clock-mx51-mx53.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189
  1. /*
  2. * Copyright 2008-2010 Freescale Semiconductor, Inc. All Rights Reserved.
  3. * Copyright (C) 2009-2010 Amit Kucheria <amit.kucheria@canonical.com>
  4. *
  5. * The code contained herein is licensed under the GNU General Public
  6. * License. You may obtain a copy of the GNU General Public License
  7. * Version 2 or later at the following locations:
  8. *
  9. * http://www.opensource.org/licenses/gpl-license.html
  10. * http://www.gnu.org/copyleft/gpl.html
  11. */
  12. #include <linux/mm.h>
  13. #include <linux/delay.h>
  14. #include <linux/clk.h>
  15. #include <linux/io.h>
  16. #include <asm/clkdev.h>
  17. #include <asm/div64.h>
  18. #include <mach/hardware.h>
  19. #include <mach/common.h>
  20. #include <mach/clock.h>
  21. #include "crm_regs.h"
  22. /* External clock values passed-in by the board code */
  23. static unsigned long external_high_reference, external_low_reference;
  24. static unsigned long oscillator_reference, ckih2_reference;
  25. static struct clk osc_clk;
  26. static struct clk pll1_main_clk;
  27. static struct clk pll1_sw_clk;
  28. static struct clk pll2_sw_clk;
  29. static struct clk pll3_sw_clk;
  30. static struct clk mx53_pll4_sw_clk;
  31. static struct clk lp_apm_clk;
  32. static struct clk periph_apm_clk;
  33. static struct clk ahb_clk;
  34. static struct clk ipg_clk;
  35. static struct clk usboh3_clk;
  36. #define MAX_DPLL_WAIT_TRIES 1000 /* 1000 * udelay(1) = 1ms */
  37. /* calculate best pre and post dividers to get the required divider */
  38. static void __calc_pre_post_dividers(u32 div, u32 *pre, u32 *post,
  39. u32 max_pre, u32 max_post)
  40. {
  41. if (div >= max_pre * max_post) {
  42. *pre = max_pre;
  43. *post = max_post;
  44. } else if (div >= max_pre) {
  45. u32 min_pre, temp_pre, old_err, err;
  46. min_pre = DIV_ROUND_UP(div, max_post);
  47. old_err = max_pre;
  48. for (temp_pre = max_pre; temp_pre >= min_pre; temp_pre--) {
  49. err = div % temp_pre;
  50. if (err == 0) {
  51. *pre = temp_pre;
  52. break;
  53. }
  54. err = temp_pre - err;
  55. if (err < old_err) {
  56. old_err = err;
  57. *pre = temp_pre;
  58. }
  59. }
  60. *post = DIV_ROUND_UP(div, *pre);
  61. } else {
  62. *pre = div;
  63. *post = 1;
  64. }
  65. }
  66. static void _clk_ccgr_setclk(struct clk *clk, unsigned mode)
  67. {
  68. u32 reg = __raw_readl(clk->enable_reg);
  69. reg &= ~(MXC_CCM_CCGRx_CG_MASK << clk->enable_shift);
  70. reg |= mode << clk->enable_shift;
  71. __raw_writel(reg, clk->enable_reg);
  72. }
  73. static int _clk_ccgr_enable(struct clk *clk)
  74. {
  75. _clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_ON);
  76. return 0;
  77. }
  78. static void _clk_ccgr_disable(struct clk *clk)
  79. {
  80. _clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_OFF);
  81. }
  82. static int _clk_ccgr_enable_inrun(struct clk *clk)
  83. {
  84. _clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_IDLE);
  85. return 0;
  86. }
  87. static void _clk_ccgr_disable_inwait(struct clk *clk)
  88. {
  89. _clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_IDLE);
  90. }
  91. /*
  92. * For the 4-to-1 muxed input clock
  93. */
  94. static inline u32 _get_mux(struct clk *parent, struct clk *m0,
  95. struct clk *m1, struct clk *m2, struct clk *m3)
  96. {
  97. if (parent == m0)
  98. return 0;
  99. else if (parent == m1)
  100. return 1;
  101. else if (parent == m2)
  102. return 2;
  103. else if (parent == m3)
  104. return 3;
  105. else
  106. BUG();
  107. return -EINVAL;
  108. }
  109. static inline void __iomem *_get_pll_base(struct clk *pll)
  110. {
  111. if (pll == &pll1_main_clk)
  112. return MX51_DPLL1_BASE;
  113. else if (pll == &pll2_sw_clk)
  114. return MX51_DPLL2_BASE;
  115. else if (pll == &pll3_sw_clk)
  116. return MX51_DPLL3_BASE;
  117. else if (pll == &mx53_pll4_sw_clk)
  118. return MX53_DPLL4_BASE;
  119. else
  120. BUG();
  121. return NULL;
  122. }
  123. static unsigned long clk_pll_get_rate(struct clk *clk)
  124. {
  125. long mfi, mfn, mfd, pdf, ref_clk, mfn_abs;
  126. unsigned long dp_op, dp_mfd, dp_mfn, dp_ctl, pll_hfsm, dbl;
  127. void __iomem *pllbase;
  128. s64 temp;
  129. unsigned long parent_rate;
  130. parent_rate = clk_get_rate(clk->parent);
  131. pllbase = _get_pll_base(clk);
  132. dp_ctl = __raw_readl(pllbase + MXC_PLL_DP_CTL);
  133. pll_hfsm = dp_ctl & MXC_PLL_DP_CTL_HFSM;
  134. dbl = dp_ctl & MXC_PLL_DP_CTL_DPDCK0_2_EN;
  135. if (pll_hfsm == 0) {
  136. dp_op = __raw_readl(pllbase + MXC_PLL_DP_OP);
  137. dp_mfd = __raw_readl(pllbase + MXC_PLL_DP_MFD);
  138. dp_mfn = __raw_readl(pllbase + MXC_PLL_DP_MFN);
  139. } else {
  140. dp_op = __raw_readl(pllbase + MXC_PLL_DP_HFS_OP);
  141. dp_mfd = __raw_readl(pllbase + MXC_PLL_DP_HFS_MFD);
  142. dp_mfn = __raw_readl(pllbase + MXC_PLL_DP_HFS_MFN);
  143. }
  144. pdf = dp_op & MXC_PLL_DP_OP_PDF_MASK;
  145. mfi = (dp_op & MXC_PLL_DP_OP_MFI_MASK) >> MXC_PLL_DP_OP_MFI_OFFSET;
  146. mfi = (mfi <= 5) ? 5 : mfi;
  147. mfd = dp_mfd & MXC_PLL_DP_MFD_MASK;
  148. mfn = mfn_abs = dp_mfn & MXC_PLL_DP_MFN_MASK;
  149. /* Sign extend to 32-bits */
  150. if (mfn >= 0x04000000) {
  151. mfn |= 0xFC000000;
  152. mfn_abs = -mfn;
  153. }
  154. ref_clk = 2 * parent_rate;
  155. if (dbl != 0)
  156. ref_clk *= 2;
  157. ref_clk /= (pdf + 1);
  158. temp = (u64) ref_clk * mfn_abs;
  159. do_div(temp, mfd + 1);
  160. if (mfn < 0)
  161. temp = -temp;
  162. temp = (ref_clk * mfi) + temp;
  163. return temp;
  164. }
  165. static int _clk_pll_set_rate(struct clk *clk, unsigned long rate)
  166. {
  167. u32 reg;
  168. void __iomem *pllbase;
  169. long mfi, pdf, mfn, mfd = 999999;
  170. s64 temp64;
  171. unsigned long quad_parent_rate;
  172. unsigned long pll_hfsm, dp_ctl;
  173. unsigned long parent_rate;
  174. parent_rate = clk_get_rate(clk->parent);
  175. pllbase = _get_pll_base(clk);
  176. quad_parent_rate = 4 * parent_rate;
  177. pdf = mfi = -1;
  178. while (++pdf < 16 && mfi < 5)
  179. mfi = rate * (pdf+1) / quad_parent_rate;
  180. if (mfi > 15)
  181. return -EINVAL;
  182. pdf--;
  183. temp64 = rate * (pdf+1) - quad_parent_rate * mfi;
  184. do_div(temp64, quad_parent_rate/1000000);
  185. mfn = (long)temp64;
  186. dp_ctl = __raw_readl(pllbase + MXC_PLL_DP_CTL);
  187. /* use dpdck0_2 */
  188. __raw_writel(dp_ctl | 0x1000L, pllbase + MXC_PLL_DP_CTL);
  189. pll_hfsm = dp_ctl & MXC_PLL_DP_CTL_HFSM;
  190. if (pll_hfsm == 0) {
  191. reg = mfi << 4 | pdf;
  192. __raw_writel(reg, pllbase + MXC_PLL_DP_OP);
  193. __raw_writel(mfd, pllbase + MXC_PLL_DP_MFD);
  194. __raw_writel(mfn, pllbase + MXC_PLL_DP_MFN);
  195. } else {
  196. reg = mfi << 4 | pdf;
  197. __raw_writel(reg, pllbase + MXC_PLL_DP_HFS_OP);
  198. __raw_writel(mfd, pllbase + MXC_PLL_DP_HFS_MFD);
  199. __raw_writel(mfn, pllbase + MXC_PLL_DP_HFS_MFN);
  200. }
  201. return 0;
  202. }
  203. static int _clk_pll_enable(struct clk *clk)
  204. {
  205. u32 reg;
  206. void __iomem *pllbase;
  207. int i = 0;
  208. pllbase = _get_pll_base(clk);
  209. reg = __raw_readl(pllbase + MXC_PLL_DP_CTL) | MXC_PLL_DP_CTL_UPEN;
  210. __raw_writel(reg, pllbase + MXC_PLL_DP_CTL);
  211. /* Wait for lock */
  212. do {
  213. reg = __raw_readl(pllbase + MXC_PLL_DP_CTL);
  214. if (reg & MXC_PLL_DP_CTL_LRF)
  215. break;
  216. udelay(1);
  217. } while (++i < MAX_DPLL_WAIT_TRIES);
  218. if (i == MAX_DPLL_WAIT_TRIES) {
  219. pr_err("MX5: pll locking failed\n");
  220. return -EINVAL;
  221. }
  222. return 0;
  223. }
  224. static void _clk_pll_disable(struct clk *clk)
  225. {
  226. u32 reg;
  227. void __iomem *pllbase;
  228. pllbase = _get_pll_base(clk);
  229. reg = __raw_readl(pllbase + MXC_PLL_DP_CTL) & ~MXC_PLL_DP_CTL_UPEN;
  230. __raw_writel(reg, pllbase + MXC_PLL_DP_CTL);
  231. }
  232. static int _clk_pll1_sw_set_parent(struct clk *clk, struct clk *parent)
  233. {
  234. u32 reg, step;
  235. reg = __raw_readl(MXC_CCM_CCSR);
  236. /* When switching from pll_main_clk to a bypass clock, first select a
  237. * multiplexed clock in 'step_sel', then shift the glitchless mux
  238. * 'pll1_sw_clk_sel'.
  239. *
  240. * When switching back, do it in reverse order
  241. */
  242. if (parent == &pll1_main_clk) {
  243. /* Switch to pll1_main_clk */
  244. reg &= ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL;
  245. __raw_writel(reg, MXC_CCM_CCSR);
  246. /* step_clk mux switched to lp_apm, to save power. */
  247. reg = __raw_readl(MXC_CCM_CCSR);
  248. reg &= ~MXC_CCM_CCSR_STEP_SEL_MASK;
  249. reg |= (MXC_CCM_CCSR_STEP_SEL_LP_APM <<
  250. MXC_CCM_CCSR_STEP_SEL_OFFSET);
  251. } else {
  252. if (parent == &lp_apm_clk) {
  253. step = MXC_CCM_CCSR_STEP_SEL_LP_APM;
  254. } else if (parent == &pll2_sw_clk) {
  255. step = MXC_CCM_CCSR_STEP_SEL_PLL2_DIVIDED;
  256. } else if (parent == &pll3_sw_clk) {
  257. step = MXC_CCM_CCSR_STEP_SEL_PLL3_DIVIDED;
  258. } else
  259. return -EINVAL;
  260. reg &= ~MXC_CCM_CCSR_STEP_SEL_MASK;
  261. reg |= (step << MXC_CCM_CCSR_STEP_SEL_OFFSET);
  262. __raw_writel(reg, MXC_CCM_CCSR);
  263. /* Switch to step_clk */
  264. reg = __raw_readl(MXC_CCM_CCSR);
  265. reg |= MXC_CCM_CCSR_PLL1_SW_CLK_SEL;
  266. }
  267. __raw_writel(reg, MXC_CCM_CCSR);
  268. return 0;
  269. }
  270. static unsigned long clk_pll1_sw_get_rate(struct clk *clk)
  271. {
  272. u32 reg, div;
  273. unsigned long parent_rate;
  274. parent_rate = clk_get_rate(clk->parent);
  275. reg = __raw_readl(MXC_CCM_CCSR);
  276. if (clk->parent == &pll2_sw_clk) {
  277. div = ((reg & MXC_CCM_CCSR_PLL2_PODF_MASK) >>
  278. MXC_CCM_CCSR_PLL2_PODF_OFFSET) + 1;
  279. } else if (clk->parent == &pll3_sw_clk) {
  280. div = ((reg & MXC_CCM_CCSR_PLL3_PODF_MASK) >>
  281. MXC_CCM_CCSR_PLL3_PODF_OFFSET) + 1;
  282. } else
  283. div = 1;
  284. return parent_rate / div;
  285. }
  286. static int _clk_pll2_sw_set_parent(struct clk *clk, struct clk *parent)
  287. {
  288. u32 reg;
  289. reg = __raw_readl(MXC_CCM_CCSR);
  290. if (parent == &pll2_sw_clk)
  291. reg &= ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL;
  292. else
  293. reg |= MXC_CCM_CCSR_PLL2_SW_CLK_SEL;
  294. __raw_writel(reg, MXC_CCM_CCSR);
  295. return 0;
  296. }
  297. static int _clk_lp_apm_set_parent(struct clk *clk, struct clk *parent)
  298. {
  299. u32 reg;
  300. if (parent == &osc_clk)
  301. reg = __raw_readl(MXC_CCM_CCSR) & ~MXC_CCM_CCSR_LP_APM_SEL;
  302. else
  303. return -EINVAL;
  304. __raw_writel(reg, MXC_CCM_CCSR);
  305. return 0;
  306. }
  307. static unsigned long clk_cpu_get_rate(struct clk *clk)
  308. {
  309. u32 cacrr, div;
  310. unsigned long parent_rate;
  311. parent_rate = clk_get_rate(clk->parent);
  312. cacrr = __raw_readl(MXC_CCM_CACRR);
  313. div = (cacrr & MXC_CCM_CACRR_ARM_PODF_MASK) + 1;
  314. return parent_rate / div;
  315. }
  316. static int clk_cpu_set_rate(struct clk *clk, unsigned long rate)
  317. {
  318. u32 reg, cpu_podf;
  319. unsigned long parent_rate;
  320. parent_rate = clk_get_rate(clk->parent);
  321. cpu_podf = parent_rate / rate - 1;
  322. /* use post divider to change freq */
  323. reg = __raw_readl(MXC_CCM_CACRR);
  324. reg &= ~MXC_CCM_CACRR_ARM_PODF_MASK;
  325. reg |= cpu_podf << MXC_CCM_CACRR_ARM_PODF_OFFSET;
  326. __raw_writel(reg, MXC_CCM_CACRR);
  327. return 0;
  328. }
  329. static int _clk_periph_apm_set_parent(struct clk *clk, struct clk *parent)
  330. {
  331. u32 reg, mux;
  332. int i = 0;
  333. mux = _get_mux(parent, &pll1_sw_clk, &pll3_sw_clk, &lp_apm_clk, NULL);
  334. reg = __raw_readl(MXC_CCM_CBCMR) & ~MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK;
  335. reg |= mux << MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET;
  336. __raw_writel(reg, MXC_CCM_CBCMR);
  337. /* Wait for lock */
  338. do {
  339. reg = __raw_readl(MXC_CCM_CDHIPR);
  340. if (!(reg & MXC_CCM_CDHIPR_PERIPH_CLK_SEL_BUSY))
  341. break;
  342. udelay(1);
  343. } while (++i < MAX_DPLL_WAIT_TRIES);
  344. if (i == MAX_DPLL_WAIT_TRIES) {
  345. pr_err("MX5: Set parent for periph_apm clock failed\n");
  346. return -EINVAL;
  347. }
  348. return 0;
  349. }
  350. static int _clk_main_bus_set_parent(struct clk *clk, struct clk *parent)
  351. {
  352. u32 reg;
  353. reg = __raw_readl(MXC_CCM_CBCDR);
  354. if (parent == &pll2_sw_clk)
  355. reg &= ~MXC_CCM_CBCDR_PERIPH_CLK_SEL;
  356. else if (parent == &periph_apm_clk)
  357. reg |= MXC_CCM_CBCDR_PERIPH_CLK_SEL;
  358. else
  359. return -EINVAL;
  360. __raw_writel(reg, MXC_CCM_CBCDR);
  361. return 0;
  362. }
  363. static struct clk main_bus_clk = {
  364. .parent = &pll2_sw_clk,
  365. .set_parent = _clk_main_bus_set_parent,
  366. };
  367. static unsigned long clk_ahb_get_rate(struct clk *clk)
  368. {
  369. u32 reg, div;
  370. unsigned long parent_rate;
  371. parent_rate = clk_get_rate(clk->parent);
  372. reg = __raw_readl(MXC_CCM_CBCDR);
  373. div = ((reg & MXC_CCM_CBCDR_AHB_PODF_MASK) >>
  374. MXC_CCM_CBCDR_AHB_PODF_OFFSET) + 1;
  375. return parent_rate / div;
  376. }
  377. static int _clk_ahb_set_rate(struct clk *clk, unsigned long rate)
  378. {
  379. u32 reg, div;
  380. unsigned long parent_rate;
  381. int i = 0;
  382. parent_rate = clk_get_rate(clk->parent);
  383. div = parent_rate / rate;
  384. if (div > 8 || div < 1 || ((parent_rate / div) != rate))
  385. return -EINVAL;
  386. reg = __raw_readl(MXC_CCM_CBCDR);
  387. reg &= ~MXC_CCM_CBCDR_AHB_PODF_MASK;
  388. reg |= (div - 1) << MXC_CCM_CBCDR_AHB_PODF_OFFSET;
  389. __raw_writel(reg, MXC_CCM_CBCDR);
  390. /* Wait for lock */
  391. do {
  392. reg = __raw_readl(MXC_CCM_CDHIPR);
  393. if (!(reg & MXC_CCM_CDHIPR_AHB_PODF_BUSY))
  394. break;
  395. udelay(1);
  396. } while (++i < MAX_DPLL_WAIT_TRIES);
  397. if (i == MAX_DPLL_WAIT_TRIES) {
  398. pr_err("MX5: clk_ahb_set_rate failed\n");
  399. return -EINVAL;
  400. }
  401. return 0;
  402. }
  403. static unsigned long _clk_ahb_round_rate(struct clk *clk,
  404. unsigned long rate)
  405. {
  406. u32 div;
  407. unsigned long parent_rate;
  408. parent_rate = clk_get_rate(clk->parent);
  409. div = parent_rate / rate;
  410. if (div > 8)
  411. div = 8;
  412. else if (div == 0)
  413. div++;
  414. return parent_rate / div;
  415. }
  416. static int _clk_max_enable(struct clk *clk)
  417. {
  418. u32 reg;
  419. _clk_ccgr_enable(clk);
  420. /* Handshake with MAX when LPM is entered. */
  421. reg = __raw_readl(MXC_CCM_CLPCR);
  422. if (cpu_is_mx51())
  423. reg &= ~MX51_CCM_CLPCR_BYPASS_MAX_LPM_HS;
  424. else if (cpu_is_mx53())
  425. reg &= ~MX53_CCM_CLPCR_BYPASS_MAX_LPM_HS;
  426. __raw_writel(reg, MXC_CCM_CLPCR);
  427. return 0;
  428. }
  429. static void _clk_max_disable(struct clk *clk)
  430. {
  431. u32 reg;
  432. _clk_ccgr_disable_inwait(clk);
  433. /* No Handshake with MAX when LPM is entered as its disabled. */
  434. reg = __raw_readl(MXC_CCM_CLPCR);
  435. if (cpu_is_mx51())
  436. reg |= MX51_CCM_CLPCR_BYPASS_MAX_LPM_HS;
  437. else if (cpu_is_mx53())
  438. reg &= ~MX53_CCM_CLPCR_BYPASS_MAX_LPM_HS;
  439. __raw_writel(reg, MXC_CCM_CLPCR);
  440. }
  441. static unsigned long clk_ipg_get_rate(struct clk *clk)
  442. {
  443. u32 reg, div;
  444. unsigned long parent_rate;
  445. parent_rate = clk_get_rate(clk->parent);
  446. reg = __raw_readl(MXC_CCM_CBCDR);
  447. div = ((reg & MXC_CCM_CBCDR_IPG_PODF_MASK) >>
  448. MXC_CCM_CBCDR_IPG_PODF_OFFSET) + 1;
  449. return parent_rate / div;
  450. }
  451. static unsigned long clk_ipg_per_get_rate(struct clk *clk)
  452. {
  453. u32 reg, prediv1, prediv2, podf;
  454. unsigned long parent_rate;
  455. parent_rate = clk_get_rate(clk->parent);
  456. if (clk->parent == &main_bus_clk || clk->parent == &lp_apm_clk) {
  457. /* the main_bus_clk is the one before the DVFS engine */
  458. reg = __raw_readl(MXC_CCM_CBCDR);
  459. prediv1 = ((reg & MXC_CCM_CBCDR_PERCLK_PRED1_MASK) >>
  460. MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET) + 1;
  461. prediv2 = ((reg & MXC_CCM_CBCDR_PERCLK_PRED2_MASK) >>
  462. MXC_CCM_CBCDR_PERCLK_PRED2_OFFSET) + 1;
  463. podf = ((reg & MXC_CCM_CBCDR_PERCLK_PODF_MASK) >>
  464. MXC_CCM_CBCDR_PERCLK_PODF_OFFSET) + 1;
  465. return parent_rate / (prediv1 * prediv2 * podf);
  466. } else if (clk->parent == &ipg_clk)
  467. return parent_rate;
  468. else
  469. BUG();
  470. }
  471. static int _clk_ipg_per_set_parent(struct clk *clk, struct clk *parent)
  472. {
  473. u32 reg;
  474. reg = __raw_readl(MXC_CCM_CBCMR);
  475. reg &= ~MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL;
  476. reg &= ~MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL;
  477. if (parent == &ipg_clk)
  478. reg |= MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL;
  479. else if (parent == &lp_apm_clk)
  480. reg |= MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL;
  481. else if (parent != &main_bus_clk)
  482. return -EINVAL;
  483. __raw_writel(reg, MXC_CCM_CBCMR);
  484. return 0;
  485. }
  486. #define clk_nfc_set_parent NULL
  487. static unsigned long clk_nfc_get_rate(struct clk *clk)
  488. {
  489. unsigned long rate;
  490. u32 reg, div;
  491. reg = __raw_readl(MXC_CCM_CBCDR);
  492. div = ((reg & MXC_CCM_CBCDR_NFC_PODF_MASK) >>
  493. MXC_CCM_CBCDR_NFC_PODF_OFFSET) + 1;
  494. rate = clk_get_rate(clk->parent) / div;
  495. WARN_ON(rate == 0);
  496. return rate;
  497. }
  498. static unsigned long clk_nfc_round_rate(struct clk *clk,
  499. unsigned long rate)
  500. {
  501. u32 div;
  502. unsigned long parent_rate = clk_get_rate(clk->parent);
  503. if (!rate)
  504. return -EINVAL;
  505. div = parent_rate / rate;
  506. if (parent_rate % rate)
  507. div++;
  508. if (div > 8)
  509. return -EINVAL;
  510. return parent_rate / div;
  511. }
  512. static int clk_nfc_set_rate(struct clk *clk, unsigned long rate)
  513. {
  514. u32 reg, div;
  515. div = clk_get_rate(clk->parent) / rate;
  516. if (div == 0)
  517. div++;
  518. if (((clk_get_rate(clk->parent) / div) != rate) || (div > 8))
  519. return -EINVAL;
  520. reg = __raw_readl(MXC_CCM_CBCDR);
  521. reg &= ~MXC_CCM_CBCDR_NFC_PODF_MASK;
  522. reg |= (div - 1) << MXC_CCM_CBCDR_NFC_PODF_OFFSET;
  523. __raw_writel(reg, MXC_CCM_CBCDR);
  524. while (__raw_readl(MXC_CCM_CDHIPR) &
  525. MXC_CCM_CDHIPR_NFC_IPG_INT_MEM_PODF_BUSY){
  526. }
  527. return 0;
  528. }
  529. static unsigned long get_high_reference_clock_rate(struct clk *clk)
  530. {
  531. return external_high_reference;
  532. }
  533. static unsigned long get_low_reference_clock_rate(struct clk *clk)
  534. {
  535. return external_low_reference;
  536. }
  537. static unsigned long get_oscillator_reference_clock_rate(struct clk *clk)
  538. {
  539. return oscillator_reference;
  540. }
  541. static unsigned long get_ckih2_reference_clock_rate(struct clk *clk)
  542. {
  543. return ckih2_reference;
  544. }
  545. static unsigned long clk_emi_slow_get_rate(struct clk *clk)
  546. {
  547. u32 reg, div;
  548. reg = __raw_readl(MXC_CCM_CBCDR);
  549. div = ((reg & MXC_CCM_CBCDR_EMI_PODF_MASK) >>
  550. MXC_CCM_CBCDR_EMI_PODF_OFFSET) + 1;
  551. return clk_get_rate(clk->parent) / div;
  552. }
  553. /* External high frequency clock */
  554. static struct clk ckih_clk = {
  555. .get_rate = get_high_reference_clock_rate,
  556. };
  557. static struct clk ckih2_clk = {
  558. .get_rate = get_ckih2_reference_clock_rate,
  559. };
  560. static struct clk osc_clk = {
  561. .get_rate = get_oscillator_reference_clock_rate,
  562. };
  563. /* External low frequency (32kHz) clock */
  564. static struct clk ckil_clk = {
  565. .get_rate = get_low_reference_clock_rate,
  566. };
  567. static struct clk pll1_main_clk = {
  568. .parent = &osc_clk,
  569. .get_rate = clk_pll_get_rate,
  570. .enable = _clk_pll_enable,
  571. .disable = _clk_pll_disable,
  572. };
  573. /* Clock tree block diagram (WIP):
  574. * CCM: Clock Controller Module
  575. *
  576. * PLL output -> |
  577. * | CCM Switcher -> CCM_CLK_ROOT_GEN ->
  578. * PLL bypass -> |
  579. *
  580. */
  581. /* PLL1 SW supplies to ARM core */
  582. static struct clk pll1_sw_clk = {
  583. .parent = &pll1_main_clk,
  584. .set_parent = _clk_pll1_sw_set_parent,
  585. .get_rate = clk_pll1_sw_get_rate,
  586. };
  587. /* PLL2 SW supplies to AXI/AHB/IP buses */
  588. static struct clk pll2_sw_clk = {
  589. .parent = &osc_clk,
  590. .get_rate = clk_pll_get_rate,
  591. .set_rate = _clk_pll_set_rate,
  592. .set_parent = _clk_pll2_sw_set_parent,
  593. .enable = _clk_pll_enable,
  594. .disable = _clk_pll_disable,
  595. };
  596. /* PLL3 SW supplies to serial clocks like USB, SSI, etc. */
  597. static struct clk pll3_sw_clk = {
  598. .parent = &osc_clk,
  599. .set_rate = _clk_pll_set_rate,
  600. .get_rate = clk_pll_get_rate,
  601. .enable = _clk_pll_enable,
  602. .disable = _clk_pll_disable,
  603. };
  604. /* PLL4 SW supplies to LVDS Display Bridge(LDB) */
  605. static struct clk mx53_pll4_sw_clk = {
  606. .parent = &osc_clk,
  607. .set_rate = _clk_pll_set_rate,
  608. .enable = _clk_pll_enable,
  609. .disable = _clk_pll_disable,
  610. };
  611. /* Low-power Audio Playback Mode clock */
  612. static struct clk lp_apm_clk = {
  613. .parent = &osc_clk,
  614. .set_parent = _clk_lp_apm_set_parent,
  615. };
  616. static struct clk periph_apm_clk = {
  617. .parent = &pll1_sw_clk,
  618. .set_parent = _clk_periph_apm_set_parent,
  619. };
  620. static struct clk cpu_clk = {
  621. .parent = &pll1_sw_clk,
  622. .get_rate = clk_cpu_get_rate,
  623. .set_rate = clk_cpu_set_rate,
  624. };
  625. static struct clk ahb_clk = {
  626. .parent = &main_bus_clk,
  627. .get_rate = clk_ahb_get_rate,
  628. .set_rate = _clk_ahb_set_rate,
  629. .round_rate = _clk_ahb_round_rate,
  630. };
  631. /* Main IP interface clock for access to registers */
  632. static struct clk ipg_clk = {
  633. .parent = &ahb_clk,
  634. .get_rate = clk_ipg_get_rate,
  635. };
  636. static struct clk ipg_perclk = {
  637. .parent = &lp_apm_clk,
  638. .get_rate = clk_ipg_per_get_rate,
  639. .set_parent = _clk_ipg_per_set_parent,
  640. };
  641. static struct clk ahb_max_clk = {
  642. .parent = &ahb_clk,
  643. .enable_reg = MXC_CCM_CCGR0,
  644. .enable_shift = MXC_CCM_CCGRx_CG14_OFFSET,
  645. .enable = _clk_max_enable,
  646. .disable = _clk_max_disable,
  647. };
  648. static struct clk aips_tz1_clk = {
  649. .parent = &ahb_clk,
  650. .secondary = &ahb_max_clk,
  651. .enable_reg = MXC_CCM_CCGR0,
  652. .enable_shift = MXC_CCM_CCGRx_CG12_OFFSET,
  653. .enable = _clk_ccgr_enable,
  654. .disable = _clk_ccgr_disable_inwait,
  655. };
  656. static struct clk aips_tz2_clk = {
  657. .parent = &ahb_clk,
  658. .secondary = &ahb_max_clk,
  659. .enable_reg = MXC_CCM_CCGR0,
  660. .enable_shift = MXC_CCM_CCGRx_CG13_OFFSET,
  661. .enable = _clk_ccgr_enable,
  662. .disable = _clk_ccgr_disable_inwait,
  663. };
  664. static struct clk gpt_32k_clk = {
  665. .id = 0,
  666. .parent = &ckil_clk,
  667. };
  668. static struct clk kpp_clk = {
  669. .id = 0,
  670. };
  671. static struct clk emi_slow_clk = {
  672. .parent = &pll2_sw_clk,
  673. .enable_reg = MXC_CCM_CCGR5,
  674. .enable_shift = MXC_CCM_CCGRx_CG8_OFFSET,
  675. .enable = _clk_ccgr_enable,
  676. .disable = _clk_ccgr_disable_inwait,
  677. .get_rate = clk_emi_slow_get_rate,
  678. };
  679. #define DEFINE_CLOCK_CCGR(name, i, er, es, pfx, p, s) \
  680. static struct clk name = { \
  681. .id = i, \
  682. .enable_reg = er, \
  683. .enable_shift = es, \
  684. .get_rate = pfx##_get_rate, \
  685. .set_rate = pfx##_set_rate, \
  686. .round_rate = pfx##_round_rate, \
  687. .set_parent = pfx##_set_parent, \
  688. .enable = _clk_ccgr_enable, \
  689. .disable = _clk_ccgr_disable, \
  690. .parent = p, \
  691. .secondary = s, \
  692. }
  693. #define DEFINE_CLOCK_MAX(name, i, er, es, pfx, p, s) \
  694. static struct clk name = { \
  695. .id = i, \
  696. .enable_reg = er, \
  697. .enable_shift = es, \
  698. .get_rate = pfx##_get_rate, \
  699. .set_rate = pfx##_set_rate, \
  700. .set_parent = pfx##_set_parent, \
  701. .enable = _clk_max_enable, \
  702. .disable = _clk_max_disable, \
  703. .parent = p, \
  704. .secondary = s, \
  705. }
  706. #define CLK_GET_RATE(name, nr, bitsname) \
  707. static unsigned long clk_##name##_get_rate(struct clk *clk) \
  708. { \
  709. u32 reg, pred, podf; \
  710. \
  711. reg = __raw_readl(MXC_CCM_CSCDR##nr); \
  712. pred = (reg & MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_MASK) \
  713. >> MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_OFFSET; \
  714. podf = (reg & MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_MASK) \
  715. >> MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_OFFSET; \
  716. \
  717. return DIV_ROUND_CLOSEST(clk_get_rate(clk->parent), \
  718. (pred + 1) * (podf + 1)); \
  719. }
  720. #define CLK_SET_PARENT(name, nr, bitsname) \
  721. static int clk_##name##_set_parent(struct clk *clk, struct clk *parent) \
  722. { \
  723. u32 reg, mux; \
  724. \
  725. mux = _get_mux(parent, &pll1_sw_clk, &pll2_sw_clk, \
  726. &pll3_sw_clk, &lp_apm_clk); \
  727. reg = __raw_readl(MXC_CCM_CSCMR##nr) & \
  728. ~MXC_CCM_CSCMR##nr##_##bitsname##_CLK_SEL_MASK; \
  729. reg |= mux << MXC_CCM_CSCMR##nr##_##bitsname##_CLK_SEL_OFFSET; \
  730. __raw_writel(reg, MXC_CCM_CSCMR##nr); \
  731. \
  732. return 0; \
  733. }
  734. #define CLK_SET_RATE(name, nr, bitsname) \
  735. static int clk_##name##_set_rate(struct clk *clk, unsigned long rate) \
  736. { \
  737. u32 reg, div, parent_rate; \
  738. u32 pre = 0, post = 0; \
  739. \
  740. parent_rate = clk_get_rate(clk->parent); \
  741. div = parent_rate / rate; \
  742. \
  743. if ((parent_rate / div) != rate) \
  744. return -EINVAL; \
  745. \
  746. __calc_pre_post_dividers(div, &pre, &post, \
  747. (MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_MASK >> \
  748. MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_OFFSET) + 1, \
  749. (MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_MASK >> \
  750. MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_OFFSET) + 1);\
  751. \
  752. /* Set sdhc1 clock divider */ \
  753. reg = __raw_readl(MXC_CCM_CSCDR##nr) & \
  754. ~(MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_MASK \
  755. | MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_MASK); \
  756. reg |= (post - 1) << \
  757. MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_OFFSET; \
  758. reg |= (pre - 1) << \
  759. MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_OFFSET; \
  760. __raw_writel(reg, MXC_CCM_CSCDR##nr); \
  761. \
  762. return 0; \
  763. }
  764. /* UART */
  765. CLK_GET_RATE(uart, 1, UART)
  766. CLK_SET_PARENT(uart, 1, UART)
  767. static struct clk uart_root_clk = {
  768. .parent = &pll2_sw_clk,
  769. .get_rate = clk_uart_get_rate,
  770. .set_parent = clk_uart_set_parent,
  771. };
  772. /* USBOH3 */
  773. CLK_GET_RATE(usboh3, 1, USBOH3)
  774. CLK_SET_PARENT(usboh3, 1, USBOH3)
  775. static struct clk usboh3_clk = {
  776. .parent = &pll2_sw_clk,
  777. .get_rate = clk_usboh3_get_rate,
  778. .set_parent = clk_usboh3_set_parent,
  779. };
  780. /* eCSPI */
  781. CLK_GET_RATE(ecspi, 2, CSPI)
  782. CLK_SET_PARENT(ecspi, 1, CSPI)
  783. static struct clk ecspi_main_clk = {
  784. .parent = &pll3_sw_clk,
