af_netlink.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  13. * added netlink_proto_exit
  14. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  15. * use nlk_sk, as sk->protinfo is on a diet 8)
  16. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  17. * - inc module use count of module that owns
  18. * the kernel socket in case userspace opens
  19. * socket of same protocol
  20. * - remove all module support, since netlink is
  21. * mandatory if CONFIG_NET=y these days
  22. */
  23. #include <linux/module.h>
  24. #include <linux/capability.h>
  25. #include <linux/kernel.h>
  26. #include <linux/init.h>
  27. #include <linux/signal.h>
  28. #include <linux/sched.h>
  29. #include <linux/errno.h>
  30. #include <linux/string.h>
  31. #include <linux/stat.h>
  32. #include <linux/socket.h>
  33. #include <linux/un.h>
  34. #include <linux/fcntl.h>
  35. #include <linux/termios.h>
  36. #include <linux/sockios.h>
  37. #include <linux/net.h>
  38. #include <linux/fs.h>
  39. #include <linux/slab.h>
  40. #include <asm/uaccess.h>
  41. #include <linux/skbuff.h>
  42. #include <linux/netdevice.h>
  43. #include <linux/rtnetlink.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/notifier.h>
  47. #include <linux/security.h>
  48. #include <linux/jhash.h>
  49. #include <linux/jiffies.h>
  50. #include <linux/random.h>
  51. #include <linux/bitops.h>
  52. #include <linux/mm.h>
  53. #include <linux/types.h>
  54. #include <linux/audit.h>
  55. #include <linux/mutex.h>
  56. #include <net/net_namespace.h>
  57. #include <net/sock.h>
  58. #include <net/scm.h>
  59. #include <net/netlink.h>
  60. #define NLGRPSZ(x) (ALIGN(x, sizeof(unsigned long) * 8) / 8)
  61. #define NLGRPLONGS(x) (NLGRPSZ(x)/sizeof(unsigned long))
  62. struct netlink_sock {
  63. /* struct sock has to be the first member of netlink_sock */
  64. struct sock sk;
  65. u32 portid;
  66. u32 dst_portid;
  67. u32 dst_group;
  68. u32 flags;
  69. u32 subscriptions;
  70. u32 ngroups;
  71. unsigned long *groups;
  72. unsigned long state;
  73. wait_queue_head_t wait;
  74. struct netlink_callback *cb;
  75. struct mutex *cb_mutex;
  76. struct mutex cb_def_mutex;
  77. void (*netlink_rcv)(struct sk_buff *skb);
  78. void (*netlink_bind)(int group);
  79. struct module *module;
  80. };
  81. struct listeners {
  82. struct rcu_head rcu;
  83. unsigned long masks[0];
  84. };
  85. #define NETLINK_KERNEL_SOCKET 0x1
  86. #define NETLINK_RECV_PKTINFO 0x2
  87. #define NETLINK_BROADCAST_SEND_ERROR 0x4
  88. #define NETLINK_RECV_NO_ENOBUFS 0x8
  89. static inline struct netlink_sock *nlk_sk(struct sock *sk)
  90. {
  91. return container_of(sk, struct netlink_sock, sk);
  92. }
  93. static inline int netlink_is_kernel(struct sock *sk)
  94. {
  95. return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
  96. }
  97. struct nl_portid_hash {
  98. struct hlist_head *table;
  99. unsigned long rehash_time;
  100. unsigned int mask;
  101. unsigned int shift;
  102. unsigned int entries;
  103. unsigned int max_shift;
  104. u32 rnd;
  105. };
  106. struct netlink_table {
  107. struct nl_portid_hash hash;
  108. struct hlist_head mc_list;
  109. struct listeners __rcu *listeners;
  110. unsigned int flags;
  111. unsigned int groups;
  112. struct mutex *cb_mutex;
  113. struct module *module;
  114. void (*bind)(int group);
  115. int registered;
  116. };
  117. static struct netlink_table *nl_table;
  118. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  119. static int netlink_dump(struct sock *sk);
  120. static DEFINE_RWLOCK(nl_table_lock);
  121. static atomic_t nl_table_users = ATOMIC_INIT(0);
  122. static ATOMIC_NOTIFIER_HEAD(netlink_chain);
  123. static inline u32 netlink_group_mask(u32 group)
  124. {
  125. return group ? 1 << (group - 1) : 0;
  126. }
  127. static inline struct hlist_head *nl_portid_hashfn(struct nl_portid_hash *hash, u32 portid)
  128. {
  129. return &hash->table[jhash_1word(portid, hash->rnd) & hash->mask];
  130. }
  131. static void netlink_destroy_callback(struct netlink_callback *cb)
  132. {
  133. kfree_skb(cb->skb);
  134. kfree(cb);
  135. }
  136. static void netlink_consume_callback(struct netlink_callback *cb)
  137. {
  138. consume_skb(cb->skb);
  139. kfree(cb);
  140. }
  141. static void netlink_sock_destruct(struct sock *sk)
  142. {
  143. struct netlink_sock *nlk = nlk_sk(sk);
  144. if (nlk->cb) {
  145. if (nlk->cb->done)
  146. nlk->cb->done(nlk->cb);
  147. module_put(nlk->cb->module);
  148. netlink_destroy_callback(nlk->cb);
  149. }
  150. skb_queue_purge(&sk->sk_receive_queue);
  151. if (!sock_flag(sk, SOCK_DEAD)) {
  152. printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
  153. return;
  154. }
  155. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  156. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  157. WARN_ON(nlk_sk(sk)->groups);
  158. }
  159. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
  160. * SMP. Look, when several writers sleep and reader wakes them up, all but one
  161. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  162. * this, _but_ remember, it adds useless work on UP machines.
  163. */
  164. void netlink_table_grab(void)
  165. __acquires(nl_table_lock)
  166. {
  167. might_sleep();
  168. write_lock_irq(&nl_table_lock);
  169. if (atomic_read(&nl_table_users)) {
  170. DECLARE_WAITQUEUE(wait, current);
  171. add_wait_queue_exclusive(&nl_table_wait, &wait);
  172. for (;;) {
  173. set_current_state(TASK_UNINTERRUPTIBLE);
  174. if (atomic_read(&nl_table_users) == 0)
  175. break;
  176. write_unlock_irq(&nl_table_lock);
  177. schedule();
  178. write_lock_irq(&nl_table_lock);
  179. }
  180. __set_current_state(TASK_RUNNING);
  181. remove_wait_queue(&nl_table_wait, &wait);
  182. }
  183. }
  184. void netlink_table_ungrab(void)
  185. __releases(nl_table_lock)
  186. {
  187. write_unlock_irq(&nl_table_lock);
  188. wake_up(&nl_table_wait);
  189. }
  190. static inline void
  191. netlink_lock_table(void)
  192. {
  193. /* read_lock() synchronizes us to netlink_table_grab */
  194. read_lock(&nl_table_lock);
  195. atomic_inc(&nl_table_users);
  196. read_unlock(&nl_table_lock);
  197. }
  198. static inline void
  199. netlink_unlock_table(void)
  200. {
  201. if (atomic_dec_and_test(&nl_table_users))
  202. wake_up(&nl_table_wait);
  203. }
  204. static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
  205. {
  206. struct nl_portid_hash *hash = &nl_table[protocol].hash;
  207. struct hlist_head *head;
  208. struct sock *sk;
  209. struct hlist_node *node;
  210. read_lock(&nl_table_lock);
  211. head = nl_portid_hashfn(hash, portid);
  212. sk_for_each(sk, node, head) {
  213. if (net_eq(sock_net(sk), net) && (nlk_sk(sk)->portid == portid)) {
  214. sock_hold(sk);
  215. goto found;
  216. }
  217. }
  218. sk = NULL;
  219. found:
  220. read_unlock(&nl_table_lock);
  221. return sk;
  222. }
  223. static struct hlist_head *nl_portid_hash_zalloc(size_t size)
  224. {
  225. if (size <= PAGE_SIZE)
  226. return kzalloc(size, GFP_ATOMIC);
  227. else
  228. return (struct hlist_head *)
  229. __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
  230. get_order(size));
  231. }
  232. static void nl_portid_hash_free(struct hlist_head *table, size_t size)
  233. {
  234. if (size <= PAGE_SIZE)
  235. kfree(table);
  236. else
  237. free_pages((unsigned long)table, get_order(size));
  238. }
  239. static int nl_portid_hash_rehash(struct nl_portid_hash *hash, int grow)
  240. {
  241. unsigned int omask, mask, shift;
  242. size_t osize, size;
  243. struct hlist_head *otable, *table;
  244. int i;
  245. omask = mask = hash->mask;
  246. osize = size = (mask + 1) * sizeof(*table);
  247. shift = hash->shift;
  248. if (grow) {
  249. if (++shift > hash->max_shift)
  250. return 0;
  251. mask = mask * 2 + 1;
  252. size *= 2;
  253. }
  254. table = nl_portid_hash_zalloc(size);
  255. if (!table)
  256. return 0;
  257. otable = hash->table;
  258. hash->table = table;
  259. hash->mask = mask;
  260. hash->shift = shift;
  261. get_random_bytes(&hash->rnd, sizeof(hash->rnd));
  262. for (i = 0; i <= omask; i++) {
  263. struct sock *sk;
  264. struct hlist_node *node, *tmp;
  265. sk_for_each_safe(sk, node, tmp, &otable[i])
  266. __sk_add_node(sk, nl_portid_hashfn(hash, nlk_sk(sk)->portid));
  267. }
  268. nl_portid_hash_free(otable, osize);
  269. hash->rehash_time = jiffies + 10 * 60 * HZ;
  270. return 1;
  271. }
  272. static inline int nl_portid_hash_dilute(struct nl_portid_hash *hash, int len)
  273. {
  274. int avg = hash->entries >> hash->shift;
  275. if (unlikely(avg > 1) && nl_portid_hash_rehash(hash, 1))
  276. return 1;
  277. if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
  278. nl_portid_hash_rehash(hash, 0);
  279. return 1;
  280. }
  281. return 0;
  282. }
  283. static const struct proto_ops netlink_ops;
  284. static void
  285. netlink_update_listeners(struct sock *sk)
  286. {
  287. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  288. struct hlist_node *node;
  289. unsigned long mask;
  290. unsigned int i;
  291. for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
  292. mask = 0;
  293. sk_for_each_bound(sk, node, &tbl->mc_list) {
  294. if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
  295. mask |= nlk_sk(sk)->groups[i];
  296. }
  297. tbl->listeners->masks[i] = mask;
  298. }
  299. /* this function is only called with the netlink table "grabbed", which
  300. * makes sure updates are visible before bind or setsockopt return. */
  301. }
  302. static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
  303. {
  304. struct nl_portid_hash *hash = &nl_table[sk->sk_protocol].hash;
  305. struct hlist_head *head;
  306. int err = -EADDRINUSE;
  307. struct sock *osk;
  308. struct hlist_node *node;
  309. int len;
  310. netlink_table_grab();
  311. head = nl_portid_hashfn(hash, portid);
  312. len = 0;
  313. sk_for_each(osk, node, head) {
  314. if (net_eq(sock_net(osk), net) && (nlk_sk(osk)->portid == portid))
  315. break;
  316. len++;
  317. }
  318. if (node)
  319. goto err;
  320. err = -EBUSY;
  321. if (nlk_sk(sk)->portid)
  322. goto err;
  323. err = -ENOMEM;
  324. if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
  325. goto err;
  326. if (len && nl_portid_hash_dilute(hash, len))
  327. head = nl_portid_hashfn(hash, portid);
  328. hash->entries++;
  329. nlk_sk(sk)->portid = portid;
  330. sk_add_node(sk, head);
  331. err = 0;
  332. err:
  333. netlink_table_ungrab();
  334. return err;
  335. }
  336. static void netlink_remove(struct sock *sk)
  337. {
  338. netlink_table_grab();
  339. if (sk_del_node_init(sk))
  340. nl_table[sk->sk_protocol].hash.entries--;
  341. if (nlk_sk(sk)->subscriptions)
  342. __sk_del_bind_node(sk);
  343. netlink_table_ungrab();
  344. }
  345. static struct proto netlink_proto = {
  346. .name = "NETLINK",
  347. .owner = THIS_MODULE,
  348. .obj_size = sizeof(struct netlink_sock),
  349. };
  350. static int __netlink_create(struct net *net, struct socket *sock,
  351. struct mutex *cb_mutex, int protocol)
  352. {
  353. struct sock *sk;
  354. struct netlink_sock *nlk;
  355. sock->ops = &netlink_ops;
  356. sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
  357. if (!sk)
  358. return -ENOMEM;
  359. sock_init_data(sock, sk);
  360. nlk = nlk_sk(sk);
  361. if (cb_mutex) {
  362. nlk->cb_mutex = cb_mutex;
  363. } else {
  364. nlk->cb_mutex = &nlk->cb_def_mutex;
  365. mutex_init(nlk->cb_mutex);
  366. }
  367. init_waitqueue_head(&nlk->wait);
  368. sk->sk_destruct = netlink_sock_destruct;
  369. sk->sk_protocol = protocol;
  370. return 0;
  371. }
  372. static int netlink_create(struct net *net, struct socket *sock, int protocol,
  373. int kern)
  374. {
  375. struct module *module = NULL;
  376. struct mutex *cb_mutex;
  377. struct netlink_sock *nlk;
  378. void (*bind)(int group);
  379. int err = 0;
  380. sock->state = SS_UNCONNECTED;
  381. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  382. return -ESOCKTNOSUPPORT;
  383. if (protocol < 0 || protocol >= MAX_LINKS)
  384. return -EPROTONOSUPPORT;
  385. netlink_lock_table();
  386. #ifdef CONFIG_MODULES
  387. if (!nl_table[protocol].registered) {
  388. netlink_unlock_table();
  389. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  390. netlink_lock_table();
  391. }
  392. #endif
  393. if (nl_table[protocol].registered &&
  394. try_module_get(nl_table[protocol].module))
  395. module = nl_table[protocol].module;
  396. else
  397. err = -EPROTONOSUPPORT;
  398. cb_mutex = nl_table[protocol].cb_mutex;
  399. bind = nl_table[protocol].bind;
  400. netlink_unlock_table();
  401. if (err < 0)
  402. goto out;
  403. err = __netlink_create(net, sock, cb_mutex, protocol);
  404. if (err < 0)
  405. goto out_module;
  406. local_bh_disable();
  407. sock_prot_inuse_add(net, &netlink_proto, 1);
  408. local_bh_enable();
  409. nlk = nlk_sk(sock->sk);
  410. nlk->module = module;
  411. nlk->netlink_bind = bind;
  412. out:
  413. return err;
  414. out_module:
  415. module_put(module);
  416. goto out;
  417. }
  418. static int netlink_release(struct socket *sock)
  419. {
  420. struct sock *sk = sock->sk;
  421. struct netlink_sock *nlk;
  422. if (!sk)
  423. return 0;
  424. netlink_remove(sk);
  425. sock_orphan(sk);
  426. nlk = nlk_sk(sk);
  427. /*
  428. * OK. Socket is unlinked, any packets that arrive now
  429. * will be purged.
  430. */
  431. sock->sk = NULL;
  432. wake_up_interruptible_all(&nlk->wait);
  433. skb_queue_purge(&sk->sk_write_queue);
  434. if (nlk->portid) {
  435. struct netlink_notify n = {
  436. .net = sock_net(sk),
  437. .protocol = sk->sk_protocol,
  438. .portid = nlk->portid,
  439. };
  440. atomic_notifier_call_chain(&netlink_chain,
  441. NETLINK_URELEASE, &n);
  442. }
  443. module_put(nlk->module);
  444. netlink_table_grab();
  445. if (netlink_is_kernel(sk)) {
  446. BUG_ON(nl_table[sk->sk_protocol].registered == 0);
  447. if (--nl_table[sk->sk_protocol].registered == 0) {
  448. kfree(nl_table[sk->sk_protocol].listeners);
  449. nl_table[sk->sk_protocol].module = NULL;
  450. nl_table[sk->sk_protocol].bind = NULL;
  451. nl_table[sk->sk_protocol].flags = 0;
  452. nl_table[sk->sk_protocol].registered = 0;
  453. }
  454. } else if (nlk->subscriptions) {
  455. netlink_update_listeners(sk);
  456. }
  457. netlink_table_ungrab();
  458. kfree(nlk->groups);
  459. nlk->groups = NULL;
  460. local_bh_disable();
  461. sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
  462. local_bh_enable();
  463. sock_put(sk);
  464. return 0;
  465. }
  466. static int netlink_autobind(struct socket *sock)
  467. {
  468. struct sock *sk = sock->sk;
  469. struct net *net = sock_net(sk);
  470. struct nl_portid_hash *hash = &nl_table[sk->sk_protocol].hash;
  471. struct hlist_head *head;
  472. struct sock *osk;
  473. struct hlist_node *node;
  474. s32 portid = task_tgid_vnr(current);
  475. int err;
  476. static s32 rover = -4097;
  477. retry:
  478. cond_resched();
  479. netlink_table_grab();
  480. head = nl_portid_hashfn(hash, portid);
  481. sk_for_each(osk, node, head) {
  482. if (!net_eq(sock_net(osk), net))
  483. continue;
  484. if (nlk_sk(osk)->portid == portid) {
  485. /* Bind collision, search negative portid values. */
  486. portid = rover--;
  487. if (rover > -4097)
  488. rover = -4097;
  489. netlink_table_ungrab();
  490. goto retry;
  491. }
  492. }
  493. netlink_table_ungrab();
  494. err = netlink_insert(sk, net, portid);
  495. if (err == -EADDRINUSE)
  496. goto retry;
  497. /* If 2 threads race to autobind, that is fine. */
  498. if (err == -EBUSY)
  499. err = 0;
  500. return err;
  501. }
  502. static inline int netlink_capable(const struct socket *sock, unsigned int flag)
  503. {
  504. return (nl_table[sock->sk->sk_protocol].flags & flag) ||
  505. capable(CAP_NET_ADMIN);
  506. }
  507. static void
  508. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  509. {
  510. struct netlink_sock *nlk = nlk_sk(sk);
  511. if (nlk->subscriptions && !subscriptions)
  512. __sk_del_bind_node(sk);
  513. else if (!nlk->subscriptions && subscriptions)
  514. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  515. nlk->subscriptions = subscriptions;
  516. }
  517. static int netlink_realloc_groups(struct sock *sk)
  518. {
  519. struct netlink_sock *nlk = nlk_sk(sk);
  520. unsigned int groups;
  521. unsigned long *new_groups;
  522. int err = 0;
  523. netlink_table_grab();
  524. groups = nl_table[sk->sk_protocol].groups;
  525. if (!nl_table[sk->sk_protocol].registered) {
  526. err = -ENOENT;
  527. goto out_unlock;
  528. }
  529. if (nlk->ngroups >= groups)
  530. goto out_unlock;
  531. new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
  532. if (new_groups == NULL) {
  533. err = -ENOMEM;
  534. goto out_unlock;
  535. }
  536. memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
  537. NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
  538. nlk->groups = new_groups;
  539. nlk->ngroups = groups;
  540. out_unlock:
  541. netlink_table_ungrab();
  542. return err;
  543. }
  544. static int netlink_bind(struct socket *sock, struct sockaddr *addr,
  545. int addr_len)
  546. {
  547. struct sock *sk = sock->sk;
  548. struct net *net = sock_net(sk);
  549. struct netlink_sock *nlk = nlk_sk(sk);
  550. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  551. int err;
  552. if (nladdr->nl_family != AF_NETLINK)
  553. return -EINVAL;
  554. /* Only superuser is allowed to listen multicasts */
  555. if (nladdr->nl_groups) {
  556. if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
  557. return -EPERM;
  558. err = netlink_realloc_groups(sk);
  559. if (err)
  560. return err;
  561. }
  562. if (nlk->portid) {
  563. if (nladdr->nl_pid != nlk->portid)
  564. return -EINVAL;
  565. } else {
  566. err = nladdr->nl_pid ?
  567. netlink_insert(sk, net, nladdr->nl_pid) :
  568. netlink_autobind(sock);
  569. if (err)
  570. return err;
  571. }
  572. if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  573. return 0;
  574. netlink_table_grab();
  575. netlink_update_subscriptions(sk, nlk->subscriptions +
  576. hweight32(nladdr->nl_groups) -
  577. hweight32(nlk->groups[0]));
  578. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
  579. netlink_update_listeners(sk);
  580. netlink_table_ungrab();
  581. if (nlk->netlink_bind && nlk->groups[0]) {
  582. int i;
  583. for (i=0; i<nlk->ngroups; i++) {
  584. if (test_bit(i, nlk->groups))
  585. nlk->netlink_bind(i);
  586. }
  587. }
  588. return 0;
  589. }
  590. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  591. int alen, int flags)
  592. {
  593. int err = 0;
  594. struct sock *sk = sock->sk;
  595. struct netlink_sock *nlk = nlk_sk(sk);
  596. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  597. if (alen < sizeof(addr->sa_family))
  598. return -EINVAL;
  599. if (addr->sa_family == AF_UNSPEC) {
  600. sk->sk_state = NETLINK_UNCONNECTED;
  601. nlk->dst_portid = 0;
  602. nlk->dst_group = 0;
  603. return 0;
  604. }
  605. if (addr->sa_family != AF_NETLINK)
  606. return -EINVAL;
  607. /* Only superuser is allowed to send multicasts */
  608. if (nladdr->nl_groups && !netlink_capable(sock, NL_CFG_F_NONROOT_SEND))
  609. return -EPERM;
  610. if (!nlk->portid)
  611. err = netlink_autobind(sock);
  612. if (err == 0) {
  613. sk->sk_state = NETLINK_CONNECTED;
  614. nlk->dst_portid = nladdr->nl_pid;
  615. nlk->dst_group = ffs(nladdr->nl_groups);
  616. }
  617. return err;
  618. }
  619. static int netlink_getname(struct socket *sock, struct sockaddr *addr,
  620. int *addr_len, int peer)
  621. {
  622. struct sock *sk = sock->sk;
  623. struct netlink_sock *nlk = nlk_sk(sk);
  624. DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
  625. nladdr->nl_family = AF_NETLINK;
  626. nladdr->nl_pad = 0;
  627. *addr_len = sizeof(*nladdr);
  628. if (peer) {
  629. nladdr->nl_pid = nlk->dst_portid;
  630. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  631. } else {
  632. nladdr->nl_pid = nlk->portid;
  633. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  634. }
  635. return 0;
  636. }
  637. static void netlink_overrun(struct sock *sk)
  638. {
  639. struct netlink_sock *nlk = nlk_sk(sk);
  640. if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
  641. if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
  642. sk->sk_err = ENOBUFS;
  643. sk->sk_error_report(sk);
  644. }
  645. }
  646. atomic_inc(&sk->sk_drops);
  647. }
  648. static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
  649. {
  650. struct sock *sock;
  651. struct netlink_sock *nlk;
  652. sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
  653. if (!sock)
  654. return ERR_PTR(-ECONNREFUSED);
  655. /* Don't bother queuing skb if kernel socket has no input function */
  656. nlk = nlk_sk(sock);
  657. if (sock->sk_state == NETLINK_CONNECTED &&
  658. nlk->dst_portid != nlk_sk(ssk)->portid) {
  659. sock_put(sock);
  660. return ERR_PTR(-ECONNREFUSED);
  661. }
  662. return sock;
  663. }
  664. struct sock *netlink_getsockbyfilp(struct file *filp)
  665. {
  666. struct inode *inode = filp->f_path.dentry->d_inode;
  667. struct sock *sock;
  668. if (!S_ISSOCK(inode->i_mode))
  669. return ERR_PTR(-ENOTSOCK);
  670. sock = SOCKET_I(inode)->sk;
  671. if (sock->sk_family != AF_NETLINK)
  672. return ERR_PTR(-EINVAL);
  673. sock_hold(sock);
  674. return sock;
  675. }
  676. /*
  677. * Attach a skb to a netlink socket.
  678. * The caller must hold a reference to the destination socket. On error, the
  679. * reference is dropped. The skb is not send to the destination, just all
  680. * all error checks are performed and memory in the queue is reserved.
  681. * Return values:
  682. * < 0: error. skb freed, reference to sock dropped.
  683. * 0: continue
  684. * 1: repeat lookup - reference dropped while waiting for socket memory.
