amd_iommu.c 95 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/pci-ats.h>
  22. #include <linux/bitmap.h>
  23. #include <linux/slab.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/iommu.h>
  29. #include <linux/delay.h>
  30. #include <linux/amd-iommu.h>
  31. #include <linux/notifier.h>
  32. #include <linux/export.h>
  33. #include <linux/irq.h>
  34. #include <linux/msi.h>
  35. #include <asm/irq_remapping.h>
  36. #include <asm/io_apic.h>
  37. #include <asm/apic.h>
  38. #include <asm/hw_irq.h>
  39. #include <asm/msidef.h>
  40. #include <asm/proto.h>
  41. #include <asm/iommu.h>
  42. #include <asm/gart.h>
  43. #include <asm/dma.h>
  44. #include "amd_iommu_proto.h"
  45. #include "amd_iommu_types.h"
  46. #include "irq_remapping.h"
  47. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  48. #define LOOP_TIMEOUT 100000
  49. /*
  50. * This bitmap is used to advertise the page sizes our hardware support
  51. * to the IOMMU core, which will then use this information to split
  52. * physically contiguous memory regions it is mapping into page sizes
  53. * that we support.
  54. *
  55. * Traditionally the IOMMU core just handed us the mappings directly,
  56. * after making sure the size is an order of a 4KiB page and that the
  57. * mapping has natural alignment.
  58. *
  59. * To retain this behavior, we currently advertise that we support
  60. * all page sizes that are an order of 4KiB.
  61. *
  62. * If at some point we'd like to utilize the IOMMU core's new behavior,
  63. * we could change this to advertise the real page sizes we support.
  64. */
  65. #define AMD_IOMMU_PGSIZES (~0xFFFUL)
  66. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  67. /* A list of preallocated protection domains */
  68. static LIST_HEAD(iommu_pd_list);
  69. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  70. /* List of all available dev_data structures */
  71. static LIST_HEAD(dev_data_list);
  72. static DEFINE_SPINLOCK(dev_data_list_lock);
  73. LIST_HEAD(ioapic_map);
  74. LIST_HEAD(hpet_map);
  75. /*
  76. * Domain for untranslated devices - only allocated
  77. * if iommu=pt passed on kernel cmd line.
  78. */
  79. static struct protection_domain *pt_domain;
  80. static struct iommu_ops amd_iommu_ops;
  81. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  82. int amd_iommu_max_glx_val = -1;
  83. static struct dma_map_ops amd_iommu_dma_ops;
  84. /*
  85. * general struct to manage commands send to an IOMMU
  86. */
  87. struct iommu_cmd {
  88. u32 data[4];
  89. };
  90. struct kmem_cache *amd_iommu_irq_cache;
  91. static void update_domain(struct protection_domain *domain);
  92. static int __init alloc_passthrough_domain(void);
  93. /****************************************************************************
  94. *
  95. * Helper functions
  96. *
  97. ****************************************************************************/
  98. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  99. {
  100. struct iommu_dev_data *dev_data;
  101. unsigned long flags;
  102. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  103. if (!dev_data)
  104. return NULL;
  105. dev_data->devid = devid;
  106. atomic_set(&dev_data->bind, 0);
  107. spin_lock_irqsave(&dev_data_list_lock, flags);
  108. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  109. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  110. return dev_data;
  111. }
  112. static void free_dev_data(struct iommu_dev_data *dev_data)
  113. {
  114. unsigned long flags;
  115. spin_lock_irqsave(&dev_data_list_lock, flags);
  116. list_del(&dev_data->dev_data_list);
  117. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  118. kfree(dev_data);
  119. }
  120. static struct iommu_dev_data *search_dev_data(u16 devid)
  121. {
  122. struct iommu_dev_data *dev_data;
  123. unsigned long flags;
  124. spin_lock_irqsave(&dev_data_list_lock, flags);
  125. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  126. if (dev_data->devid == devid)
  127. goto out_unlock;
  128. }
  129. dev_data = NULL;
  130. out_unlock:
  131. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  132. return dev_data;
  133. }
  134. static struct iommu_dev_data *find_dev_data(u16 devid)
  135. {
  136. struct iommu_dev_data *dev_data;
  137. dev_data = search_dev_data(devid);
  138. if (dev_data == NULL)
  139. dev_data = alloc_dev_data(devid);
  140. return dev_data;
  141. }
  142. static inline u16 get_device_id(struct device *dev)
  143. {
  144. struct pci_dev *pdev = to_pci_dev(dev);
  145. return calc_devid(pdev->bus->number, pdev->devfn);
  146. }
  147. static struct iommu_dev_data *get_dev_data(struct device *dev)
  148. {
  149. return dev->archdata.iommu;
  150. }
  151. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  152. {
  153. static const int caps[] = {
  154. PCI_EXT_CAP_ID_ATS,
  155. PCI_EXT_CAP_ID_PRI,
  156. PCI_EXT_CAP_ID_PASID,
  157. };
  158. int i, pos;
  159. for (i = 0; i < 3; ++i) {
  160. pos = pci_find_ext_capability(pdev, caps[i]);
  161. if (pos == 0)
  162. return false;
  163. }
  164. return true;
  165. }
  166. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  167. {
  168. struct iommu_dev_data *dev_data;
  169. dev_data = get_dev_data(&pdev->dev);
  170. return dev_data->errata & (1 << erratum) ? true : false;
  171. }
  172. /*
  173. * In this function the list of preallocated protection domains is traversed to
  174. * find the domain for a specific device
  175. */
  176. static struct dma_ops_domain *find_protection_domain(u16 devid)
  177. {
  178. struct dma_ops_domain *entry, *ret = NULL;
  179. unsigned long flags;
  180. u16 alias = amd_iommu_alias_table[devid];
  181. if (list_empty(&iommu_pd_list))
  182. return NULL;
  183. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  184. list_for_each_entry(entry, &iommu_pd_list, list) {
  185. if (entry->target_dev == devid ||
  186. entry->target_dev == alias) {
  187. ret = entry;
  188. break;
  189. }
  190. }
  191. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  192. return ret;
  193. }
  194. /*
  195. * This function checks if the driver got a valid device from the caller to
  196. * avoid dereferencing invalid pointers.
  197. */
  198. static bool check_device(struct device *dev)
  199. {
  200. u16 devid;
  201. if (!dev || !dev->dma_mask)
  202. return false;
  203. /* No device or no PCI device */
  204. if (dev->bus != &pci_bus_type)
  205. return false;
  206. devid = get_device_id(dev);
  207. /* Out of our scope? */
  208. if (devid > amd_iommu_last_bdf)
  209. return false;
  210. if (amd_iommu_rlookup_table[devid] == NULL)
  211. return false;
  212. return true;
  213. }
  214. static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
  215. {
  216. pci_dev_put(*from);
  217. *from = to;
  218. }
  219. #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
  220. static int iommu_init_device(struct device *dev)
  221. {
  222. struct pci_dev *dma_pdev = NULL, *pdev = to_pci_dev(dev);
  223. struct iommu_dev_data *dev_data;
  224. struct iommu_group *group;
  225. u16 alias;
  226. int ret;
  227. if (dev->archdata.iommu)
  228. return 0;
  229. dev_data = find_dev_data(get_device_id(dev));
  230. if (!dev_data)
  231. return -ENOMEM;
  232. alias = amd_iommu_alias_table[dev_data->devid];
  233. if (alias != dev_data->devid) {
  234. struct iommu_dev_data *alias_data;
  235. alias_data = find_dev_data(alias);
  236. if (alias_data == NULL) {
  237. pr_err("AMD-Vi: Warning: Unhandled device %s\n",
  238. dev_name(dev));
  239. free_dev_data(dev_data);
  240. return -ENOTSUPP;
  241. }
  242. dev_data->alias_data = alias_data;
  243. dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
  244. }
  245. if (dma_pdev == NULL)
  246. dma_pdev = pci_dev_get(pdev);
  247. /* Account for quirked devices */
  248. swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
  249. /*
  250. * If it's a multifunction device that does not support our
  251. * required ACS flags, add to the same group as function 0.
  252. */
  253. if (dma_pdev->multifunction &&
  254. !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
  255. swap_pci_ref(&dma_pdev,
  256. pci_get_slot(dma_pdev->bus,
  257. PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
  258. 0)));
  259. /*
  260. * Devices on the root bus go through the iommu. If that's not us,
  261. * find the next upstream device and test ACS up to the root bus.
  262. * Finding the next device may require skipping virtual buses.
  263. */
  264. while (!pci_is_root_bus(dma_pdev->bus)) {
  265. struct pci_bus *bus = dma_pdev->bus;
  266. while (!bus->self) {
  267. if (!pci_is_root_bus(bus))
  268. bus = bus->parent;
  269. else
  270. goto root_bus;
  271. }
  272. if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
  273. break;
  274. swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
  275. }
  276. root_bus:
  277. group = iommu_group_get(&dma_pdev->dev);
  278. pci_dev_put(dma_pdev);
  279. if (!group) {
  280. group = iommu_group_alloc();
  281. if (IS_ERR(group))
  282. return PTR_ERR(group);
  283. }
  284. ret = iommu_group_add_device(group, dev);
  285. iommu_group_put(group);
  286. if (ret)
  287. return ret;
  288. if (pci_iommuv2_capable(pdev)) {
  289. struct amd_iommu *iommu;
  290. iommu = amd_iommu_rlookup_table[dev_data->devid];
  291. dev_data->iommu_v2 = iommu->is_iommu_v2;
  292. }
  293. dev->archdata.iommu = dev_data;
  294. return 0;
  295. }
  296. static void iommu_ignore_device(struct device *dev)
  297. {
  298. u16 devid, alias;
  299. devid = get_device_id(dev);
  300. alias = amd_iommu_alias_table[devid];
  301. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  302. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  303. amd_iommu_rlookup_table[devid] = NULL;
  304. amd_iommu_rlookup_table[alias] = NULL;
  305. }
  306. static void iommu_uninit_device(struct device *dev)
  307. {
  308. iommu_group_remove_device(dev);
  309. /*
  310. * Nothing to do here - we keep dev_data around for unplugged devices
  311. * and reuse it when the device is re-plugged - not doing so would
  312. * introduce a ton of races.
  313. */
  314. }
  315. void __init amd_iommu_uninit_devices(void)
  316. {
  317. struct iommu_dev_data *dev_data, *n;
  318. struct pci_dev *pdev = NULL;
  319. for_each_pci_dev(pdev) {
  320. if (!check_device(&pdev->dev))
  321. continue;
  322. iommu_uninit_device(&pdev->dev);
  323. }
  324. /* Free all of our dev_data structures */
  325. list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
  326. free_dev_data(dev_data);
  327. }
  328. int __init amd_iommu_init_devices(void)
  329. {
  330. struct pci_dev *pdev = NULL;
  331. int ret = 0;
  332. for_each_pci_dev(pdev) {
  333. if (!check_device(&pdev->dev))
  334. continue;
  335. ret = iommu_init_device(&pdev->dev);
  336. if (ret == -ENOTSUPP)
  337. iommu_ignore_device(&pdev->dev);
  338. else if (ret)
  339. goto out_free;
  340. }
  341. return 0;
  342. out_free:
  343. amd_iommu_uninit_devices();
  344. return ret;
  345. }
  346. #ifdef CONFIG_AMD_IOMMU_STATS
  347. /*
  348. * Initialization code for statistics collection
  349. */
  350. DECLARE_STATS_COUNTER(compl_wait);
  351. DECLARE_STATS_COUNTER(cnt_map_single);
  352. DECLARE_STATS_COUNTER(cnt_unmap_single);
  353. DECLARE_STATS_COUNTER(cnt_map_sg);
  354. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  355. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  356. DECLARE_STATS_COUNTER(cnt_free_coherent);
  357. DECLARE_STATS_COUNTER(cross_page);
  358. DECLARE_STATS_COUNTER(domain_flush_single);
  359. DECLARE_STATS_COUNTER(domain_flush_all);
  360. DECLARE_STATS_COUNTER(alloced_io_mem);
  361. DECLARE_STATS_COUNTER(total_map_requests);
  362. DECLARE_STATS_COUNTER(complete_ppr);
  363. DECLARE_STATS_COUNTER(invalidate_iotlb);
  364. DECLARE_STATS_COUNTER(invalidate_iotlb_all);
  365. DECLARE_STATS_COUNTER(pri_requests);
  366. static struct dentry *stats_dir;
  367. static struct dentry *de_fflush;
  368. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  369. {
  370. if (stats_dir == NULL)
  371. return;
  372. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  373. &cnt->value);
  374. }
  375. static void amd_iommu_stats_init(void)
  376. {
  377. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  378. if (stats_dir == NULL)
  379. return;
  380. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  381. &amd_iommu_unmap_flush);
  382. amd_iommu_stats_add(&compl_wait);
  383. amd_iommu_stats_add(&cnt_map_single);
  384. amd_iommu_stats_add(&cnt_unmap_single);
  385. amd_iommu_stats_add(&cnt_map_sg);
  386. amd_iommu_stats_add(&cnt_unmap_sg);
  387. amd_iommu_stats_add(&cnt_alloc_coherent);
  388. amd_iommu_stats_add(&cnt_free_coherent);
  389. amd_iommu_stats_add(&cross_page);
  390. amd_iommu_stats_add(&domain_flush_single);
  391. amd_iommu_stats_add(&domain_flush_all);
  392. amd_iommu_stats_add(&alloced_io_mem);
  393. amd_iommu_stats_add(&total_map_requests);
  394. amd_iommu_stats_add(&complete_ppr);
  395. amd_iommu_stats_add(&invalidate_iotlb);
  396. amd_iommu_stats_add(&invalidate_iotlb_all);
  397. amd_iommu_stats_add(&pri_requests);
  398. }
  399. #endif
  400. /****************************************************************************
  401. *
  402. * Interrupt handling functions
  403. *
  404. ****************************************************************************/
  405. static void dump_dte_entry(u16 devid)
  406. {
  407. int i;
  408. for (i = 0; i < 4; ++i)
  409. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  410. amd_iommu_dev_table[devid].data[i]);
  411. }
  412. static void dump_command(unsigned long phys_addr)
  413. {
  414. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  415. int i;
  416. for (i = 0; i < 4; ++i)
  417. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  418. }
  419. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  420. {
  421. int type, devid, domid, flags;
  422. volatile u32 *event = __evt;
  423. int count = 0;
  424. u64 address;
  425. retry:
  426. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  427. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  428. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  429. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  430. address = (u64)(((u64)event[3]) << 32) | event[2];
  431. if (type == 0) {
  432. /* Did we hit the erratum? */
  433. if (++count == LOOP_TIMEOUT) {
  434. pr_err("AMD-Vi: No event written to event log\n");
  435. return;
  436. }
  437. udelay(1);
  438. goto retry;
  439. }
  440. printk(KERN_ERR "AMD-Vi: Event logged [");
  441. switch (type) {
  442. case EVENT_TYPE_ILL_DEV:
  443. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  444. "address=0x%016llx flags=0x%04x]\n",
  445. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  446. address, flags);
  447. dump_dte_entry(devid);
  448. break;
  449. case EVENT_TYPE_IO_FAULT:
  450. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  451. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  452. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  453. domid, address, flags);
  454. break;
  455. case EVENT_TYPE_DEV_TAB_ERR:
  456. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  457. "address=0x%016llx flags=0x%04x]\n",
  458. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  459. address, flags);
  460. break;
  461. case EVENT_TYPE_PAGE_TAB_ERR:
  462. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  463. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  464. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  465. domid, address, flags);
  466. break;
  467. case EVENT_TYPE_ILL_CMD:
  468. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  469. dump_command(address);
  470. break;
  471. case EVENT_TYPE_CMD_HARD_ERR:
  472. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  473. "flags=0x%04x]\n", address, flags);
  474. break;
  475. case EVENT_TYPE_IOTLB_INV_TO:
  476. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  477. "address=0x%016llx]\n",
  478. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  479. address);
  480. break;
  481. case EVENT_TYPE_INV_DEV_REQ:
  482. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  483. "address=0x%016llx flags=0x%04x]\n",
  484. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  485. address, flags);
  486. break;
  487. default:
  488. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  489. }
  490. memset(__evt, 0, 4 * sizeof(u32));
  491. }
  492. static void iommu_poll_events(struct amd_iommu *iommu)
  493. {
  494. u32 head, tail;
  495. unsigned long flags;
  496. spin_lock_irqsave(&iommu->lock, flags);
  497. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  498. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  499. while (head != tail) {
  500. iommu_print_event(iommu, iommu->evt_buf + head);
  501. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  502. }
  503. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  504. spin_unlock_irqrestore(&iommu->lock, flags);
  505. }
  506. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  507. {
  508. struct amd_iommu_fault fault;
  509. INC_STATS_COUNTER(pri_requests);
  510. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  511. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  512. return;
  513. }
  514. fault.address = raw[1];
  515. fault.pasid = PPR_PASID(raw[0]);
  516. fault.device_id = PPR_DEVID(raw[0]);
  517. fault.tag = PPR_TAG(raw[0]);
  518. fault.flags = PPR_FLAGS(raw[0]);
  519. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  520. }
  521. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  522. {
  523. unsigned long flags;
  524. u32 head, tail;
  525. if (iommu->ppr_log == NULL)
  526. return;
  527. /* enable ppr interrupts again */
  528. writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
  529. spin_lock_irqsave(&iommu->lock, flags);
  530. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  531. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  532. while (head != tail) {
  533. volatile u64 *raw;
  534. u64 entry[2];
  535. int i;
  536. raw = (u64 *)(iommu->ppr_log + head);
  537. /*
  538. * Hardware bug: Interrupt may arrive before the entry is
  539. * written to memory. If this happens we need to wait for the
  540. * entry to arrive.
  541. */
  542. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  543. if (PPR_REQ_TYPE(raw[0]) != 0)
  544. break;
  545. udelay(1);
  546. }
  547. /* Avoid memcpy function-call overhead */
  548. entry[0] = raw[0];
  549. entry[1] = raw[1];
  550. /*
  551. * To detect the hardware bug we need to clear the entry
  552. * back to zero.
  553. */
  554. raw[0] = raw[1] = 0UL;
  555. /* Update head pointer of hardware ring-buffer */
  556. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  557. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  558. /*
  559. * Release iommu->lock because ppr-handling might need to
  560. * re-acquire it
  561. */
  562. spin_unlock_irqrestore(&iommu->lock, flags);
  563. /* Handle PPR entry */
  564. iommu_handle_ppr_entry(iommu, entry);
  565. spin_lock_irqsave(&iommu->lock, flags);
  566. /* Refresh ring-buffer information */
  567. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  568. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  569. }
  570. spin_unlock_irqrestore(&iommu->lock, flags);
  571. }
  572. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  573. {
  574. struct amd_iommu *iommu;
  575. for_each_iommu(iommu) {
  576. iommu_poll_events(iommu);
  577. iommu_poll_ppr_log(iommu);
  578. }
  579. return IRQ_HANDLED;
  580. }
  581. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  582. {
  583. return IRQ_WAKE_THREAD;
  584. }
  585. /****************************************************************************
  586. *
  587. * IOMMU command queuing functions
  588. *
  589. ****************************************************************************/
  590. static int wait_on_sem(volatile u64 *sem)
  591. {
  592. int i = 0;
  593. while (*sem == 0 && i < LOOP_TIMEOUT) {
  594. udelay(1);
  595. i += 1;
  596. }
  597. if (i == LOOP_TIMEOUT) {
  598. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  599. return -EIO;
  600. }
  601. return 0;
  602. }
  603. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  604. struct iommu_cmd *cmd,
  605. u32 tail)
  606. {
  607. u8 *target;
  608. target = iommu->cmd_buf + tail;
  609. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  610. /* Copy command to buffer */
  611. memcpy(target, cmd, sizeof(*cmd));
  612. /* Tell the IOMMU about it */
  613. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  614. }
  615. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  616. {
  617. WARN_ON(address & 0x7ULL);
  618. memset(cmd, 0, sizeof(*cmd));
  619. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  620. cmd->data[1] = upper_32_bits(__pa(address));
  621. cmd->data[2] = 1;
  622. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  623. }
  624. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  625. {
  626. memset(cmd, 0, sizeof(*cmd));
  627. cmd->data[0] = devid;
  628. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  629. }
  630. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  631. size_t size, u16 domid, int pde)
  632. {
  633. u64 pages;
  634. int s;
  635. pages = iommu_num_pages(address, size, PAGE_SIZE);
  636. s = 0;
  637. if (pages > 1) {
  638. /*
  639. * If we have to flush more than one page, flush all
  640. * TLB entries for this domain
  641. */
  642. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  643. s = 1;
  644. }
  645. address &= PAGE_MASK;
  646. memset(cmd, 0, sizeof(*cmd));
  647. cmd->data[1] |= domid;
  648. cmd->data[2] = lower_32_bits(address);
  649. cmd->data[3] = upper_32_bits(address);
  650. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  651. if (s) /* size bit - we flush more than one 4kb page */
  652. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  653. if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
  654. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  655. }
  656. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  657. u64 address, size_t size)
  658. {
  659. u64 pages;
  660. int s;
  661. pages = iommu_num_pages(address, size, PAGE_SIZE);
  662. s = 0;
  663. if (pages > 1) {
  664. /*
  665. * If we have to flush more than one page, flush all
  666. * TLB entries for this domain
  667. */
  668. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  669. s = 1;
  670. }
  671. address &= PAGE_MASK;
  672. memset(cmd, 0, sizeof(*cmd));
  673. cmd->data[0] = devid;
  674. cmd->data[0] |= (qdep & 0xff) << 24;
  675. cmd->data[1] = devid;
  676. cmd->data[2] = lower_32_bits(address);
  677. cmd->data[3] = upper_32_bits(address);
  678. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  679. if (s)
  680. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  681. }
  682. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  683. u64 address, bool size)
  684. {
  685. memset(cmd, 0, sizeof(*cmd));
  686. address &= ~(0xfffULL);
  687. cmd->data[0] = pasid & PASID_MASK;
  688. cmd->data[1] = domid;
  689. cmd->data[2] = lower_32_bits(address);
  690. cmd->data[3] = upper_32_bits(address);
  691. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  692. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  693. if (size)
  694. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  695. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  696. }
  697. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  698. int qdep, u64 address, bool size)
  699. {
  700. memset(cmd, 0, sizeof(*cmd));
  701. address &= ~(0xfffULL);
  702. cmd->data[0] = devid;
  703. cmd->data[0] |= (pasid & 0xff) << 16;
  704. cmd->data[0] |= (qdep & 0xff) << 24;
  705. cmd->data[1] = devid;
  706. cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
  707. cmd->data[2] = lower_32_bits(address);
  708. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  709. cmd->data[3] = upper_32_bits(address);
  710. if (size)
  711. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  712. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  713. }
  714. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  715. int status, int tag, bool gn)
  716. {
  717. memset(cmd, 0, sizeof(*cmd));
  718. cmd->data[0] = devid;
  719. if (gn) {
  720. cmd->data[1] = pasid & PASID_MASK;
  721. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  722. }
  723. cmd->data[3] = tag & 0x1ff;
  724. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  725. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  726. }
  727. static void build_inv_all(struct iommu_cmd *cmd)
  728. {
  729. memset(cmd, 0, sizeof(*cmd));
  730. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  731. }
  732. static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
  733. {
  734. memset(cmd, 0, sizeof(*cmd));
  735. cmd->data[0] = devid;
  736. CMD_SET_TYPE(cmd, CMD_INV_IRT);
  737. }
  738. /*
  739. * Writes the command to the IOMMUs command buffer and informs the
  740. * hardware about the new command.
  741. */
  742. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  743. struct iommu_cmd *cmd,
  744. bool sync)
  745. {
  746. u32 left, tail, head, next_tail;
  747. unsigned long flags;
  748. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  749. again:
  750. spin_lock_irqsave(&iommu->lock, flags);
  751. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  752. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  753. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  754. left = (head - next_tail) % iommu->cmd_buf_size;
  755. if (left <= 2) {
  756. struct iommu_cmd sync_cmd;
  757. volatile u64 sem = 0;
  758. int ret;
  759. build_completion_wait(&sync_cmd, (u64)&sem);
  760. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  761. spin_unlock_irqrestore(&iommu->lock, flags);
  762. if ((ret = wait_on_sem(&sem)) != 0)
  763. return ret;
  764. goto again;
  765. }
  766. copy_cmd_to_buffer(iommu, cmd, tail);
  767. /* We need to sync now to make sure all commands are processed */
  768. iommu->need_sync = sync;
  769. spin_unlock_irqrestore(&iommu->lock, flags);
  770. return 0;
  771. }
  772. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  773. {
  774. return iommu_queue_command_sync(iommu, cmd, true);
  775. }
  776. /*
  777. * This function queues a completion wait command into the command
  778. * buffer of an IOMMU
  779. */
  780. static int iommu_completion_wait(struct amd_iommu *iommu)
  781. {
  782. struct iommu_cmd cmd;
  783. volatile u64 sem = 0;
  784. int ret;
  785. if (!iommu->need_sync)
  786. return 0;
  787. build_completion_wait(&cmd, (u64)&sem);
  788. ret = iommu_queue_command_sync(iommu, &cmd, false);
  789. if (ret)
  790. return ret;
  791. return wait_on_sem(&sem);
  792. }
  793. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  794. {
  795. struct iommu_cmd cmd;
  796. build_inv_dte(&cmd, devid);
  797. return iommu_queue_command(iommu, &cmd);
  798. }
  799. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  800. {
  801. u32 devid;
  802. for (devid = 0; devid <= 0xffff; ++devid)
  803. iommu_flush_dte(iommu, devid);
  804. iommu_completion_wait(iommu);
  805. }
  806. /*
  807. * This function uses heavy locking and may disable irqs for some time. But
  808. * this is no issue because it is only called during resume.
  809. */
  810. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  811. {
  812. u32 dom_id;
  813. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  814. struct iommu_cmd cmd;
  815. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  816. dom_id, 1);
  817. iommu_queue_command(iommu, &cmd);
  818. }
  819. iommu_completion_wait(iommu);
  820. }
  821. static void iommu_flush_all(struct amd_iommu *iommu)
  822. {
  823. struct iommu_cmd cmd;
  824. build_inv_all(&cmd);
  825. iommu_queue_command(iommu, &cmd);
  826. iommu_completion_wait(iommu);
  827. }
  828. static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
  829. {
  830. struct iommu_cmd cmd;
  831. build_inv_irt(&cmd, devid);
  832. iommu_queue_command(iommu, &cmd);
  833. }
  834. static void iommu_flush_irt_all(struct amd_iommu *iommu)
  835. {
  836. u32 devid;
  837. for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
  838. iommu_flush_irt(iommu, devid);
  839. iommu_completion_wait(iommu);
  840. }
  841. void iommu_flush_all_caches(struct amd_iommu *iommu)
  842. {
  843. if (iommu_feature(iommu, FEATURE_IA)) {
  844. iommu_flush_all(iommu);
  845. } else {
  846. iommu_flush_dte_all(iommu);
  847. iommu_flush_irt_all(iommu);
  848. iommu_flush_tlb_all(iommu);
  849. }
  850. }
  851. /*
  852. * Command send function for flushing on-device TLB
  853. */
  854. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  855. u64 address, size_t size)
  856. {
  857. struct amd_iommu *iommu;
  858. struct iommu_cmd cmd;
  859. int qdep;
  860. qdep = dev_data->ats.qdep;
  861. iommu = amd_iommu_rlookup_table[dev_data->devid];
  862. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  863. return iommu_queue_command(iommu, &cmd);
  864. }
  865. /*
  866. * Command send function for invalidating a device table entry
  867. */
  868. static int device_flush_dte(struct iommu_dev_data *dev_data)
  869. {
  870. struct amd_iommu *iommu;
  871. int ret;
  872. iommu = amd_iommu_rlookup_table[dev_data->devid];
  873. ret = iommu_flush_dte(iommu, dev_data->devid);
  874. if (ret)
  875. return ret;
  876. if (dev_data->ats.enabled)
  877. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  878. return ret;
  879. }
  880. /*
  881. * TLB invalidation function which is called from the mapping functions.
  882. * It invalidates a single PTE if the range to flush is within a single
  883. * page. Otherwise it flushes the whole TLB of the IOMMU.