  785. .get_rate = clk_ecspi_get_rate,
  786. .set_parent = clk_ecspi_set_parent,
  787. };
  788. /* eSDHC */
  789. CLK_GET_RATE(esdhc1, 1, ESDHC1_MSHC1)
  790. CLK_SET_PARENT(esdhc1, 1, ESDHC1_MSHC1)
  791. CLK_SET_RATE(esdhc1, 1, ESDHC1_MSHC1)
  792. CLK_GET_RATE(esdhc2, 1, ESDHC2_MSHC2)
  793. CLK_SET_PARENT(esdhc2, 1, ESDHC2_MSHC2)
  794. CLK_SET_RATE(esdhc2, 1, ESDHC2_MSHC2)
  795. #define DEFINE_CLOCK_FULL(name, i, er, es, gr, sr, e, d, p, s) \
  796. static struct clk name = { \
  797. .id = i, \
  798. .enable_reg = er, \
  799. .enable_shift = es, \
  800. .get_rate = gr, \
  801. .set_rate = sr, \
  802. .enable = e, \
  803. .disable = d, \
  804. .parent = p, \
  805. .secondary = s, \
  806. }
  807. #define DEFINE_CLOCK(name, i, er, es, gr, sr, p, s) \
  808. DEFINE_CLOCK_FULL(name, i, er, es, gr, sr, _clk_ccgr_enable, _clk_ccgr_disable, p, s)
  809. /* Shared peripheral bus arbiter */
  810. DEFINE_CLOCK(spba_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG0_OFFSET,
  811. NULL, NULL, &ipg_clk, NULL);
  812. /* UART */
  813. DEFINE_CLOCK(uart1_ipg_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG3_OFFSET,
  814. NULL, NULL, &ipg_clk, &aips_tz1_clk);
  815. DEFINE_CLOCK(uart2_ipg_clk, 1, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG5_OFFSET,
  816. NULL, NULL, &ipg_clk, &aips_tz1_clk);
  817. DEFINE_CLOCK(uart3_ipg_clk, 2, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG7_OFFSET,
  818. NULL, NULL, &ipg_clk, &spba_clk);
  819. DEFINE_CLOCK(uart1_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG4_OFFSET,
  820. NULL, NULL, &uart_root_clk, &uart1_ipg_clk);
  821. DEFINE_CLOCK(uart2_clk, 1, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG6_OFFSET,
  822. NULL, NULL, &uart_root_clk, &uart2_ipg_clk);
  823. DEFINE_CLOCK(uart3_clk, 2, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG8_OFFSET,
  824. NULL, NULL, &uart_root_clk, &uart3_ipg_clk);
  825. /* GPT */
  826. DEFINE_CLOCK(gpt_ipg_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG10_OFFSET,
  827. NULL, NULL, &ipg_clk, NULL);
  828. DEFINE_CLOCK(gpt_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG9_OFFSET,
  829. NULL, NULL, &ipg_clk, &gpt_ipg_clk);
  830. /* I2C */
  831. DEFINE_CLOCK(i2c1_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG9_OFFSET,
  832. NULL, NULL, &ipg_clk, NULL);
  833. DEFINE_CLOCK(i2c2_clk, 1, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG10_OFFSET,
  834. NULL, NULL, &ipg_clk, NULL);
  835. DEFINE_CLOCK(hsi2c_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG11_OFFSET,
  836. NULL, NULL, &ipg_clk, NULL);
  837. /* FEC */
  838. DEFINE_CLOCK(fec_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG12_OFFSET,
  839. NULL, NULL, &ipg_clk, NULL);
  840. /* NFC */
  841. DEFINE_CLOCK_CCGR(nfc_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG10_OFFSET,
  842. clk_nfc, &emi_slow_clk, NULL);
  843. /* SSI */
  844. DEFINE_CLOCK(ssi1_ipg_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG8_OFFSET,
  845. NULL, NULL, &ipg_clk, NULL);
  846. DEFINE_CLOCK(ssi1_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG9_OFFSET,
  847. NULL, NULL, &pll3_sw_clk, &ssi1_ipg_clk);
  848. DEFINE_CLOCK(ssi2_ipg_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG10_OFFSET,
  849. NULL, NULL, &ipg_clk, NULL);
  850. DEFINE_CLOCK(ssi2_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG11_OFFSET,
  851. NULL, NULL, &pll3_sw_clk, &ssi2_ipg_clk);
  852. /* eCSPI */
  853. DEFINE_CLOCK_FULL(ecspi1_ipg_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG9_OFFSET,
  854. NULL, NULL, _clk_ccgr_enable_inrun, _clk_ccgr_disable,
  855. &ipg_clk, &spba_clk);
  856. DEFINE_CLOCK(ecspi1_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG10_OFFSET,
  857. NULL, NULL, &ecspi_main_clk, &ecspi1_ipg_clk);
  858. DEFINE_CLOCK_FULL(ecspi2_ipg_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG11_OFFSET,
  859. NULL, NULL, _clk_ccgr_enable_inrun, _clk_ccgr_disable,
  860. &ipg_clk, &aips_tz2_clk);
  861. DEFINE_CLOCK(ecspi2_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG12_OFFSET,
  862. NULL, NULL, &ecspi_main_clk, &ecspi2_ipg_clk);
  863. /* CSPI */
  864. DEFINE_CLOCK(cspi_ipg_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG9_OFFSET,
  865. NULL, NULL, &ipg_clk, &aips_tz2_clk);
  866. DEFINE_CLOCK(cspi_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG13_OFFSET,
  867. NULL, NULL, &ipg_clk, &cspi_ipg_clk);
  868. /* SDMA */
  869. DEFINE_CLOCK(sdma_clk, 1, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG15_OFFSET,
  870. NULL, NULL, &ahb_clk, NULL);
  871. /* eSDHC */
  872. DEFINE_CLOCK_FULL(esdhc1_ipg_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG0_OFFSET,
  873. NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL);