  685. */
  686. int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
  687. long *timeo, struct sock *ssk)
  688. {
  689. struct netlink_sock *nlk;
  690. nlk = nlk_sk(sk);
  691. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  692. test_bit(0, &nlk->state)) {
  693. DECLARE_WAITQUEUE(wait, current);
  694. if (!*timeo) {
  695. if (!ssk || netlink_is_kernel(ssk))
  696. netlink_overrun(sk);
  697. sock_put(sk);
  698. kfree_skb(skb);
  699. return -EAGAIN;
  700. }
  701. __set_current_state(TASK_INTERRUPTIBLE);
  702. add_wait_queue(&nlk->wait, &wait);
  703. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  704. test_bit(0, &nlk->state)) &&
  705. !sock_flag(sk, SOCK_DEAD))
  706. *timeo = schedule_timeout(*timeo);
  707. __set_current_state(TASK_RUNNING);
  708. remove_wait_queue(&nlk->wait, &wait);
  709. sock_put(sk);
  710. if (signal_pending(current)) {
  711. kfree_skb(skb);
  712. return sock_intr_errno(*timeo);
  713. }
  714. return 1;
  715. }
  716. skb_set_owner_r(skb, sk);
  717. return 0;
  718. }
  719. static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  720. {
  721. int len = skb->len;
  722. skb_queue_tail(&sk->sk_receive_queue, skb);
  723. sk->sk_data_ready(sk, len);
  724. return len;
  725. }
  726. int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  727. {
  728. int len = __netlink_sendskb(sk, skb);
  729. sock_put(sk);
  730. return len;
  731. }
  732. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  733. {
  734. kfree_skb(skb);
  735. sock_put(sk);
  736. }
  737. static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
  738. {
  739. int delta;
  740. skb_orphan(skb);
  741. delta = skb->end - skb->tail;
  742. if (delta * 2 < skb->truesize)
  743. return skb;
  744. if (skb_shared(skb)) {
  745. struct sk_buff *nskb = skb_clone(skb, allocation);
  746. if (!nskb)
  747. return skb;
  748. consume_skb(skb);
  749. skb = nskb;
  750. }
  751. if (!pskb_expand_head(skb, 0, -delta, allocation))
  752. skb->truesize -= delta;
  753. return skb;
  754. }
  755. static void netlink_rcv_wake(struct sock *sk)
  756. {
  757. struct netlink_sock *nlk = nlk_sk(sk);
  758. if (skb_queue_empty(&sk->sk_receive_queue))
  759. clear_bit(0, &nlk->state);
  760. if (!test_bit(0, &nlk->state))
  761. wake_up_interruptible(&nlk->wait);
  762. }
  763. static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
  764. struct sock *ssk)
  765. {
  766. int ret;
  767. struct netlink_sock *nlk = nlk_sk(sk);
  768. ret = -ECONNREFUSED;
  769. if (nlk->netlink_rcv != NULL) {
  770. ret = skb->len;
  771. skb_set_owner_r(skb, sk);
  772. NETLINK_CB(skb).ssk = ssk;
  773. nlk->netlink_rcv(skb);
  774. consume_skb(skb);
  775. } else {
  776. kfree_skb(skb);
  777. }
  778. sock_put(sk);
  779. return ret;
  780. }
  781. int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
  782. u32 portid, int nonblock)
  783. {
  784. struct sock *sk;
  785. int err;
  786. long timeo;
  787. skb = netlink_trim(skb, gfp_any());
  788. timeo = sock_sndtimeo(ssk, nonblock);
  789. retry:
  790. sk = netlink_getsockbyportid(ssk, portid);
  791. if (IS_ERR(sk)) {
  792. kfree_skb(skb);
  793. return PTR_ERR(sk);
  794. }
  795. if (netlink_is_kernel(sk))
  796. return netlink_unicast_kernel(sk, skb, ssk);
  797. if (sk_filter(sk, skb)) {
  798. err = skb->len;
  799. kfree_skb(skb);
  800. sock_put(sk);
  801. return err;
  802. }
  803. err = netlink_attachskb(sk, skb, &timeo, ssk);
  804. if (err == 1)
  805. goto retry;
  806. if (err)
  807. return err;
  808. return netlink_sendskb(sk, skb);
  809. }
  810. EXPORT_SYMBOL(netlink_unicast);
  811. int netlink_has_listeners(struct sock *sk, unsigned int group)
  812. {
  813. int res = 0;
  814. struct listeners *listeners;
  815. BUG_ON(!netlink_is_kernel(sk));
  816. rcu_read_lock();
  817. listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
  818. if (group - 1 < nl_table[sk->sk_protocol].groups)
  819. res = test_bit(group - 1, listeners->masks);
  820. rcu_read_unlock();
  821. return res;
  822. }
  823. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  824. static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  825. {
  826. struct netlink_sock *nlk = nlk_sk(sk);
  827. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  828. !test_bit(0, &nlk->state)) {
  829. skb_set_owner_r(skb, sk);
  830. __netlink_sendskb(sk, skb);
  831. return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
  832. }
  833. return -1;
  834. }
  835. struct netlink_broadcast_data {
  836. struct sock *exclude_sk;
  837. struct net *net;
  838. u32 portid;
  839. u32 group;
  840. int failure;
  841. int delivery_failure;
  842. int congested;
  843. int delivered;
  844. gfp_t allocation;
  845. struct sk_buff *skb, *skb2;
  846. int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
  847. void *tx_data;
  848. };
  849. static int do_one_broadcast(struct sock *sk,
  850. struct netlink_broadcast_data *p)
  851. {
  852. struct netlink_sock *nlk = nlk_sk(sk);
  853. int val;
  854. if (p->exclude_sk == sk)
  855. goto out;
  856. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  857. !test_bit(p->group - 1, nlk->groups))
  858. goto out;
  859. if (!net_eq(sock_net(sk), p->net))
  860. goto out;
  861. if (p->failure) {
  862. netlink_overrun(sk);
  863. goto out;
  864. }
  865. sock_hold(sk);
  866. if (p->skb2 == NULL) {
  867. if (skb_shared(p->skb)) {
  868. p->skb2 = skb_clone(p->skb, p->allocation);
  869. } else {
  870. p->skb2 = skb_get(p->skb);
  871. /*
  872. * skb ownership may have been set when
  873. * delivered to a previous socket.
  874. */
  875. skb_orphan(p->skb2);
  876. }
  877. }
  878. if (p->skb2 == NULL) {
  879. netlink_overrun(sk);
  880. /* Clone failed. Notify ALL listeners. */
  881. p->failure = 1;
  882. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  883. p->delivery_failure = 1;
  884. } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
  885. kfree_skb(p->skb2);
  886. p->skb2 = NULL;
  887. } else if (sk_filter(sk, p->skb2)) {
  888. kfree_skb(p->skb2);
  889. p->skb2 = NULL;
  890. } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
  891. netlink_overrun(sk);
  892. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  893. p->delivery_failure = 1;
  894. } else {
  895. p->congested |= val;
  896. p->delivered = 1;
  897. p->skb2 = NULL;
  898. }
  899. sock_put(sk);
  900. out:
  901. return 0;
  902. }
  903. int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
  904. u32 group, gfp_t allocation,
  905. int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
  906. void *filter_data)
  907. {
  908. struct net *net = sock_net(ssk);
  909. struct netlink_broadcast_data info;
  910. struct hlist_node *node;
  911. struct sock *sk;
  912. skb = netlink_trim(skb, allocation);
  913. info.exclude_sk = ssk;
  914. info.net = net;
  915. info.portid = portid;
  916. info.group = group;
  917. info.failure = 0;
  918. info.delivery_failure = 0;
  919. info.congested = 0;
  920. info.delivered = 0;
  921. info.allocation = allocation;
  922. info.skb = skb;
  923. info.skb2 = NULL;
  924. info.tx_filter = filter;
  925. info.tx_data = filter_data;
  926. /* While we sleep in clone, do not allow to change socket list */
  927. netlink_lock_table();
  928. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  929. do_one_broadcast(sk, &info);
  930. consume_skb(skb);
  931. netlink_unlock_table();
  932. if (info.delivery_failure) {
  933. kfree_skb(info.skb2);
  934. return -ENOBUFS;
  935. }
  936. consume_skb(info.skb2);
  937. if (info.delivered) {
  938. if (info.congested && (allocation & __GFP_WAIT))
  939. yield();
  940. return 0;
  941. }
  942. return -ESRCH;
  943. }
  944. EXPORT_SYMBOL(netlink_broadcast_filtered);
  945. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
  946. u32 group, gfp_t allocation)
  947. {
  948. return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
  949. NULL, NULL);
  950. }
  951. EXPORT_SYMBOL(netlink_broadcast);
  952. struct netlink_set_err_data {
  953. struct sock *exclude_sk;
  954. u32 portid;
  955. u32 group;
  956. int code;
  957. };
  958. static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
  959. {
  960. struct netlink_sock *nlk = nlk_sk(sk);
  961. int ret = 0;
  962. if (sk == p->exclude_sk)
  963. goto out;
  964. if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
  965. goto out;
  966. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  967. !test_bit(p->group - 1, nlk->groups))
  968. goto out;
  969. if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
  970. ret = 1;
  971. goto out;
  972. }
  973. sk->sk_err = p->code;
  974. sk->sk_error_report(sk);
  975. out:
  976. return ret;
  977. }
  978. /**
  979. * netlink_set_err - report error to broadcast listeners
  980. * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
  981. * @portid: the PORTID of a process that we want to skip (if any)
  982. * @groups: the broadcast group that will notice the error
  983. * @code: error code, must be negative (as usual in kernelspace)
  984. *
  985. * This function returns the number of broadcast listeners that have set the
  986. * NETLINK_RECV_NO_ENOBUFS socket option.
  987. */
  988. int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
  989. {
  990. struct netlink_set_err_data info;
  991. struct hlist_node *node;
  992. struct sock *sk;
  993. int ret = 0;
  994. info.exclude_sk = ssk;
  995. info.portid = portid;
  996. info.group = group;
  997. /* sk->sk_err wants a positive error value */
  998. info.code = -code;
  999. read_lock(&nl_table_lock);
  1000. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  1001. ret += do_one_set_err(sk, &info);
  1002. read_unlock(&nl_table_lock);
  1003. return ret;
  1004. }
  1005. EXPORT_SYMBOL(netlink_set_err);
  1006. /* must be called with netlink table grabbed */
  1007. static void netlink_update_socket_mc(struct netlink_sock *nlk,
  1008. unsigned int group,
  1009. int is_new)
  1010. {
  1011. int old, new = !!is_new, subscriptions;
  1012. old = test_bit(group - 1, nlk->groups);
  1013. subscriptions = nlk->subscriptions - old + new;
  1014. if (new)
  1015. __set_bit(group - 1, nlk->groups);
  1016. else
  1017. __clear_bit(group - 1, nlk->groups);
  1018. netlink_update_subscriptions(&nlk->sk, subscriptions);
  1019. netlink_update_listeners(&nlk->sk);
  1020. }
  1021. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  1022. char __user *optval, unsigned int optlen)
  1023. {
  1024. struct sock *sk = sock->sk;
  1025. struct netlink_sock *nlk = nlk_sk(sk);
  1026. unsigned int val = 0;
  1027. int err;
  1028. if (level != SOL_NETLINK)
  1029. return -ENOPROTOOPT;
  1030. if (optlen >= sizeof(int) &&
  1031. get_user(val, (unsigned int __user *)optval))
  1032. return -EFAULT;
  1033. switch (optname) {
  1034. case NETLINK_PKTINFO:
  1035. if (val)
  1036. nlk->flags |= NETLINK_RECV_PKTINFO;
  1037. else
  1038. nlk->flags &= ~NETLINK_RECV_PKTINFO;
  1039. err = 0;
  1040. break;
  1041. case NETLINK_ADD_MEMBERSHIP:
  1042. case NETLINK_DROP_MEMBERSHIP: {
  1043. if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
  1044. return -EPERM;
  1045. err = netlink_realloc_groups(sk);
  1046. if (err)
  1047. return err;
  1048. if (!val || val - 1 >= nlk->ngroups)
  1049. return -EINVAL;
  1050. netlink_table_grab();
  1051. netlink_update_socket_mc(nlk, val,
  1052. optname == NETLINK_ADD_MEMBERSHIP);
  1053. netlink_table_ungrab();
  1054. if (nlk->netlink_bind)
  1055. nlk->netlink_bind(val);
  1056. err = 0;
  1057. break;
  1058. }
  1059. case NETLINK_BROADCAST_ERROR:
  1060. if (val)
  1061. nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
  1062. else
  1063. nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
  1064. err = 0;
  1065. break;
  1066. case NETLINK_NO_ENOBUFS:
  1067. if (val) {
  1068. nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
  1069. clear_bit(0, &nlk->state);
  1070. wake_up_interruptible(&nlk->wait);
  1071. } else {
  1072. nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
  1073. }
  1074. err = 0;
  1075. break;
  1076. default:
  1077. err = -ENOPROTOOPT;
  1078. }
  1079. return err;
  1080. }
  1081. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  1082. char __user *optval, int __user *optlen)
  1083. {
  1084. struct sock *sk = sock->sk;
  1085. struct netlink_sock *nlk = nlk_sk(sk);
  1086. int len, val, err;
  1087. if (level != SOL_NETLINK)
  1088. return -ENOPROTOOPT;
  1089. if (get_user(len, optlen))
  1090. return -EFAULT;
  1091. if (len < 0)
  1092. return -EINVAL;
  1093. switch (optname) {
  1094. case NETLINK_PKTINFO:
  1095. if (len < sizeof(int))
  1096. return -EINVAL;
  1097. len = sizeof(int);
  1098. val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
  1099. if (put_user(len, optlen) ||
  1100. put_user(val, optval))
  1101. return -EFAULT;
  1102. err = 0;
  1103. break;
  1104. case NETLINK_BROADCAST_ERROR:
  1105. if (len < sizeof(int))
  1106. return -EINVAL;
  1107. len = sizeof(int);
  1108. val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
  1109. if (put_user(len, optlen) ||
  1110. put_user(val, optval))
  1111. return -EFAULT;
  1112. err = 0;
  1113. break;
  1114. case NETLINK_NO_ENOBUFS:
  1115. if (len < sizeof(int))
  1116. return -EINVAL;
  1117. len = sizeof(int);
  1118. val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
  1119. if (put_user(len, optlen) ||
  1120. put_user(val, optval))
  1121. return -EFAULT;
  1122. err = 0;
  1123. break;
  1124. default:
  1125. err = -ENOPROTOOPT;
  1126. }
  1127. return err;
  1128. }
  1129. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  1130. {
  1131. struct nl_pktinfo info;
  1132. info.group = NETLINK_CB(skb).dst_group;
  1133. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  1134. }
  1135. static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
  1136. struct msghdr *msg, size_t len)
  1137. {
  1138. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1139. struct sock *sk = sock->sk;
  1140. struct netlink_sock *nlk = nlk_sk(sk);
  1141. struct sockaddr_nl *addr = msg->msg_name;
  1142. u32 dst_portid;
  1143. u32 dst_group;
  1144. struct sk_buff *skb;
  1145. int err;
  1146. struct scm_cookie scm;
  1147. if (msg->msg_flags&MSG_OOB)
  1148. return -EOPNOTSUPP;
  1149. if (NULL == siocb->scm)
  1150. siocb->scm = &scm;
  1151. err = scm_send(sock, msg, siocb->scm, true);
  1152. if (err < 0)
  1153. return err;
  1154. if (msg->msg_namelen) {
  1155. err = -EINVAL;
  1156. if (addr->nl_family != AF_NETLINK)
  1157. goto out;
  1158. dst_portid = addr->nl_pid;
  1159. dst_group = ffs(addr->nl_groups);
  1160. err = -EPERM;
  1161. if ((dst_group || dst_portid) &&
  1162. !netlink_capable(sock, NL_CFG_F_NONROOT_SEND))
  1163. goto out;
  1164. } else {
  1165. dst_portid = nlk->dst_portid;
  1166. dst_group = nlk->dst_group;
  1167. }
  1168. if (!nlk->portid) {
  1169. err = netlink_autobind(sock);
  1170. if (err)
  1171. goto out;
  1172. }
  1173. err = -EMSGSIZE;
  1174. if (len > sk->sk_sndbuf - 32)
  1175. goto out;
  1176. err = -ENOBUFS;
  1177. skb = alloc_skb(len, GFP_KERNEL);
  1178. if (skb == NULL)
  1179. goto out;
  1180. NETLINK_CB(skb).portid = nlk->portid;
  1181. NETLINK_CB(skb).dst_group = dst_group;
  1182. NETLINK_CB(skb).creds = siocb->scm->creds;
  1183. err = -EFAULT;
  1184. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  1185. kfree_skb(skb);
  1186. goto out;
  1187. }
  1188. err = security_netlink_send(sk, skb);
  1189. if (err) {
  1190. kfree_skb(skb);
  1191. goto out;
  1192. }
  1193. if (dst_group) {
  1194. atomic_inc(&skb->users);
  1195. netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
  1196. }
  1197. err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
  1198. out:
  1199. scm_destroy(siocb->scm);
  1200. return err;
  1201. }
  1202. static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
  1203. struct msghdr *msg, size_t len,
  1204. int flags)
  1205. {
  1206. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1207. struct scm_cookie scm;
  1208. struct sock *sk = sock->sk;
  1209. struct netlink_sock *nlk = nlk_sk(sk);
  1210. int noblock = flags&MSG_DONTWAIT;
  1211. size_t copied;
  1212. struct sk_buff *skb, *data_skb;
  1213. int err, ret;
  1214. if (flags&MSG_OOB)
  1215. return -EOPNOTSUPP;
  1216. copied = 0;
  1217. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1218. if (skb == NULL)
  1219. goto out;
  1220. data_skb = skb;
  1221. #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
  1222. if (unlikely(skb_shinfo(skb)->frag_list)) {
  1223. /*
  1224. * If this skb has a frag_list, then here that means that we
  1225. * will have to use the frag_list skb's data for compat tasks
  1226. * and the regular skb's data for normal (non-compat) tasks.
  1227. *
  1228. * If we need to send the compat skb, assign it to the
  1229. * 'data_skb' variable so that it will be used below for data
  1230. * copying. We keep 'skb' for everything else, including
  1231. * freeing both later.
  1232. */
  1233. if (flags & MSG_CMSG_COMPAT)
  1234. data_skb = skb_shinfo(skb)->frag_list;
  1235. }
  1236. #endif
  1237. msg->msg_namelen = 0;
  1238. copied = data_skb->len;
  1239. if (len < copied) {
  1240. msg->msg_flags |= MSG_TRUNC;
  1241. copied = len;
  1242. }
  1243. skb_reset_transport_header(data_skb);
  1244. err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
  1245. if (msg->msg_name) {
  1246. struct sockaddr_nl *addr = (struct sockaddr_nl *)msg->msg_name;
  1247. addr->nl_family = AF_NETLINK;
  1248. addr->nl_pad = 0;
  1249. addr->nl_pid = NETLINK_CB(skb).portid;
  1250. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1251. msg->msg_namelen = sizeof(*addr);
  1252. }
  1253. if (nlk->flags & NETLINK_RECV_PKTINFO)
  1254. netlink_cmsg_recv_pktinfo(msg, skb);
  1255. if (NULL == siocb->scm) {
  1256. memset(&scm, 0, sizeof(scm));
  1257. siocb->scm = &scm;
  1258. }
  1259. siocb->scm->creds = *NETLINK_CREDS(skb);
  1260. if (flags & MSG_TRUNC)
  1261. copied = data_skb->len;
  1262. skb_free_datagram(sk, skb);
  1263. if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
  1264. ret = netlink_dump(sk);
  1265. if (ret) {
  1266. sk->sk_err = ret;
  1267. sk->sk_error_report(sk);
  1268. }
  1269. }
  1270. scm_recv(sock, msg, siocb->scm, flags);
  1271. out:
  1272. netlink_rcv_wake(sk);
  1273. return err ? : copied;
  1274. }
  1275. static void netlink_data_ready(struct sock *sk, int len)
  1276. {
  1277. BUG();
  1278. }
  1279. /*
  1280. * We export these functions to other modules. They provide a
  1281. * complete set of kernel non-blocking support for message
  1282. * queueing.
  1283. */
  1284. struct sock *
  1285. __netlink_kernel_create(struct net *net, int unit, struct module *module,
  1286. struct netlink_kernel_cfg *cfg)
  1287. {
  1288. struct socket *sock;
  1289. struct sock *sk;
  1290. struct netlink_sock *nlk;
  1291. struct listeners *listeners = NULL;
  1292. struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
  1293. unsigned int groups;
  1294. BUG_ON(!nl_table);
  1295. if (unit < 0 || unit >= MAX_LINKS)
  1296. return NULL;
  1297. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  1298. return NULL;
  1299. /*
  1300. * We have to just have a reference on the net from sk, but don't
  1301. * get_net it. Besides, we cannot get and then put the net here.
  1302. * So we create one inside init_net and the move it to net.
  1303. */
  1304. if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
  1305. goto out_sock_release_nosk;
  1306. sk = sock->sk;
  1307. sk_change_net(sk, net);
  1308. if (!cfg || cfg->groups < 32)
  1309. groups = 32;
  1310. else
  1311. groups = cfg->groups;
  1312. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1313. if (!listeners)
  1314. goto out_sock_release;
  1315. sk->sk_data_ready = netlink_data_ready;
  1316. if (cfg && cfg->input)
  1317. nlk_sk(sk)->netlink_rcv = cfg->input;
  1318. if (netlink_insert(sk, net, 0))
  1319. goto out_sock_release;
  1320. nlk = nlk_sk(sk);
  1321. nlk->flags |= NETLINK_KERNEL_SOCKET;
  1322. netlink_table_grab();
  1323. if (!nl_table[unit].registered) {
  1324. nl_table[unit].groups = groups;
  1325. rcu_assign_pointer(nl_table[unit].listeners, listeners);
  1326. nl_table[unit].cb_mutex = cb_mutex;
  1327. nl_table[unit].module = module;
  1328. if (cfg) {
  1329. nl_table[unit].bind = cfg->bind;
  1330. nl_table[unit].flags = cfg->flags;
  1331. }
  1332. nl_table[unit].registered = 1;
  1333. } else {
  1334. kfree(listeners);
  1335. nl_table[unit].registered++;
  1336. }
  1337. netlink_table_ungrab();
  1338. return sk;
  1339. out_sock_release:
  1340. kfree(listeners);
  1341. netlink_kernel_release(sk);
  1342. return NULL;
  1343. out_sock_release_nosk:
  1344. sock_release(sock);
  1345. return NULL;
  1346. }
  1347. EXPORT_SYMBOL(__netlink_kernel_create);
  1348. void
  1349. netlink_kernel_release(struct sock *sk)
  1350. {
  1351. sk_release_kernel(sk);
  1352. }
  1353. EXPORT_SYMBOL(netlink_kernel_release);
  1354. int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1355. {
  1356. struct listeners *new, *old;
  1357. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  1358. if (groups < 32)
  1359. groups = 32;
  1360. if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
  1361. new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
  1362. if (!new)
  1363. return -ENOMEM;
  1364. old = rcu_dereference_protected(tbl->listeners, 1);
  1365. memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
  1366. rcu_assign_pointer(tbl->listeners, new);
  1367. kfree_rcu(old, rcu);
  1368. }
  1369. tbl->groups = groups;
  1370. return 0;
  1371. }
  1372. /**
  1373. * netlink_change_ngroups - change number of multicast groups
  1374. *
  1375. * This changes the number of multicast groups that are available
  1376. * on a certain netlink family. Note that it is not possible to
  1377. * change the number of groups to below 32. Also note that it does
  1378. * not implicitly call netlink_clear_multicast_users() when the
  1379. * number of groups is reduced.
  1380. *
  1381. * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
  1382. * @groups: The new number of groups.
  1383. */
  1384. int netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1385. {
  1386. int err;
  1387. netlink_table_grab();
  1388. err = __netlink_change_ngroups(sk, groups);
  1389. netlink_table_ungrab();
  1390. return err;
  1391. }
  1392. void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1393. {
  1394. struct sock *sk;
  1395. struct hlist_node *node;
  1396. struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
  1397. sk_for_each_bound(sk, node, &tbl->mc_list)
  1398. netlink_update_socket_mc(nlk_sk(sk), group, 0);
  1399. }
  1400. /**
  1401. * netlink_clear_multicast_users - kick off multicast listeners
  1402. *
  1403. * This function removes all listeners from the given group.
  1404. * @ksk: The kernel netlink socket, as returned by
  1405. * netlink_kernel_create().
  1406. * @group: The multicast group to clear.