  884. */
  885. static void __domain_flush_pages(struct protection_domain *domain,
  886. u64 address, size_t size, int pde)
  887. {
  888. struct iommu_dev_data *dev_data;
  889. struct iommu_cmd cmd;
  890. int ret = 0, i;
  891. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  892. for (i = 0; i < amd_iommus_present; ++i) {
  893. if (!domain->dev_iommu[i])
  894. continue;
  895. /*
  896. * Devices of this domain are behind this IOMMU
  897. * We need a TLB flush
  898. */
  899. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  900. }
  901. list_for_each_entry(dev_data, &domain->dev_list, list) {
  902. if (!dev_data->ats.enabled)
  903. continue;
  904. ret |= device_flush_iotlb(dev_data, address, size);
  905. }
  906. WARN_ON(ret);
  907. }
  908. static void domain_flush_pages(struct protection_domain *domain,
  909. u64 address, size_t size)
  910. {
  911. __domain_flush_pages(domain, address, size, 0);
  912. }
  913. /* Flush the whole IO/TLB for a given protection domain */
  914. static void domain_flush_tlb(struct protection_domain *domain)
  915. {
  916. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  917. }
  918. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  919. static void domain_flush_tlb_pde(struct protection_domain *domain)
  920. {
  921. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  922. }
  923. static void domain_flush_complete(struct protection_domain *domain)
  924. {
  925. int i;
  926. for (i = 0; i < amd_iommus_present; ++i) {
  927. if (!domain->dev_iommu[i])
  928. continue;
  929. /*
  930. * Devices of this domain are behind this IOMMU
  931. * We need to wait for completion of all commands.
  932. */
  933. iommu_completion_wait(amd_iommus[i]);
  934. }
  935. }
  936. /*
  937. * This function flushes the DTEs for all devices in domain
  938. */
  939. static void domain_flush_devices(struct protection_domain *domain)
  940. {
  941. struct iommu_dev_data *dev_data;
  942. list_for_each_entry(dev_data, &domain->dev_list, list)
  943. device_flush_dte(dev_data);
  944. }
  945. /****************************************************************************
  946. *
  947. * The functions below are used the create the page table mappings for
  948. * unity mapped regions.
  949. *
  950. ****************************************************************************/
  951. /*
  952. * This function is used to add another level to an IO page table. Adding
  953. * another level increases the size of the address space by 9 bits to a size up
  954. * to 64 bits.
  955. */
  956. static bool increase_address_space(struct protection_domain *domain,
  957. gfp_t gfp)
  958. {
  959. u64 *pte;
  960. if (domain->mode == PAGE_MODE_6_LEVEL)
  961. /* address space already 64 bit large */
  962. return false;
  963. pte = (void *)get_zeroed_page(gfp);
  964. if (!pte)
  965. return false;
  966. *pte = PM_LEVEL_PDE(domain->mode,
  967. virt_to_phys(domain->pt_root));
  968. domain->pt_root = pte;
  969. domain->mode += 1;
  970. domain->updated = true;
  971. return true;
  972. }
  973. static u64 *alloc_pte(struct protection_domain *domain,
  974. unsigned long address,
  975. unsigned long page_size,
  976. u64 **pte_page,
  977. gfp_t gfp)
  978. {
  979. int level, end_lvl;
  980. u64 *pte, *page;
  981. BUG_ON(!is_power_of_2(page_size));
  982. while (address > PM_LEVEL_SIZE(domain->mode))
  983. increase_address_space(domain, gfp);
  984. level = domain->mode - 1;
  985. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  986. address = PAGE_SIZE_ALIGN(address, page_size);
  987. end_lvl = PAGE_SIZE_LEVEL(page_size);
  988. while (level > end_lvl) {
  989. if (!IOMMU_PTE_PRESENT(*pte)) {
  990. page = (u64 *)get_zeroed_page(gfp);
  991. if (!page)
  992. return NULL;
  993. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  994. }
  995. /* No level skipping support yet */
  996. if (PM_PTE_LEVEL(*pte) != level)
  997. return NULL;
  998. level -= 1;
  999. pte = IOMMU_PTE_PAGE(*pte);
  1000. if (pte_page && level == end_lvl)
  1001. *pte_page = pte;
  1002. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1003. }
  1004. return pte;
  1005. }
  1006. /*
  1007. * This function checks if there is a PTE for a given dma address. If
  1008. * there is one, it returns the pointer to it.
  1009. */
  1010. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  1011. {
  1012. int level;
  1013. u64 *pte;
  1014. if (address > PM_LEVEL_SIZE(domain->mode))
  1015. return NULL;
  1016. level = domain->mode - 1;
  1017. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1018. while (level > 0) {
  1019. /* Not Present */
  1020. if (!IOMMU_PTE_PRESENT(*pte))
  1021. return NULL;
  1022. /* Large PTE */
  1023. if (PM_PTE_LEVEL(*pte) == 0x07) {
  1024. unsigned long pte_mask, __pte;
  1025. /*
  1026. * If we have a series of large PTEs, make
  1027. * sure to return a pointer to the first one.
  1028. */
  1029. pte_mask = PTE_PAGE_SIZE(*pte);
  1030. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1031. __pte = ((unsigned long)pte) & pte_mask;
  1032. return (u64 *)__pte;
  1033. }
  1034. /* No level skipping support yet */
  1035. if (PM_PTE_LEVEL(*pte) != level)
  1036. return NULL;
  1037. level -= 1;
  1038. /* Walk to the next level */
  1039. pte = IOMMU_PTE_PAGE(*pte);
  1040. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1041. }
  1042. return pte;
  1043. }
  1044. /*
  1045. * Generic mapping functions. It maps a physical address into a DMA
  1046. * address space. It allocates the page table pages if necessary.
  1047. * In the future it can be extended to a generic mapping function
  1048. * supporting all features of AMD IOMMU page tables like level skipping
  1049. * and full 64 bit address spaces.
  1050. */
  1051. static int iommu_map_page(struct protection_domain *dom,
  1052. unsigned long bus_addr,
  1053. unsigned long phys_addr,
  1054. int prot,
  1055. unsigned long page_size)
  1056. {
  1057. u64 __pte, *pte;
  1058. int i, count;
  1059. if (!(prot & IOMMU_PROT_MASK))
  1060. return -EINVAL;
  1061. bus_addr = PAGE_ALIGN(bus_addr);
  1062. phys_addr = PAGE_ALIGN(phys_addr);
  1063. count = PAGE_SIZE_PTE_COUNT(page_size);
  1064. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  1065. for (i = 0; i < count; ++i)
  1066. if (IOMMU_PTE_PRESENT(pte[i]))
  1067. return -EBUSY;
  1068. if (page_size > PAGE_SIZE) {
  1069. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  1070. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  1071. } else
  1072. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1073. if (prot & IOMMU_PROT_IR)
  1074. __pte |= IOMMU_PTE_IR;
  1075. if (prot & IOMMU_PROT_IW)
  1076. __pte |= IOMMU_PTE_IW;
  1077. for (i = 0; i < count; ++i)
  1078. pte[i] = __pte;
  1079. update_domain(dom);
  1080. return 0;
  1081. }
  1082. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1083. unsigned long bus_addr,
  1084. unsigned long page_size)
  1085. {
  1086. unsigned long long unmap_size, unmapped;
  1087. u64 *pte;
  1088. BUG_ON(!is_power_of_2(page_size));
  1089. unmapped = 0;
  1090. while (unmapped < page_size) {
  1091. pte = fetch_pte(dom, bus_addr);
  1092. if (!pte) {
  1093. /*
  1094. * No PTE for this address
  1095. * move forward in 4kb steps
  1096. */
  1097. unmap_size = PAGE_SIZE;
  1098. } else if (PM_PTE_LEVEL(*pte) == 0) {
  1099. /* 4kb PTE found for this address */
  1100. unmap_size = PAGE_SIZE;
  1101. *pte = 0ULL;
  1102. } else {
  1103. int count, i;
  1104. /* Large PTE found which maps this address */
  1105. unmap_size = PTE_PAGE_SIZE(*pte);
  1106. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1107. for (i = 0; i < count; i++)
  1108. pte[i] = 0ULL;
  1109. }
  1110. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1111. unmapped += unmap_size;
  1112. }
  1113. BUG_ON(!is_power_of_2(unmapped));
  1114. return unmapped;
  1115. }
  1116. /*
  1117. * This function checks if a specific unity mapping entry is needed for
  1118. * this specific IOMMU.
  1119. */
  1120. static int iommu_for_unity_map(struct amd_iommu *iommu,
  1121. struct unity_map_entry *entry)
  1122. {
  1123. u16 bdf, i;
  1124. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  1125. bdf = amd_iommu_alias_table[i];
  1126. if (amd_iommu_rlookup_table[bdf] == iommu)
  1127. return 1;
  1128. }
  1129. return 0;
  1130. }
  1131. /*
  1132. * This function actually applies the mapping to the page table of the
  1133. * dma_ops domain.
  1134. */
  1135. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  1136. struct unity_map_entry *e)
  1137. {
  1138. u64 addr;
  1139. int ret;
  1140. for (addr = e->address_start; addr < e->address_end;
  1141. addr += PAGE_SIZE) {
  1142. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  1143. PAGE_SIZE);
  1144. if (ret)
  1145. return ret;
  1146. /*
  1147. * if unity mapping is in aperture range mark the page
  1148. * as allocated in the aperture
  1149. */
  1150. if (addr < dma_dom->aperture_size)
  1151. __set_bit(addr >> PAGE_SHIFT,
  1152. dma_dom->aperture[0]->bitmap);
  1153. }
  1154. return 0;
  1155. }
  1156. /*
  1157. * Init the unity mappings for a specific IOMMU in the system
  1158. *
  1159. * Basically iterates over all unity mapping entries and applies them to
  1160. * the default domain DMA of that IOMMU if necessary.
  1161. */
  1162. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  1163. {
  1164. struct unity_map_entry *entry;
  1165. int ret;
  1166. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  1167. if (!iommu_for_unity_map(iommu, entry))
  1168. continue;
  1169. ret = dma_ops_unity_map(iommu->default_dom, entry);
  1170. if (ret)
  1171. return ret;
  1172. }
  1173. return 0;
  1174. }
  1175. /*
  1176. * Inits the unity mappings required for a specific device
  1177. */
  1178. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  1179. u16 devid)
  1180. {
  1181. struct unity_map_entry *e;
  1182. int ret;
  1183. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  1184. if (!(devid >= e->devid_start && devid <= e->devid_end))
  1185. continue;
  1186. ret = dma_ops_unity_map(dma_dom, e);
  1187. if (ret)
  1188. return ret;
  1189. }
  1190. return 0;
  1191. }
  1192. /****************************************************************************
  1193. *
  1194. * The next functions belong to the address allocator for the dma_ops
  1195. * interface functions. They work like the allocators in the other IOMMU
  1196. * drivers. Its basically a bitmap which marks the allocated pages in
  1197. * the aperture. Maybe it could be enhanced in the future to a more
  1198. * efficient allocator.
  1199. *
  1200. ****************************************************************************/
  1201. /*
  1202. * The address allocator core functions.
  1203. *
  1204. * called with domain->lock held
  1205. */
  1206. /*
  1207. * Used to reserve address ranges in the aperture (e.g. for exclusion
  1208. * ranges.
  1209. */
  1210. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  1211. unsigned long start_page,
  1212. unsigned int pages)
  1213. {
  1214. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  1215. if (start_page + pages > last_page)
  1216. pages = last_page - start_page;
  1217. for (i = start_page; i < start_page + pages; ++i) {
  1218. int index = i / APERTURE_RANGE_PAGES;
  1219. int page = i % APERTURE_RANGE_PAGES;
  1220. __set_bit(page, dom->aperture[index]->bitmap);
  1221. }
  1222. }
  1223. /*
  1224. * This function is used to add a new aperture range to an existing
  1225. * aperture in case of dma_ops domain allocation or address allocation
  1226. * failure.
  1227. */
  1228. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  1229. bool populate, gfp_t gfp)
  1230. {
  1231. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1232. struct amd_iommu *iommu;
  1233. unsigned long i, old_size;
  1234. #ifdef CONFIG_IOMMU_STRESS
  1235. populate = false;
  1236. #endif
  1237. if (index >= APERTURE_MAX_RANGES)
  1238. return -ENOMEM;
  1239. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  1240. if (!dma_dom->aperture[index])
  1241. return -ENOMEM;
  1242. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  1243. if (!dma_dom->aperture[index]->bitmap)
  1244. goto out_free;
  1245. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  1246. if (populate) {
  1247. unsigned long address = dma_dom->aperture_size;
  1248. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  1249. u64 *pte, *pte_page;
  1250. for (i = 0; i < num_ptes; ++i) {
  1251. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  1252. &pte_page, gfp);
  1253. if (!pte)
  1254. goto out_free;
  1255. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  1256. address += APERTURE_RANGE_SIZE / 64;
  1257. }
  1258. }
  1259. old_size = dma_dom->aperture_size;
  1260. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  1261. /* Reserve address range used for MSI messages */
  1262. if (old_size < MSI_ADDR_BASE_LO &&
  1263. dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
  1264. unsigned long spage;
  1265. int pages;
  1266. pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
  1267. spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
  1268. dma_ops_reserve_addresses(dma_dom, spage, pages);
  1269. }
  1270. /* Initialize the exclusion range if necessary */
  1271. for_each_iommu(iommu) {
  1272. if (iommu->exclusion_start &&
  1273. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  1274. && iommu->exclusion_start < dma_dom->aperture_size) {
  1275. unsigned long startpage;
  1276. int pages = iommu_num_pages(iommu->exclusion_start,
  1277. iommu->exclusion_length,
  1278. PAGE_SIZE);
  1279. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  1280. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  1281. }
  1282. }
  1283. /*
  1284. * Check for areas already mapped as present in the new aperture
  1285. * range and mark those pages as reserved in the allocator. Such
  1286. * mappings may already exist as a result of requested unity
  1287. * mappings for devices.
  1288. */
  1289. for (i = dma_dom->aperture[index]->offset;
  1290. i < dma_dom->aperture_size;
  1291. i += PAGE_SIZE) {
  1292. u64 *pte = fetch_pte(&dma_dom->domain, i);
  1293. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  1294. continue;
  1295. dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
  1296. }
  1297. update_domain(&dma_dom->domain);
  1298. return 0;
  1299. out_free:
  1300. update_domain(&dma_dom->domain);
  1301. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  1302. kfree(dma_dom->aperture[index]);
  1303. dma_dom->aperture[index] = NULL;
  1304. return -ENOMEM;
  1305. }
  1306. static unsigned long dma_ops_area_alloc(struct device *dev,
  1307. struct dma_ops_domain *dom,
  1308. unsigned int pages,
  1309. unsigned long align_mask,
  1310. u64 dma_mask,
  1311. unsigned long start)
  1312. {
  1313. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  1314. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1315. int i = start >> APERTURE_RANGE_SHIFT;
  1316. unsigned long boundary_size;
  1317. unsigned long address = -1;
  1318. unsigned long limit;
  1319. next_bit >>= PAGE_SHIFT;
  1320. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  1321. PAGE_SIZE) >> PAGE_SHIFT;
  1322. for (;i < max_index; ++i) {
  1323. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  1324. if (dom->aperture[i]->offset >= dma_mask)
  1325. break;
  1326. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  1327. dma_mask >> PAGE_SHIFT);
  1328. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  1329. limit, next_bit, pages, 0,
  1330. boundary_size, align_mask);
  1331. if (address != -1) {
  1332. address = dom->aperture[i]->offset +
  1333. (address << PAGE_SHIFT);
  1334. dom->next_address = address + (pages << PAGE_SHIFT);
  1335. break;
  1336. }
  1337. next_bit = 0;
  1338. }
  1339. return address;
  1340. }
  1341. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  1342. struct dma_ops_domain *dom,
  1343. unsigned int pages,
  1344. unsigned long align_mask,
  1345. u64 dma_mask)
  1346. {
  1347. unsigned long address;
  1348. #ifdef CONFIG_IOMMU_STRESS
  1349. dom->next_address = 0;
  1350. dom->need_flush = true;
  1351. #endif
  1352. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1353. dma_mask, dom->next_address);
  1354. if (address == -1) {
  1355. dom->next_address = 0;
  1356. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1357. dma_mask, 0);
  1358. dom->need_flush = true;
  1359. }
  1360. if (unlikely(address == -1))
  1361. address = DMA_ERROR_CODE;
  1362. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  1363. return address;
  1364. }
  1365. /*
  1366. * The address free function.
  1367. *
  1368. * called with domain->lock held
  1369. */
  1370. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  1371. unsigned long address,
  1372. unsigned int pages)
  1373. {
  1374. unsigned i = address >> APERTURE_RANGE_SHIFT;
  1375. struct aperture_range *range = dom->aperture[i];
  1376. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  1377. #ifdef CONFIG_IOMMU_STRESS
  1378. if (i < 4)
  1379. return;
  1380. #endif
  1381. if (address >= dom->next_address)
  1382. dom->need_flush = true;
  1383. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  1384. bitmap_clear(range->bitmap, address, pages);
  1385. }
  1386. /****************************************************************************
  1387. *
  1388. * The next functions belong to the domain allocation. A domain is
  1389. * allocated for every IOMMU as the default domain. If device isolation
  1390. * is enabled, every device get its own domain. The most important thing
  1391. * about domains is the page table mapping the DMA address space they
  1392. * contain.
  1393. *
  1394. ****************************************************************************/
  1395. /*
  1396. * This function adds a protection domain to the global protection domain list
  1397. */
  1398. static void add_domain_to_list(struct protection_domain *domain)
  1399. {
  1400. unsigned long flags;
  1401. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1402. list_add(&domain->list, &amd_iommu_pd_list);
  1403. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1404. }
  1405. /*
  1406. * This function removes a protection domain to the global
  1407. * protection domain list
  1408. */
  1409. static void del_domain_from_list(struct protection_domain *domain)
  1410. {
  1411. unsigned long flags;
  1412. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1413. list_del(&domain->list);
  1414. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1415. }
  1416. static u16 domain_id_alloc(void)
  1417. {
  1418. unsigned long flags;
  1419. int id;
  1420. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1421. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1422. BUG_ON(id == 0);
  1423. if (id > 0 && id < MAX_DOMAIN_ID)
  1424. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1425. else
  1426. id = 0;
  1427. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1428. return id;
  1429. }
  1430. static void domain_id_free(int id)
  1431. {
  1432. unsigned long flags;
  1433. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1434. if (id > 0 && id < MAX_DOMAIN_ID)
  1435. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1436. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1437. }
  1438. static void free_pagetable(struct protection_domain *domain)
  1439. {
  1440. int i, j;
  1441. u64 *p1, *p2, *p3;
  1442. p1 = domain->pt_root;
  1443. if (!p1)
  1444. return;
  1445. for (i = 0; i < 512; ++i) {
  1446. if (!IOMMU_PTE_PRESENT(p1[i]))
  1447. continue;
  1448. p2 = IOMMU_PTE_PAGE(p1[i]);
  1449. for (j = 0; j < 512; ++j) {
  1450. if (!IOMMU_PTE_PRESENT(p2[j]))
  1451. continue;
  1452. p3 = IOMMU_PTE_PAGE(p2[j]);
  1453. free_page((unsigned long)p3);
  1454. }
  1455. free_page((unsigned long)p2);
  1456. }
  1457. free_page((unsigned long)p1);
  1458. domain->pt_root = NULL;
  1459. }
  1460. static void free_gcr3_tbl_level1(u64 *tbl)
  1461. {
  1462. u64 *ptr;
  1463. int i;
  1464. for (i = 0; i < 512; ++i) {
  1465. if (!(tbl[i] & GCR3_VALID))
  1466. continue;
  1467. ptr = __va(tbl[i] & PAGE_MASK);
  1468. free_page((unsigned long)ptr);
  1469. }
  1470. }
  1471. static void free_gcr3_tbl_level2(u64 *tbl)
  1472. {
  1473. u64 *ptr;
  1474. int i;
  1475. for (i = 0; i < 512; ++i) {
  1476. if (!(tbl[i] & GCR3_VALID))
  1477. continue;
  1478. ptr = __va(tbl[i] & PAGE_MASK);
  1479. free_gcr3_tbl_level1(ptr);
  1480. }
  1481. }
  1482. static void free_gcr3_table(struct protection_domain *domain)
  1483. {
  1484. if (domain->glx == 2)
  1485. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1486. else if (domain->glx == 1)
  1487. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1488. else if (domain->glx != 0)
  1489. BUG();
  1490. free_page((unsigned long)domain->gcr3_tbl);
  1491. }
  1492. /*
  1493. * Free a domain, only used if something went wrong in the
  1494. * allocation path and we need to free an already allocated page table
  1495. */
  1496. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1497. {
  1498. int i;
  1499. if (!dom)
  1500. return;
  1501. del_domain_from_list(&dom->domain);
  1502. free_pagetable(&dom->domain);
  1503. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1504. if (!dom->aperture[i])
  1505. continue;
  1506. free_page((unsigned long)dom->aperture[i]->bitmap);
  1507. kfree(dom->aperture[i]);
  1508. }
  1509. kfree(dom);
  1510. }
  1511. /*
  1512. * Allocates a new protection domain usable for the dma_ops functions.
  1513. * It also initializes the page table and the address allocator data
  1514. * structures required for the dma_ops interface
  1515. */
  1516. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1517. {
  1518. struct dma_ops_domain *dma_dom;
  1519. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1520. if (!dma_dom)
  1521. return NULL;
  1522. spin_lock_init(&dma_dom->domain.lock);
  1523. dma_dom->domain.id = domain_id_alloc();
  1524. if (dma_dom->domain.id == 0)
  1525. goto free_dma_dom;
  1526. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1527. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1528. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1529. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1530. dma_dom->domain.priv = dma_dom;
  1531. if (!dma_dom->domain.pt_root)
  1532. goto free_dma_dom;
  1533. dma_dom->need_flush = false;
  1534. dma_dom->target_dev = 0xffff;
  1535. add_domain_to_list(&dma_dom->domain);
  1536. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1537. goto free_dma_dom;
  1538. /*
  1539. * mark the first page as allocated so we never return 0 as
  1540. * a valid dma-address. So we can use 0 as error value
  1541. */
  1542. dma_dom->aperture[0]->bitmap[0] = 1;
  1543. dma_dom->next_address = 0;
  1544. return dma_dom;
  1545. free_dma_dom:
  1546. dma_ops_domain_free(dma_dom);
  1547. return NULL;
  1548. }
  1549. /*
  1550. * little helper function to check whether a given protection domain is a
  1551. * dma_ops domain
  1552. */
  1553. static bool dma_ops_domain(struct protection_domain *domain)
  1554. {
  1555. return domain->flags & PD_DMA_OPS_MASK;
  1556. }
  1557. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1558. {
  1559. u64 pte_root = 0;
  1560. u64 flags = 0;
  1561. if (domain->mode != PAGE_MODE_NONE)
  1562. pte_root = virt_to_phys(domain->pt_root);
  1563. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1564. << DEV_ENTRY_MODE_SHIFT;
  1565. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1566. flags = amd_iommu_dev_table[devid].data[1];
  1567. if (ats)
  1568. flags |= DTE_FLAG_IOTLB;
  1569. if (domain->flags & PD_IOMMUV2_MASK) {
  1570. u64 gcr3 = __pa(domain->gcr3_tbl);
  1571. u64 glx = domain->glx;
  1572. u64 tmp;
  1573. pte_root |= DTE_FLAG_GV;
  1574. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1575. /* First mask out possible old values for GCR3 table */
  1576. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1577. flags &= ~tmp;
  1578. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1579. flags &= ~tmp;
  1580. /* Encode GCR3 table into DTE */
  1581. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1582. pte_root |= tmp;
  1583. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1584. flags |= tmp;
  1585. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1586. flags |= tmp;
  1587. }
  1588. flags &= ~(0xffffUL);
  1589. flags |= domain->id;
  1590. amd_iommu_dev_table[devid].data[1] = flags;
  1591. amd_iommu_dev_table[devid].data[0] = pte_root;
  1592. }
  1593. static void clear_dte_entry(u16 devid)
  1594. {
  1595. /* remove entry from the device table seen by the hardware */
  1596. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1597. amd_iommu_dev_table[devid].data[1] = 0;
  1598. amd_iommu_apply_erratum_63(devid);
  1599. }
  1600. static void do_attach(struct iommu_dev_data *dev_data,
  1601. struct protection_domain *domain)
  1602. {
  1603. struct amd_iommu *iommu;
  1604. bool ats;
  1605. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1606. ats = dev_data->ats.enabled;
  1607. /* Update data structures */
  1608. dev_data->domain = domain;
  1609. list_add(&dev_data->list, &domain->dev_list);
  1610. set_dte_entry(dev_data->devid, domain, ats);
  1611. /* Do reference counting */
  1612. domain->dev_iommu[iommu->index] += 1;
  1613. domain->dev_cnt += 1;
  1614. /* Flush the DTE entry */
  1615. device_flush_dte(dev_data);
  1616. }
  1617. static void do_detach(struct iommu_dev_data *dev_data)
  1618. {
  1619. struct amd_iommu *iommu;
  1620. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1621. /* decrease reference counters */
  1622. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1623. dev_data->domain->dev_cnt -= 1;
  1624. /* Update data structures */
  1625. dev_data->domain = NULL;
  1626. list_del(&dev_data->list);
  1627. clear_dte_entry(dev_data->devid);
  1628. /* Flush the DTE entry */
  1629. device_flush_dte(dev_data);
  1630. }
  1631. /*
  1632. * If a device is not yet associated with a domain, this function does
  1633. * assigns it visible for the hardware
  1634. */
  1635. static int __attach_device(struct iommu_dev_data *dev_data,
  1636. struct protection_domain *domain)
  1637. {
  1638. int ret;
  1639. /* lock domain */
  1640. spin_lock(&domain->lock);
  1641. if (dev_data->alias_data != NULL) {
  1642. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1643. /* Some sanity checks */
  1644. ret = -EBUSY;
  1645. if (alias_data->domain != NULL &&
  1646. alias_data->domain != domain)
  1647. goto out_unlock;
  1648. if (dev_data->domain != NULL &&
  1649. dev_data->domain != domain)
  1650. goto out_unlock;
  1651. /* Do real assignment */
  1652. if (alias_data->domain == NULL)
  1653. do_attach(alias_data, domain);
  1654. atomic_inc(&alias_data->bind);
  1655. }
  1656. if (dev_data->domain == NULL)
  1657. do_attach(dev_data, domain);
  1658. atomic_inc(&dev_data->bind);
  1659. ret = 0;
  1660. out_unlock:
  1661. /* ready */
  1662. spin_unlock(&domain->lock);
  1663. return ret;
  1664. }
  1665. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1666. {
  1667. pci_disable_ats(pdev);
  1668. pci_disable_pri(pdev);
  1669. pci_disable_pasid(pdev);
  1670. }
  1671. /* FIXME: Change generic reset-function to do the same */
  1672. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1673. {
  1674. u16 control;
  1675. int pos;
  1676. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1677. if (!pos)
  1678. return -EINVAL;
  1679. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1680. control |= PCI_PRI_CTRL_RESET;
  1681. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1682. return 0;
  1683. }
  1684. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1685. {
  1686. bool reset_enable;
  1687. int reqs, ret;
  1688. /* FIXME: Hardcode number of outstanding requests for now */
  1689. reqs = 32;
  1690. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1691. reqs = 1;
  1692. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1693. /* Only allow access to user-accessible pages */
  1694. ret = pci_enable_pasid(pdev, 0);
  1695. if (ret)
  1696. goto out_err;
  1697. /* First reset the PRI state of the device */
  1698. ret = pci_reset_pri(pdev);
  1699. if (ret)
  1700. goto out_err;
  1701. /* Enable PRI */
  1702. ret = pci_enable_pri(pdev, reqs);
  1703. if (ret)
  1704. goto out_err;
  1705. if (reset_enable) {
  1706. ret = pri_reset_while_enabled(pdev);
  1707. if (ret)
  1708. goto out_err;
  1709. }
  1710. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1711. if (ret)
  1712. goto out_err;
  1713. return 0;
  1714. out_err:
  1715. pci_disable_pri(pdev);
  1716. pci_disable_pasid(pdev);
  1717. return ret;
  1718. }
  1719. /* FIXME: Move this to PCI code */
  1720. #define PCI_PRI_TLP_OFF (1 << 15)
  1721. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1722. {
  1723. u16 status;
  1724. int pos;
  1725. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1726. if (!pos)
  1727. return false;
  1728. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1729. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1730. }
  1731. /*
  1732. * If a device is not yet associated with a domain, this function
  1733. * assigns it visible for the hardware
  1734. */
  1735. static int attach_device(struct device *dev,
  1736. struct protection_domain *domain)
  1737. {
  1738. struct pci_dev *pdev = to_pci_dev(dev);
  1739. struct iommu_dev_data *dev_data;
  1740. unsigned long flags;
  1741. int ret;
  1742. dev_data = get_dev_data(dev);
  1743. if (domain->flags & PD_IOMMUV2_MASK) {
  1744. if (!dev_data->iommu_v2 || !dev_data->passthrough)
  1745. return -EINVAL;
  1746. if (pdev_iommuv2_enable(pdev) != 0)
  1747. return -EINVAL;
  1748. dev_data->ats.enabled = true;
  1749. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1750. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1751. } else if (amd_iommu_iotlb_sup &&
  1752. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1753. dev_data->ats.enabled = true;
  1754. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1755. }
  1756. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1757. ret = __attach_device(dev_data, domain);
  1758. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1759. /*
  1760. * We might boot into a crash-kernel here. The crashed kernel
  1761. * left the caches in the IOMMU dirty. So we have to flush
  1762. * here to evict all dirty stuff.
  1763. */
  1764. domain_flush_tlb_pde(domain);
  1765. return ret;
  1766. }
  1767. /*
  1768. * Removes a device from a protection domain (unlocked)
  1769. */
  1770. static void __detach_device(struct iommu_dev_data *dev_data)
  1771. {
  1772. struct protection_domain *domain;
  1773. unsigned long flags;
  1774. BUG_ON(!dev_data->domain);
  1775. domain = dev_data->domain;
  1776. spin_lock_irqsave(&domain->lock, flags);
  1777. if (dev_data->alias_data != NULL) {
  1778. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1779. if (atomic_dec_and_test(&alias_data->bind))
  1780. do_detach(alias_data);
  1781. }
  1782. if (atomic_dec_and_test(&dev_data->bind))
  1783. do_detach(dev_data);
  1784. spin_unlock_irqrestore(&domain->lock, flags);
  1785. /*
  1786. * If we run in passthrough mode the device must be assigned to the
  1787. * passthrough domain if it is detached from any other domain.
  1788. * Make sure we can deassign from the pt_domain itself.
  1789. */
  1790. if (dev_data->passthrough &&
  1791. (dev_data->domain == NULL && domain != pt_domain))
  1792. __attach_device(dev_data, pt_domain);
  1793. }
  1794. /*
  1795. * Removes a device from a protection domain (with devtable_lock held)
  1796. */
  1797. static void detach_device(struct device *dev)
  1798. {
  1799. struct protection_domain *domain;
  1800. struct iommu_dev_data *dev_data;
  1801. unsigned long flags;
  1802. dev_data = get_dev_data(dev);
  1803. domain = dev_data->domain;
  1804. /* lock device table */
  1805. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1806. __detach_device(dev_data);
  1807. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1808. if (domain->flags & PD_IOMMUV2_MASK)
  1809. pdev_iommuv2_disable(to_pci_dev(dev));
  1810. else if (dev_data->ats.enabled)
  1811. pci_disable_ats(to_pci_dev(dev));
  1812. dev_data->ats.enabled = false;
  1813. }
  1814. /*
  1815. * Find out the protection domain structure for a given PCI device. This
  1816. * will give us the pointer to the page table root for example.
  1817. */
  1818. static struct protection_domain *domain_for_device(struct device *dev)
  1819. {
  1820. struct iommu_dev_data *dev_data;
  1821. struct protection_domain *dom = NULL;
  1822. unsigned long flags;
  1823. dev_data = get_dev_data(dev);
  1824. if (dev_data->domain)
  1825. return dev_data->domain;
  1826. if (dev_data->alias_data != NULL) {
  1827. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1828. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1829. if (alias_data->domain != NULL) {
  1830. __attach_device(dev_data, alias_data->domain);
  1831. dom = alias_data->domain;
  1832. }
  1833. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1834. }
  1835. return dom;
  1836. }
  1837. static int device_change_notifier(struct notifier_block *nb,
  1838. unsigned long action, void *data)
  1839. {
  1840. struct dma_ops_domain *dma_domain;
  1841. struct protection_domain *domain;
  1842. struct iommu_dev_data *dev_data;
  1843. struct device *dev = data;
  1844. struct amd_iommu *iommu;
  1845. unsigned long flags;
  1846. u16 devid;
  1847. if (!check_device(dev))
  1848. return 0;
  1849. devid = get_device_id(dev);
  1850. iommu = amd_iommu_rlookup_table[devid];
  1851. dev_data = get_dev_data(dev);
  1852. switch (action) {
  1853. case BUS_NOTIFY_UNBOUND_DRIVER:
  1854. domain = domain_for_device(dev);
  1855. if (!domain)
  1856. goto out;
  1857. if (dev_data->passthrough)
  1858. break;
  1859. detach_device(dev);
  1860. break;
  1861. case BUS_NOTIFY_ADD_DEVICE:
  1862. iommu_init_device(dev);
  1863. /*
  1864. * dev_data is still NULL and
  1865. * got initialized in iommu_init_device
  1866. */
  1867. dev_data = get_dev_data(dev);
  1868. if (iommu_pass_through || dev_data->iommu_v2) {
  1869. dev_data->passthrough = true;
  1870. attach_device(dev, pt_domain);
  1871. break;
  1872. }
  1873. domain = domain_for_device(dev);
  1874. /* allocate a protection domain if a device is added */
  1875. dma_domain = find_protection_domain(devid);
  1876. if (dma_domain)
  1877. goto out;
  1878. dma_domain = dma_ops_domain_alloc();
  1879. if (!dma_domain)
  1880. goto out;
  1881. dma_domain->target_dev = devid;
  1882. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1883. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1884. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1885. dev_data = get_dev_data(dev);
  1886. dev->archdata.dma_ops = &amd_iommu_dma_ops;
  1887. break;
  1888. case BUS_NOTIFY_DEL_DEVICE:
  1889. iommu_uninit_device(dev);
  1890. default:
  1891. goto out;
  1892. }
  1893. iommu_completion_wait(iommu);
  1894. out:
  1895. return 0;
  1896. }
  1897. static struct notifier_block device_nb = {
  1898. .notifier_call = device_change_notifier,
  1899. };
  1900. void amd_iommu_init_notifier(void)
  1901. {
  1902. bus_register_notifier(&pci_bus_type, &device_nb);
  1903. }
  1904. /*****************************************************************************
  1905. *
  1906. * The next functions belong to the dma_ops mapping/unmapping code.
  1907. *
  1908. *****************************************************************************/
  1909. /*
  1910. * In the dma_ops path we only have the struct device. This function
  1911. * finds the corresponding IOMMU, the protection domain and the
  1912. * requestor id for a given device.
  1913. * If the device is not yet associated with a domain this is also done
  1914. * in this function.
  1915. */
  1916. static struct protection_domain *get_domain(struct device *dev)
  1917. {
  1918. struct protection_domain *domain;
  1919. struct dma_ops_domain *dma_dom;
  1920. u16 devid = get_device_id(dev);
  1921. if (!check_device(dev))
  1922. return ERR_PTR(-EINVAL);
  1923. domain = domain_for_device(dev);
  1924. if (domain != NULL && !dma_ops_domain(domain))
  1925. return ERR_PTR(-EBUSY);
  1926. if (domain != NULL)
  1927. return domain;
  1928. /* Device not bound yet - bind it */
  1929. dma_dom = find_protection_domain(devid);
  1930. if (!dma_dom)
  1931. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  1932. attach_device(dev, &dma_dom->domain);
  1933. DUMP_printk("Using protection domain %d for device %s\n",
  1934. dma_dom->domain.id, dev_name(dev));
  1935. return &dma_dom->domain;
  1936. }
  1937. static void update_device_table(struct protection_domain *domain)
  1938. {
  1939. struct iommu_dev_data *dev_data;
  1940. list_for_each_entry(dev_data, &domain->dev_list, list)
  1941. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  1942. }
  1943. static void update_domain(struct protection_domain *domain)
  1944. {
  1945. if (!domain->updated)
  1946. return;
  1947. update_device_table(domain);
  1948. domain_flush_devices(domain);
  1949. domain_flush_tlb_pde(domain);
  1950. domain->updated = false;
  1951. }
  1952. /*
  1953. * This function fetches the PTE for a given address in the aperture
  1954. */
  1955. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1956. unsigned long address)
  1957. {
  1958. struct aperture_range *aperture;
  1959. u64 *pte, *pte_page;
  1960. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1961. if (!aperture)
  1962. return NULL;
  1963. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1964. if (!pte) {
  1965. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1966. GFP_ATOMIC);
  1967. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1968. } else
  1969. pte += PM_LEVEL_INDEX(0, address);
  1970. update_domain(&dom->domain);
  1971. return pte;
  1972. }
  1973. /*
  1974. * This is the generic map function. It maps one 4kb page at paddr to
  1975. * the given address in the DMA address space for the domain.
  1976. */
  1977. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1978. unsigned long address,
  1979. phys_addr_t paddr,
  1980. int direction)
  1981. {
  1982. u64 *pte, __pte;
  1983. WARN_ON(address > dom->aperture_size);
  1984. paddr &= PAGE_MASK;
  1985. pte = dma_ops_get_pte(dom, address);
  1986. if (!pte)
  1987. return DMA_ERROR_CODE;
  1988. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1989. if (direction == DMA_TO_DEVICE)
  1990. __pte |= IOMMU_PTE_IR;
  1991. else if (direction == DMA_FROM_DEVICE)
  1992. __pte |= IOMMU_PTE_IW;
  1993. else if (direction == DMA_BIDIRECTIONAL)
  1994. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1995. WARN_ON(*pte);
  1996. *pte = __pte;
  1997. return (dma_addr_t)address;
  1998. }
  1999. /*
  2000. * The generic unmapping function for on page in the DMA address space.
  2001. */
  2002. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  2003. unsigned long address)
  2004. {
  2005. struct aperture_range *aperture;
  2006. u64 *pte;
  2007. if (address >= dom->aperture_size)
  2008. return;
  2009. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  2010. if (!aperture)
  2011. return;
  2012. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  2013. if (!pte)
  2014. return;
  2015. pte += PM_LEVEL_INDEX(0, address);
  2016. WARN_ON(!*pte);
  2017. *pte = 0ULL;
  2018. }
  2019. /*
  2020. * This function contains common code for mapping of a physically
  2021. * contiguous memory region into DMA address space. It is used by all
  2022. * mapping functions provided with this IOMMU driver.
  2023. * Must be called with the domain lock held.
  2024. */
  2025. static dma_addr_t __map_single(struct device *dev,
  2026. struct dma_ops_domain *dma_dom,
  2027. phys_addr_t paddr,
  2028. size_t size,
  2029. int dir,
  2030. bool align,
  2031. u64 dma_mask)
  2032. {
  2033. dma_addr_t offset = paddr & ~PAGE_MASK;
  2034. dma_addr_t address, start, ret;
  2035. unsigned int pages;
  2036. unsigned long align_mask = 0;
  2037. int i;
  2038. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  2039. paddr &= PAGE_MASK;
  2040. INC_STATS_COUNTER(total_map_requests);
  2041. if (pages > 1)
  2042. INC_STATS_COUNTER(cross_page);
  2043. if (align)
  2044. align_mask = (1UL << get_order(size)) - 1;
  2045. retry:
  2046. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  2047. dma_mask);
  2048. if (unlikely(address == DMA_ERROR_CODE)) {
  2049. /*
  2050. * setting next_address here will let the address
  2051. * allocator only scan the new allocated range in the
  2052. * first run. This is a small optimization.
  2053. */
  2054. dma_dom->next_address = dma_dom->aperture_size;
  2055. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  2056. goto out;
  2057. /*
  2058. * aperture was successfully enlarged by 128 MB, try
  2059. * allocation again
  2060. */
  2061. goto retry;
  2062. }
  2063. start = address;
  2064. for (i = 0; i < pages; ++i) {
  2065. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  2066. if (ret == DMA_ERROR_CODE)
  2067. goto out_unmap;
  2068. paddr += PAGE_SIZE;
  2069. start += PAGE_SIZE;
  2070. }
  2071. address += offset;
  2072. ADD_STATS_COUNTER(alloced_io_mem, size);
  2073. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  2074. domain_flush_tlb(&dma_dom->domain);
  2075. dma_dom->need_flush = false;
  2076. } else if (unlikely(amd_iommu_np_cache))
  2077. domain_flush_pages(&dma_dom->domain, address, size);
  2078. out:
  2079. return address;
  2080. out_unmap:
  2081. for (--i; i >= 0; --i) {
  2082. start -= PAGE_SIZE;
  2083. dma_ops_domain_unmap(dma_dom, start);
  2084. }
  2085. dma_ops_free_addresses(dma_dom, address, pages);
  2086. return DMA_ERROR_CODE;
  2087. }
  2088. /*
  2089. * Does the reverse of the __map_single function. Must be called with
  2090. * the domain lock held too
  2091. */
  2092. static void __unmap_single(struct dma_ops_domain *dma_dom,
  2093. dma_addr_t dma_addr,
  2094. size_t size,
  2095. int dir)
  2096. {
  2097. dma_addr_t flush_addr;
  2098. dma_addr_t i, start;
  2099. unsigned int pages;
  2100. if ((dma_addr == DMA_ERROR_CODE) ||
  2101. (dma_addr + size > dma_dom->aperture_size))
  2102. return;
  2103. flush_addr = dma_addr;
  2104. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  2105. dma_addr &= PAGE_MASK;
  2106. start = dma_addr;
  2107. for (i = 0; i < pages; ++i) {
  2108. dma_ops_domain_unmap(dma_dom, start);
  2109. start += PAGE_SIZE;
  2110. }
  2111. SUB_STATS_COUNTER(alloced_io_mem, size);
  2112. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  2113. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  2114. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  2115. dma_dom->need_flush = false;
  2116. }
  2117. }
  2118. /*
  2119. * The exported map_single function for dma_ops.
  2120. */
  2121. static dma_addr_t map_page(struct device *dev, struct page *page,
  2122. unsigned long offset, size_t size,
  2123. enum dma_data_direction dir,
  2124. struct dma_attrs *attrs)
  2125. {
  2126. unsigned long flags;
  2127. struct protection_domain *domain;
  2128. dma_addr_t addr;
  2129. u64 dma_mask;
  2130. phys_addr_t paddr = page_to_phys(page) + offset;
  2131. INC_STATS_COUNTER(cnt_map_single);
  2132. domain = get_domain(dev);
  2133. if (PTR_ERR(domain) == -EINVAL)
  2134. return (dma_addr_t)paddr;
  2135. else if (IS_ERR(domain))
  2136. return DMA_ERROR_CODE;
  2137. dma_mask = *dev->dma_mask;
  2138. spin_lock_irqsave(&domain->lock, flags);
  2139. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  2140. dma_mask);
  2141. if (addr == DMA_ERROR_CODE)
  2142. goto out;
  2143. domain_flush_complete(domain);
  2144. out:
  2145. spin_unlock_irqrestore(&domain->lock, flags);
  2146. return addr;
  2147. }
  2148. /*
  2149. * The exported unmap_single function for dma_ops.
  2150. */
  2151. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  2152. enum dma_data_direction dir, struct dma_attrs *attrs)
  2153. {
  2154. unsigned long flags;
  2155. struct protection_domain *domain;
  2156. INC_STATS_COUNTER(cnt_unmap_single);
  2157. domain = get_domain(dev);
  2158. if (IS_ERR(domain))
  2159. return;
  2160. spin_lock_irqsave(&domain->lock, flags);
  2161. __unmap_single(domain->priv, dma_addr, size, dir);
  2162. domain_flush_complete(domain);
  2163. spin_unlock_irqrestore(&domain->lock, flags);
  2164. }
  2165. /*
  2166. * This is a special map_sg function which is used if we should map a
  2167. * device which is not handled by an AMD IOMMU in the system.
  2168. */
  2169. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  2170. int nelems, int dir)
  2171. {
  2172. struct scatterlist *s;
  2173. int i;
  2174. for_each_sg(sglist, s, nelems, i) {
  2175. s->dma_address = (dma_addr_t)sg_phys(s);
  2176. s->dma_length = s->length;
  2177. }
  2178. return nelems;
  2179. }
  2180. /*
  2181. * The exported map_sg function for dma_ops (handles scatter-gather
  2182. * lists).
  2183. */
  2184. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2185. int nelems, enum dma_data_direction dir,
  2186. struct dma_attrs *attrs)
  2187. {
  2188. unsigned long flags;
  2189. struct protection_domain *domain;
  2190. int i;
  2191. struct scatterlist *s;
  2192. phys_addr_t paddr;
  2193. int mapped_elems = 0;
  2194. u64 dma_mask;
  2195. INC_STATS_COUNTER(cnt_map_sg);
  2196. domain = get_domain(dev);
  2197. if (PTR_ERR(domain) == -EINVAL)
  2198. return map_sg_no_iommu(dev, sglist, nelems, dir);
  2199. else if (IS_ERR(domain))
  2200. return 0;
  2201. dma_mask = *dev->dma_mask;
  2202. spin_lock_irqsave(&domain->lock, flags);
  2203. for_each_sg(sglist, s, nelems, i) {
  2204. paddr = sg_phys(s);
  2205. s->dma_address = __map_single(dev, domain->priv,
  2206. paddr, s->length, dir, false,
  2207. dma_mask);
  2208. if (s->dma_address) {
  2209. s->dma_length = s->length;
  2210. mapped_elems++;
  2211. } else
  2212. goto unmap;
  2213. }
  2214. domain_flush_complete(domain);
  2215. out:
  2216. spin_unlock_irqrestore(&domain->lock, flags);
  2217. return mapped_elems;
  2218. unmap:
  2219. for_each_sg(sglist, s, mapped_elems, i) {
  2220. if (s->dma_address)
  2221. __unmap_single(domain->priv, s->dma_address,
  2222. s->dma_length, dir);
  2223. s->dma_address = s->dma_length = 0;
  2224. }
  2225. mapped_elems = 0;
  2226. goto out;
  2227. }
  2228. /*
  2229. * The exported map_sg function for dma_ops (handles scatter-gather
  2230. * lists).
  2231. */
  2232. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2233. int nelems, enum dma_data_direction dir,
  2234. struct dma_attrs *attrs)
  2235. {
  2236. unsigned long flags;
  2237. struct protection_domain *domain;
  2238. struct scatterlist *s;
  2239. int i;
  2240. INC_STATS_COUNTER(cnt_unmap_sg);
  2241. domain = get_domain(dev);
  2242. if (IS_ERR(domain))
  2243. return;
  2244. spin_lock_irqsave(&domain->lock, flags);
  2245. for_each_sg(sglist, s, nelems, i) {
  2246. __unmap_single(domain->priv, s->dma_address,
  2247. s->dma_length, dir);
  2248. s->dma_address = s->dma_length = 0;
  2249. }
  2250. domain_flush_complete(domain);
  2251. spin_unlock_irqrestore(&domain->lock, flags);
  2252. }
  2253. /*
  2254. * The exported alloc_coherent function for dma_ops.
  2255. */
  2256. static void *alloc_coherent(struct device *dev, size_t size,
  2257. dma_addr_t *dma_addr, gfp_t flag,
  2258. struct dma_attrs *attrs)
  2259. {
  2260. unsigned long flags;
  2261. void *virt_addr;
  2262. struct protection_domain *domain;
  2263. phys_addr_t paddr;
  2264. u64 dma_mask = dev->coherent_dma_mask;
  2265. INC_STATS_COUNTER(cnt_alloc_coherent);
  2266. domain = get_domain(dev);
  2267. if (PTR_ERR(domain) == -EINVAL) {
  2268. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2269. *dma_addr = __pa(virt_addr);
  2270. return virt_addr;
  2271. } else if (IS_ERR(domain))
  2272. return NULL;
  2273. dma_mask = dev->coherent_dma_mask;
  2274. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2275. flag |= __GFP_ZERO;
  2276. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2277. if (!virt_addr)
  2278. return NULL;
  2279. paddr = virt_to_phys(virt_addr);
  2280. if (!dma_mask)
  2281. dma_mask = *dev->dma_mask;
  2282. spin_lock_irqsave(&domain->lock, flags);
  2283. *dma_addr = __map_single(dev, domain->priv, paddr,
  2284. size, DMA_BIDIRECTIONAL, true, dma_mask);
  2285. if (*dma_addr == DMA_ERROR_CODE) {
  2286. spin_unlock_irqrestore(&domain->lock, flags);
  2287. goto out_free;
  2288. }
  2289. domain_flush_complete(domain);
  2290. spin_unlock_irqrestore(&domain->lock, flags);
  2291. return virt_addr;
  2292. out_free:
  2293. free_pages((unsigned long)virt_addr, get_order(size));
  2294. return NULL;
  2295. }
  2296. /*
  2297. * The exported free_coherent function for dma_ops.
  2298. */
  2299. static void free_coherent(struct device *dev, size_t size,
  2300. void *virt_addr, dma_addr_t dma_addr,
  2301. struct dma_attrs *attrs)
  2302. {
  2303. unsigned long flags;
  2304. struct protection_domain *domain;
  2305. INC_STATS_COUNTER(cnt_free_coherent);
  2306. domain = get_domain(dev);
  2307. if (IS_ERR(domain))
  2308. goto free_mem;
  2309. spin_lock_irqsave(&domain->lock, flags);
  2310. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  2311. domain_flush_complete(domain);
  2312. spin_unlock_irqrestore(&domain->lock, flags);
  2313. free_mem:
  2314. free_pages((unsigned long)virt_addr, get_order(size));
  2315. }
  2316. /*
  2317. * This function is called by the DMA layer to find out if we can handle a
  2318. * particular device. It is part of the dma_ops.
  2319. */
  2320. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2321. {
  2322. return check_device(dev);
  2323. }
  2324. /*
  2325. * The function for pre-allocating protection domains.
  2326. *
  2327. * If the driver core informs the DMA layer if a driver grabs a device
  2328. * we don't need to preallocate the protection domains anymore.
  2329. * For now we have to.
  2330. */
  2331. static void __init prealloc_protection_domains(void)
  2332. {
  2333. struct iommu_dev_data *dev_data;
  2334. struct dma_ops_domain *dma_dom;
  2335. struct pci_dev *dev = NULL;
  2336. u16 devid;
  2337. for_each_pci_dev(dev) {
  2338. /* Do we handle this device? */
  2339. if (!check_device(&dev->dev))
  2340. continue;
  2341. dev_data = get_dev_data(&dev->dev);
  2342. if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
  2343. /* Make sure passthrough domain is allocated */
  2344. alloc_passthrough_domain();
  2345. dev_data->passthrough = true;
  2346. attach_device(&dev->dev, pt_domain);
  2347. pr_info("AMD-Vi: Using passthrough domain for device %s\n",
  2348. dev_name(&dev->dev));
  2349. }
  2350. /* Is there already any domain for it? */
  2351. if (domain_for_device(&dev->dev))
  2352. continue;
  2353. devid = get_device_id(&dev->dev);
  2354. dma_dom = dma_ops_domain_alloc();
  2355. if (!dma_dom)
  2356. continue;
  2357. init_unity_mappings_for_device(dma_dom, devid);
  2358. dma_dom->target_dev = devid;
  2359. attach_device(&dev->dev, &dma_dom->domain);
  2360. list_add_tail(&dma_dom->list, &iommu_pd_list);
  2361. }
  2362. }
  2363. static struct dma_map_ops amd_iommu_dma_ops = {
  2364. .alloc = alloc_coherent,
  2365. .free = free_coherent,
  2366. .map_page = map_page,
  2367. .unmap_page = unmap_page,
  2368. .map_sg = map_sg,
  2369. .unmap_sg = unmap_sg,
  2370. .dma_supported = amd_iommu_dma_supported,
  2371. };
  2372. static unsigned device_dma_ops_init(void)
  2373. {
  2374. struct iommu_dev_data *dev_data;
  2375. struct pci_dev *pdev = NULL;
  2376. unsigned unhandled = 0;
  2377. for_each_pci_dev(pdev) {
  2378. if (!check_device(&pdev->dev)) {
  2379. iommu_ignore_device(&pdev->dev);
  2380. unhandled += 1;
  2381. continue;
  2382. }
  2383. dev_data = get_dev_data(&pdev->dev);
  2384. if (!dev_data->passthrough)
  2385. pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
  2386. else
  2387. pdev->dev.archdata.dma_ops = &nommu_dma_ops;
  2388. }
  2389. return unhandled;
  2390. }
  2391. /*
  2392. * The function which clues the AMD IOMMU driver into dma_ops.
  2393. */
  2394. void __init amd_iommu_init_api(void)
  2395. {
  2396. bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2397. }
  2398. int __init amd_iommu_init_dma_ops(void)
  2399. {
  2400. struct amd_iommu *iommu;
  2401. int ret, unhandled;
  2402. /*
  2403. * first allocate a default protection domain for every IOMMU we
  2404. * found in the system. Devices not assigned to any other
  2405. * protection domain will be assigned to the default one.
  2406. */
  2407. for_each_iommu(iommu) {
  2408. iommu->default_dom = dma_ops_domain_alloc();
  2409. if (iommu->default_dom == NULL)
  2410. return -ENOMEM;
  2411. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  2412. ret = iommu_init_unity_mappings(iommu);
  2413. if (ret)
  2414. goto free_domains;
  2415. }
  2416. /*
  2417. * Pre-allocate the protection domains for each device.
  2418. */
  2419. prealloc_protection_domains();
  2420. iommu_detected = 1;
  2421. swiotlb = 0;
  2422. /* Make the driver finally visible to the drivers */
  2423. unhandled = device_dma_ops_init();
  2424. if (unhandled && max_pfn > MAX_DMA32_PFN) {
  2425. /* There are unhandled devices - initialize swiotlb for them */
  2426. swiotlb = 1;
  2427. }
  2428. amd_iommu_stats_init();
  2429. if (amd_iommu_unmap_flush)
  2430. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2431. else
  2432. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2433. return 0;
  2434. free_domains:
  2435. for_each_iommu(iommu) {
  2436. if (iommu->default_dom)
  2437. dma_ops_domain_free(iommu->default_dom);
  2438. }
  2439. return ret;
  2440. }
  2441. /*****************************************************************************
  2442. *
  2443. * The following functions belong to the exported interface of AMD IOMMU
  2444. *
  2445. * This interface allows access to lower level functions of the IOMMU
  2446. * like protection domain handling and assignement of devices to domains
  2447. * which is not possible with the dma_ops interface.
  2448. *
  2449. *****************************************************************************/
  2450. static void cleanup_domain(struct protection_domain *domain)
  2451. {
  2452. struct iommu_dev_data *dev_data, *next;
  2453. unsigned long flags;
  2454. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2455. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  2456. __detach_device(dev_data);
  2457. atomic_set(&dev_data->bind, 0);
  2458. }
  2459. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2460. }
  2461. static void protection_domain_free(struct protection_domain *domain)
  2462. {
  2463. if (!domain)
  2464. return;
  2465. del_domain_from_list(domain);
  2466. if (domain->id)
  2467. domain_id_free(domain->id);
  2468. kfree(domain);
  2469. }
  2470. static struct protection_domain *protection_domain_alloc(void)
  2471. {
  2472. struct protection_domain *domain;
  2473. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2474. if (!domain)
  2475. return NULL;
  2476. spin_lock_init(&domain->lock);
  2477. mutex_init(&domain->api_lock);
  2478. domain->id = domain_id_alloc();
  2479. if (!domain->id)
  2480. goto out_err;
  2481. INIT_LIST_HEAD(&domain->dev_list);
  2482. add_domain_to_list(domain);
  2483. return domain;
  2484. out_err:
  2485. kfree(domain);
  2486. return NULL;
  2487. }
  2488. static int __init alloc_passthrough_domain(void)
  2489. {
  2490. if (pt_domain != NULL)
  2491. return 0;
  2492. /* allocate passthrough domain */
  2493. pt_domain = protection_domain_alloc();
  2494. if (!pt_domain)
  2495. return -ENOMEM;
  2496. pt_domain->mode = PAGE_MODE_NONE;
  2497. return 0;
  2498. }
  2499. static int amd_iommu_domain_init(struct iommu_domain *dom)
  2500. {
  2501. struct protection_domain *domain;
  2502. domain = protection_domain_alloc();
  2503. if (!domain)
  2504. goto out_free;
  2505. domain->mode = PAGE_MODE_3_LEVEL;
  2506. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2507. if (!domain->pt_root)
  2508. goto out_free;
  2509. domain->iommu_domain = dom;
  2510. dom->priv = domain;
  2511. dom->geometry.aperture_start = 0;
  2512. dom->geometry.aperture_end = ~0ULL;
  2513. dom->geometry.force_aperture = true;
  2514. return 0;
  2515. out_free:
  2516. protection_domain_free(domain);
  2517. return -ENOMEM;
  2518. }
  2519. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  2520. {
  2521. struct protection_domain *domain = dom->priv;
  2522. if (!domain)
  2523. return;
  2524. if (domain->dev_cnt > 0)
  2525. cleanup_domain(domain);
  2526. BUG_ON(domain->dev_cnt != 0);
  2527. if (domain->mode != PAGE_MODE_NONE)
  2528. free_pagetable(domain);
  2529. if (domain->flags & PD_IOMMUV2_MASK)
  2530. free_gcr3_table(domain);
  2531. protection_domain_free(domain);
  2532. dom->priv = NULL;
  2533. }
  2534. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2535. struct device *dev)
  2536. {
  2537. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2538. struct amd_iommu *iommu;
  2539. u16 devid;
  2540. if (!check_device(dev))
  2541. return;
  2542. devid = get_device_id(dev);
  2543. if (dev_data->domain != NULL)
  2544. detach_device(dev);
  2545. iommu = amd_iommu_rlookup_table[devid];
  2546. if (!iommu)
  2547. return;
  2548. iommu_completion_wait(iommu);
  2549. }
  2550. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2551. struct device *dev)
  2552. {
  2553. struct protection_domain *domain = dom->priv;
  2554. struct iommu_dev_data *dev_data;
  2555. struct amd_iommu *iommu;
  2556. int ret;
  2557. if (!check_device(dev))
  2558. return -EINVAL;
  2559. dev_data = dev->archdata.iommu;
  2560. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2561. if (!iommu)
  2562. return -EINVAL;
  2563. if (dev_data->domain)
  2564. detach_device(dev);
  2565. ret = attach_device(dev, domain);
  2566. iommu_completion_wait(iommu);
  2567. return ret;
  2568. }
  2569. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2570. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2571. {
  2572. struct protection_domain *domain = dom->priv;
  2573. int prot = 0;
  2574. int ret;
  2575. if (domain->mode == PAGE_MODE_NONE)
  2576. return -EINVAL;
  2577. if (iommu_prot & IOMMU_READ)
  2578. prot |= IOMMU_PROT_IR;
  2579. if (iommu_prot & IOMMU_WRITE)
  2580. prot |= IOMMU_PROT_IW;
  2581. mutex_lock(&domain->api_lock);
  2582. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  2583. mutex_unlock(&domain->api_lock);
  2584. return ret;
  2585. }
  2586. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2587. size_t page_size)
  2588. {
  2589. struct protection_domain *domain = dom->priv;
  2590. size_t unmap_size;
  2591. if (domain->mode == PAGE_MODE_NONE)
  2592. return -EINVAL;
  2593. mutex_lock(&domain->api_lock);
  2594. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2595. mutex_unlock(&domain->api_lock);
  2596. domain_flush_tlb_pde(domain);
  2597. return unmap_size;
  2598. }
  2599. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2600. unsigned long iova)
  2601. {
  2602. struct protection_domain *domain = dom->priv;
  2603. unsigned long offset_mask;
  2604. phys_addr_t paddr;
  2605. u64 *pte, __pte;
  2606. if (domain->mode == PAGE_MODE_NONE)
  2607. return iova;
  2608. pte = fetch_pte(domain, iova);
  2609. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2610. return 0;
  2611. if (PM_PTE_LEVEL(*pte) == 0)
  2612. offset_mask = PAGE_SIZE - 1;
  2613. else
  2614. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2615. __pte = *pte & PM_ADDR_MASK;
  2616. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2617. return paddr;
  2618. }
  2619. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2620. unsigned long cap)
  2621. {
  2622. switch (cap) {
  2623. case IOMMU_CAP_CACHE_COHERENCY:
  2624. return 1;
  2625. case IOMMU_CAP_INTR_REMAP:
  2626. return irq_remapping_enabled;
  2627. }
  2628. return 0;
  2629. }
  2630. static struct iommu_ops amd_iommu_ops = {
  2631. .domain_init = amd_iommu_domain_init,
  2632. .domain_destroy = amd_iommu_domain_destroy,
  2633. .attach_dev = amd_iommu_attach_device,
  2634. .detach_dev = amd_iommu_detach_device,
  2635. .map = amd_iommu_map,
  2636. .unmap = amd_iommu_unmap,
  2637. .iova_to_phys = amd_iommu_iova_to_phys,
  2638. .domain_has_cap = amd_iommu_domain_has_cap,
  2639. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2640. };
  2641. /*****************************************************************************
  2642. *
  2643. * The next functions do a basic initialization of IOMMU for pass through
  2644. * mode
  2645. *
  2646. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2647. * DMA-API translation.
  2648. *
  2649. *****************************************************************************/
  2650. int __init amd_iommu_init_passthrough(void)
  2651. {
  2652. struct iommu_dev_data *dev_data;
  2653. struct pci_dev *dev = NULL;
  2654. struct amd_iommu *iommu;
  2655. u16 devid;
  2656. int ret;
  2657. ret = alloc_passthrough_domain();
  2658. if (ret)
  2659. return ret;
  2660. for_each_pci_dev(dev) {
  2661. if (!check_device(&dev->dev))
  2662. continue;
  2663. dev_data = get_dev_data(&dev->dev);
  2664. dev_data->passthrough = true;
  2665. devid = get_device_id(&dev->dev);
  2666. iommu = amd_iommu_rlookup_table[devid];
  2667. if (!iommu)
  2668. continue;
  2669. attach_device(&dev->dev, pt_domain);
  2670. }
  2671. amd_iommu_stats_init();
  2672. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2673. return 0;
  2674. }
  2675. /* IOMMUv2 specific functions */
  2676. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2677. {
  2678. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2679. }
  2680. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2681. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2682. {
  2683. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2684. }
  2685. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2686. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2687. {
  2688. struct protection_domain *domain = dom->priv;
  2689. unsigned long flags;
  2690. spin_lock_irqsave(&domain->lock, flags);
  2691. /* Update data structure */
  2692. domain->mode = PAGE_MODE_NONE;
  2693. domain->updated = true;
  2694. /* Make changes visible to IOMMUs */
  2695. update_domain(domain);
  2696. /* Page-table is not visible to IOMMU anymore, so free it */
  2697. free_pagetable(domain);
  2698. spin_unlock_irqrestore(&domain->lock, flags);
  2699. }
  2700. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2701. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2702. {
  2703. struct protection_domain *domain = dom->priv;
  2704. unsigned long flags;
  2705. int levels, ret;
  2706. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2707. return -EINVAL;
  2708. /* Number of GCR3 table levels required */
  2709. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2710. levels += 1;
  2711. if (levels > amd_iommu_max_glx_val)
  2712. return -EINVAL;
  2713. spin_lock_irqsave(&domain->lock, flags);
  2714. /*
  2715. * Save us all sanity checks whether devices already in the
  2716. * domain support IOMMUv2. Just force that the domain has no
  2717. * devices attached when it is switched into IOMMUv2 mode.
  2718. */
  2719. ret = -EBUSY;
  2720. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2721. goto out;
  2722. ret = -ENOMEM;
  2723. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2724. if (domain->gcr3_tbl == NULL)
  2725. goto out;
  2726. domain->glx = levels;
  2727. domain->flags |= PD_IOMMUV2_MASK;
  2728. domain->updated = true;
  2729. update_domain(domain);
  2730. ret = 0;
  2731. out:
  2732. spin_unlock_irqrestore(&domain->lock, flags);
  2733. return ret;
  2734. }
  2735. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2736. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2737. u64 address, bool size)
  2738. {
  2739. struct iommu_dev_data *dev_data;
  2740. struct iommu_cmd cmd;
  2741. int i, ret;
  2742. if (!(domain->flags & PD_IOMMUV2_MASK))
  2743. return -EINVAL;
  2744. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2745. /*
  2746. * IOMMU TLB needs to be flushed before Device TLB to
  2747. * prevent device TLB refill from IOMMU TLB
  2748. */
  2749. for (i = 0; i < amd_iommus_present; ++i) {
  2750. if (domain->dev_iommu[i] == 0)
  2751. continue;
  2752. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2753. if (ret != 0)
  2754. goto out;
  2755. }
  2756. /* Wait until IOMMU TLB flushes are complete */
  2757. domain_flush_complete(domain);
  2758. /* Now flush device TLBs */
  2759. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2760. struct amd_iommu *iommu;
  2761. int qdep;
  2762. BUG_ON(!dev_data->ats.enabled);
  2763. qdep = dev_data->ats.qdep;
  2764. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2765. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2766. qdep, address, size);
  2767. ret = iommu_queue_command(iommu, &cmd);
  2768. if (ret != 0)
  2769. goto out;
  2770. }
  2771. /* Wait until all device TLBs are flushed */
  2772. domain_flush_complete(domain);
  2773. ret = 0;
  2774. out:
  2775. return ret;
  2776. }
  2777. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2778. u64 address)
  2779. {
  2780. INC_STATS_COUNTER(invalidate_iotlb);
  2781. return __flush_pasid(domain, pasid, address, false);
  2782. }
  2783. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2784. u64 address)
  2785. {
  2786. struct protection_domain *domain = dom->priv;
  2787. unsigned long flags;
  2788. int ret;
  2789. spin_lock_irqsave(&domain->lock, flags);
  2790. ret = __amd_iommu_flush_page(domain, pasid, address);
  2791. spin_unlock_irqrestore(&domain->lock, flags);
  2792. return ret;
  2793. }
  2794. EXPORT_SYMBOL(amd_iommu_flush_page);
  2795. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2796. {
  2797. INC_STATS_COUNTER(invalidate_iotlb_all);
  2798. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2799. true);
  2800. }
  2801. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2802. {
  2803. struct protection_domain *domain = dom->priv;
  2804. unsigned long flags;
  2805. int ret;
  2806. spin_lock_irqsave(&domain->lock, flags);
  2807. ret = __amd_iommu_flush_tlb(domain, pasid);
  2808. spin_unlock_irqrestore(&domain->lock, flags);
  2809. return ret;
  2810. }
  2811. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2812. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2813. {
  2814. int index;
  2815. u64 *pte;
  2816. while (true) {
  2817. index = (pasid >> (9 * level)) & 0x1ff;
  2818. pte = &root[index];
  2819. if (level == 0)
  2820. break;
  2821. if (!(*pte & GCR3_VALID)) {
  2822. if (!alloc)
  2823. return NULL;
  2824. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2825. if (root == NULL)
  2826. return NULL;
  2827. *pte = __pa(root) | GCR3_VALID;
  2828. }
  2829. root = __va(*pte & PAGE_MASK);
  2830. level -= 1;
  2831. }
  2832. return pte;
  2833. }
  2834. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2835. unsigned long cr3)
  2836. {
  2837. u64 *pte;
  2838. if (domain->mode != PAGE_MODE_NONE)
  2839. return -EINVAL;
  2840. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2841. if (pte == NULL)
  2842. return -ENOMEM;
  2843. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2844. return __amd_iommu_flush_tlb(domain, pasid);
  2845. }
  2846. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2847. {
  2848. u64 *pte;
  2849. if (domain->mode != PAGE_MODE_NONE)
  2850. return -EINVAL;
  2851. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2852. if (pte == NULL)
  2853. return 0;
  2854. *pte = 0;
  2855. return __amd_iommu_flush_tlb(domain, pasid);
  2856. }
  2857. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2858. unsigned long cr3)
  2859. {
  2860. struct protection_domain *domain = dom->priv;
  2861. unsigned long flags;
  2862. int ret;
  2863. spin_lock_irqsave(&domain->lock, flags);
  2864. ret = __set_gcr3(domain, pasid, cr3);
  2865. spin_unlock_irqrestore(&domain->lock, flags);
  2866. return ret;
  2867. }
  2868. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2869. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2870. {
  2871. struct protection_domain *domain = dom->priv;
  2872. unsigned long flags;
  2873. int ret;
  2874. spin_lock_irqsave(&domain->lock, flags);
  2875. ret = __clear_gcr3(domain, pasid);
  2876. spin_unlock_irqrestore(&domain->lock, flags);
  2877. return ret;
  2878. }
  2879. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2880. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2881. int status, int tag)
  2882. {
  2883. struct iommu_dev_data *dev_data;
  2884. struct amd_iommu *iommu;
  2885. struct iommu_cmd cmd;
  2886. INC_STATS_COUNTER(complete_ppr);
  2887. dev_data = get_dev_data(&pdev->dev);
  2888. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2889. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2890. tag, dev_data->pri_tlp);
  2891. return iommu_queue_command(iommu, &cmd);
  2892. }
  2893. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2894. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2895. {
  2896. struct protection_domain *domain;
  2897. domain = get_domain(&pdev->dev);
  2898. if (IS_ERR(domain))
  2899. return NULL;
  2900. /* Only return IOMMUv2 domains */
  2901. if (!(domain->flags & PD_IOMMUV2_MASK))
  2902. return NULL;
  2903. return domain->iommu_domain;
  2904. }
  2905. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2906. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2907. {
  2908. struct iommu_dev_data *dev_data;
  2909. if (!amd_iommu_v2_supported())
  2910. return;
  2911. dev_data = get_dev_data(&pdev->dev);
  2912. dev_data->errata |= (1 << erratum);
  2913. }
  2914. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2915. int amd_iommu_device_info(struct pci_dev *pdev,
  2916. struct amd_iommu_device_info *info)
  2917. {
  2918. int max_pasids;
  2919. int pos;
  2920. if (pdev == NULL || info == NULL)
  2921. return -EINVAL;
  2922. if (!amd_iommu_v2_supported())
  2923. return -EINVAL;
  2924. memset(info, 0, sizeof(*info));
  2925. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2926. if (pos)
  2927. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2928. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2929. if (pos)
  2930. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2931. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2932. if (pos) {
  2933. int features;
  2934. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2935. max_pasids = min(max_pasids, (1 << 20));
  2936. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2937. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2938. features = pci_pasid_features(pdev);
  2939. if (features & PCI_PASID_CAP_EXEC)
  2940. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2941. if (features & PCI_PASID_CAP_PRIV)
  2942. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2943. }
  2944. return 0;
  2945. }
  2946. EXPORT_SYMBOL(amd_iommu_device_info);
  2947. #ifdef CONFIG_IRQ_REMAP
  2948. /*****************************************************************************
  2949. *
  2950. * Interrupt Remapping Implementation
  2951. *
  2952. *****************************************************************************/
  2953. union irte {
  2954. u32 val;
  2955. struct {
  2956. u32 valid : 1,
  2957. no_fault : 1,
  2958. int_type : 3,
  2959. rq_eoi : 1,
  2960. dm : 1,
  2961. rsvd_1 : 1,
  2962. destination : 8,
  2963. vector : 8,
  2964. rsvd_2 : 8;
  2965. } fields;
  2966. };
  2967. #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
  2968. #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
  2969. #define DTE_IRQ_TABLE_LEN (8ULL << 1)
  2970. #define DTE_IRQ_REMAP_ENABLE 1ULL
  2971. static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
  2972. {
  2973. u64 dte;
  2974. dte = amd_iommu_dev_table[devid].data[2];
  2975. dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
  2976. dte |= virt_to_phys(table->table);
  2977. dte |= DTE_IRQ_REMAP_INTCTL;
  2978. dte |= DTE_IRQ_TABLE_LEN;
  2979. dte |= DTE_IRQ_REMAP_ENABLE;
  2980. amd_iommu_dev_table[devid].data[2] = dte;
  2981. }
  2982. #define IRTE_ALLOCATED (~1U)
  2983. static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
  2984. {
  2985. struct irq_remap_table *table = NULL;
  2986. struct amd_iommu *iommu;
  2987. unsigned long flags;
  2988. u16 alias;
  2989. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2990. iommu = amd_iommu_rlookup_table[devid];
  2991. if (!iommu)
  2992. goto out_unlock;
  2993. table = irq_lookup_table[devid];
  2994. if (table)
  2995. goto out;
  2996. alias = amd_iommu_alias_table[devid];
  2997. table = irq_lookup_table[alias];
  2998. if (table) {
  2999. irq_lookup_table[devid] = table;
  3000. set_dte_irq_entry(devid, table);
  3001. iommu_flush_dte(iommu, devid);
  3002. goto out;
  3003. }
  3004. /* Nothing there yet, allocate new irq remapping table */
  3005. table = kzalloc(sizeof(*table), GFP_ATOMIC);
  3006. if (!table)
  3007. goto out;
  3008. if (ioapic)
  3009. /* Keep the first 32 indexes free for IOAPIC interrupts */
  3010. table->min_index = 32;
  3011. table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
  3012. if (!table->table) {
  3013. kfree(table);
  3014. table = NULL;
  3015. goto out;
  3016. }
  3017. memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
  3018. if (ioapic) {
  3019. int i;
  3020. for (i = 0; i < 32; ++i)
  3021. table->table[i] = IRTE_ALLOCATED;
  3022. }
  3023. irq_lookup_table[devid] = table;
  3024. set_dte_irq_entry(devid, table);
  3025. iommu_flush_dte(iommu, devid);
  3026. if (devid != alias) {
  3027. irq_lookup_table[alias] = table;
  3028. set_dte_irq_entry(devid, table);
  3029. iommu_flush_dte(iommu, alias);
  3030. }
  3031. out:
  3032. iommu_completion_wait(iommu);
  3033. out_unlock:
  3034. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  3035. return table;
  3036. }
  3037. static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
  3038. {
  3039. struct irq_remap_table *table;
  3040. unsigned long flags;
  3041. int index, c;
  3042. table = get_irq_table(devid, false);
  3043. if (!table)
  3044. return -ENODEV;
  3045. spin_lock_irqsave(&table->lock, flags);
  3046. /* Scan table for free entries */
  3047. for (c = 0, index = table->min_index;
  3048. index < MAX_IRQS_PER_TABLE;
  3049. ++index) {
  3050. if (table->table[index] == 0)
  3051. c += 1;
  3052. else
  3053. c = 0;
  3054. if (c == count) {
  3055. struct irq_2_iommu *irte_info;
  3056. for (; c != 0; --c)
  3057. table->table[index - c + 1] = IRTE_ALLOCATED;
  3058. index -= count - 1;
  3059. irte_info = &cfg->irq_2_iommu;
  3060. irte_info->sub_handle = devid;
  3061. irte_info->irte_index = index;
  3062. irte_info->iommu = (void *)cfg;
  3063. goto out;
  3064. }
  3065. }
  3066. index = -ENOSPC;
  3067. out:
  3068. spin_unlock_irqrestore(&table->lock, flags);
  3069. return index;
  3070. }
  3071. static int get_irte(u16 devid, int index, union irte *irte)
  3072. {
  3073. struct irq_remap_table *table;
  3074. unsigned long flags;
  3075. table = get_irq_table(devid, false);
  3076. if (!table)
  3077. return -ENOMEM;
  3078. spin_lock_irqsave(&table->lock, flags);
  3079. irte->val = table->table[index];
  3080. spin_unlock_irqrestore(&table->lock, flags);
  3081. return 0;
  3082. }
  3083. static int modify_irte(u16 devid, int index, union irte irte)
  3084. {
  3085. struct irq_remap_table *table;
  3086. struct amd_iommu *iommu;
  3087. unsigned long flags;
  3088. iommu = amd_iommu_rlookup_table[devid];
  3089. if (iommu == NULL)
  3090. return -EINVAL;
  3091. table = get_irq_table(devid, false);
  3092. if (!table)
  3093. return -ENOMEM;
  3094. spin_lock_irqsave(&table->lock, flags);
  3095. table->table[index] = irte.val;
  3096. spin_unlock_irqrestore(&table->lock, flags);
  3097. iommu_flush_irt(iommu, devid);
  3098. iommu_completion_wait(iommu);
  3099. return 0;
  3100. }
  3101. static void free_irte(u16 devid, int index)
  3102. {
  3103. struct irq_remap_table *table;
  3104. struct amd_iommu *iommu;
  3105. unsigned long flags;
  3106. iommu = amd_iommu_rlookup_table[devid];
  3107. if (iommu == NULL)
  3108. return;
  3109. table = get_irq_table(devid, false);
  3110. if (!table)
  3111. return;
  3112. spin_lock_irqsave(&table->lock, flags);
  3113. table->table[index] = 0;
  3114. spin_unlock_irqrestore(&table->lock, flags);
  3115. iommu_flush_irt(iommu, devid);
  3116. iommu_completion_wait(iommu);
  3117. }
  3118. static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
  3119. unsigned int destination, int vector,
  3120. struct io_apic_irq_attr *attr)
  3121. {
  3122. struct irq_remap_table *table;
  3123. struct irq_2_iommu *irte_info;
  3124. struct irq_cfg *cfg;
  3125. union irte irte;
  3126. int ioapic_id;
  3127. int index;
  3128. int devid;
  3129. int ret;
  3130. cfg = irq_get_chip_data(irq);
  3131. if (!cfg)
  3132. return -EINVAL;
  3133. irte_info = &cfg->irq_2_iommu;
  3134. ioapic_id = mpc_ioapic_id(attr->ioapic);
  3135. devid = get_ioapic_devid(ioapic_id);
  3136. if (devid < 0)
  3137. return devid;
  3138. table = get_irq_table(devid, true);
  3139. if (table == NULL)
  3140. return -ENOMEM;
  3141. index = attr->ioapic_pin;
  3142. /* Setup IRQ remapping info */
  3143. irte_info->sub_handle = devid;
  3144. irte_info->irte_index = index;
  3145. irte_info->iommu = (void *)cfg;
  3146. /* Setup IRTE for IOMMU */
  3147. irte.val = 0;
  3148. irte.fields.vector = vector;
  3149. irte.fields.int_type = apic->irq_delivery_mode;
  3150. irte.fields.destination = destination;
  3151. irte.fields.dm = apic->irq_dest_mode;
  3152. irte.fields.valid = 1;
  3153. ret = modify_irte(devid, index, irte);
  3154. if (ret)
  3155. return ret;
  3156. /* Setup IOAPIC entry */
  3157. memset(entry, 0, sizeof(*entry));
  3158. entry->vector = index;
  3159. entry->mask = 0;
  3160. entry->trigger = attr->trigger;
  3161. entry->polarity = attr->polarity;
  3162. /*
  3163. * Mask level triggered irqs.
  3164. */
  3165. if (attr->trigger)
  3166. entry->mask = 1;
  3167. return 0;
  3168. }
  3169. static int set_affinity(struct irq_data *data, const struct cpumask *mask,
  3170. bool force)
  3171. {
  3172. struct irq_2_iommu *irte_info;
  3173. unsigned int dest, irq;
  3174. struct irq_cfg *cfg;
  3175. union irte irte;
  3176. int err;
  3177. if (!config_enabled(CONFIG_SMP))
  3178. return -1;
  3179. cfg = data->chip_data;
  3180. irq = data->irq;
  3181. irte_info = &cfg->irq_2_iommu;
  3182. if (!cpumask_intersects(mask, cpu_online_mask))
  3183. return -EINVAL;
  3184. if (get_irte(irte_info->sub_handle, irte_info->irte_index, &irte))
  3185. return -EBUSY;
  3186. if (assign_irq_vector(irq, cfg, mask))
  3187. return -EBUSY;
  3188. err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
  3189. if (err) {
  3190. if (assign_irq_vector(irq, cfg, data->affinity))
  3191. pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
  3192. return err;
  3193. }
  3194. irte.fields.vector = cfg->vector;
  3195. irte.fields.destination = dest;
  3196. modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);
  3197. if (cfg->move_in_progress)
  3198. send_cleanup_vector(cfg);
  3199. cpumask_copy(data->affinity, mask);
  3200. return 0;
  3201. }
  3202. static int free_irq(int irq)
  3203. {
  3204. struct irq_2_iommu *irte_info;
  3205. struct irq_cfg *cfg;
  3206. cfg = irq_get_chip_data(irq);
  3207. if (!cfg)
  3208. return -EINVAL;
  3209. irte_info = &cfg->irq_2_iommu;
  3210. free_irte(irte_info->sub_handle, irte_info->irte_index);
  3211. return 0;
  3212. }
  3213. static void compose_msi_msg(struct pci_dev *pdev,
  3214. unsigned int irq, unsigned int dest,
  3215. struct msi_msg *msg, u8 hpet_id)
  3216. {
  3217. struct irq_2_iommu *irte_info;
  3218. struct irq_cfg *cfg;
  3219. union irte irte;
  3220. cfg = irq_get_chip_data(irq);
  3221. if (!cfg)
  3222. return;
  3223. irte_info = &cfg->irq_2_iommu;
  3224. irte.val = 0;
  3225. irte.fields.vector = cfg->vector;
  3226. irte.fields.int_type = apic->irq_delivery_mode;
  3227. irte.fields.destination = dest;
  3228. irte.fields.dm = apic->irq_dest_mode;
  3229. irte.fields.valid = 1;
  3230. modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);
  3231. msg->address_hi = MSI_ADDR_BASE_HI;
  3232. msg->address_lo = MSI_ADDR_BASE_LO;
  3233. msg->data = irte_info->irte_index;
  3234. }
  3235. static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
  3236. {
  3237. struct irq_cfg *cfg;
  3238. int index;
  3239. u16 devid;
  3240. if (!pdev)
  3241. return -EINVAL;
  3242. cfg = irq_get_chip_data(irq);
  3243. if (!cfg)
  3244. return -EINVAL;
  3245. devid = get_device_id(&pdev->dev);
  3246. index = alloc_irq_index(cfg, devid, nvec);
  3247. return index < 0 ? MAX_IRQS_PER_TABLE : index;
  3248. }
  3249. static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
  3250. int index, int offset)
  3251. {
  3252. struct irq_2_iommu *irte_info;
  3253. struct irq_cfg *cfg;
  3254. u16 devid;
  3255. if (!pdev)
  3256. return -EINVAL;
  3257. cfg = irq_get_chip_data(irq);
  3258. if (!cfg)
  3259. return -EINVAL;
  3260. if (index >= MAX_IRQS_PER_TABLE)
  3261. return 0;
  3262. devid = get_device_id(&pdev->dev);
  3263. irte_info = &cfg->irq_2_iommu;
  3264. irte_info->sub_handle = devid;
  3265. irte_info->irte_index = index + offset;
  3266. irte_info->iommu = (void *)cfg;
  3267. return 0;
  3268. }
  3269. static int setup_hpet_msi(unsigned int irq, unsigned int id)
  3270. {
  3271. struct irq_2_iommu *irte_info;
  3272. struct irq_cfg *cfg;
  3273. int index, devid;
  3274. cfg = irq_get_chip_data(irq);
  3275. if (!cfg)
  3276. return -EINVAL;
  3277. irte_info = &cfg->irq_2_iommu;
  3278. devid = get_hpet_devid(id);
  3279. if (devid < 0)
  3280. return devid;
  3281. index = alloc_irq_index(cfg, devid, 1);
  3282. if (index < 0)
  3283. return index;
  3284. irte_info->sub_handle = devid;
  3285. irte_info->irte_index = index;
  3286. irte_info->iommu = (void *)cfg;
  3287. return 0;
  3288. }
  3289. struct irq_remap_ops amd_iommu_irq_ops = {
  3290. .supported = amd_iommu_supported,
  3291. .prepare = amd_iommu_prepare,
  3292. .enable = amd_iommu_enable,
  3293. .disable = amd_iommu_disable,
  3294. .reenable = amd_iommu_reenable,
  3295. .enable_faulting = amd_iommu_enable_faulting,
  3296. .setup_ioapic_entry = setup_ioapic_entry,
  3297. .set_affinity = set_affinity,
  3298. .free_irq = free_irq,
  3299. .compose_msi_msg = compose_msi_msg,
  3300. .msi_alloc_irq = msi_alloc_irq,
  3301. .msi_setup_irq = msi_setup_irq,
  3302. .setup_hpet_msi = setup_hpet_msi,
  3303. };
  3304. #endif