  874. DEFINE_CLOCK_MAX(esdhc1_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG1_OFFSET,
  875. clk_esdhc1, &pll2_sw_clk, &esdhc1_ipg_clk);
  876. DEFINE_CLOCK_FULL(esdhc2_ipg_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG2_OFFSET,
  877. NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL);
  878. DEFINE_CLOCK_MAX(esdhc2_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG3_OFFSET,
  879. clk_esdhc2, &pll2_sw_clk, &esdhc2_ipg_clk);
  880. #define _REGISTER_CLOCK(d, n, c) \
  881. { \
  882. .dev_id = d, \
  883. .con_id = n, \
  884. .clk = &c, \
  885. },
  886. static struct clk_lookup mx51_lookups[] = {
  887. _REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk)
  888. _REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk)
  889. _REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk)
  890. _REGISTER_CLOCK(NULL, "gpt", gpt_clk)
  891. _REGISTER_CLOCK("fec.0", NULL, fec_clk)
  892. _REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk)
  893. _REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk)
  894. _REGISTER_CLOCK("imx-i2c.2", NULL, hsi2c_clk)
  895. _REGISTER_CLOCK("mxc-ehci.0", "usb", usboh3_clk)
  896. _REGISTER_CLOCK("mxc-ehci.0", "usb_ahb", ahb_clk)
  897. _REGISTER_CLOCK("mxc-ehci.1", "usb", usboh3_clk)
  898. _REGISTER_CLOCK("mxc-ehci.1", "usb_ahb", ahb_clk)
  899. _REGISTER_CLOCK("fsl-usb2-udc", "usb", usboh3_clk)
  900. _REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", ahb_clk)
  901. _REGISTER_CLOCK("imx-keypad.0", NULL, kpp_clk)
  902. _REGISTER_CLOCK("mxc_nand", NULL, nfc_clk)
  903. _REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk)
  904. _REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk)
  905. _REGISTER_CLOCK("imx-sdma", NULL, sdma_clk)
  906. _REGISTER_CLOCK(NULL, "ckih", ckih_clk)
  907. _REGISTER_CLOCK(NULL, "ckih2", ckih2_clk)
  908. _REGISTER_CLOCK(NULL, "gpt_32k", gpt_32k_clk)
  909. _REGISTER_CLOCK("imx51-ecspi.0", NULL, ecspi1_clk)
  910. _REGISTER_CLOCK("imx51-ecspi.1", NULL, ecspi2_clk)
  911. _REGISTER_CLOCK("imx51-cspi.0", NULL, cspi_clk)
  912. _REGISTER_CLOCK("sdhci-esdhc-imx.0", NULL, esdhc1_clk)
  913. _REGISTER_CLOCK("sdhci-esdhc-imx.1", NULL, esdhc2_clk)
  914. _REGISTER_CLOCK(NULL, "cpu_clk", cpu_clk)
  915. };
  916. static struct clk_lookup mx53_lookups[] = {
  917. _REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk)
  918. _REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk)
  919. _REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk)
  920. _REGISTER_CLOCK(NULL, "gpt", gpt_clk)
  921. _REGISTER_CLOCK("fec.0", NULL, fec_clk)
  922. };
  923. static void clk_tree_init(void)
  924. {
  925. u32 reg;
  926. ipg_perclk.set_parent(&ipg_perclk, &lp_apm_clk);
  927. /*
  928. * Initialise the IPG PER CLK dividers to 3. IPG_PER_CLK should be at
  929. * 8MHz, its derived from lp_apm.
  930. *
  931. * FIXME: Verify if true for all boards
  932. */
  933. reg = __raw_readl(MXC_CCM_CBCDR);
  934. reg &= ~MXC_CCM_CBCDR_PERCLK_PRED1_MASK;
  935. reg &= ~MXC_CCM_CBCDR_PERCLK_PRED2_MASK;
  936. reg &= ~MXC_CCM_CBCDR_PERCLK_PODF_MASK;
  937. reg |= (2 << MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET);
  938. __raw_writel(reg, MXC_CCM_CBCDR);
  939. }
  940. int __init mx51_clocks_init(unsigned long ckil, unsigned long osc,
  941. unsigned long ckih1, unsigned long ckih2)
  942. {
  943. int i;
  944. external_low_reference = ckil;
  945. external_high_reference = ckih1;
  946. ckih2_reference = ckih2;
  947. oscillator_reference = osc;
  948. for (i = 0; i < ARRAY_SIZE(mx51_lookups); i++)
  949. clkdev_add(&mx51_lookups[i]);
  950. clk_tree_init();
  951. clk_enable(&cpu_clk);
  952. clk_enable(&main_bus_clk);
  953. /* set the usboh3_clk parent to pll2_sw_clk */
  954. clk_set_parent(&usboh3_clk, &pll2_sw_clk);
  955. /* Set SDHC parents to be PLL2 */
  956. clk_set_parent(&esdhc1_clk, &pll2_sw_clk);
  957. clk_set_parent(&esdhc2_clk, &pll2_sw_clk);
  958. /* set SDHC root clock as 166.25MHZ*/
  959. clk_set_rate(&esdhc1_clk, 166250000);
  960. clk_set_rate(&esdhc2_clk, 166250000);
  961. /* System timer */
  962. mxc_timer_init(&gpt_clk, MX51_IO_ADDRESS(MX51_GPT1_BASE_ADDR),
  963. MX51_MXC_INT_GPT);
  964. return 0;
  965. }
  966. int __init mx53_clocks_init(unsigned long ckil, unsigned long osc,
  967. unsigned long ckih1, unsigned long ckih2)
  968. {
  969. int i;
  970. external_low_reference = ckil;
  971. external_high_reference = ckih1;
  972. ckih2_reference = ckih2;
  973. oscillator_reference = osc;
  974. for (i = 0; i < ARRAY_SIZE(mx53_lookups); i++)
  975. clkdev_add(&mx53_lookups[i]);
  976. clk_tree_init();
  977. clk_enable(&cpu_clk);
  978. clk_enable(&main_bus_clk);
  979. /* System timer */
  980. mxc_timer_init(&gpt_clk, MX53_IO_ADDRESS(MX53_GPT1_BASE_ADDR),
  981. MX53_INT_GPT);
  982. return 0;
  983. }