  1407. */
  1408. void netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1409. {
  1410. netlink_table_grab();
  1411. __netlink_clear_multicast_users(ksk, group);
  1412. netlink_table_ungrab();
  1413. }
  1414. struct nlmsghdr *
  1415. __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
  1416. {
  1417. struct nlmsghdr *nlh;
  1418. int size = NLMSG_LENGTH(len);
  1419. nlh = (struct nlmsghdr*)skb_put(skb, NLMSG_ALIGN(size));
  1420. nlh->nlmsg_type = type;
  1421. nlh->nlmsg_len = size;
  1422. nlh->nlmsg_flags = flags;
  1423. nlh->nlmsg_pid = portid;
  1424. nlh->nlmsg_seq = seq;
  1425. if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
  1426. memset(NLMSG_DATA(nlh) + len, 0, NLMSG_ALIGN(size) - size);
  1427. return nlh;
  1428. }
  1429. EXPORT_SYMBOL(__nlmsg_put);
  1430. /*
  1431. * It looks a bit ugly.
  1432. * It would be better to create kernel thread.
  1433. */
  1434. static int netlink_dump(struct sock *sk)
  1435. {
  1436. struct netlink_sock *nlk = nlk_sk(sk);
  1437. struct netlink_callback *cb;
  1438. struct sk_buff *skb = NULL;
  1439. struct nlmsghdr *nlh;
  1440. int len, err = -ENOBUFS;
  1441. int alloc_size;
  1442. mutex_lock(nlk->cb_mutex);
  1443. cb = nlk->cb;
  1444. if (cb == NULL) {
  1445. err = -EINVAL;
  1446. goto errout_skb;
  1447. }
  1448. alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
  1449. skb = sock_rmalloc(sk, alloc_size, 0, GFP_KERNEL);
  1450. if (!skb)
  1451. goto errout_skb;
  1452. len = cb->dump(skb, cb);
  1453. if (len > 0) {
  1454. mutex_unlock(nlk->cb_mutex);
  1455. if (sk_filter(sk, skb))
  1456. kfree_skb(skb);
  1457. else
  1458. __netlink_sendskb(sk, skb);
  1459. return 0;
  1460. }
  1461. nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
  1462. if (!nlh)
  1463. goto errout_skb;
  1464. nl_dump_check_consistent(cb, nlh);
  1465. memcpy(nlmsg_data(nlh), &len, sizeof(len));
  1466. if (sk_filter(sk, skb))
  1467. kfree_skb(skb);
  1468. else
  1469. __netlink_sendskb(sk, skb);
  1470. if (cb->done)
  1471. cb->done(cb);
  1472. nlk->cb = NULL;
  1473. mutex_unlock(nlk->cb_mutex);
  1474. module_put(cb->module);
  1475. netlink_consume_callback(cb);
  1476. return 0;
  1477. errout_skb:
  1478. mutex_unlock(nlk->cb_mutex);
  1479. kfree_skb(skb);
  1480. return err;
  1481. }
  1482. int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  1483. const struct nlmsghdr *nlh,
  1484. struct netlink_dump_control *control)
  1485. {
  1486. struct netlink_callback *cb;
  1487. struct sock *sk;
  1488. struct netlink_sock *nlk;
  1489. int ret;
  1490. cb = kzalloc(sizeof(*cb), GFP_KERNEL);
  1491. if (cb == NULL)
  1492. return -ENOBUFS;
  1493. cb->dump = control->dump;
  1494. cb->done = control->done;
  1495. cb->nlh = nlh;
  1496. cb->data = control->data;
  1497. cb->module = control->module;
  1498. cb->min_dump_alloc = control->min_dump_alloc;
  1499. atomic_inc(&skb->users);
  1500. cb->skb = skb;
  1501. sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
  1502. if (sk == NULL) {
  1503. netlink_destroy_callback(cb);
  1504. return -ECONNREFUSED;
  1505. }
  1506. nlk = nlk_sk(sk);
  1507. mutex_lock(nlk->cb_mutex);
  1508. /* A dump is in progress... */
  1509. if (nlk->cb) {
  1510. mutex_unlock(nlk->cb_mutex);
  1511. netlink_destroy_callback(cb);
  1512. ret = -EBUSY;
  1513. goto out;
  1514. }
  1515. /* add reference of module which cb->dump belongs to */
  1516. if (!try_module_get(cb->module)) {
  1517. mutex_unlock(nlk->cb_mutex);
  1518. netlink_destroy_callback(cb);
  1519. ret = -EPROTONOSUPPORT;
  1520. goto out;
  1521. }
  1522. nlk->cb = cb;
  1523. mutex_unlock(nlk->cb_mutex);
  1524. ret = netlink_dump(sk);
  1525. out:
  1526. sock_put(sk);
  1527. if (ret)
  1528. return ret;
  1529. /* We successfully started a dump, by returning -EINTR we
  1530. * signal not to send ACK even if it was requested.
  1531. */
  1532. return -EINTR;
  1533. }
  1534. EXPORT_SYMBOL(__netlink_dump_start);
  1535. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
  1536. {
  1537. struct sk_buff *skb;
  1538. struct nlmsghdr *rep;
  1539. struct nlmsgerr *errmsg;
  1540. size_t payload = sizeof(*errmsg);
  1541. /* error messages get the original request appened */
  1542. if (err)
  1543. payload += nlmsg_len(nlh);
  1544. skb = nlmsg_new(payload, GFP_KERNEL);
  1545. if (!skb) {
  1546. struct sock *sk;
  1547. sk = netlink_lookup(sock_net(in_skb->sk),
  1548. in_skb->sk->sk_protocol,
  1549. NETLINK_CB(in_skb).portid);
  1550. if (sk) {
  1551. sk->sk_err = ENOBUFS;
  1552. sk->sk_error_report(sk);
  1553. sock_put(sk);
  1554. }
  1555. return;
  1556. }
  1557. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
  1558. NLMSG_ERROR, payload, 0);
  1559. errmsg = nlmsg_data(rep);
  1560. errmsg->error = err;
  1561. memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
  1562. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
  1563. }
  1564. EXPORT_SYMBOL(netlink_ack);
  1565. int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  1566. struct nlmsghdr *))
  1567. {
  1568. struct nlmsghdr *nlh;
  1569. int err;
  1570. while (skb->len >= nlmsg_total_size(0)) {
  1571. int msglen;
  1572. nlh = nlmsg_hdr(skb);
  1573. err = 0;
  1574. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  1575. return 0;
  1576. /* Only requests are handled by the kernel */
  1577. if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
  1578. goto ack;
  1579. /* Skip control messages */
  1580. if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
  1581. goto ack;
  1582. err = cb(skb, nlh);
  1583. if (err == -EINTR)
  1584. goto skip;
  1585. ack:
  1586. if (nlh->nlmsg_flags & NLM_F_ACK || err)
  1587. netlink_ack(skb, nlh, err);
  1588. skip:
  1589. msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  1590. if (msglen > skb->len)
  1591. msglen = skb->len;
  1592. skb_pull(skb, msglen);
  1593. }
  1594. return 0;
  1595. }
  1596. EXPORT_SYMBOL(netlink_rcv_skb);
  1597. /**
  1598. * nlmsg_notify - send a notification netlink message
  1599. * @sk: netlink socket to use
  1600. * @skb: notification message
  1601. * @portid: destination netlink portid for reports or 0
  1602. * @group: destination multicast group or 0
  1603. * @report: 1 to report back, 0 to disable
  1604. * @flags: allocation flags
  1605. */
  1606. int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
  1607. unsigned int group, int report, gfp_t flags)
  1608. {
  1609. int err = 0;
  1610. if (group) {
  1611. int exclude_portid = 0;
  1612. if (report) {
  1613. atomic_inc(&skb->users);
  1614. exclude_portid = portid;
  1615. }
  1616. /* errors reported via destination sk->sk_err, but propagate
  1617. * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
  1618. err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
  1619. }
  1620. if (report) {
  1621. int err2;
  1622. err2 = nlmsg_unicast(sk, skb, portid);
  1623. if (!err || err == -ESRCH)
  1624. err = err2;
  1625. }
  1626. return err;
  1627. }
  1628. EXPORT_SYMBOL(nlmsg_notify);
  1629. #ifdef CONFIG_PROC_FS
  1630. struct nl_seq_iter {
  1631. struct seq_net_private p;
  1632. int link;
  1633. int hash_idx;
  1634. };
  1635. static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
  1636. {
  1637. struct nl_seq_iter *iter = seq->private;
  1638. int i, j;
  1639. struct sock *s;
  1640. struct hlist_node *node;
  1641. loff_t off = 0;
  1642. for (i = 0; i < MAX_LINKS; i++) {
  1643. struct nl_portid_hash *hash = &nl_table[i].hash;
  1644. for (j = 0; j <= hash->mask; j++) {
  1645. sk_for_each(s, node, &hash->table[j]) {
  1646. if (sock_net(s) != seq_file_net(seq))
  1647. continue;
  1648. if (off == pos) {
  1649. iter->link = i;
  1650. iter->hash_idx = j;
  1651. return s;
  1652. }
  1653. ++off;
  1654. }
  1655. }
  1656. }
  1657. return NULL;
  1658. }
  1659. static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
  1660. __acquires(nl_table_lock)
  1661. {
  1662. read_lock(&nl_table_lock);
  1663. return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
  1664. }
  1665. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1666. {
  1667. struct sock *s;
  1668. struct nl_seq_iter *iter;
  1669. int i, j;
  1670. ++*pos;
  1671. if (v == SEQ_START_TOKEN)
  1672. return netlink_seq_socket_idx(seq, 0);
  1673. iter = seq->private;
  1674. s = v;
  1675. do {
  1676. s = sk_next(s);
  1677. } while (s && sock_net(s) != seq_file_net(seq));
  1678. if (s)
  1679. return s;
  1680. i = iter->link;
  1681. j = iter->hash_idx + 1;
  1682. do {
  1683. struct nl_portid_hash *hash = &nl_table[i].hash;
  1684. for (; j <= hash->mask; j++) {
  1685. s = sk_head(&hash->table[j]);
  1686. while (s && sock_net(s) != seq_file_net(seq))
  1687. s = sk_next(s);
  1688. if (s) {
  1689. iter->link = i;
  1690. iter->hash_idx = j;
  1691. return s;
  1692. }
  1693. }
  1694. j = 0;
  1695. } while (++i < MAX_LINKS);
  1696. return NULL;
  1697. }
  1698. static void netlink_seq_stop(struct seq_file *seq, void *v)
  1699. __releases(nl_table_lock)
  1700. {
  1701. read_unlock(&nl_table_lock);
  1702. }
  1703. static int netlink_seq_show(struct seq_file *seq, void *v)
  1704. {
  1705. if (v == SEQ_START_TOKEN) {
  1706. seq_puts(seq,
  1707. "sk Eth Pid Groups "
  1708. "Rmem Wmem Dump Locks Drops Inode\n");
  1709. } else {
  1710. struct sock *s = v;
  1711. struct netlink_sock *nlk = nlk_sk(s);
  1712. seq_printf(seq, "%pK %-3d %-6d %08x %-8d %-8d %pK %-8d %-8d %-8lu\n",
  1713. s,
  1714. s->sk_protocol,
  1715. nlk->portid,
  1716. nlk->groups ? (u32)nlk->groups[0] : 0,
  1717. sk_rmem_alloc_get(s),
  1718. sk_wmem_alloc_get(s),
  1719. nlk->cb,
  1720. atomic_read(&s->sk_refcnt),
  1721. atomic_read(&s->sk_drops),
  1722. sock_i_ino(s)
  1723. );
  1724. }
  1725. return 0;
  1726. }
  1727. static const struct seq_operations netlink_seq_ops = {
  1728. .start = netlink_seq_start,
  1729. .next = netlink_seq_next,
  1730. .stop = netlink_seq_stop,
  1731. .show = netlink_seq_show,
  1732. };
  1733. static int netlink_seq_open(struct inode *inode, struct file *file)
  1734. {
  1735. return seq_open_net(inode, file, &netlink_seq_ops,
  1736. sizeof(struct nl_seq_iter));
  1737. }
  1738. static const struct file_operations netlink_seq_fops = {
  1739. .owner = THIS_MODULE,
  1740. .open = netlink_seq_open,
  1741. .read = seq_read,
  1742. .llseek = seq_lseek,
  1743. .release = seq_release_net,
  1744. };
  1745. #endif
  1746. int netlink_register_notifier(struct notifier_block *nb)
  1747. {
  1748. return atomic_notifier_chain_register(&netlink_chain, nb);
  1749. }
  1750. EXPORT_SYMBOL(netlink_register_notifier);
  1751. int netlink_unregister_notifier(struct notifier_block *nb)
  1752. {
  1753. return atomic_notifier_chain_unregister(&netlink_chain, nb);
  1754. }
  1755. EXPORT_SYMBOL(netlink_unregister_notifier);
  1756. static const struct proto_ops netlink_ops = {
  1757. .family = PF_NETLINK,
  1758. .owner = THIS_MODULE,
  1759. .release = netlink_release,
  1760. .bind = netlink_bind,
  1761. .connect = netlink_connect,
  1762. .socketpair = sock_no_socketpair,
  1763. .accept = sock_no_accept,
  1764. .getname = netlink_getname,
  1765. .poll = datagram_poll,
  1766. .ioctl = sock_no_ioctl,
  1767. .listen = sock_no_listen,
  1768. .shutdown = sock_no_shutdown,
  1769. .setsockopt = netlink_setsockopt,
  1770. .getsockopt = netlink_getsockopt,
  1771. .sendmsg = netlink_sendmsg,
  1772. .recvmsg = netlink_recvmsg,
  1773. .mmap = sock_no_mmap,
  1774. .sendpage = sock_no_sendpage,
  1775. };
  1776. static const struct net_proto_family netlink_family_ops = {
  1777. .family = PF_NETLINK,
  1778. .create = netlink_create,
  1779. .owner = THIS_MODULE, /* for consistency 8) */
  1780. };
  1781. static int __net_init netlink_net_init(struct net *net)
  1782. {
  1783. #ifdef CONFIG_PROC_FS
  1784. if (!proc_net_fops_create(net, "netlink", 0, &netlink_seq_fops))
  1785. return -ENOMEM;
  1786. #endif
  1787. return 0;
  1788. }
  1789. static void __net_exit netlink_net_exit(struct net *net)
  1790. {
  1791. #ifdef CONFIG_PROC_FS
  1792. proc_net_remove(net, "netlink");
  1793. #endif
  1794. }
  1795. static void __init netlink_add_usersock_entry(void)
  1796. {
  1797. struct listeners *listeners;
  1798. int groups = 32;
  1799. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1800. if (!listeners)
  1801. panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
  1802. netlink_table_grab();
  1803. nl_table[NETLINK_USERSOCK].groups = groups;
  1804. rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
  1805. nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
  1806. nl_table[NETLINK_USERSOCK].registered = 1;
  1807. nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
  1808. netlink_table_ungrab();
  1809. }
  1810. static struct pernet_operations __net_initdata netlink_net_ops = {
  1811. .init = netlink_net_init,
  1812. .exit = netlink_net_exit,
  1813. };
  1814. static int __init netlink_proto_init(void)
  1815. {
  1816. struct sk_buff *dummy_skb;
  1817. int i;
  1818. unsigned long limit;
  1819. unsigned int order;
  1820. int err = proto_register(&netlink_proto, 0);
  1821. if (err != 0)
  1822. goto out;
  1823. BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb));
  1824. nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
  1825. if (!nl_table)
  1826. goto panic;
  1827. if (totalram_pages >= (128 * 1024))
  1828. limit = totalram_pages >> (21 - PAGE_SHIFT);
  1829. else
  1830. limit = totalram_pages >> (23 - PAGE_SHIFT);
  1831. order = get_bitmask_order(limit) - 1 + PAGE_SHIFT;
  1832. limit = (1UL << order) / sizeof(struct hlist_head);
  1833. order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1;
  1834. for (i = 0; i < MAX_LINKS; i++) {
  1835. struct nl_portid_hash *hash = &nl_table[i].hash;
  1836. hash->table = nl_portid_hash_zalloc(1 * sizeof(*hash->table));
  1837. if (!hash->table) {
  1838. while (i-- > 0)
  1839. nl_portid_hash_free(nl_table[i].hash.table,
  1840. 1 * sizeof(*hash->table));
  1841. kfree(nl_table);
  1842. goto panic;
  1843. }
  1844. hash->max_shift = order;
  1845. hash->shift = 0;
  1846. hash->mask = 0;
  1847. hash->rehash_time = jiffies;
  1848. }
  1849. netlink_add_usersock_entry();
  1850. sock_register(&netlink_family_ops);
  1851. register_pernet_subsys(&netlink_net_ops);
  1852. /* The netlink device handler may be needed early. */
  1853. rtnetlink_init();
  1854. out:
  1855. return err;
  1856. panic:
  1857. panic("netlink_init: Cannot allocate nl_table\n");
  1858. }
  1859. core_initcall(netlink_proto_init);