fm801.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443
  1. /*
  2. * The driver for the ForteMedia FM801 based soundcards
  3. * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4. *
  5. * Support FM only card by Andy Shevchenko <andy@smile.org.ua>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/pci.h>
  26. #include <linux/slab.h>
  27. #include <linux/module.h>
  28. #include <sound/core.h>
  29. #include <sound/pcm.h>
  30. #include <sound/tlv.h>
  31. #include <sound/ac97_codec.h>
  32. #include <sound/mpu401.h>
  33. #include <sound/opl3.h>
  34. #include <sound/initval.h>
  35. #include <asm/io.h>
  36. #ifdef CONFIG_SND_FM801_TEA575X_BOOL
  37. #include <sound/tea575x-tuner.h>
  38. #endif
  39. MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
  40. MODULE_DESCRIPTION("ForteMedia FM801");
  41. MODULE_LICENSE("GPL");
  42. MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
  43. "{Genius,SoundMaker Live 5.1}}");
  44. static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
  45. static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
  46. static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
  47. /*
  48. * Enable TEA575x tuner
  49. * 1 = MediaForte 256-PCS
  50. * 2 = MediaForte 256-PCP
  51. * 3 = MediaForte 64-PCR
  52. * 16 = setup tuner only (this is additional bit), i.e. SF64-PCR FM card
  53. * High 16-bits are video (radio) device number + 1
  54. */
  55. static int tea575x_tuner[SNDRV_CARDS];
  56. static int radio_nr[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -1};
  57. module_param_array(index, int, NULL, 0444);
  58. MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
  59. module_param_array(id, charp, NULL, 0444);
  60. MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
  61. module_param_array(enable, bool, NULL, 0444);
  62. MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
  63. module_param_array(tea575x_tuner, int, NULL, 0444);
  64. MODULE_PARM_DESC(tea575x_tuner, "TEA575x tuner access method (0 = auto, 1 = SF256-PCS, 2=SF256-PCP, 3=SF64-PCR, 8=disable, +16=tuner-only).");
  65. module_param_array(radio_nr, int, NULL, 0444);
  66. MODULE_PARM_DESC(radio_nr, "Radio device numbers");
  67. #define TUNER_DISABLED (1<<3)
  68. #define TUNER_ONLY (1<<4)
  69. #define TUNER_TYPE_MASK (~TUNER_ONLY & 0xFFFF)
  70. /*
  71. * Direct registers
  72. */
  73. #define FM801_REG(chip, reg) (chip->port + FM801_##reg)
  74. #define FM801_PCM_VOL 0x00 /* PCM Output Volume */
  75. #define FM801_FM_VOL 0x02 /* FM Output Volume */
  76. #define FM801_I2S_VOL 0x04 /* I2S Volume */
  77. #define FM801_REC_SRC 0x06 /* Record Source */
  78. #define FM801_PLY_CTRL 0x08 /* Playback Control */
  79. #define FM801_PLY_COUNT 0x0a /* Playback Count */
  80. #define FM801_PLY_BUF1 0x0c /* Playback Bufer I */
  81. #define FM801_PLY_BUF2 0x10 /* Playback Buffer II */
  82. #define FM801_CAP_CTRL 0x14 /* Capture Control */
  83. #define FM801_CAP_COUNT 0x16 /* Capture Count */
  84. #define FM801_CAP_BUF1 0x18 /* Capture Buffer I */
  85. #define FM801_CAP_BUF2 0x1c /* Capture Buffer II */
  86. #define FM801_CODEC_CTRL 0x22 /* Codec Control */
  87. #define FM801_I2S_MODE 0x24 /* I2S Mode Control */
  88. #define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */
  89. #define FM801_I2C_CTRL 0x29 /* I2C Control */
  90. #define FM801_AC97_CMD 0x2a /* AC'97 Command */
  91. #define FM801_AC97_DATA 0x2c /* AC'97 Data */
  92. #define FM801_MPU401_DATA 0x30 /* MPU401 Data */
  93. #define FM801_MPU401_CMD 0x31 /* MPU401 Command */
  94. #define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */
  95. #define FM801_GEN_CTRL 0x54 /* General Control */
  96. #define FM801_IRQ_MASK 0x56 /* Interrupt Mask */
  97. #define FM801_IRQ_STATUS 0x5a /* Interrupt Status */
  98. #define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */
  99. #define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */
  100. #define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */
  101. #define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */
  102. #define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */
  103. /* codec access */
  104. #define FM801_AC97_READ (1<<7) /* read=1, write=0 */
  105. #define FM801_AC97_VALID (1<<8) /* port valid=1 */
  106. #define FM801_AC97_BUSY (1<<9) /* busy=1 */
  107. #define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */
  108. /* playback and record control register bits */
  109. #define FM801_BUF1_LAST (1<<1)
  110. #define FM801_BUF2_LAST (1<<2)
  111. #define FM801_START (1<<5)
  112. #define FM801_PAUSE (1<<6)
  113. #define FM801_IMMED_STOP (1<<7)
  114. #define FM801_RATE_SHIFT 8
  115. #define FM801_RATE_MASK (15 << FM801_RATE_SHIFT)
  116. #define FM801_CHANNELS_4 (1<<12) /* playback only */
  117. #define FM801_CHANNELS_6 (2<<12) /* playback only */
  118. #define FM801_CHANNELS_6MS (3<<12) /* playback only */
  119. #define FM801_CHANNELS_MASK (3<<12)
  120. #define FM801_16BIT (1<<14)
  121. #define FM801_STEREO (1<<15)
  122. /* IRQ status bits */
  123. #define FM801_IRQ_PLAYBACK (1<<8)
  124. #define FM801_IRQ_CAPTURE (1<<9)
  125. #define FM801_IRQ_VOLUME (1<<14)
  126. #define FM801_IRQ_MPU (1<<15)
  127. /* GPIO control register */
  128. #define FM801_GPIO_GP0 (1<<0) /* read/write */
  129. #define FM801_GPIO_GP1 (1<<1)
  130. #define FM801_GPIO_GP2 (1<<2)
  131. #define FM801_GPIO_GP3 (1<<3)
  132. #define FM801_GPIO_GP(x) (1<<(0+(x)))
  133. #define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/
  134. #define FM801_GPIO_GD1 (1<<9)
  135. #define FM801_GPIO_GD2 (1<<10)
  136. #define FM801_GPIO_GD3 (1<<11)
  137. #define FM801_GPIO_GD(x) (1<<(8+(x)))
  138. #define FM801_GPIO_GS0 (1<<12) /* function select: */
  139. #define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */
  140. #define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */
  141. #define FM801_GPIO_GS3 (1<<15)
  142. #define FM801_GPIO_GS(x) (1<<(12+(x)))
  143. /*
  144. */
  145. struct fm801 {
  146. int irq;
  147. unsigned long port; /* I/O port number */
  148. unsigned int multichannel: 1, /* multichannel support */
  149. secondary: 1; /* secondary codec */
  150. unsigned char secondary_addr; /* address of the secondary codec */
  151. unsigned int tea575x_tuner; /* tuner access method & flags */
  152. unsigned short ply_ctrl; /* playback control */
  153. unsigned short cap_ctrl; /* capture control */
  154. unsigned long ply_buffer;
  155. unsigned int ply_buf;
  156. unsigned int ply_count;
  157. unsigned int ply_size;
  158. unsigned int ply_pos;
  159. unsigned long cap_buffer;
  160. unsigned int cap_buf;
  161. unsigned int cap_count;
  162. unsigned int cap_size;
  163. unsigned int cap_pos;
  164. struct snd_ac97_bus *ac97_bus;
  165. struct snd_ac97 *ac97;
  166. struct snd_ac97 *ac97_sec;
  167. struct pci_dev *pci;
  168. struct snd_card *card;
  169. struct snd_pcm *pcm;
  170. struct snd_rawmidi *rmidi;
  171. struct snd_pcm_substream *playback_substream;
  172. struct snd_pcm_substream *capture_substream;
  173. unsigned int p_dma_size;
  174. unsigned int c_dma_size;
  175. spinlock_t reg_lock;
  176. struct snd_info_entry *proc_entry;
  177. #ifdef CONFIG_SND_FM801_TEA575X_BOOL
  178. struct v4l2_device v4l2_dev;
  179. struct snd_tea575x tea;
  180. #endif
  181. #ifdef CONFIG_PM_SLEEP
  182. u16 saved_regs[0x20];
  183. #endif
  184. };
  185. static DEFINE_PCI_DEVICE_TABLE(snd_fm801_ids) = {
  186. { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */
  187. { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */
  188. { 0, }
  189. };
  190. MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
  191. /*
  192. * common I/O routines
  193. */
  194. static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
  195. unsigned short mask, unsigned short value)
  196. {
  197. int change;
  198. unsigned long flags;
  199. unsigned short old, new;
  200. spin_lock_irqsave(&chip->reg_lock, flags);
  201. old = inw(chip->port + reg);
  202. new = (old & ~mask) | value;
  203. change = old != new;
  204. if (change)
  205. outw(new, chip->port + reg);
  206. spin_unlock_irqrestore(&chip->reg_lock, flags);
  207. return change;
  208. }
  209. static void snd_fm801_codec_write(struct snd_ac97 *ac97,
  210. unsigned short reg,
  211. unsigned short val)
  212. {
  213. struct fm801 *chip = ac97->private_data;
  214. int idx;
  215. /*
  216. * Wait until the codec interface is not ready..
  217. */
  218. for (idx = 0; idx < 100; idx++) {
  219. if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
  220. goto ok1;
  221. udelay(10);
  222. }
  223. snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
  224. return;
  225. ok1:
  226. /* write data and address */
  227. outw(val, FM801_REG(chip, AC97_DATA));
  228. outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
  229. /*
  230. * Wait until the write command is not completed..
  231. */
  232. for (idx = 0; idx < 1000; idx++) {
  233. if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
  234. return;
  235. udelay(10);
  236. }
  237. snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
  238. }
  239. static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
  240. {
  241. struct fm801 *chip = ac97->private_data;
  242. int idx;
  243. /*
  244. * Wait until the codec interface is not ready..
  245. */
  246. for (idx = 0; idx < 100; idx++) {
  247. if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
  248. goto ok1;
  249. udelay(10);
  250. }
  251. snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
  252. return 0;
  253. ok1:
  254. /* read command */
  255. outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
  256. FM801_REG(chip, AC97_CMD));
  257. for (idx = 0; idx < 100; idx++) {
  258. if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
  259. goto ok2;
  260. udelay(10);
  261. }
  262. snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
  263. return 0;
  264. ok2:
  265. for (idx = 0; idx < 1000; idx++) {
  266. if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
  267. goto ok3;
  268. udelay(10);
  269. }
  270. snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
  271. return 0;
  272. ok3:
  273. return inw(FM801_REG(chip, AC97_DATA));
  274. }
  275. static unsigned int rates[] = {
  276. 5500, 8000, 9600, 11025,
  277. 16000, 19200, 22050, 32000,
  278. 38400, 44100, 48000
  279. };
  280. static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
  281. .count = ARRAY_SIZE(rates),
  282. .list = rates,
  283. .mask = 0,
  284. };
  285. static unsigned int channels[] = {
  286. 2, 4, 6
  287. };
  288. static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
  289. .count = ARRAY_SIZE(channels),
  290. .list = channels,
  291. .mask = 0,
  292. };
  293. /*
  294. * Sample rate routines
  295. */
  296. static unsigned short snd_fm801_rate_bits(unsigned int rate)
  297. {
  298. unsigned int idx;
  299. for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
  300. if (rates[idx] == rate)
  301. return idx;
  302. snd_BUG();
  303. return ARRAY_SIZE(rates) - 1;
  304. }
  305. /*
  306. * PCM part
  307. */
  308. static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
  309. int cmd)
  310. {
  311. struct fm801 *chip = snd_pcm_substream_chip(substream);
  312. spin_lock(&chip->reg_lock);
  313. switch (cmd) {
  314. case SNDRV_PCM_TRIGGER_START:
  315. chip->ply_ctrl &= ~(FM801_BUF1_LAST |
  316. FM801_BUF2_LAST |
  317. FM801_PAUSE);
  318. chip->ply_ctrl |= FM801_START |
  319. FM801_IMMED_STOP;
  320. break;
  321. case SNDRV_PCM_TRIGGER_STOP:
  322. chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
  323. break;
  324. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  325. case SNDRV_PCM_TRIGGER_SUSPEND:
  326. chip->ply_ctrl |= FM801_PAUSE;
  327. break;
  328. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  329. case SNDRV_PCM_TRIGGER_RESUME:
  330. chip->ply_ctrl &= ~FM801_PAUSE;
  331. break;
  332. default:
  333. spin_unlock(&chip->reg_lock);
  334. snd_BUG();
  335. return -EINVAL;
  336. }
  337. outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
  338. spin_unlock(&chip->reg_lock);
  339. return 0;
  340. }
  341. static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
  342. int cmd)
  343. {
  344. struct fm801 *chip = snd_pcm_substream_chip(substream);
  345. spin_lock(&chip->reg_lock);
  346. switch (cmd) {
  347. case SNDRV_PCM_TRIGGER_START:
  348. chip->cap_ctrl &= ~(FM801_BUF1_LAST |
  349. FM801_BUF2_LAST |
  350. FM801_PAUSE);
  351. chip->cap_ctrl |= FM801_START |
  352. FM801_IMMED_STOP;
  353. break;
  354. case SNDRV_PCM_TRIGGER_STOP:
  355. chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
  356. break;
  357. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  358. case SNDRV_PCM_TRIGGER_SUSPEND:
  359. chip->cap_ctrl |= FM801_PAUSE;
  360. break;
  361. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  362. case SNDRV_PCM_TRIGGER_RESUME:
  363. chip->cap_ctrl &= ~FM801_PAUSE;
  364. break;
  365. default:
  366. spin_unlock(&chip->reg_lock);
  367. snd_BUG();
  368. return -EINVAL;
  369. }
  370. outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
  371. spin_unlock(&chip->reg_lock);
  372. return 0;
  373. }
  374. static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
  375. struct snd_pcm_hw_params *hw_params)
  376. {
  377. return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
  378. }
  379. static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
  380. {
  381. return snd_pcm_lib_free_pages(substream);
  382. }
  383. static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
  384. {
  385. struct fm801 *chip = snd_pcm_substream_chip(substream);
  386. struct snd_pcm_runtime *runtime = substream->runtime;
  387. chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
  388. chip->ply_count = snd_pcm_lib_period_bytes(substream);
  389. spin_lock_irq(&chip->reg_lock);
  390. chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
  391. FM801_STEREO | FM801_RATE_MASK |
  392. FM801_CHANNELS_MASK);
  393. if (snd_pcm_format_width(runtime->format) == 16)
  394. chip->ply_ctrl |= FM801_16BIT;
  395. if (runtime->channels > 1) {
  396. chip->ply_ctrl |= FM801_STEREO;
  397. if (runtime->channels == 4)
  398. chip->ply_ctrl |= FM801_CHANNELS_4;
  399. else if (runtime->channels == 6)
  400. chip->ply_ctrl |= FM801_CHANNELS_6;
  401. }
  402. chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
  403. chip->ply_buf = 0;
  404. outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
  405. outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
  406. chip->ply_buffer = runtime->dma_addr;
  407. chip->ply_pos = 0;
  408. outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
  409. outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
  410. spin_unlock_irq(&chip->reg_lock);
  411. return 0;
  412. }
  413. static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
  414. {
  415. struct fm801 *chip = snd_pcm_substream_chip(substream);
  416. struct snd_pcm_runtime *runtime = substream->runtime;
  417. chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
  418. chip->cap_count = snd_pcm_lib_period_bytes(substream);
  419. spin_lock_irq(&chip->reg_lock);
  420. chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
  421. FM801_STEREO | FM801_RATE_MASK);
  422. if (snd_pcm_format_width(runtime->format) == 16)
  423. chip->cap_ctrl |= FM801_16BIT;
  424. if (runtime->channels > 1)
  425. chip->cap_ctrl |= FM801_STEREO;
  426. chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
  427. chip->cap_buf = 0;
  428. outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
  429. outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
  430. chip->cap_buffer = runtime->dma_addr;
  431. chip->cap_pos = 0;
  432. outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
  433. outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
  434. spin_unlock_irq(&chip->reg_lock);
  435. return 0;
  436. }
  437. static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
  438. {
  439. struct fm801 *chip = snd_pcm_substream_chip(substream);
  440. size_t ptr;
  441. if (!(chip->ply_ctrl & FM801_START))
  442. return 0;
  443. spin_lock(&chip->reg_lock);
  444. ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
  445. if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
  446. ptr += chip->ply_count;
  447. ptr %= chip->ply_size;
  448. }
  449. spin_unlock(&chip->reg_lock);
  450. return bytes_to_frames(substream->runtime, ptr);
  451. }
  452. static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
  453. {
  454. struct fm801 *chip = snd_pcm_substream_chip(substream);
  455. size_t ptr;
  456. if (!(chip->cap_ctrl & FM801_START))
  457. return 0;
  458. spin_lock(&chip->reg_lock);
  459. ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
  460. if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
  461. ptr += chip->cap_count;
  462. ptr %= chip->cap_size;
  463. }
  464. spin_unlock(&chip->reg_lock);
  465. return bytes_to_frames(substream->runtime, ptr);
  466. }
  467. static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
  468. {
  469. struct fm801 *chip = dev_id;
  470. unsigned short status;
  471. unsigned int tmp;
  472. status = inw(FM801_REG(chip, IRQ_STATUS));
  473. status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
  474. if (! status)
  475. return IRQ_NONE;
  476. /* ack first */
  477. outw(status, FM801_REG(chip, IRQ_STATUS));
  478. if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
  479. spin_lock(&chip->reg_lock);
  480. chip->ply_buf++;
  481. chip->ply_pos += chip->ply_count;
  482. chip->ply_pos %= chip->ply_size;
  483. tmp = chip->ply_pos + chip->ply_count;
  484. tmp %= chip->ply_size;
  485. outl(chip->ply_buffer + tmp,
  486. (chip->ply_buf & 1) ?
  487. FM801_REG(chip, PLY_BUF1) :
  488. FM801_REG(chip, PLY_BUF2));
  489. spin_unlock(&chip->reg_lock);
  490. snd_pcm_period_elapsed(chip->playback_substream);
  491. }
  492. if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
  493. spin_lock(&chip->reg_lock);
  494. chip->cap_buf++;
  495. chip->cap_pos += chip->cap_count;
  496. chip->cap_pos %= chip->cap_size;
  497. tmp = chip->cap_pos + chip->cap_count;
  498. tmp %= chip->cap_size;
  499. outl(chip->cap_buffer + tmp,
  500. (chip->cap_buf & 1) ?
  501. FM801_REG(chip, CAP_BUF1) :
  502. FM801_REG(chip, CAP_BUF2));
  503. spin_unlock(&chip->reg_lock);
  504. snd_pcm_period_elapsed(chip->capture_substream);
  505. }
  506. if (chip->rmidi && (status & FM801_IRQ_MPU))
  507. snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
  508. if (status & FM801_IRQ_VOLUME)
  509. ;/* TODO */
  510. return IRQ_HANDLED;
  511. }
  512. static struct snd_pcm_hardware snd_fm801_playback =
  513. {
  514. .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
  515. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  516. SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
  517. SNDRV_PCM_INFO_MMAP_VALID),
  518. .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
  519. .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
  520. .rate_min = 5500,
  521. .rate_max = 48000,
  522. .channels_min = 1,
  523. .channels_max = 2,
  524. .buffer_bytes_max = (128*1024),
  525. .period_bytes_min = 64,
  526. .period_bytes_max = (128*1024),
  527. .periods_min = 1,
  528. .periods_max = 1024,
  529. .fifo_size = 0,
  530. };
  531. static struct snd_pcm_hardware snd_fm801_capture =
  532. {
  533. .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
  534. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  535. SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
  536. SNDRV_PCM_INFO_MMAP_VALID),
  537. .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
  538. .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
  539. .rate_min = 5500,
  540. .rate_max = 48000,
  541. .channels_min = 1,
  542. .channels_max = 2,
  543. .buffer_bytes_max = (128*1024),
  544. .period_bytes_min = 64,
  545. .period_bytes_max = (128*1024),
  546. .periods_min = 1,
  547. .periods_max = 1024,
  548. .fifo_size = 0,
  549. };
  550. static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
  551. {
  552. struct fm801 *chip = snd_pcm_substream_chip(substream);
  553. struct snd_pcm_runtime *runtime = substream->runtime;
  554. int err;
  555. chip->playback_substream = substream;
  556. runtime->hw = snd_fm801_playback;
  557. snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
  558. &hw_constraints_rates);
  559. if (chip->multichannel) {
  560. runtime->hw.channels_max = 6;
  561. snd_pcm_hw_constraint_list(runtime, 0,
  562. SNDRV_PCM_HW_PARAM_CHANNELS,
  563. &hw_constraints_channels);
  564. }
  565. if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
  566. return err;
  567. return 0;
  568. }
  569. static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
  570. {
  571. struct fm801 *chip = snd_pcm_substream_chip(substream);
  572. struct snd_pcm_runtime *runtime = substream->runtime;
  573. int err;
  574. chip->capture_substream = substream;
  575. runtime->hw = snd_fm801_capture;
  576. snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
  577. &hw_constraints_rates);
  578. if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
  579. return err;
  580. return 0;
  581. }
  582. static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
  583. {
  584. struct fm801 *chip = snd_pcm_substream_chip(substream);
  585. chip->playback_substream = NULL;
  586. return 0;
  587. }
  588. static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
  589. {
  590. struct fm801 *chip = snd_pcm_substream_chip(substream);
  591. chip->capture_substream = NULL;
  592. return 0;
  593. }
  594. static struct snd_pcm_ops snd_fm801_playback_ops = {
  595. .open = snd_fm801_playback_open,
  596. .close = snd_fm801_playback_close,
  597. .ioctl = snd_pcm_lib_ioctl,
  598. .hw_params = snd_fm801_hw_params,
  599. .hw_free = snd_fm801_hw_free,
  600. .prepare = snd_fm801_playback_prepare,
  601. .trigger = snd_fm801_playback_trigger,
  602. .pointer = snd_fm801_playback_pointer,
  603. };
  604. static struct snd_pcm_ops snd_fm801_capture_ops = {
  605. .open = snd_fm801_capture_open,
  606. .close = snd_fm801_capture_close,
  607. .ioctl = snd_pcm_lib_ioctl,
  608. .hw_params = snd_fm801_hw_params,
  609. .hw_free = snd_fm801_hw_free,
  610. .prepare = snd_fm801_capture_prepare,
  611. .trigger = snd_fm801_capture_trigger,
  612. .pointer = snd_fm801_capture_pointer,
  613. };
  614. static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
  615. {
  616. struct snd_pcm *pcm;
  617. int err;
  618. if (rpcm)
  619. *rpcm = NULL;
  620. if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
  621. return err;
  622. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
  623. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
  624. pcm->private_data = chip;
  625. pcm->info_flags = 0;
  626. strcpy(pcm->name, "FM801");
  627. chip->pcm = pcm;
  628. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
  629. snd_dma_pci_data(chip->pci),
  630. chip->multichannel ? 128*1024 : 64*1024, 128*1024);
  631. err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
  632. snd_pcm_alt_chmaps,
  633. chip->multichannel ? 6 : 2, 0,
  634. NULL);
  635. if (err < 0)
  636. return err;
  637. if (rpcm)
  638. *rpcm = pcm;
  639. return 0;
  640. }
  641. /*
  642. * TEA5757 radio
  643. */
  644. #ifdef CONFIG_SND_FM801_TEA575X_BOOL
  645. /* GPIO to TEA575x maps */
  646. struct snd_fm801_tea575x_gpio {
  647. u8 data, clk, wren, most;
  648. char *name;
  649. };
  650. static struct snd_fm801_tea575x_gpio snd_fm801_tea575x_gpios[] = {
  651. { .data = 1, .clk = 3, .wren = 2, .most = 0, .name = "SF256-PCS" },
  652. { .data = 1, .clk = 0, .wren = 2, .most = 3, .name = "SF256-PCP" },
  653. { .data = 2, .clk = 0, .wren = 1, .most = 3, .name = "SF64-PCR" },
  654. };
  655. #define get_tea575x_gpio(chip) \
  656. (&snd_fm801_tea575x_gpios[((chip)->tea575x_tuner & TUNER_TYPE_MASK) - 1])
  657. static void snd_fm801_tea575x_set_pins(struct snd_tea575x *tea, u8 pins)
  658. {
  659. struct fm801 *chip = tea->private_data;
  660. unsigned short reg = inw(FM801_REG(chip, GPIO_CTRL));
  661. struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip);
  662. reg &= ~(FM801_GPIO_GP(gpio.data) |
  663. FM801_GPIO_GP(gpio.clk) |
  664. FM801_GPIO_GP(gpio.wren));
  665. reg |= (pins & TEA575X_DATA) ? FM801_GPIO_GP(gpio.data) : 0;
  666. reg |= (pins & TEA575X_CLK) ? FM801_GPIO_GP(gpio.clk) : 0;
  667. /* WRITE_ENABLE is inverted */
  668. reg |= (pins & TEA575X_WREN) ? 0 : FM801_GPIO_GP(gpio.wren);
  669. outw(reg, FM801_REG(chip, GPIO_CTRL));
  670. }
  671. static u8 snd_fm801_tea575x_get_pins(struct snd_tea575x *tea)
  672. {
  673. struct fm801 *chip = tea->private_data;
  674. unsigned short reg = inw(FM801_REG(chip, GPIO_CTRL));
  675. struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip);
  676. return (reg & FM801_GPIO_GP(gpio.data)) ? TEA575X_DATA : 0 |
  677. (reg & FM801_GPIO_GP(gpio.most)) ? TEA575X_MOST : 0;
  678. }
  679. static void snd_fm801_tea575x_set_direction(struct snd_tea575x *tea, bool output)
  680. {
  681. struct fm801 *chip = tea->private_data;
  682. unsigned short reg = inw(FM801_REG(chip, GPIO_CTRL));
  683. struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip);
  684. /* use GPIO lines and set write enable bit */
  685. reg |= FM801_GPIO_GS(gpio.data) |
  686. FM801_GPIO_GS(gpio.wren) |
  687. FM801_GPIO_GS(gpio.clk) |
  688. FM801_GPIO_GS(gpio.most);
  689. if (output) {
  690. /* all of lines are in the write direction */
  691. /* clear data and clock lines */
  692. reg &= ~(FM801_GPIO_GD(gpio.data) |
  693. FM801_GPIO_GD(gpio.wren) |
  694. FM801_GPIO_GD(gpio.clk) |
  695. FM801_GPIO_GP(gpio.data) |
  696. FM801_GPIO_GP(gpio.clk) |
  697. FM801_GPIO_GP(gpio.wren));
  698. } else {
  699. /* use GPIO lines, set data direction to input */
  700. reg |= FM801_GPIO_GD(gpio.data) |
  701. FM801_GPIO_GD(gpio.most) |
  702. FM801_GPIO_GP(gpio.data) |
  703. FM801_GPIO_GP(gpio.most) |
  704. FM801_GPIO_GP(gpio.wren);
  705. /* all of lines are in the write direction, except data */
  706. /* clear data, write enable and clock lines */
  707. reg &= ~(FM801_GPIO_GD(gpio.wren) |
  708. FM801_GPIO_GD(gpio.clk) |
  709. FM801_GPIO_GP(gpio.clk));
  710. }
  711. outw(reg, FM801_REG(chip, GPIO_CTRL));
  712. }
  713. static struct snd_tea575x_ops snd_fm801_tea_ops = {
  714. .set_pins = snd_fm801_tea575x_set_pins,
  715. .get_pins = snd_fm801_tea575x_get_pins,
  716. .set_direction = snd_fm801_tea575x_set_direction,
  717. };
  718. #endif
  719. /*
  720. * Mixer routines
  721. */
  722. #define FM801_SINGLE(xname, reg, shift, mask, invert) \
  723. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
  724. .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
  725. .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
  726. static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
  727. struct snd_ctl_elem_info *uinfo)
  728. {
  729. int mask = (kcontrol->private_value >> 16) & 0xff;
  730. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  731. uinfo->count = 1;
  732. uinfo->value.integer.min = 0;
  733. uinfo->value.integer.max = mask;
  734. return 0;
  735. }
  736. static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
  737. struct snd_ctl_elem_value *ucontrol)
  738. {
  739. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  740. int reg = kcontrol->private_value & 0xff;
  741. int shift = (kcontrol->private_value >> 8) & 0xff;
  742. int mask = (kcontrol->private_value >> 16) & 0xff;
  743. int invert = (kcontrol->private_value >> 24) & 0xff;
  744. ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
  745. if (invert)
  746. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  747. return 0;
  748. }
  749. static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
  750. struct snd_ctl_elem_value *ucontrol)
  751. {
  752. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  753. int reg = kcontrol->private_value & 0xff;
  754. int shift = (kcontrol->private_value >> 8) & 0xff;
  755. int mask = (kcontrol->private_value >> 16) & 0xff;
  756. int invert = (kcontrol->private_value >> 24) & 0xff;
  757. unsigned short val;
  758. val = (ucontrol->value.integer.value[0] & mask);
  759. if (invert)
  760. val = mask - val;
  761. return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
  762. }
  763. #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
  764. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
  765. .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  766. .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
  767. #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
  768. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  769. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  770. .name = xname, .info = snd_fm801_info_double, \
  771. .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  772. .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
  773. .tlv = { .p = (xtlv) } }
  774. static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
  775. struct snd_ctl_elem_info *uinfo)
  776. {
  777. int mask = (kcontrol->private_value >> 16) & 0xff;
  778. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  779. uinfo->count = 2;
  780. uinfo->value.integer.min = 0;
  781. uinfo->value.integer.max = mask;
  782. return 0;
  783. }
  784. static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
  785. struct snd_ctl_elem_value *ucontrol)
  786. {
  787. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  788. int reg = kcontrol->private_value & 0xff;
  789. int shift_left = (kcontrol->private_value >> 8) & 0x0f;
  790. int shift_right = (kcontrol->private_value >> 12) & 0x0f;
  791. int mask = (kcontrol->private_value >> 16) & 0xff;
  792. int invert = (kcontrol->private_value >> 24) & 0xff;
  793. spin_lock_irq(&chip->reg_lock);
  794. ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
  795. ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
  796. spin_unlock_irq(&chip->reg_lock);
  797. if (invert) {
  798. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  799. ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
  800. }
  801. return 0;
  802. }
  803. static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
  804. struct snd_ctl_elem_value *ucontrol)
  805. {
  806. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  807. int reg = kcontrol->private_value & 0xff;
  808. int shift_left = (kcontrol->private_value >> 8) & 0x0f;
  809. int shift_right = (kcontrol->private_value >> 12) & 0x0f;
  810. int mask = (kcontrol->private_value >> 16) & 0xff;
  811. int invert = (kcontrol->private_value >> 24) & 0xff;
  812. unsigned short val1, val2;
  813. val1 = ucontrol->value.integer.value[0] & mask;
  814. val2 = ucontrol->value.integer.value[1] & mask;
  815. if (invert) {
  816. val1 = mask - val1;
  817. val2 = mask - val2;
  818. }
  819. return snd_fm801_update_bits(chip, reg,
  820. (mask << shift_left) | (mask << shift_right),
  821. (val1 << shift_left ) | (val2 << shift_right));
  822. }
  823. static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
  824. struct snd_ctl_elem_info *uinfo)
  825. {
  826. static char *texts[5] = {
  827. "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
  828. };
  829. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  830. uinfo->count = 1;
  831. uinfo->value.enumerated.items = 5;
  832. if (uinfo->value.enumerated.item > 4)
  833. uinfo->value.enumerated.item = 4;
  834. strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
  835. return 0;
  836. }
  837. static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
  838. struct snd_ctl_elem_value *ucontrol)
  839. {
  840. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  841. unsigned short val;
  842. val = inw(FM801_REG(chip, REC_SRC)) & 7;
  843. if (val > 4)
  844. val = 4;
  845. ucontrol->value.enumerated.item[0] = val;
  846. return 0;
  847. }
  848. static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
  849. struct snd_ctl_elem_value *ucontrol)
  850. {
  851. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  852. unsigned short val;
  853. if ((val = ucontrol->value.enumerated.item[0]) > 4)
  854. return -EINVAL;
  855. return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
  856. }
  857. static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
  858. #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
  859. static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
  860. FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
  861. db_scale_dsp),
  862. FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
  863. FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
  864. db_scale_dsp),
  865. FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
  866. FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
  867. db_scale_dsp),
  868. FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
  869. {
  870. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  871. .name = "Digital Capture Source",
  872. .info = snd_fm801_info_mux,
  873. .get = snd_fm801_get_mux,
  874. .put = snd_fm801_put_mux,
  875. }
  876. };
  877. #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
  878. static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
  879. FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
  880. FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
  881. FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
  882. FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
  883. FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
  884. FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
  885. };
  886. static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
  887. {
  888. struct fm801 *chip = bus->private_data;
  889. chip->ac97_bus = NULL;
  890. }
  891. static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
  892. {
  893. struct fm801 *chip = ac97->private_data;
  894. if (ac97->num == 0) {
  895. chip->ac97 = NULL;
  896. } else {
  897. chip->ac97_sec = NULL;
  898. }
  899. }
  900. static int __devinit snd_fm801_mixer(struct fm801 *chip)
  901. {
  902. struct snd_ac97_template ac97;
  903. unsigned int i;
  904. int err;
  905. static struct snd_ac97_bus_ops ops = {
  906. .write = snd_fm801_codec_write,
  907. .read = snd_fm801_codec_read,
  908. };
  909. if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
  910. return err;
  911. chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
  912. memset(&ac97, 0, sizeof(ac97));
  913. ac97.private_data = chip;
  914. ac97.private_free = snd_fm801_mixer_free_ac97;
  915. if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
  916. return err;
  917. if (chip->secondary) {
  918. ac97.num = 1;
  919. ac97.addr = chip->secondary_addr;
  920. if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
  921. return err;
  922. }
  923. for (i = 0; i < FM801_CONTROLS; i++)
  924. snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
  925. if (chip->multichannel) {
  926. for (i = 0; i < FM801_CONTROLS_MULTI; i++)
  927. snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
  928. }
  929. return 0;
  930. }
  931. /*
  932. * initialization routines
  933. */
  934. static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
  935. unsigned short reg, unsigned long waits)
  936. {
  937. unsigned long timeout = jiffies + waits;
  938. outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
  939. FM801_REG(chip, AC97_CMD));
  940. udelay(5);
  941. do {
  942. if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
  943. == FM801_AC97_VALID)
  944. return 0;
  945. schedule_timeout_uninterruptible(1);
  946. } while (time_after(timeout, jiffies));
  947. return -EIO;
  948. }
  949. static int snd_fm801_chip_init(struct fm801 *chip, int resume)
  950. {
  951. unsigned short cmdw;
  952. if (chip->tea575x_tuner & TUNER_ONLY)
  953. goto __ac97_ok;
  954. /* codec cold reset + AC'97 warm reset */
  955. outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
  956. inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
  957. udelay(100);
  958. outw(0, FM801_REG(chip, CODEC_CTRL));
  959. if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0)
  960. if (!resume) {
  961. snd_printk(KERN_INFO "Primary AC'97 codec not found, "
  962. "assume SF64-PCR (tuner-only)\n");
  963. chip->tea575x_tuner = 3 | TUNER_ONLY;
  964. goto __ac97_ok;
  965. }
  966. if (chip->multichannel) {
  967. if (chip->secondary_addr) {
  968. wait_for_codec(chip, chip->secondary_addr,
  969. AC97_VENDOR_ID1, msecs_to_jiffies(50));
  970. } else {
  971. /* my card has the secondary codec */
  972. /* at address #3, so the loop is inverted */
  973. int i;
  974. for (i = 3; i > 0; i--) {
  975. if (!wait_for_codec(chip, i, AC97_VENDOR_ID1,
  976. msecs_to_jiffies(50))) {
  977. cmdw = inw(FM801_REG(chip, AC97_DATA));
  978. if (cmdw != 0xffff && cmdw != 0) {
  979. chip->secondary = 1;
  980. chip->secondary_addr = i;
  981. break;
  982. }
  983. }
  984. }
  985. }
  986. /* the recovery phase, it seems that probing for non-existing codec might */
  987. /* cause timeout problems */
  988. wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
  989. }
  990. __ac97_ok:
  991. /* init volume */
  992. outw(0x0808, FM801_REG(chip, PCM_VOL));
  993. outw(0x9f1f, FM801_REG(chip, FM_VOL));
  994. outw(0x8808, FM801_REG(chip, I2S_VOL));
  995. /* I2S control - I2S mode */
  996. outw(0x0003, FM801_REG(chip, I2S_MODE));
  997. /* interrupt setup */
  998. cmdw = inw(FM801_REG(chip, IRQ_MASK));
  999. if (chip->irq < 0)
  1000. cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */
  1001. else
  1002. cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */
  1003. outw(cmdw, FM801_REG(chip, IRQ_MASK));
  1004. /* interrupt clear */
  1005. outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
  1006. return 0;
  1007. }
  1008. static int snd_fm801_free(struct fm801 *chip)
  1009. {
  1010. unsigned short cmdw;
  1011. if (chip->irq < 0)
  1012. goto __end_hw;
  1013. /* interrupt setup - mask everything */
  1014. cmdw = inw(FM801_REG(chip, IRQ_MASK));
  1015. cmdw |= 0x00c3;
  1016. outw(cmdw, FM801_REG(chip, IRQ_MASK));
  1017. __end_hw:
  1018. #ifdef CONFIG_SND_FM801_TEA575X_BOOL
  1019. if (!(chip->tea575x_tuner & TUNER_DISABLED)) {
  1020. snd_tea575x_exit(&chip->tea);
  1021. v4l2_device_unregister(&chip->v4l2_dev);
  1022. }
  1023. #endif
  1024. if (chip->irq >= 0)
  1025. free_irq(chip->irq, chip);
  1026. pci_release_regions(chip->pci);
  1027. pci_disable_device(chip->pci);
  1028. kfree(chip);
  1029. return 0;
  1030. }
  1031. static int snd_fm801_dev_free(struct snd_device *device)
  1032. {
  1033. struct fm801 *chip = device->device_data;
  1034. return snd_fm801_free(chip);
  1035. }
  1036. static int __devinit snd_fm801_create(struct snd_card *card,
  1037. struct pci_dev * pci,
  1038. int tea575x_tuner,
  1039. int radio_nr,
  1040. struct fm801 ** rchip)
  1041. {
  1042. struct fm801 *chip;
  1043. int err;
  1044. static struct snd_device_ops ops = {
  1045. .dev_free = snd_fm801_dev_free,
  1046. };
  1047. *rchip = NULL;
  1048. if ((err = pci_enable_device(pci)) < 0)
  1049. return err;
  1050. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  1051. if (chip == NULL) {
  1052. pci_disable_device(pci);
  1053. return -ENOMEM;
  1054. }
  1055. spin_lock_init(&chip->reg_lock);
  1056. chip->card = card;
  1057. chip->pci = pci;
  1058. chip->irq = -1;
  1059. chip->tea575x_tuner = tea575x_tuner;
  1060. if ((err = pci_request_regions(pci, "FM801")) < 0) {
  1061. kfree(chip);
  1062. pci_disable_device(pci);
  1063. return err;
  1064. }
  1065. chip->port = pci_resource_start(pci, 0);
  1066. if ((tea575x_tuner & TUNER_ONLY) == 0) {
  1067. if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED,
  1068. KBUILD_MODNAME, chip)) {
  1069. snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
  1070. snd_fm801_free(chip);
  1071. return -EBUSY;
  1072. }
  1073. chip->irq = pci->irq;
  1074. pci_set_master(pci);
  1075. }
  1076. if (pci->revision >= 0xb1) /* FM801-AU */
  1077. chip->multichannel = 1;
  1078. snd_fm801_chip_init(chip, 0);
  1079. /* init might set tuner access method */
  1080. tea575x_tuner = chip->tea575x_tuner;
  1081. if (chip->irq >= 0 && (tea575x_tuner & TUNER_ONLY)) {
  1082. pci_clear_master(pci);
  1083. free_irq(chip->irq, chip);
  1084. chip->irq = -1;
  1085. }
  1086. if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
  1087. snd_fm801_free(chip);
  1088. return err;
  1089. }
  1090. snd_card_set_dev(card, &pci->dev);
  1091. #ifdef CONFIG_SND_FM801_TEA575X_BOOL
  1092. err = v4l2_device_register(&pci->dev, &chip->v4l2_dev);
  1093. if (err < 0) {
  1094. snd_fm801_free(chip);
  1095. return err;
  1096. }
  1097. chip->tea.v4l2_dev = &chip->v4l2_dev;
  1098. chip->tea.radio_nr = radio_nr;
  1099. chip->tea.private_data = chip;
  1100. chip->tea.ops = &snd_fm801_tea_ops;
  1101. sprintf(chip->tea.bus_info, "PCI:%s", pci_name(pci));
  1102. if ((tea575x_tuner & TUNER_TYPE_MASK) > 0 &&
  1103. (tea575x_tuner & TUNER_TYPE_MASK) < 4) {
  1104. if (snd_tea575x_init(&chip->tea, THIS_MODULE)) {
  1105. snd_printk(KERN_ERR "TEA575x radio not found\n");
  1106. snd_fm801_free(chip);
  1107. return -ENODEV;
  1108. }
  1109. } else if ((tea575x_tuner & TUNER_TYPE_MASK) == 0) {
  1110. /* autodetect tuner connection */
  1111. for (tea575x_tuner = 1; tea575x_tuner <= 3; tea575x_tuner++) {
  1112. chip->tea575x_tuner = tea575x_tuner;
  1113. if (!snd_tea575x_init(&chip->tea, THIS_MODULE)) {
  1114. snd_printk(KERN_INFO "detected TEA575x radio type %s\n",
  1115. get_tea575x_gpio(chip)->name);
  1116. break;
  1117. }
  1118. }
  1119. if (tea575x_tuner == 4) {
  1120. snd_printk(KERN_ERR "TEA575x radio not found\n");
  1121. chip->tea575x_tuner = TUNER_DISABLED;
  1122. }
  1123. }
  1124. if (!(chip->tea575x_tuner & TUNER_DISABLED)) {
  1125. strlcpy(chip->tea.card, get_tea575x_gpio(chip)->name,
  1126. sizeof(chip->tea.card));
  1127. }
  1128. #endif
  1129. *rchip = chip;
  1130. return 0;
  1131. }
  1132. static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
  1133. const struct pci_device_id *pci_id)
  1134. {
  1135. static int dev;
  1136. struct snd_card *card;
  1137. struct fm801 *chip;
  1138. struct snd_opl3 *opl3;
  1139. int err;
  1140. if (dev >= SNDRV_CARDS)
  1141. return -ENODEV;
  1142. if (!enable[dev]) {
  1143. dev++;
  1144. return -ENOENT;
  1145. }
  1146. err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
  1147. if (err < 0)
  1148. return err;
  1149. if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], radio_nr[dev], &chip)) < 0) {
  1150. snd_card_free(card);
  1151. return err;
  1152. }
  1153. card->private_data = chip;
  1154. strcpy(card->driver, "FM801");
  1155. strcpy(card->shortname, "ForteMedia FM801-");
  1156. strcat(card->shortname, chip->multichannel ? "AU" : "AS");
  1157. sprintf(card->longname, "%s at 0x%lx, irq %i",
  1158. card->shortname, chip->port, chip->irq);
  1159. if (chip->tea575x_tuner & TUNER_ONLY)
  1160. goto __fm801_tuner_only;
  1161. if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
  1162. snd_card_free(card);
  1163. return err;
  1164. }
  1165. if ((err = snd_fm801_mixer(chip)) < 0) {
  1166. snd_card_free(card);
  1167. return err;
  1168. }
  1169. if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
  1170. FM801_REG(chip, MPU401_DATA),
  1171. MPU401_INFO_INTEGRATED |
  1172. MPU401_INFO_IRQ_HOOK,
  1173. -1, &chip->rmidi)) < 0) {
  1174. snd_card_free(card);
  1175. return err;
  1176. }
  1177. if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
  1178. FM801_REG(chip, OPL3_BANK1),
  1179. OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
  1180. snd_card_free(card);
  1181. return err;
  1182. }
  1183. if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
  1184. snd_card_free(card);
  1185. return err;
  1186. }
  1187. __fm801_tuner_only:
  1188. if ((err = snd_card_register(card)) < 0) {
  1189. snd_card_free(card);
  1190. return err;
  1191. }
  1192. pci_set_drvdata(pci, card);
  1193. dev++;
  1194. return 0;
  1195. }
  1196. static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
  1197. {
  1198. snd_card_free(pci_get_drvdata(pci));
  1199. pci_set_drvdata(pci, NULL);
  1200. }
  1201. #ifdef CONFIG_PM_SLEEP
  1202. static unsigned char saved_regs[] = {
  1203. FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
  1204. FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
  1205. FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
  1206. FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
  1207. };
  1208. static int snd_fm801_suspend(struct device *dev)
  1209. {
  1210. struct pci_dev *pci = to_pci_dev(dev);
  1211. struct snd_card *card = dev_get_drvdata(dev);
  1212. struct fm801 *chip = card->private_data;
  1213. int i;
  1214. snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
  1215. snd_pcm_suspend_all(chip->pcm);
  1216. snd_ac97_suspend(chip->ac97);
  1217. snd_ac97_suspend(chip->ac97_sec);
  1218. for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
  1219. chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
  1220. /* FIXME: tea575x suspend */
  1221. pci_disable_device(pci);
  1222. pci_save_state(pci);
  1223. pci_set_power_state(pci, PCI_D3hot);
  1224. return 0;
  1225. }
  1226. static int snd_fm801_resume(struct device *dev)
  1227. {
  1228. struct pci_dev *pci = to_pci_dev(dev);
  1229. struct snd_card *card = dev_get_drvdata(dev);
  1230. struct fm801 *chip = card->private_data;
  1231. int i;
  1232. pci_set_power_state(pci, PCI_D0);
  1233. pci_restore_state(pci);
  1234. if (pci_enable_device(pci) < 0) {
  1235. printk(KERN_ERR "fm801: pci_enable_device failed, "
  1236. "disabling device\n");
  1237. snd_card_disconnect(card);
  1238. return -EIO;
  1239. }
  1240. pci_set_master(pci);
  1241. snd_fm801_chip_init(chip, 1);
  1242. snd_ac97_resume(chip->ac97);
  1243. snd_ac97_resume(chip->ac97_sec);
  1244. for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
  1245. outw(chip->saved_regs[i], chip->port + saved_regs[i]);
  1246. snd_power_change_state(card, SNDRV_CTL_POWER_D0);
  1247. return 0;
  1248. }
  1249. static SIMPLE_DEV_PM_OPS(snd_fm801_pm, snd_fm801_suspend, snd_fm801_resume);
  1250. #define SND_FM801_PM_OPS &snd_fm801_pm
  1251. #else
  1252. #define SND_FM801_PM_OPS NULL
  1253. #endif /* CONFIG_PM_SLEEP */
  1254. static struct pci_driver fm801_driver = {
  1255. .name = KBUILD_MODNAME,
  1256. .id_table = snd_fm801_ids,
  1257. .probe = snd_card_fm801_probe,
  1258. .remove = __devexit_p(snd_card_fm801_remove),
  1259. .driver = {
  1260. .pm = SND_FM801_PM_OPS,
  1261. },
  1262. };
  1263. module_pci_driver(fm801_driver);