from_user_page(vma, page, addr,
  3621. buf, maddr + offset, bytes);
  3622. }
  3623. kunmap(page);
  3624. page_cache_release(page);
  3625. }
  3626. len -= bytes;
  3627. buf += bytes;
  3628. addr += bytes;
  3629. }
  3630. up_read(&mm->mmap_sem);
  3631. return buf - old_buf;
  3632. }
  3633. /**
  3634. * access_remote_vm - access another process' address space
  3635. * @mm: the mm_struct of the target address space
  3636. * @addr: start address to access
  3637. * @buf: source or destination buffer
  3638. * @len: number of bytes to transfer
  3639. * @write: whether the access is a write
  3640. *
  3641. * The caller must hold a reference on @mm.
  3642. */
  3643. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3644. void *buf, int len, int write)
  3645. {
  3646. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3647. }
  3648. /*
  3649. * Access another process' address space.
  3650. * Source/target buffer must be kernel space,
  3651. * Do not walk the page table directly, use get_user_pages
  3652. */
  3653. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3654. void *buf, int len, int write)
  3655. {
  3656. struct mm_struct *mm;
  3657. int ret;
  3658. mm = get_task_mm(tsk);
  3659. if (!mm)
  3660. return 0;
  3661. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3662. mmput(mm);
  3663. return ret;
  3664. }
  3665. /*
  3666. * Print the name of a VMA.
  3667. */
  3668. void print_vma_addr(char *prefix, unsigned long ip)
  3669. {
  3670. struct mm_struct *mm = current->mm;
  3671. struct vm_area_struct *vma;
  3672. /*
  3673. * Do not print if we are in atomic
  3674. * contexts (in exception stacks, etc.):
  3675. */
  3676. if (preempt_count())
  3677. return;
  3678. down_read(&mm->mmap_sem);
  3679. vma = find_vma(mm, ip);
  3680. if (vma && vma->vm_file) {
  3681. struct file *f = vma->vm_file;
  3682. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3683. if (buf) {
  3684. char *p, *s;
  3685. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3686. if (IS_ERR(p))
  3687. p = "?";
  3688. s = strrchr(p, '/');
  3689. if (s)
  3690. p = s+1;
  3691. printk("%s%s[%lx+%lx]", prefix, p,
  3692. vma->vm_start,
  3693. vma->vm_end - vma->vm_start);
  3694. free_page((unsigned long)buf);
  3695. }
  3696. }
  3697. up_read(&mm->mmap_sem);
  3698. }
  3699. #ifdef CONFIG_PROVE_LOCKING
  3700. void might_fault(void)
  3701. {
  3702. /*
  3703. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3704. * holding the mmap_sem, this is safe because kernel memory doesn't
  3705. * get paged out, therefore we'll never actually fault, and the
  3706. * below annotations will generate false positives.
  3707. */
  3708. if (segment_eq(get_fs(), KERNEL_DS))
  3709. return;
  3710. might_sleep();
  3711. /*
  3712. * it would be nicer only to annotate paths which are not under
  3713. * pagefault_disable, however that requires a larger audit and
  3714. * providing helpers like get_user_atomic.
  3715. */
  3716. if (!in_atomic() && current->mm)
  3717. might_lock_read(&current->mm->mmap_sem);
  3718. }
  3719. EXPORT_SYMBOL(might_fault);
  3720. #endif
  3721. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3722. static void clear_gigantic_page(struct page *page,
  3723. unsigned long addr,
  3724. unsigned int pages_per_huge_page)
  3725. {
  3726. int i;
  3727. struct page *p = page;
  3728. might_sleep();
  3729. for (i = 0; i < pages_per_huge_page;
  3730. i++, p = mem_map_next(p, page, i)) {
  3731. cond_resched();
  3732. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3733. }
  3734. }
  3735. void clear_huge_page(struct page *page,
  3736. unsigned long addr, unsigned int pages_per_huge_page)
  3737. {
  3738. int i;
  3739. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3740. clear_gigantic_page(page, addr, pages_per_huge_page);
  3741. return;
  3742. }
  3743. might_sleep();
  3744. for (i = 0; i < pages_per_huge_page; i++) {
  3745. cond_resched();
  3746. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3747. }
  3748. }
  3749. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3750. unsigned long addr,
  3751. struct vm_area_struct *vma,
  3752. unsigned int pages_per_huge_page)
  3753. {
  3754. int i;
  3755. struct page *dst_base = dst;
  3756. struct page *src_base = src;
  3757. for (i = 0; i < pages_per_huge_page; ) {
  3758. cond_resched();
  3759. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3760. i++;
  3761. dst = mem_map_next(dst, dst_base, i);
  3762. src = mem_map_next(src, src_base, i);
  3763. }
  3764. }
  3765. void copy_user_huge_page(struct page *dst, struct page *src,
  3766. unsigned long addr, struct vm_area_struct *vma,
  3767. unsigned int pages_per_huge_page)
  3768. {
  3769. int i;
  3770. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3771. copy_user_gigantic_page(dst, src, addr, vma,
  3772. pages_per_huge_page);
  3773. return;
  3774. }
  3775. might_sleep();
  3776. for (i = 0; i < pages_per_huge_page; i++) {
  3777. cond_resched();
  3778. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3779. }
  3780. }
  3781. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */