vmscan.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/gfp.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/file.h>
  23. #include <linux/writeback.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/buffer_head.h> /* for try_to_release_page(),
  26. buffer_heads_over_limit */
  27. #include <linux/mm_inline.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/rmap.h>
  30. #include <linux/topology.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cpuset.h>
  33. #include <linux/compaction.h>
  34. #include <linux/notifier.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/delay.h>
  37. #include <linux/kthread.h>
  38. #include <linux/freezer.h>
  39. #include <linux/memcontrol.h>
  40. #include <linux/delayacct.h>
  41. #include <linux/sysctl.h>
  42. #include <linux/oom.h>
  43. #include <linux/prefetch.h>
  44. #include <asm/tlbflush.h>
  45. #include <asm/div64.h>
  46. #include <linux/swapops.h>
  47. #include "internal.h"
  48. #define CREATE_TRACE_POINTS
  49. #include <trace/events/vmscan.h>
  50. struct scan_control {
  51. /* Incremented by the number of inactive pages that were scanned */
  52. unsigned long nr_scanned;
  53. /* Number of pages freed so far during a call to shrink_zones() */
  54. unsigned long nr_reclaimed;
  55. /* How many pages shrink_list() should reclaim */
  56. unsigned long nr_to_reclaim;
  57. unsigned long hibernation_mode;
  58. /* This context's GFP mask */
  59. gfp_t gfp_mask;
  60. int may_writepage;
  61. /* Can mapped pages be reclaimed? */
  62. int may_unmap;
  63. /* Can pages be swapped as part of reclaim? */
  64. int may_swap;
  65. int order;
  66. /* Scan (total_size >> priority) pages at once */
  67. int priority;
  68. /*
  69. * The memory cgroup that hit its limit and as a result is the
  70. * primary target of this reclaim invocation.
  71. */
  72. struct mem_cgroup *target_mem_cgroup;
  73. /*
  74. * Nodemask of nodes allowed by the caller. If NULL, all nodes
  75. * are scanned.
  76. */
  77. nodemask_t *nodemask;
  78. };
  79. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  80. #ifdef ARCH_HAS_PREFETCH
  81. #define prefetch_prev_lru_page(_page, _base, _field) \
  82. do { \
  83. if ((_page)->lru.prev != _base) { \
  84. struct page *prev; \
  85. \
  86. prev = lru_to_page(&(_page->lru)); \
  87. prefetch(&prev->_field); \
  88. } \
  89. } while (0)
  90. #else
  91. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  92. #endif
  93. #ifdef ARCH_HAS_PREFETCHW
  94. #define prefetchw_prev_lru_page(_page, _base, _field) \
  95. do { \
  96. if ((_page)->lru.prev != _base) { \
  97. struct page *prev; \
  98. \
  99. prev = lru_to_page(&(_page->lru)); \
  100. prefetchw(&prev->_field); \
  101. } \
  102. } while (0)
  103. #else
  104. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  105. #endif
  106. /*
  107. * From 0 .. 100. Higher means more swappy.
  108. */
  109. int vm_swappiness = 60;
  110. long vm_total_pages; /* The total number of pages which the VM controls */
  111. static LIST_HEAD(shrinker_list);
  112. static DECLARE_RWSEM(shrinker_rwsem);
  113. #ifdef CONFIG_MEMCG
  114. static bool global_reclaim(struct scan_control *sc)
  115. {
  116. return !sc->target_mem_cgroup;
  117. }
  118. #else
  119. static bool global_reclaim(struct scan_control *sc)
  120. {
  121. return true;
  122. }
  123. #endif
  124. static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  125. {
  126. if (!mem_cgroup_disabled())
  127. return mem_cgroup_get_lru_size(lruvec, lru);
  128. return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
  129. }
  130. /*
  131. * Add a shrinker callback to be called from the vm
  132. */
  133. void register_shrinker(struct shrinker *shrinker)
  134. {
  135. atomic_long_set(&shrinker->nr_in_batch, 0);
  136. down_write(&shrinker_rwsem);
  137. list_add_tail(&shrinker->list, &shrinker_list);
  138. up_write(&shrinker_rwsem);
  139. }
  140. EXPORT_SYMBOL(register_shrinker);
  141. /*
  142. * Remove one
  143. */
  144. void unregister_shrinker(struct shrinker *shrinker)
  145. {
  146. down_write(&shrinker_rwsem);
  147. list_del(&shrinker->list);
  148. up_write(&shrinker_rwsem);
  149. }
  150. EXPORT_SYMBOL(unregister_shrinker);
  151. static inline int do_shrinker_shrink(struct shrinker *shrinker,
  152. struct shrink_control *sc,
  153. unsigned long nr_to_scan)
  154. {
  155. sc->nr_to_scan = nr_to_scan;
  156. return (*shrinker->shrink)(shrinker, sc);
  157. }
  158. #define SHRINK_BATCH 128
  159. /*
  160. * Call the shrink functions to age shrinkable caches
  161. *
  162. * Here we assume it costs one seek to replace a lru page and that it also
  163. * takes a seek to recreate a cache object. With this in mind we age equal
  164. * percentages of the lru and ageable caches. This should balance the seeks
  165. * generated by these structures.
  166. *
  167. * If the vm encountered mapped pages on the LRU it increase the pressure on
  168. * slab to avoid swapping.
  169. *
  170. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  171. *
  172. * `lru_pages' represents the number of on-LRU pages in all the zones which
  173. * are eligible for the caller's allocation attempt. It is used for balancing
  174. * slab reclaim versus page reclaim.
  175. *
  176. * Returns the number of slab objects which we shrunk.
  177. */
  178. unsigned long shrink_slab(struct shrink_control *shrink,
  179. unsigned long nr_pages_scanned,
  180. unsigned long lru_pages)
  181. {
  182. struct shrinker *shrinker;
  183. unsigned long ret = 0;
  184. if (nr_pages_scanned == 0)
  185. nr_pages_scanned = SWAP_CLUSTER_MAX;
  186. if (!down_read_trylock(&shrinker_rwsem)) {
  187. /* Assume we'll be able to shrink next time */
  188. ret = 1;
  189. goto out;
  190. }
  191. list_for_each_entry(shrinker, &shrinker_list, list) {
  192. unsigned long long delta;
  193. long total_scan;
  194. long max_pass;
  195. int shrink_ret = 0;
  196. long nr;
  197. long new_nr;
  198. long batch_size = shrinker->batch ? shrinker->batch
  199. : SHRINK_BATCH;
  200. max_pass = do_shrinker_shrink(shrinker, shrink, 0);
  201. if (max_pass <= 0)
  202. continue;
  203. /*
  204. * copy the current shrinker scan count into a local variable
  205. * and zero it so that other concurrent shrinker invocations
  206. * don't also do this scanning work.
  207. */
  208. nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
  209. total_scan = nr;
  210. delta = (4 * nr_pages_scanned) / shrinker->seeks;
  211. delta *= max_pass;
  212. do_div(delta, lru_pages + 1);
  213. total_scan += delta;
  214. if (total_scan < 0) {
  215. printk(KERN_ERR "shrink_slab: %pF negative objects to "
  216. "delete nr=%ld\n",
  217. shrinker->shrink, total_scan);
  218. total_scan = max_pass;
  219. }
  220. /*
  221. * We need to avoid excessive windup on filesystem shrinkers
  222. * due to large numbers of GFP_NOFS allocations causing the
  223. * shrinkers to return -1 all the time. This results in a large
  224. * nr being built up so when a shrink that can do some work
  225. * comes along it empties the entire cache due to nr >>>
  226. * max_pass. This is bad for sustaining a working set in
  227. * memory.
  228. *
  229. * Hence only allow the shrinker to scan the entire cache when
  230. * a large delta change is calculated directly.
  231. */
  232. if (delta < max_pass / 4)
  233. total_scan = min(total_scan, max_pass / 2);
  234. /*
  235. * Avoid risking looping forever due to too large nr value:
  236. * never try to free more than twice the estimate number of
  237. * freeable entries.
  238. */
  239. if (total_scan > max_pass * 2)
  240. total_scan = max_pass * 2;
  241. trace_mm_shrink_slab_start(shrinker, shrink, nr,
  242. nr_pages_scanned, lru_pages,
  243. max_pass, delta, total_scan);
  244. while (total_scan >= batch_size) {
  245. int nr_before;
  246. nr_before = do_shrinker_shrink(shrinker, shrink, 0);
  247. shrink_ret = do_shrinker_shrink(shrinker, shrink,
  248. batch_size);
  249. if (shrink_ret == -1)
  250. break;
  251. if (shrink_ret < nr_before)
  252. ret += nr_before - shrink_ret;
  253. count_vm_events(SLABS_SCANNED, batch_size);
  254. total_scan -= batch_size;
  255. cond_resched();
  256. }
  257. /*
  258. * move the unused scan count back into the shrinker in a
  259. * manner that handles concurrent updates. If we exhausted the
  260. * scan, there is no need to do an update.
  261. */
  262. if (total_scan > 0)
  263. new_nr = atomic_long_add_return(total_scan,
  264. &shrinker->nr_in_batch);
  265. else
  266. new_nr = atomic_long_read(&shrinker->nr_in_batch);
  267. trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
  268. }
  269. up_read(&shrinker_rwsem);
  270. out:
  271. cond_resched();
  272. return ret;
  273. }
  274. static inline int is_page_cache_freeable(struct page *page)
  275. {
  276. /*
  277. * A freeable page cache page is referenced only by the caller
  278. * that isolated the page, the page cache radix tree and
  279. * optional buffer heads at page->private.
  280. */
  281. return page_count(page) - page_has_private(page) == 2;
  282. }
  283. static int may_write_to_queue(struct backing_dev_info *bdi,
  284. struct scan_control *sc)
  285. {
  286. if (current->flags & PF_SWAPWRITE)
  287. return 1;
  288. if (!bdi_write_congested(bdi))
  289. return 1;
  290. if (bdi == current->backing_dev_info)
  291. return 1;
  292. return 0;
  293. }
  294. /*
  295. * We detected a synchronous write error writing a page out. Probably
  296. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  297. * fsync(), msync() or close().
  298. *
  299. * The tricky part is that after writepage we cannot touch the mapping: nothing
  300. * prevents it from being freed up. But we have a ref on the page and once
  301. * that page is locked, the mapping is pinned.
  302. *
  303. * We're allowed to run sleeping lock_page() here because we know the caller has
  304. * __GFP_FS.
  305. */
  306. static void handle_write_error(struct address_space *mapping,
  307. struct page *page, int error)
  308. {
  309. lock_page(page);
  310. if (page_mapping(page) == mapping)
  311. mapping_set_error(mapping, error);
  312. unlock_page(page);
  313. }
  314. /* possible outcome of pageout() */
  315. typedef enum {
  316. /* failed to write page out, page is locked */
  317. PAGE_KEEP,
  318. /* move page to the active list, page is locked */
  319. PAGE_ACTIVATE,
  320. /* page has been sent to the disk successfully, page is unlocked */
  321. PAGE_SUCCESS,
  322. /* page is clean and locked */
  323. PAGE_CLEAN,
  324. } pageout_t;
  325. /*
  326. * pageout is called by shrink_page_list() for each dirty page.
  327. * Calls ->writepage().
  328. */
  329. static pageout_t pageout(struct page *page, struct address_space *mapping,
  330. struct scan_control *sc)
  331. {
  332. /*
  333. * If the page is dirty, only perform writeback if that write
  334. * will be non-blocking. To prevent this allocation from being
  335. * stalled by pagecache activity. But note that there may be
  336. * stalls if we need to run get_block(). We could test
  337. * PagePrivate for that.
  338. *
  339. * If this process is currently in __generic_file_aio_write() against
  340. * this page's queue, we can perform writeback even if that
  341. * will block.
  342. *
  343. * If the page is swapcache, write it back even if that would
  344. * block, for some throttling. This happens by accident, because
  345. * swap_backing_dev_info is bust: it doesn't reflect the
  346. * congestion state of the swapdevs. Easy to fix, if needed.
  347. */
  348. if (!is_page_cache_freeable(page))
  349. return PAGE_KEEP;
  350. if (!mapping) {
  351. /*
  352. * Some data journaling orphaned pages can have
  353. * page->mapping == NULL while being dirty with clean buffers.
  354. */
  355. if (page_has_private(page)) {
  356. if (try_to_free_buffers(page)) {
  357. ClearPageDirty(page);
  358. printk("%s: orphaned page\n", __func__);
  359. return PAGE_CLEAN;
  360. }
  361. }
  362. return PAGE_KEEP;
  363. }
  364. if (mapping->a_ops->writepage == NULL)
  365. return PAGE_ACTIVATE;
  366. if (!may_write_to_queue(mapping->backing_dev_info, sc))
  367. return PAGE_KEEP;
  368. if (clear_page_dirty_for_io(page)) {
  369. int res;
  370. struct writeback_control wbc = {
  371. .sync_mode = WB_SYNC_NONE,
  372. .nr_to_write = SWAP_CLUSTER_MAX,
  373. .range_start = 0,
  374. .range_end = LLONG_MAX,
  375. .for_reclaim = 1,
  376. };
  377. SetPageReclaim(page);
  378. res = mapping->a_ops->writepage(page, &wbc);
  379. if (res < 0)
  380. handle_write_error(mapping, page, res);
  381. if (res == AOP_WRITEPAGE_ACTIVATE) {
  382. ClearPageReclaim(page);
  383. return PAGE_ACTIVATE;
  384. }
  385. if (!PageWriteback(page)) {
  386. /* synchronous write or broken a_ops? */
  387. ClearPageReclaim(page);
  388. }
  389. trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
  390. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  391. return PAGE_SUCCESS;
  392. }
  393. return PAGE_CLEAN;
  394. }
  395. /*
  396. * Same as remove_mapping, but if the page is removed from the mapping, it
  397. * gets returned with a refcount of 0.
  398. */
  399. static int __remove_mapping(struct address_space *mapping, struct page *page)
  400. {
  401. BUG_ON(!PageLocked(page));
  402. BUG_ON(mapping != page_mapping(page));
  403. spin_lock_irq(&mapping->tree_lock);
  404. /*
  405. * The non racy check for a busy page.
  406. *
  407. * Must be careful with the order of the tests. When someone has
  408. * a ref to the page, it may be possible that they dirty it then
  409. * drop the reference. So if PageDirty is tested before page_count
  410. * here, then the following race may occur:
  411. *
  412. * get_user_pages(&page);
  413. * [user mapping goes away]
  414. * write_to(page);
  415. * !PageDirty(page) [good]
  416. * SetPageDirty(page);
  417. * put_page(page);
  418. * !page_count(page) [good, discard it]
  419. *
  420. * [oops, our write_to data is lost]
  421. *
  422. * Reversing the order of the tests ensures such a situation cannot
  423. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  424. * load is not satisfied before that of page->_count.
  425. *
  426. * Note that if SetPageDirty is always performed via set_page_dirty,
  427. * and thus under tree_lock, then this ordering is not required.
  428. */
  429. if (!page_freeze_refs(page, 2))
  430. goto cannot_free;
  431. /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  432. if (unlikely(PageDirty(page))) {
  433. page_unfreeze_refs(page, 2);
  434. goto cannot_free;
  435. }
  436. if (PageSwapCache(page)) {
  437. swp_entry_t swap = { .val = page_private(page) };
  438. __delete_from_swap_cache(page);
  439. spin_unlock_irq(&mapping->tree_lock);
  440. swapcache_free(swap, page);
  441. } else {
  442. void (*freepage)(struct page *);
  443. freepage = mapping->a_ops->freepage;
  444. __delete_from_page_cache(page);
  445. spin_unlock_irq(&mapping->tree_lock);
  446. mem_cgroup_uncharge_cache_page(page);
  447. if (freepage != NULL)
  448. freepage(page);
  449. }
  450. return 1;
  451. cannot_free:
  452. spin_unlock_irq(&mapping->tree_lock);
  453. return 0;
  454. }
  455. /*
  456. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  457. * someone else has a ref on the page, abort and return 0. If it was
  458. * successfully detached, return 1. Assumes the caller has a single ref on
  459. * this page.
  460. */
  461. int remove_mapping(struct address_space *mapping, struct page *page)
  462. {
  463. if (__remove_mapping(mapping, page)) {
  464. /*
  465. * Unfreezing the refcount with 1 rather than 2 effectively
  466. * drops the pagecache ref for us without requiring another
  467. * atomic operation.
  468. */
  469. page_unfreeze_refs(page, 1);
  470. return 1;
  471. }
  472. return 0;
  473. }
  474. /**
  475. * putback_lru_page - put previously isolated page onto appropriate LRU list
  476. * @page: page to be put back to appropriate lru list
  477. *
  478. * Add previously isolated @page to appropriate LRU list.
  479. * Page may still be unevictable for other reasons.
  480. *
  481. * lru_lock must not be held, interrupts must be enabled.
  482. */
  483. void putback_lru_page(struct page *page)
  484. {
  485. int lru;
  486. int active = !!TestClearPageActive(page);
  487. int was_unevictable = PageUnevictable(page);
  488. VM_BUG_ON(PageLRU(page));
  489. redo:
  490. ClearPageUnevictable(page);
  491. if (page_evictable(page)) {
  492. /*
  493. * For evictable pages, we can use the cache.
  494. * In event of a race, worst case is we end up with an
  495. * unevictable page on [in]active list.
  496. * We know how to handle that.
  497. */
  498. lru = active + page_lru_base_type(page);
  499. lru_cache_add_lru(page, lru);
  500. } else {
  501. /*
  502. * Put unevictable pages directly on zone's unevictable
  503. * list.
  504. */
  505. lru = LRU_UNEVICTABLE;
  506. add_page_to_unevictable_list(page);
  507. /*
  508. * When racing with an mlock or AS_UNEVICTABLE clearing
  509. * (page is unlocked) make sure that if the other thread
  510. * does not observe our setting of PG_lru and fails
  511. * isolation/check_move_unevictable_pages,
  512. * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
  513. * the page back to the evictable list.
  514. *
  515. * The other side is TestClearPageMlocked() or shmem_lock().
  516. */
  517. smp_mb();
  518. }
  519. /*
  520. * page's status can change while we move it among lru. If an evictable
  521. * page is on unevictable list, it never be freed. To avoid that,
  522. * check after we added it to the list, again.
  523. */
  524. if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
  525. if (!isolate_lru_page(page)) {
  526. put_page(page);
  527. goto redo;
  528. }
  529. /* This means someone else dropped this page from LRU
  530. * So, it will be freed or putback to LRU again. There is
  531. * nothing to do here.
  532. */
  533. }
  534. if (was_unevictable && lru != LRU_UNEVICTABLE)
  535. count_vm_event(UNEVICTABLE_PGRESCUED);
  536. else if (!was_unevictable && lru == LRU_UNEVICTABLE)
  537. count_vm_event(UNEVICTABLE_PGCULLED);
  538. put_page(page); /* drop ref from isolate */
  539. }
  540. enum page_references {
  541. PAGEREF_RECLAIM,
  542. PAGEREF_RECLAIM_CLEAN,
  543. PAGEREF_KEEP,
  544. PAGEREF_ACTIVATE,
  545. };
  546. static enum page_references page_check_references(struct page *page,
  547. struct scan_control *sc)
  548. {
  549. int referenced_ptes, referenced_page;
  550. unsigned long vm_flags;
  551. referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
  552. &vm_flags);
  553. referenced_page = TestClearPageReferenced(page);
  554. /*
  555. * Mlock lost the isolation race with us. Let try_to_unmap()
  556. * move the page to the unevictable list.
  557. */
  558. if (vm_flags & VM_LOCKED)
  559. return PAGEREF_RECLAIM;
  560. if (referenced_ptes) {
  561. if (PageSwapBacked(page))
  562. return PAGEREF_ACTIVATE;
  563. /*
  564. * All mapped pages start out with page table
  565. * references from the instantiating fault, so we need
  566. * to look twice if a mapped file page is used more
  567. * than once.
  568. *
  569. * Mark it and spare it for another trip around the
  570. * inactive list. Another page table reference will
  571. * lead to its activation.
  572. *
  573. * Note: the mark is set for activated pages as well
  574. * so that recently deactivated but used pages are
  575. * quickly recovered.
  576. */
  577. SetPageReferenced(page);
  578. if (referenced_page || referenced_ptes > 1)
  579. return PAGEREF_ACTIVATE;
  580. /*
  581. * Activate file-backed executable pages after first usage.
  582. */
  583. if (vm_flags & VM_EXEC)
  584. return PAGEREF_ACTIVATE;
  585. return PAGEREF_KEEP;
  586. }
  587. /* Reclaim if clean, defer dirty pages to writeback */
  588. if (referenced_page && !PageSwapBacked(page))
  589. return PAGEREF_RECLAIM_CLEAN;
  590. return PAGEREF_RECLAIM;
  591. }
  592. /*
  593. * shrink_page_list() returns the number of reclaimed pages
  594. */
  595. static unsigned long shrink_page_list(struct list_head *page_list,
  596. struct zone *zone,
  597. struct scan_control *sc,
  598. enum ttu_flags ttu_flags,
  599. unsigned long *ret_nr_dirty,
  600. unsigned long *ret_nr_writeback,
  601. bool force_reclaim)
  602. {
  603. LIST_HEAD(ret_pages);
  604. LIST_HEAD(free_pages);
  605. int pgactivate = 0;
  606. unsigned long nr_dirty = 0;
  607. unsigned long nr_congested = 0;
  608. unsigned long nr_reclaimed = 0;
  609. unsigned long nr_writeback = 0;
  610. cond_resched();
  611. mem_cgroup_uncharge_start();
  612. while (!list_empty(page_list)) {
  613. struct address_space *mapping;
  614. struct page *page;
  615. int may_enter_fs;
  616. enum page_references references = PAGEREF_RECLAIM_CLEAN;
  617. cond_resched();
  618. page = lru_to_page(page_list);
  619. list_del(&page->lru);
  620. if (!trylock_page(page))
  621. goto keep;
  622. VM_BUG_ON(PageActive(page));
  623. VM_BUG_ON(page_zone(page) != zone);
  624. sc->nr_scanned++;
  625. if (unlikely(!page_evictable(page)))
  626. goto cull_mlocked;
  627. if (!sc->may_unmap && page_mapped(page))
  628. goto keep_locked;
  629. /* Double the slab pressure for mapped and swapcache pages */
  630. if (page_mapped(page) || PageSwapCache(page))
  631. sc->nr_scanned++;
  632. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  633. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  634. if (PageWriteback(page)) {
  635. /*
  636. * memcg doesn't have any dirty pages throttling so we
  637. * could easily OOM just because too many pages are in
  638. * writeback and there is nothing else to reclaim.
  639. *
  640. * Check __GFP_IO, certainly because a loop driver
  641. * thread might enter reclaim, and deadlock if it waits
  642. * on a page for which it is needed to do the write
  643. * (loop masks off __GFP_IO|__GFP_FS for this reason);
  644. * but more thought would probably show more reasons.
  645. *
  646. * Don't require __GFP_FS, since we're not going into
  647. * the FS, just waiting on its writeback completion.
  648. * Worryingly, ext4 gfs2 and xfs allocate pages with
  649. * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
  650. * testing may_enter_fs here is liable to OOM on them.
  651. */
  652. if (global_reclaim(sc) ||
  653. !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
  654. /*
  655. * This is slightly racy - end_page_writeback()
  656. * might have just cleared PageReclaim, then
  657. * setting PageReclaim here end up interpreted
  658. * as PageReadahead - but that does not matter
  659. * enough to care. What we do want is for this
  660. * page to have PageReclaim set next time memcg
  661. * reclaim reaches the tests above, so it will
  662. * then wait_on_page_writeback() to avoid OOM;
  663. * and it's also appropriate in global reclaim.
  664. */
  665. SetPageReclaim(page);
  666. nr_writeback++;
  667. goto keep_locked;
  668. }
  669. wait_on_page_writeback(page);
  670. }
  671. if (!force_reclaim)
  672. references = page_check_references(page, sc);
  673. switch (references) {
  674. case PAGEREF_ACTIVATE:
  675. goto activate_locked;
  676. case PAGEREF_KEEP:
  677. goto keep_locked;
  678. case PAGEREF_RECLAIM:
  679. case PAGEREF_RECLAIM_CLEAN:
  680. ; /* try to reclaim the page below */
  681. }
  682. /*
  683. * Anonymous process memory has backing store?
  684. * Try to allocate it some swap space here.
  685. */
  686. if (PageAnon(page) && !PageSwapCache(page)) {
  687. if (!(sc->gfp_mask & __GFP_IO))
  688. goto keep_locked;
  689. if (!add_to_swap(page))
  690. goto activate_locked;
  691. may_enter_fs = 1;
  692. }
  693. mapping = page_mapping(page);
  694. /*
  695. * The page is mapped into the page tables of one or more
  696. * processes. Try to unmap it here.
  697. */
  698. if (page_mapped(page) && mapping) {
  699. switch (try_to_unmap(page, ttu_flags)) {
  700. case SWAP_FAIL:
  701. goto activate_locked;
  702. case SWAP_AGAIN:
  703. goto keep_locked;
  704. case SWAP_MLOCK:
  705. goto cull_mlocked;
  706. case SWAP_SUCCESS:
  707. ; /* try to free the page below */
  708. }
  709. }
  710. if (PageDirty(page)) {
  711. nr_dirty++;
  712. /*
  713. * Only kswapd can writeback filesystem pages to
  714. * avoid risk of stack overflow but do not writeback
  715. * unless under significant pressure.
  716. */
  717. if (page_is_file_cache(page) &&
  718. (!current_is_kswapd() ||
  719. sc->priority >= DEF_PRIORITY - 2)) {
  720. /*
  721. * Immediately reclaim when written back.
  722. * Similar in principal to deactivate_page()
  723. * except we already have the page isolated
  724. * and know it's dirty
  725. */
  726. inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
  727. SetPageReclaim(page);
  728. goto keep_locked;
  729. }
  730. if (references == PAGEREF_RECLAIM_CLEAN)
  731. goto keep_locked;
  732. if (!may_enter_fs)
  733. goto keep_locked;
  734. if (!sc->may_writepage)
  735. goto keep_locked;
  736. /* Page is dirty, try to write it out here */
  737. switch (pageout(page, mapping, sc)) {
  738. case PAGE_KEEP:
  739. nr_congested++;
  740. goto keep_locked;
  741. case PAGE_ACTIVATE:
  742. goto activate_locked;
  743. case PAGE_SUCCESS:
  744. if (PageWriteback(page))
  745. goto keep;
  746. if (PageDirty(page))
  747. goto keep;
  748. /*
  749. * A synchronous write - probably a ramdisk. Go
  750. * ahead and try to reclaim the page.
  751. */
  752. if (!trylock_page(page))
  753. goto keep;
  754. if (PageDirty(page) || PageWriteback(page))
  755. goto keep_locked;
  756. mapping = page_mapping(page);
  757. case PAGE_CLEAN:
  758. ; /* try to free the page below */
  759. }
  760. }
  761. /*
  762. * If the page has buffers, try to free the buffer mappings
  763. * associated with this page. If we succeed we try to free
  764. * the page as well.
  765. *
  766. * We do this even if the page is PageDirty().
  767. * try_to_release_page() does not perform I/O, but it is
  768. * possible for a page to have PageDirty set, but it is actually
  769. * clean (all its buffers are clean). This happens if the
  770. * buffers were written out directly, with submit_bh(). ext3
  771. * will do this, as well as the blockdev mapping.
  772. * try_to_release_page() will discover that cleanness and will
  773. * drop the buffers and mark the page clean - it can be freed.
  774. *
  775. * Rarely, pages can have buffers and no ->mapping. These are
  776. * the pages which were not successfully invalidated in
  777. * truncate_complete_page(). We try to drop those buffers here
  778. * and if that worked, and the page is no longer mapped into
  779. * process address space (page_count == 1) it can be freed.
  780. * Otherwise, leave the page on the LRU so it is swappable.
  781. */
  782. if (page_has_private(page)) {
  783. if (!try_to_release_page(page, sc->gfp_mask))
  784. goto activate_locked;
  785. if (!mapping && page_count(page) == 1) {
  786. unlock_page(page);
  787. if (put_page_testzero(page))
  788. goto free_it;
  789. else {
  790. /*
  791. * rare race with speculative reference.
  792. * the speculative reference will free
  793. * this page shortly, so we may
  794. * increment nr_reclaimed here (and
  795. * leave it off the LRU).
  796. */
  797. nr_reclaimed++;
  798. continue;
  799. }
  800. }
  801. }
  802. if (!mapping || !__remove_mapping(mapping, page))
  803. goto keep_locked;
  804. /*
  805. * At this point, we have no other references and there is
  806. * no way to pick any more up (removed from LRU, removed
  807. * from pagecache). Can use non-atomic bitops now (and
  808. * we obviously don't have to worry about waking up a process
  809. * waiting on the page lock, because there are no references.
  810. */
  811. __clear_page_locked(page);
  812. free_it:
  813. nr_reclaimed++;
  814. /*
  815. * Is there need to periodically free_page_list? It would
  816. * appear not as the counts should be low
  817. */
  818. list_add(&page->lru, &free_pages);
  819. continue;
  820. cull_mlocked:
  821. if (PageSwapCache(page))
  822. try_to_free_swap(page);
  823. unlock_page(page);
  824. putback_lru_page(page);
  825. continue;
  826. activate_locked:
  827. /* Not a candidate for swapping, so reclaim swap space. */
  828. if (PageSwapCache(page) && vm_swap_full())
  829. try_to_free_swap(page);
  830. VM_BUG_ON(PageActive(page));
  831. SetPageActive(page);
  832. pgactivate++;
  833. keep_locked:
  834. unlock_page(page);
  835. keep:
  836. list_add(&page->lru, &ret_pages);
  837. VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
  838. }
  839. /*
  840. * Tag a zone as congested if all the dirty pages encountered were
  841. * backed by a congested BDI. In this case, reclaimers should just
  842. * back off and wait for congestion to clear because further reclaim
  843. * will encounter the same problem
  844. */
  845. if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
  846. zone_set_flag(zone, ZONE_CONGESTED);
  847. free_hot_cold_page_list(&free_pages, 1);
  848. list_splice(&ret_pages, page_list);
  849. count_vm_events(PGACTIVATE, pgactivate);
  850. mem_cgroup_uncharge_end();
  851. *ret_nr_dirty += nr_dirty;
  852. *ret_nr_writeback += nr_writeback;
  853. return nr_reclaimed;
  854. }
  855. unsigned long reclaim_clean_pages_from_list(struct zone *zone,
  856. struct list_head *page_list)
  857. {
  858. struct scan_control sc = {
  859. .gfp_mask = GFP_KERNEL,
  860. .priority = DEF_PRIORITY,
  861. .may_unmap = 1,
  862. };
  863. unsigned long ret, dummy1, dummy2;
  864. struct page *page, *next;
  865. LIST_HEAD(clean_pages);
  866. list_for_each_entry_safe(page, next, page_list, lru) {
  867. if (page_is_file_cache(page) && !PageDirty(page)) {
  868. ClearPageActive(page);
  869. list_move(&page->lru, &clean_pages);
  870. }
  871. }
  872. ret = shrink_page_list(&clean_pages, zone, &sc,
  873. TTU_UNMAP|TTU_IGNORE_ACCESS,
  874. &dummy1, &dummy2, true);
  875. list_splice(&clean_pages, page_list);
  876. __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
  877. return ret;
  878. }
  879. /*
  880. * Attempt to remove the specified page from its LRU. Only take this page
  881. * if it is of the appropriate PageActive status. Pages which are being
  882. * freed elsewhere are also ignored.
  883. *
  884. * page: page to consider
  885. * mode: one of the LRU isolation modes defined above
  886. *
  887. * returns 0 on success, -ve errno on failure.
  888. */
  889. int __isolate_lru_page(struct page *page, isolate_mode_t mode)
  890. {
  891. int ret = -EINVAL;
  892. /* Only take pages on the LRU. */
  893. if (!PageLRU(page))
  894. return ret;
  895. /* Compaction should not handle unevictable pages but CMA can do so */
  896. if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
  897. return ret;
  898. ret = -EBUSY;
  899. /*
  900. * To minimise LRU disruption, the caller can indicate that it only
  901. * wants to isolate pages it will be able to operate on without
  902. * blocking - clean pages for the most part.
  903. *
  904. * ISOLATE_CLEAN means that only clean pages should be isolated. This
  905. * is used by reclaim when it is cannot write to backing storage
  906. *
  907. * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
  908. * that it is possible to migrate without blocking
  909. */
  910. if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
  911. /* All the caller can do on PageWriteback is block */
  912. if (PageWriteback(page))
  913. return ret;
  914. if (PageDirty(page)) {
  915. struct address_space *mapping;
  916. /* ISOLATE_CLEAN means only clean pages */
  917. if (mode & ISOLATE_CLEAN)
  918. return ret;
  919. /*
  920. * Only pages without mappings or that have a
  921. * ->migratepage callback are possible to migrate
  922. * without blocking
  923. */
  924. mapping = page_mapping(page);
  925. if (mapping && !mapping->a_ops->migratepage)
  926. return ret;
  927. }
  928. }
  929. if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
  930. return ret;
  931. if (likely(get_page_unless_zero(page))) {
  932. /*
  933. * Be careful not to clear PageLRU until after we're
  934. * sure the page is not being freed elsewhere -- the
  935. * page release code relies on it.
  936. */
  937. ClearPageLRU(page);
  938. ret = 0;
  939. }
  940. return ret;
  941. }
  942. /*
  943. * zone->lru_lock is heavily contended. Some of the functions that
  944. * shrink the lists perform better by taking out a batch of pages
  945. * and working on them outside the LRU lock.
  946. *
  947. * For pagecache intensive workloads, this function is the hottest
  948. * spot in the kernel (apart from copy_*_user functions).
  949. *
  950. * Appropriate locks must be held before calling this function.
  951. *
  952. * @nr_to_scan: The number of pages to look through on the list.
  953. * @lruvec: The LRU vector to pull pages from.
  954. * @dst: The temp list to put pages on to.
  955. * @nr_scanned: The number of pages that were scanned.
  956. * @sc: The scan_control struct for this reclaim session
  957. * @mode: One of the LRU isolation modes
  958. * @lru: LRU list id for isolating
  959. *
  960. * returns how many pages were moved onto *@dst.
  961. */
  962. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  963. struct lruvec *lruvec, struct list_head *dst,
  964. unsigned long *nr_scanned, struct scan_control *sc,
  965. isolate_mode_t mode, enum lru_list lru)
  966. {
  967. struct list_head *src = &lruvec->lists[lru];
  968. unsigned long nr_taken = 0;
  969. unsigned long scan;
  970. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  971. struct page *page;
  972. int nr_pages;
  973. page = lru_to_page(src);
  974. prefetchw_prev_lru_page(page, src, flags);
  975. VM_BUG_ON(!PageLRU(page));
  976. switch (__isolate_lru_page(page, mode)) {
  977. case 0:
  978. nr_pages = hpage_nr_pages(page);
  979. mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
  980. list_move(&page->lru, dst);
  981. nr_taken += nr_pages;
  982. break;
  983. case -EBUSY:
  984. /* else it is being freed elsewhere */
  985. list_move(&page->lru, src);
  986. continue;
  987. default:
  988. BUG();
  989. }
  990. }
  991. *nr_scanned = scan;
  992. trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
  993. nr_taken, mode, is_file_lru(lru));
  994. return nr_taken;
  995. }
  996. /**
  997. * isolate_lru_page - tries to isolate a page from its LRU list
  998. * @page: page to isolate from its LRU list
  999. *
  1000. * Isolates a @page from an LRU list, clears PageLRU and adjusts the
  1001. * vmstat statistic corresponding to whatever LRU list the page was on.
  1002. *
  1003. * Returns 0 if the page was removed from an LRU list.
  1004. * Returns -EBUSY if the page was not on an LRU list.
  1005. *
  1006. * The returned page will have PageLRU() cleared. If it was found on
  1007. * the active list, it will have PageActive set. If it was found on
  1008. * the unevictable list, it will have the PageUnevictable bit set. That flag
  1009. * may need to be cleared by the caller before letting the page go.
  1010. *
  1011. * The vmstat statistic corresponding to the list on which the page was
  1012. * found will be decremented.
  1013. *
  1014. * Restrictions:
  1015. * (1) Must be called with an elevated refcount on the page. This is a
  1016. * fundamentnal difference from isolate_lru_pages (which is called
  1017. * without a stable reference).
  1018. * (2) the lru_lock must not be held.
  1019. * (3) interrupts must be enabled.
  1020. */
  1021. int isolate_lru_page(struct page *page)
  1022. {
  1023. int ret = -EBUSY;
  1024. VM_BUG_ON(!page_count(page));
  1025. if (PageLRU(page)) {
  1026. struct zone *zone = page_zone(page);
  1027. struct lruvec *lruvec;
  1028. spin_lock_irq(&zone->lru_lock);
  1029. lruvec = mem_cgroup_page_lruvec(page, zone);
  1030. if (PageLRU(page)) {
  1031. int lru = page_lru(page);
  1032. get_page(page);
  1033. ClearPageLRU(page);
  1034. del_page_from_lru_list(page, lruvec, lru);
  1035. ret = 0;
  1036. }
  1037. spin_unlock_irq(&zone->lru_lock);
  1038. }
  1039. return ret;
  1040. }
  1041. /*
  1042. * Are there way too many processes in the direct reclaim path already?
  1043. */
  1044. static int too_many_isolated(struct zone *zone, int file,
  1045. struct scan_control *sc)
  1046. {
  1047. unsigned long inactive, isolated;
  1048. if (current_is_kswapd())
  1049. return 0;
  1050. if (!global_reclaim(sc))
  1051. return 0;
  1052. if (file) {
  1053. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1054. isolated = zone_page_state(zone, NR_ISOLATED_FILE);
  1055. } else {
  1056. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1057. isolated = zone_page_state(zone, NR_ISOLATED_ANON);
  1058. }
  1059. return isolated > inactive;
  1060. }
  1061. static noinline_for_stack void
  1062. putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
  1063. {
  1064. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1065. struct zone *zone = lruvec_zone(lruvec);
  1066. LIST_HEAD(pages_to_free);
  1067. /*
  1068. * Put back any unfreeable pages.
  1069. */
  1070. while (!list_empty(page_list)) {
  1071. struct page *page = lru_to_page(page_list);
  1072. int lru;
  1073. VM_BUG_ON(PageLRU(page));
  1074. list_del(&page->lru);
  1075. if (unlikely(!page_evictable(page))) {
  1076. spin_unlock_irq(&zone->lru_lock);
  1077. putback_lru_page(page);
  1078. spin_lock_irq(&zone->lru_lock);
  1079. continue;
  1080. }
  1081. lruvec = mem_cgroup_page_lruvec(page, zone);
  1082. SetPageLRU(page);
  1083. lru = page_lru(page);
  1084. add_page_to_lru_list(page, lruvec, lru);
  1085. if (is_active_lru(lru)) {
  1086. int file = is_file_lru(lru);
  1087. int numpages = hpage_nr_pages(page);
  1088. reclaim_stat->recent_rotated[file] += numpages;
  1089. }
  1090. if (put_page_testzero(page)) {
  1091. __ClearPageLRU(page);
  1092. __ClearPageActive(page);
  1093. del_page_from_lru_list(page, lruvec, lru);
  1094. if (unlikely(PageCompound(page))) {
  1095. spin_unlock_irq(&zone->lru_lock);
  1096. (*get_compound_page_dtor(page))(page);
  1097. spin_lock_irq(&zone->lru_lock);
  1098. } else
  1099. list_add(&page->lru, &pages_to_free);
  1100. }
  1101. }
  1102. /*
  1103. * To save our caller's stack, now use input list for pages to free.
  1104. */
  1105. list_splice(&pages_to_free, page_list);
  1106. }
  1107. /*
  1108. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  1109. * of reclaimed pages
  1110. */
  1111. static noinline_for_stack unsigned long
  1112. shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
  1113. struct scan_control *sc, enum lru_list lru)
  1114. {
  1115. LIST_HEAD(page_list);
  1116. unsigned long nr_scanned;
  1117. unsigned long nr_reclaimed = 0;
  1118. unsigned long nr_taken;
  1119. unsigned long nr_dirty = 0;
  1120. unsigned long nr_writeback = 0;
  1121. isolate_mode_t isolate_mode = 0;
  1122. int file = is_file_lru(lru);
  1123. struct zone *zone = lruvec_zone(lruvec);
  1124. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1125. while (unlikely(too_many_isolated(zone, file, sc))) {
  1126. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1127. /* We are about to die and free our memory. Return now. */
  1128. if (fatal_signal_pending(current))
  1129. return SWAP_CLUSTER_MAX;
  1130. }
  1131. lru_add_drain();
  1132. if (!sc->may_unmap)
  1133. isolate_mode |= ISOLATE_UNMAPPED;
  1134. if (!sc->may_writepage)
  1135. isolate_mode |= ISOLATE_CLEAN;
  1136. spin_lock_irq(&zone->lru_lock);
  1137. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
  1138. &nr_scanned, sc, isolate_mode, lru);
  1139. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1140. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1141. if (global_reclaim(sc)) {
  1142. zone->pages_scanned += nr_scanned;
  1143. if (current_is_kswapd())
  1144. __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
  1145. else
  1146. __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
  1147. }
  1148. spin_unlock_irq(&zone->lru_lock);
  1149. if (nr_taken == 0)
  1150. return 0;
  1151. nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
  1152. &nr_dirty, &nr_writeback, false);
  1153. spin_lock_irq(&zone->lru_lock);
  1154. reclaim_stat->recent_scanned[file] += nr_taken;
  1155. if (global_reclaim(sc)) {
  1156. if (current_is_kswapd())
  1157. __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
  1158. nr_reclaimed);
  1159. else
  1160. __count_zone_vm_events(PGSTEAL_DIRECT, zone,
  1161. nr_reclaimed);
  1162. }
  1163. putback_inactive_pages(lruvec, &page_list);
  1164. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1165. spin_unlock_irq(&zone->lru_lock);
  1166. free_hot_cold_page_list(&page_list, 1);
  1167. /*
  1168. * If reclaim is isolating dirty pages under writeback, it implies
  1169. * that the long-lived page allocation rate is exceeding the page
  1170. * laundering rate. Either the global limits are not being effective
  1171. * at throttling processes due to the page distribution throughout
  1172. * zones or there is heavy usage of a slow backing device. The
  1173. * only option is to throttle from reclaim context which is not ideal
  1174. * as there is no guarantee the dirtying process is throttled in the
  1175. * same way balance_dirty_pages() manages.
  1176. *
  1177. * This scales the number of dirty pages that must be under writeback
  1178. * before throttling depending on priority. It is a simple backoff
  1179. * function that has the most effect in the range DEF_PRIORITY to
  1180. * DEF_PRIORITY-2 which is the priority reclaim is considered to be
  1181. * in trouble and reclaim is considered to be in trouble.
  1182. *
  1183. * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
  1184. * DEF_PRIORITY-1 50% must be PageWriteback
  1185. * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
  1186. * ...
  1187. * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
  1188. * isolated page is PageWriteback
  1189. */
  1190. if (nr_writeback && nr_writeback >=
  1191. (nr_taken >> (DEF_PRIORITY - sc->priority)))
  1192. wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
  1193. trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
  1194. zone_idx(zone),
  1195. nr_scanned, nr_reclaimed,
  1196. sc->priority,
  1197. trace_shrink_flags(file));
  1198. return nr_reclaimed;
  1199. }
  1200. /*
  1201. * This moves pages from the active list to the inactive list.
  1202. *
  1203. * We move them the other way if the page is referenced by one or more
  1204. * processes, from rmap.
  1205. *
  1206. * If the pages are mostly unmapped, the processing is fast and it is
  1207. * appropriate to hold zone->lru_lock across the whole operation. But if
  1208. * the pages are mapped, the processing is slow (page_referenced()) so we
  1209. * should drop zone->lru_lock around each page. It's impossible to balance
  1210. * this, so instead we remove the pages from the LRU while processing them.
  1211. * It is safe to rely on PG_active against the non-LRU pages in here because
  1212. * nobody will play with that bit on a non-LRU page.
  1213. *
  1214. * The downside is that we have to touch page->_count against each page.
  1215. * But we had to alter page->flags anyway.
  1216. */
  1217. static void move_active_pages_to_lru(struct lruvec *lruvec,
  1218. struct list_head *list,
  1219. struct list_head *pages_to_free,
  1220. enum lru_list lru)
  1221. {
  1222. struct zone *zone = lruvec_zone(lruvec);
  1223. unsigned long pgmoved = 0;
  1224. struct page *page;
  1225. int nr_pages;
  1226. while (!list_empty(list)) {
  1227. page = lru_to_page(list);
  1228. lruvec = mem_cgroup_page_lruvec(page, zone);
  1229. VM_BUG_ON(PageLRU(page));
  1230. SetPageLRU(page);
  1231. nr_pages = hpage_nr_pages(page);
  1232. mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
  1233. list_move(&page->lru, &lruvec->lists[lru]);
  1234. pgmoved += nr_pages;
  1235. if (put_page_testzero(page)) {
  1236. __ClearPageLRU(page);
  1237. __ClearPageActive(page);
  1238. del_page_from_lru_list(page, lruvec, lru);
  1239. if (unlikely(PageCompound(page))) {
  1240. spin_unlock_irq(&zone->lru_lock);
  1241. (*get_compound_page_dtor(page))(page);
  1242. spin_lock_irq(&zone->lru_lock);
  1243. } else
  1244. list_add(&page->lru, pages_to_free);
  1245. }
  1246. }
  1247. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1248. if (!is_active_lru(lru))
  1249. __count_vm_events(PGDEACTIVATE, pgmoved);
  1250. }
  1251. static void shrink_active_list(unsigned long nr_to_scan,
  1252. struct lruvec *lruvec,
  1253. struct scan_control *sc,
  1254. enum lru_list lru)
  1255. {
  1256. unsigned long nr_taken;
  1257. unsigned long nr_scanned;
  1258. unsigned long vm_flags;
  1259. LIST_HEAD(l_hold); /* The pages which were snipped off */
  1260. LIST_HEAD(l_active);
  1261. LIST_HEAD(l_inactive);
  1262. struct page *page;
  1263. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1264. unsigned long nr_rotated = 0;
  1265. isolate_mode_t isolate_mode = 0;
  1266. int file = is_file_lru(lru);
  1267. struct zone *zone = lruvec_zone(lruvec);
  1268. lru_add_drain();
  1269. if (!sc->may_unmap)
  1270. isolate_mode |= ISOLATE_UNMAPPED;
  1271. if (!sc->may_writepage)
  1272. isolate_mode |= ISOLATE_CLEAN;
  1273. spin_lock_irq(&zone->lru_lock);
  1274. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
  1275. &nr_scanned, sc, isolate_mode, lru);
  1276. if (global_reclaim(sc))
  1277. zone->pages_scanned += nr_scanned;
  1278. reclaim_stat->recent_scanned[file] += nr_taken;
  1279. __count_zone_vm_events(PGREFILL, zone, nr_scanned);
  1280. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1281. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1282. spin_unlock_irq(&zone->lru_lock);
  1283. while (!list_empty(&l_hold)) {
  1284. cond_resched();
  1285. page = lru_to_page(&l_hold);
  1286. list_del(&page->lru);
  1287. if (unlikely(!page_evictable(page))) {
  1288. putback_lru_page(page);
  1289. continue;
  1290. }
  1291. if (unlikely(buffer_heads_over_limit)) {
  1292. if (page_has_private(page) && trylock_page(page)) {
  1293. if (page_has_private(page))
  1294. try_to_release_page(page, 0);
  1295. unlock_page(page);
  1296. }
  1297. }
  1298. if (page_referenced(page, 0, sc->target_mem_cgroup,
  1299. &vm_flags)) {
  1300. nr_rotated += hpage_nr_pages(page);
  1301. /*
  1302. * Identify referenced, file-backed active pages and
  1303. * give them one more trip around the active list. So
  1304. * that executable code get better chances to stay in
  1305. * memory under moderate memory pressure. Anon pages
  1306. * are not likely to be evicted by use-once streaming
  1307. * IO, plus JVM can create lots of anon VM_EXEC pages,
  1308. * so we ignore them here.
  1309. */
  1310. if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
  1311. list_add(&page->lru, &l_active);
  1312. continue;
  1313. }
  1314. }
  1315. ClearPageActive(page); /* we are de-activating */
  1316. list_add(&page->lru, &l_inactive);
  1317. }
  1318. /*
  1319. * Move pages back to the lru list.
  1320. */
  1321. spin_lock_irq(&zone->lru_lock);
  1322. /*
  1323. * Count referenced pages from currently used mappings as rotated,
  1324. * even though only some of them are actually re-activated. This
  1325. * helps balance scan pressure between file and anonymous pages in
  1326. * get_scan_ratio.
  1327. */
  1328. reclaim_stat->recent_rotated[file] += nr_rotated;
  1329. move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
  1330. move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
  1331. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1332. spin_unlock_irq(&zone->lru_lock);
  1333. free_hot_cold_page_list(&l_hold, 1);
  1334. }
  1335. #ifdef CONFIG_SWAP
  1336. static int inactive_anon_is_low_global(struct zone *zone)
  1337. {
  1338. unsigned long active, inactive;
  1339. active = zone_page_state(zone, NR_ACTIVE_ANON);
  1340. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1341. if (inactive * zone->inactive_ratio < active)
  1342. return 1;
  1343. return 0;
  1344. }
  1345. /**
  1346. * inactive_anon_is_low - check if anonymous pages need to be deactivated
  1347. * @lruvec: LRU vector to check
  1348. *
  1349. * Returns true if the zone does not have enough inactive anon pages,
  1350. * meaning some active anon pages need to be deactivated.
  1351. */
  1352. static int inactive_anon_is_low(struct lruvec *lruvec)
  1353. {
  1354. /*
  1355. * If we don't have swap space, anonymous page deactivation
  1356. * is pointless.
  1357. */
  1358. if (!total_swap_pages)
  1359. return 0;
  1360. if (!mem_cgroup_disabled())
  1361. return mem_cgroup_inactive_anon_is_low(lruvec);
  1362. return inactive_anon_is_low_global(lruvec_zone(lruvec));
  1363. }
  1364. #else
  1365. static inline int inactive_anon_is_low(struct lruvec *lruvec)
  1366. {
  1367. return 0;
  1368. }
  1369. #endif
  1370. static int inactive_file_is_low_global(struct zone *zone)
  1371. {
  1372. unsigned long active, inactive;
  1373. active = zone_page_state(zone, NR_ACTIVE_FILE);
  1374. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1375. return (active > inactive);
  1376. }
  1377. /**
  1378. * inactive_file_is_low - check if file pages need to be deactivated
  1379. * @lruvec: LRU vector to check
  1380. *
  1381. * When the system is doing streaming IO, memory pressure here
  1382. * ensures that active file pages get deactivated, until more
  1383. * than half of the file pages are on the inactive list.
  1384. *
  1385. * Once we get to that situation, protect the system's working
  1386. * set from being evicted by disabling active file page aging.
  1387. *
  1388. * This uses a different ratio than the anonymous pages, because
  1389. * the page cache uses a use-once replacement algorithm.
  1390. */
  1391. static int inactive_file_is_low(struct lruvec *lruvec)
  1392. {
  1393. if (!mem_cgroup_disabled())
  1394. return mem_cgroup_inactive_file_is_low(lruvec);
  1395. return inactive_file_is_low_global(lruvec_zone(lruvec));
  1396. }
  1397. static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
  1398. {
  1399. if (is_file_lru(lru))
  1400. return inactive_file_is_low(lruvec);
  1401. else
  1402. return inactive_anon_is_low(lruvec);
  1403. }
  1404. static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
  1405. struct lruvec *lruvec, struct scan_control *sc)
  1406. {
  1407. if (is_active_lru(lru)) {
  1408. if (inactive_list_is_low(lruvec, lru))
  1409. shrink_active_list(nr_to_scan, lruvec, sc, lru);
  1410. return 0;
  1411. }
  1412. return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
  1413. }
  1414. static int vmscan_swappiness(struct scan_control *sc)
  1415. {
  1416. if (global_reclaim(sc))
  1417. return vm_swappiness;
  1418. return mem_cgroup_swappiness(sc->target_mem_cgroup);
  1419. }
  1420. /*
  1421. * Determine how aggressively the anon and file LRU lists should be
  1422. * scanned. The relative value of each set of LRU lists is determined
  1423. * by looking at the fraction of the pages scanned we did rotate back
  1424. * onto the active list instead of evict.
  1425. *
  1426. * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
  1427. * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
  1428. */
  1429. static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
  1430. unsigned long *nr)
  1431. {
  1432. unsigned long anon, file, free;
  1433. unsigned long anon_prio, file_prio;
  1434. unsigned long ap, fp;
  1435. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1436. u64 fraction[2], denominator;
  1437. enum lru_list lru;
  1438. int noswap = 0;
  1439. bool force_scan = false;
  1440. struct zone *zone = lruvec_zone(lruvec);
  1441. /*
  1442. * If the zone or memcg is small, nr[l] can be 0. This
  1443. * results in no scanning on this priority and a potential
  1444. * priority drop. Global direct reclaim can go to the next
  1445. * zone and tends to have no problems. Global kswapd is for
  1446. * zone balancing and it needs to scan a minimum amount. When
  1447. * reclaiming for a memcg, a priority drop can cause high
  1448. * latencies, so it's better to scan a minimum amount there as
  1449. * well.
  1450. */
  1451. if (current_is_kswapd() && zone->all_unreclaimable)
  1452. force_scan = true;
  1453. if (!global_reclaim(sc))
  1454. force_scan = true;
  1455. /* If we have no swap space, do not bother scanning anon pages. */
  1456. if (!sc->may_swap || (nr_swap_pages <= 0)) {
  1457. noswap = 1;
  1458. fraction[0] = 0;
  1459. fraction[1] = 1;
  1460. denominator = 1;
  1461. goto out;
  1462. }
  1463. anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
  1464. get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1465. file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
  1466. get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1467. if (global_reclaim(sc)) {
  1468. free = zone_page_state(zone, NR_FREE_PAGES);
  1469. /* If we have very few page cache pages,
  1470. force-scan anon pages. */
  1471. if (unlikely(file + free <= high_wmark_pages(zone))) {
  1472. fraction[0] = 1;
  1473. fraction[1] = 0;
  1474. denominator = 1;
  1475. goto out;
  1476. }
  1477. }
  1478. /*
  1479. * With swappiness at 100, anonymous and file have the same priority.
  1480. * This scanning priority is essentially the inverse of IO cost.
  1481. */
  1482. anon_prio = vmscan_swappiness(sc);
  1483. file_prio = 200 - anon_prio;
  1484. /*
  1485. * OK, so we have swap space and a fair amount of page cache
  1486. * pages. We use the recently rotated / recently scanned
  1487. * ratios to determine how valuable each cache is.
  1488. *
  1489. * Because workloads change over time (and to avoid overflow)
  1490. * we keep these statistics as a floating average, which ends
  1491. * up weighing recent references more than old ones.
  1492. *
  1493. * anon in [0], file in [1]
  1494. */
  1495. spin_lock_irq(&zone->lru_lock);
  1496. if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
  1497. reclaim_stat->recent_scanned[0] /= 2;
  1498. reclaim_stat->recent_rotated[0] /= 2;
  1499. }
  1500. if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
  1501. reclaim_stat->recent_scanned[1] /= 2;
  1502. reclaim_stat->recent_rotated[1] /= 2;
  1503. }
  1504. /*
  1505. * The amount of pressure on anon vs file pages is inversely
  1506. * proportional to the fraction of recently scanned pages on
  1507. * each list that were recently referenced and in active use.
  1508. */
  1509. ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
  1510. ap /= reclaim_stat->recent_rotated[0] + 1;
  1511. fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
  1512. fp /= reclaim_stat->recent_rotated[1] + 1;
  1513. spin_unlock_irq(&zone->lru_lock);
  1514. fraction[0] = ap;
  1515. fraction[1] = fp;
  1516. denominator = ap + fp + 1;
  1517. out:
  1518. for_each_evictable_lru(lru) {
  1519. int file = is_file_lru(lru);
  1520. unsigned long scan;
  1521. scan = get_lru_size(lruvec, lru);
  1522. if (sc->priority || noswap || !vmscan_swappiness(sc)) {
  1523. scan >>= sc->priority;
  1524. if (!scan && force_scan)
  1525. scan = SWAP_CLUSTER_MAX;
  1526. scan = div64_u64(scan * fraction[file], denominator);
  1527. }
  1528. nr[lru] = scan;
  1529. }
  1530. }
  1531. /* Use reclaim/compaction for costly allocs or under memory pressure */
  1532. static bool in_reclaim_compaction(struct scan_control *sc)
  1533. {
  1534. if (COMPACTION_BUILD && sc->order &&
  1535. (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
  1536. sc->priority < DEF_PRIORITY - 2))
  1537. return true;
  1538. return false;
  1539. }
  1540. #ifdef CONFIG_COMPACTION
  1541. /*
  1542. * If compaction is deferred for sc->order then scale the number of pages
  1543. * reclaimed based on the number of consecutive allocation failures
  1544. */
  1545. static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
  1546. struct lruvec *lruvec, struct scan_control *sc)
  1547. {
  1548. struct zone *zone = lruvec_zone(lruvec);
  1549. if (zone->compact_order_failed <= sc->order)
  1550. pages_for_compaction <<= zone->compact_defer_shift;
  1551. return pages_for_compaction;
  1552. }
  1553. #else
  1554. static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
  1555. struct lruvec *lruvec, struct scan_control *sc)
  1556. {
  1557. return pages_for_compaction;
  1558. }
  1559. #endif
  1560. /*
  1561. * Reclaim/compaction is used for high-order allocation requests. It reclaims
  1562. * order-0 pages before compacting the zone. should_continue_reclaim() returns
  1563. * true if more pages should be reclaimed such that when the page allocator
  1564. * calls try_to_compact_zone() that it will have enough free pages to succeed.
  1565. * It will give up earlier than that if there is difficulty reclaiming pages.
  1566. */
  1567. static inline bool should_continue_reclaim(struct lruvec *lruvec,
  1568. unsigned long nr_reclaimed,
  1569. unsigned long nr_scanned,
  1570. struct scan_control *sc)
  1571. {
  1572. unsigned long pages_for_compaction;
  1573. unsigned long inactive_lru_pages;
  1574. /* If not in reclaim/compaction mode, stop */
  1575. if (!in_reclaim_compaction(sc))
  1576. return false;
  1577. /* Consider stopping depending on scan and reclaim activity */
  1578. if (sc->gfp_mask & __GFP_REPEAT) {
  1579. /*
  1580. * For __GFP_REPEAT allocations, stop reclaiming if the
  1581. * full LRU list has been scanned and we are still failing
  1582. * to reclaim pages. This full LRU scan is potentially
  1583. * expensive but a __GFP_REPEAT caller really wants to succeed
  1584. */
  1585. if (!nr_reclaimed && !nr_scanned)
  1586. return false;
  1587. } else {
  1588. /*
  1589. * For non-__GFP_REPEAT allocations which can presumably
  1590. * fail without consequence, stop if we failed to reclaim
  1591. * any pages from the last SWAP_CLUSTER_MAX number of
  1592. * pages that were scanned. This will return to the
  1593. * caller faster at the risk reclaim/compaction and
  1594. * the resulting allocation attempt fails
  1595. */
  1596. if (!nr_reclaimed)
  1597. return false;
  1598. }
  1599. /*
  1600. * If we have not reclaimed enough pages for compaction and the
  1601. * inactive lists are large enough, continue reclaiming
  1602. */
  1603. pages_for_compaction = (2UL << sc->order);
  1604. pages_for_compaction = scale_for_compaction(pages_for_compaction,
  1605. lruvec, sc);
  1606. inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1607. if (nr_swap_pages > 0)
  1608. inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1609. if (sc->nr_reclaimed < pages_for_compaction &&
  1610. inactive_lru_pages > pages_for_compaction)
  1611. return true;
  1612. /* If compaction would go ahead or the allocation would succeed, stop */
  1613. switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
  1614. case COMPACT_PARTIAL:
  1615. case COMPACT_CONTINUE:
  1616. return false;
  1617. default:
  1618. return true;
  1619. }
  1620. }
  1621. /*
  1622. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  1623. */
  1624. static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
  1625. {
  1626. unsigned long nr[NR_LRU_LISTS];
  1627. unsigned long nr_to_scan;
  1628. enum lru_list lru;
  1629. unsigned long nr_reclaimed, nr_scanned;
  1630. unsigned long nr_to_reclaim = sc->nr_to_reclaim;
  1631. struct blk_plug plug;
  1632. restart:
  1633. nr_reclaimed = 0;
  1634. nr_scanned = sc->nr_scanned;
  1635. get_scan_count(lruvec, sc, nr);
  1636. blk_start_plug(&plug);
  1637. while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
  1638. nr[LRU_INACTIVE_FILE]) {
  1639. for_each_evictable_lru(lru) {
  1640. if (nr[lru]) {
  1641. nr_to_scan = min_t(unsigned long,
  1642. nr[lru], SWAP_CLUSTER_MAX);
  1643. nr[lru] -= nr_to_scan;
  1644. nr_reclaimed += shrink_list(lru, nr_to_scan,
  1645. lruvec, sc);
  1646. }
  1647. }
  1648. /*
  1649. * On large memory systems, scan >> priority can become
  1650. * really large. This is fine for the starting priority;
  1651. * we want to put equal scanning pressure on each zone.
  1652. * However, if the VM has a harder time of freeing pages,
  1653. * with multiple processes reclaiming pages, the total
  1654. * freeing target can get unreasonably large.
  1655. */
  1656. if (nr_reclaimed >= nr_to_reclaim &&
  1657. sc->priority < DEF_PRIORITY)
  1658. break;
  1659. }
  1660. blk_finish_plug(&plug);
  1661. sc->nr_reclaimed += nr_reclaimed;
  1662. /*
  1663. * Even if we did not try to evict anon pages at all, we want to
  1664. * rebalance the anon lru active/inactive ratio.
  1665. */
  1666. if (inactive_anon_is_low(lruvec))
  1667. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  1668. sc, LRU_ACTIVE_ANON);
  1669. /* reclaim/compaction might need reclaim to continue */
  1670. if (should_continue_reclaim(lruvec, nr_reclaimed,
  1671. sc->nr_scanned - nr_scanned, sc))
  1672. goto restart;
  1673. throttle_vm_writeout(sc->gfp_mask);
  1674. }
  1675. static void shrink_zone(struct zone *zone, struct scan_control *sc)
  1676. {
  1677. struct mem_cgroup *root = sc->target_mem_cgroup;
  1678. struct mem_cgroup_reclaim_cookie reclaim = {
  1679. .zone = zone,
  1680. .priority = sc->priority,
  1681. };
  1682. struct mem_cgroup *memcg;
  1683. memcg = mem_cgroup_iter(root, NULL, &reclaim);
  1684. do {
  1685. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  1686. shrink_lruvec(lruvec, sc);
  1687. /*
  1688. * Limit reclaim has historically picked one memcg and
  1689. * scanned it with decreasing priority levels until
  1690. * nr_to_reclaim had been reclaimed. This priority
  1691. * cycle is thus over after a single memcg.
  1692. *
  1693. * Direct reclaim and kswapd, on the other hand, have
  1694. * to scan all memory cgroups to fulfill the overall
  1695. * scan target for the zone.
  1696. */
  1697. if (!global_reclaim(sc)) {
  1698. mem_cgroup_iter_break(root, memcg);
  1699. break;
  1700. }
  1701. memcg = mem_cgroup_iter(root, memcg, &reclaim);
  1702. } while (memcg);
  1703. }
  1704. /* Returns true if compaction should go ahead for a high-order request */
  1705. static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
  1706. {
  1707. unsigned long balance_gap, watermark;
  1708. bool watermark_ok;
  1709. /* Do not consider compaction for orders reclaim is meant to satisfy */
  1710. if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
  1711. return false;
  1712. /*
  1713. * Compaction takes time to run and there are potentially other
  1714. * callers using the pages just freed. Continue reclaiming until
  1715. * there is a buffer of free pages available to give compaction
  1716. * a reasonable chance of completing and allocating the page
  1717. */
  1718. balance_gap = min(low_wmark_pages(zone),
  1719. (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  1720. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  1721. watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
  1722. watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
  1723. /*
  1724. * If compaction is deferred, reclaim up to a point where
  1725. * compaction will have a chance of success when re-enabled
  1726. */
  1727. if (compaction_deferred(zone, sc->order))
  1728. return watermark_ok;
  1729. /* If compaction is not ready to start, keep reclaiming */
  1730. if (!compaction_suitable(zone, sc->order))
  1731. return false;
  1732. return watermark_ok;
  1733. }
  1734. /*
  1735. * This is the direct reclaim path, for page-allocating processes. We only
  1736. * try to reclaim pages from zones which will satisfy the caller's allocation
  1737. * request.
  1738. *
  1739. * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
  1740. * Because:
  1741. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  1742. * allocation or
  1743. * b) The target zone may be at high_wmark_pages(zone) but the lower zones
  1744. * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
  1745. * zone defense algorithm.
  1746. *
  1747. * If a zone is deemed to be full of pinned pages then just give it a light
  1748. * scan then give up on it.
  1749. *
  1750. * This function returns true if a zone is being reclaimed for a costly
  1751. * high-order allocation and compaction is ready to begin. This indicates to
  1752. * the caller that it should consider retrying the allocation instead of
  1753. * further reclaim.
  1754. */
  1755. static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
  1756. {
  1757. struct zoneref *z;
  1758. struct zone *zone;
  1759. unsigned long nr_soft_reclaimed;
  1760. unsigned long nr_soft_scanned;
  1761. bool aborted_reclaim = false;
  1762. /*
  1763. * If the number of buffer_heads in the machine exceeds the maximum
  1764. * allowed level, force direct reclaim to scan the highmem zone as
  1765. * highmem pages could be pinning lowmem pages storing buffer_heads
  1766. */
  1767. if (buffer_heads_over_limit)
  1768. sc->gfp_mask |= __GFP_HIGHMEM;
  1769. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1770. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1771. if (!populated_zone(zone))
  1772. continue;
  1773. /*
  1774. * Take care memory controller reclaiming has small influence
  1775. * to global LRU.
  1776. */
  1777. if (global_reclaim(sc)) {
  1778. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1779. continue;
  1780. if (zone->all_unreclaimable &&
  1781. sc->priority != DEF_PRIORITY)
  1782. continue; /* Let kswapd poll it */
  1783. if (COMPACTION_BUILD) {
  1784. /*
  1785. * If we already have plenty of memory free for
  1786. * compaction in this zone, don't free any more.
  1787. * Even though compaction is invoked for any
  1788. * non-zero order, only frequent costly order
  1789. * reclamation is disruptive enough to become a
  1790. * noticeable problem, like transparent huge
  1791. * page allocations.
  1792. */
  1793. if (compaction_ready(zone, sc)) {
  1794. aborted_reclaim = true;
  1795. continue;
  1796. }
  1797. }
  1798. /*
  1799. * This steals pages from memory cgroups over softlimit
  1800. * and returns the number of reclaimed pages and
  1801. * scanned pages. This works for global memory pressure
  1802. * and balancing, not for a memcg's limit.
  1803. */
  1804. nr_soft_scanned = 0;
  1805. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  1806. sc->order, sc->gfp_mask,
  1807. &nr_soft_scanned);
  1808. sc->nr_reclaimed += nr_soft_reclaimed;
  1809. sc->nr_scanned += nr_soft_scanned;
  1810. /* need some check for avoid more shrink_zone() */
  1811. }
  1812. shrink_zone(zone, sc);
  1813. }
  1814. return aborted_reclaim;
  1815. }
  1816. static bool zone_reclaimable(struct zone *zone)
  1817. {
  1818. return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
  1819. }
  1820. /* All zones in zonelist are unreclaimable? */
  1821. static bool all_unreclaimable(struct zonelist *zonelist,
  1822. struct scan_control *sc)
  1823. {
  1824. struct zoneref *z;
  1825. struct zone *zone;
  1826. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1827. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1828. if (!populated_zone(zone))
  1829. continue;
  1830. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1831. continue;
  1832. if (!zone->all_unreclaimable)
  1833. return false;
  1834. }
  1835. return true;
  1836. }
  1837. /*
  1838. * This is the main entry point to direct page reclaim.
  1839. *
  1840. * If a full scan of the inactive list fails to free enough memory then we
  1841. * are "out of memory" and something needs to be killed.
  1842. *
  1843. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  1844. * high - the zone may be full of dirty or under-writeback pages, which this
  1845. * caller can't do much about. We kick the writeback threads and take explicit
  1846. * naps in the hope that some of these pages can be written. But if the
  1847. * allocating task holds filesystem locks which prevent writeout this might not
  1848. * work, and the allocation attempt will fail.
  1849. *
  1850. * returns: 0, if no pages reclaimed
  1851. * else, the number of pages reclaimed
  1852. */
  1853. static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
  1854. struct scan_control *sc,
  1855. struct shrink_control *shrink)
  1856. {
  1857. unsigned long total_scanned = 0;
  1858. struct reclaim_state *reclaim_state = current->reclaim_state;
  1859. struct zoneref *z;
  1860. struct zone *zone;
  1861. unsigned long writeback_threshold;
  1862. bool aborted_reclaim;
  1863. delayacct_freepages_start();
  1864. if (global_reclaim(sc))
  1865. count_vm_event(ALLOCSTALL);
  1866. do {
  1867. sc->nr_scanned = 0;
  1868. aborted_reclaim = shrink_zones(zonelist, sc);
  1869. /*
  1870. * Don't shrink slabs when reclaiming memory from
  1871. * over limit cgroups
  1872. */
  1873. if (global_reclaim(sc)) {
  1874. unsigned long lru_pages = 0;
  1875. for_each_zone_zonelist(zone, z, zonelist,
  1876. gfp_zone(sc->gfp_mask)) {
  1877. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1878. continue;
  1879. lru_pages += zone_reclaimable_pages(zone);
  1880. }
  1881. shrink_slab(shrink, sc->nr_scanned, lru_pages);
  1882. if (reclaim_state) {
  1883. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  1884. reclaim_state->reclaimed_slab = 0;
  1885. }
  1886. }
  1887. total_scanned += sc->nr_scanned;
  1888. if (sc->nr_reclaimed >= sc->nr_to_reclaim)
  1889. goto out;
  1890. /*
  1891. * Try to write back as many pages as we just scanned. This
  1892. * tends to cause slow streaming writers to write data to the
  1893. * disk smoothly, at the dirtying rate, which is nice. But
  1894. * that's undesirable in laptop mode, where we *want* lumpy
  1895. * writeout. So in laptop mode, write out the whole world.
  1896. */
  1897. writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
  1898. if (total_scanned > writeback_threshold) {
  1899. wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
  1900. WB_REASON_TRY_TO_FREE_PAGES);
  1901. sc->may_writepage = 1;
  1902. }
  1903. /* Take a nap, wait for some writeback to complete */
  1904. if (!sc->hibernation_mode && sc->nr_scanned &&
  1905. sc->priority < DEF_PRIORITY - 2) {
  1906. struct zone *preferred_zone;
  1907. first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
  1908. &cpuset_current_mems_allowed,
  1909. &preferred_zone);
  1910. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
  1911. }
  1912. } while (--sc->priority >= 0);
  1913. out:
  1914. delayacct_freepages_end();
  1915. if (sc->nr_reclaimed)
  1916. return sc->nr_reclaimed;
  1917. /*
  1918. * As hibernation is going on, kswapd is freezed so that it can't mark
  1919. * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
  1920. * check.
  1921. */
  1922. if (oom_killer_disabled)
  1923. return 0;
  1924. /* Aborted reclaim to try compaction? don't OOM, then */
  1925. if (aborted_reclaim)
  1926. return 1;
  1927. /* top priority shrink_zones still had more to do? don't OOM, then */
  1928. if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
  1929. return 1;
  1930. return 0;
  1931. }
  1932. static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
  1933. {
  1934. struct zone *zone;
  1935. unsigned long pfmemalloc_reserve = 0;
  1936. unsigned long free_pages = 0;
  1937. int i;
  1938. bool wmark_ok;
  1939. for (i = 0; i <= ZONE_NORMAL; i++) {
  1940. zone = &pgdat->node_zones[i];
  1941. pfmemalloc_reserve += min_wmark_pages(zone);
  1942. free_pages += zone_page_state(zone, NR_FREE_PAGES);
  1943. }
  1944. wmark_ok = free_pages > pfmemalloc_reserve / 2;
  1945. /* kswapd must be awake if processes are being throttled */
  1946. if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
  1947. pgdat->classzone_idx = min(pgdat->classzone_idx,
  1948. (enum zone_type)ZONE_NORMAL);
  1949. wake_up_interruptible(&pgdat->kswapd_wait);
  1950. }
  1951. return wmark_ok;
  1952. }
  1953. /*
  1954. * Throttle direct reclaimers if backing storage is backed by the network
  1955. * and the PFMEMALLOC reserve for the preferred node is getting dangerously
  1956. * depleted. kswapd will continue to make progress and wake the processes
  1957. * when the low watermark is reached
  1958. */
  1959. static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
  1960. nodemask_t *nodemask)
  1961. {
  1962. struct zone *zone;
  1963. int high_zoneidx = gfp_zone(gfp_mask);
  1964. pg_data_t *pgdat;
  1965. /*
  1966. * Kernel threads should not be throttled as they may be indirectly
  1967. * responsible for cleaning pages necessary for reclaim to make forward
  1968. * progress. kjournald for example may enter direct reclaim while
  1969. * committing a transaction where throttling it could forcing other
  1970. * processes to block on log_wait_commit().
  1971. */
  1972. if (current->flags & PF_KTHREAD)
  1973. return;
  1974. /* Check if the pfmemalloc reserves are ok */
  1975. first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
  1976. pgdat = zone->zone_pgdat;
  1977. if (pfmemalloc_watermark_ok(pgdat))
  1978. return;
  1979. /* Account for the throttling */
  1980. count_vm_event(PGSCAN_DIRECT_THROTTLE);
  1981. /*
  1982. * If the caller cannot enter the filesystem, it's possible that it
  1983. * is due to the caller holding an FS lock or performing a journal
  1984. * transaction in the case of a filesystem like ext[3|4]. In this case,
  1985. * it is not safe to block on pfmemalloc_wait as kswapd could be
  1986. * blocked waiting on the same lock. Instead, throttle for up to a
  1987. * second before continuing.
  1988. */
  1989. if (!(gfp_mask & __GFP_FS)) {
  1990. wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
  1991. pfmemalloc_watermark_ok(pgdat), HZ);
  1992. return;
  1993. }
  1994. /* Throttle until kswapd wakes the process */
  1995. wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
  1996. pfmemalloc_watermark_ok(pgdat));
  1997. }
  1998. unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
  1999. gfp_t gfp_mask, nodemask_t *nodemask)
  2000. {
  2001. unsigned long nr_reclaimed;
  2002. struct scan_control sc = {
  2003. .gfp_mask = gfp_mask,
  2004. .may_writepage = !laptop_mode,
  2005. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2006. .may_unmap = 1,
  2007. .may_swap = 1,
  2008. .order = order,
  2009. .priority = DEF_PRIORITY,
  2010. .target_mem_cgroup = NULL,
  2011. .nodemask = nodemask,
  2012. };
  2013. struct shrink_control shrink = {
  2014. .gfp_mask = sc.gfp_mask,
  2015. };
  2016. throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
  2017. /*
  2018. * Do not enter reclaim if fatal signal is pending. 1 is returned so
  2019. * that the page allocator does not consider triggering OOM
  2020. */
  2021. if (fatal_signal_pending(current))
  2022. return 1;
  2023. trace_mm_vmscan_direct_reclaim_begin(order,
  2024. sc.may_writepage,
  2025. gfp_mask);
  2026. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2027. trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
  2028. return nr_reclaimed;
  2029. }
  2030. #ifdef CONFIG_MEMCG
  2031. unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
  2032. gfp_t gfp_mask, bool noswap,
  2033. struct zone *zone,
  2034. unsigned long *nr_scanned)
  2035. {
  2036. struct scan_control sc = {
  2037. .nr_scanned = 0,
  2038. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2039. .may_writepage = !laptop_mode,
  2040. .may_unmap = 1,
  2041. .may_swap = !noswap,
  2042. .order = 0,
  2043. .priority = 0,
  2044. .target_mem_cgroup = memcg,
  2045. };
  2046. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2047. sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2048. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
  2049. trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
  2050. sc.may_writepage,
  2051. sc.gfp_mask);
  2052. /*
  2053. * NOTE: Although we can get the priority field, using it
  2054. * here is not a good idea, since it limits the pages we can scan.
  2055. * if we don't reclaim here, the shrink_zone from balance_pgdat
  2056. * will pick up pages from other mem cgroup's as well. We hack
  2057. * the priority and make it zero.
  2058. */
  2059. shrink_lruvec(lruvec, &sc);
  2060. trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
  2061. *nr_scanned = sc.nr_scanned;
  2062. return sc.nr_reclaimed;
  2063. }
  2064. unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
  2065. gfp_t gfp_mask,
  2066. bool noswap)
  2067. {
  2068. struct zonelist *zonelist;
  2069. unsigned long nr_reclaimed;
  2070. int nid;
  2071. struct scan_control sc = {
  2072. .may_writepage = !laptop_mode,
  2073. .may_unmap = 1,
  2074. .may_swap = !noswap,
  2075. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2076. .order = 0,
  2077. .priority = DEF_PRIORITY,
  2078. .target_mem_cgroup = memcg,
  2079. .nodemask = NULL, /* we don't care the placement */
  2080. .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2081. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
  2082. };
  2083. struct shrink_control shrink = {
  2084. .gfp_mask = sc.gfp_mask,
  2085. };
  2086. /*
  2087. * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
  2088. * take care of from where we get pages. So the node where we start the
  2089. * scan does not need to be the current node.
  2090. */
  2091. nid = mem_cgroup_select_victim_node(memcg);
  2092. zonelist = NODE_DATA(nid)->node_zonelists;
  2093. trace_mm_vmscan_memcg_reclaim_begin(0,
  2094. sc.may_writepage,
  2095. sc.gfp_mask);
  2096. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2097. trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
  2098. return nr_reclaimed;
  2099. }
  2100. #endif
  2101. static void age_active_anon(struct zone *zone, struct scan_control *sc)
  2102. {
  2103. struct mem_cgroup *memcg;
  2104. if (!total_swap_pages)
  2105. return;
  2106. memcg = mem_cgroup_iter(NULL, NULL, NULL);
  2107. do {
  2108. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2109. if (inactive_anon_is_low(lruvec))
  2110. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  2111. sc, LRU_ACTIVE_ANON);
  2112. memcg = mem_cgroup_iter(NULL, memcg, NULL);
  2113. } while (memcg);
  2114. }
  2115. /*
  2116. * pgdat_balanced is used when checking if a node is balanced for high-order
  2117. * allocations. Only zones that meet watermarks and are in a zone allowed
  2118. * by the callers classzone_idx are added to balanced_pages. The total of
  2119. * balanced pages must be at least 25% of the zones allowed by classzone_idx
  2120. * for the node to be considered balanced. Forcing all zones to be balanced
  2121. * for high orders can cause excessive reclaim when there are imbalanced zones.
  2122. * The choice of 25% is due to
  2123. * o a 16M DMA zone that is balanced will not balance a zone on any
  2124. * reasonable sized machine
  2125. * o On all other machines, the top zone must be at least a reasonable
  2126. * percentage of the middle zones. For example, on 32-bit x86, highmem
  2127. * would need to be at least 256M for it to be balance a whole node.
  2128. * Similarly, on x86-64 the Normal zone would need to be at least 1G
  2129. * to balance a node on its own. These seemed like reasonable ratios.
  2130. */
  2131. static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
  2132. int classzone_idx)
  2133. {
  2134. unsigned long present_pages = 0;
  2135. int i;
  2136. for (i = 0; i <= classzone_idx; i++)
  2137. present_pages += pgdat->node_zones[i].present_pages;
  2138. /* A special case here: if zone has no page, we think it's balanced */
  2139. return balanced_pages >= (present_pages >> 2);
  2140. }
  2141. /*
  2142. * Prepare kswapd for sleeping. This verifies that there are no processes
  2143. * waiting in throttle_direct_reclaim() and that watermarks have been met.
  2144. *
  2145. * Returns true if kswapd is ready to sleep
  2146. */
  2147. static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
  2148. int classzone_idx)
  2149. {
  2150. int i;
  2151. unsigned long balanced = 0;
  2152. bool all_zones_ok = true;
  2153. /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
  2154. if (remaining)
  2155. return false;
  2156. /*
  2157. * There is a potential race between when kswapd checks its watermarks
  2158. * and a process gets throttled. There is also a potential race if
  2159. * processes get throttled, kswapd wakes, a large process exits therby
  2160. * balancing the zones that causes kswapd to miss a wakeup. If kswapd
  2161. * is going to sleep, no process should be sleeping on pfmemalloc_wait
  2162. * so wake them now if necessary. If necessary, processes will wake
  2163. * kswapd and get throttled again
  2164. */
  2165. if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
  2166. wake_up(&pgdat->pfmemalloc_wait);
  2167. return false;
  2168. }
  2169. /* Check the watermark levels */
  2170. for (i = 0; i <= classzone_idx; i++) {
  2171. struct zone *zone = pgdat->node_zones + i;
  2172. if (!populated_zone(zone))
  2173. continue;
  2174. /*
  2175. * balance_pgdat() skips over all_unreclaimable after
  2176. * DEF_PRIORITY. Effectively, it considers them balanced so
  2177. * they must be considered balanced here as well if kswapd
  2178. * is to sleep
  2179. */
  2180. if (zone->all_unreclaimable) {
  2181. balanced += zone->present_pages;
  2182. continue;
  2183. }
  2184. if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
  2185. i, 0))
  2186. all_zones_ok = false;
  2187. else
  2188. balanced += zone->present_pages;
  2189. }
  2190. /*
  2191. * For high-order requests, the balanced zones must contain at least
  2192. * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
  2193. * must be balanced
  2194. */
  2195. if (order)
  2196. return pgdat_balanced(pgdat, balanced, classzone_idx);
  2197. else
  2198. return all_zones_ok;
  2199. }
  2200. /*
  2201. * For kswapd, balance_pgdat() will work across all this node's zones until
  2202. * they are all at high_wmark_pages(zone).
  2203. *
  2204. * Returns the final order kswapd was reclaiming at
  2205. *
  2206. * There is special handling here for zones which are full of pinned pages.
  2207. * This can happen if the pages are all mlocked, or if they are all used by
  2208. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  2209. * What we do is to detect the case where all pages in the zone have been
  2210. * scanned twice and there has been zero successful reclaim. Mark the zone as
  2211. * dead and from now on, only perform a short scan. Basically we're polling
  2212. * the zone for when the problem goes away.
  2213. *
  2214. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  2215. * zones which have free_pages > high_wmark_pages(zone), but once a zone is
  2216. * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
  2217. * lower zones regardless of the number of free pages in the lower zones. This
  2218. * interoperates with the page allocator fallback scheme to ensure that aging
  2219. * of pages is balanced across the zones.
  2220. */
  2221. static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
  2222. int *classzone_idx)
  2223. {
  2224. int all_zones_ok;
  2225. unsigned long balanced;
  2226. int i;
  2227. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  2228. unsigned long total_scanned;
  2229. struct reclaim_state *reclaim_state = current->reclaim_state;
  2230. unsigned long nr_soft_reclaimed;
  2231. unsigned long nr_soft_scanned;
  2232. struct scan_control sc = {
  2233. .gfp_mask = GFP_KERNEL,
  2234. .may_unmap = 1,
  2235. .may_swap = 1,
  2236. /*
  2237. * kswapd doesn't want to be bailed out while reclaim. because
  2238. * we want to put equal scanning pressure on each zone.
  2239. */
  2240. .nr_to_reclaim = ULONG_MAX,
  2241. .order = order,
  2242. .target_mem_cgroup = NULL,
  2243. };
  2244. struct shrink_control shrink = {
  2245. .gfp_mask = sc.gfp_mask,
  2246. };
  2247. loop_again:
  2248. total_scanned = 0;
  2249. sc.priority = DEF_PRIORITY;
  2250. sc.nr_reclaimed = 0;
  2251. sc.may_writepage = !laptop_mode;
  2252. count_vm_event(PAGEOUTRUN);
  2253. do {
  2254. unsigned long lru_pages = 0;
  2255. int has_under_min_watermark_zone = 0;
  2256. all_zones_ok = 1;
  2257. balanced = 0;
  2258. /*
  2259. * Scan in the highmem->dma direction for the highest
  2260. * zone which needs scanning
  2261. */
  2262. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  2263. struct zone *zone = pgdat->node_zones + i;
  2264. if (!populated_zone(zone))
  2265. continue;
  2266. if (zone->all_unreclaimable &&
  2267. sc.priority != DEF_PRIORITY)
  2268. continue;
  2269. /*
  2270. * Do some background aging of the anon list, to give
  2271. * pages a chance to be referenced before reclaiming.
  2272. */
  2273. age_active_anon(zone, &sc);
  2274. /*
  2275. * If the number of buffer_heads in the machine
  2276. * exceeds the maximum allowed level and this node
  2277. * has a highmem zone, force kswapd to reclaim from
  2278. * it to relieve lowmem pressure.
  2279. */
  2280. if (buffer_heads_over_limit && is_highmem_idx(i)) {
  2281. end_zone = i;
  2282. break;
  2283. }
  2284. if (!zone_watermark_ok_safe(zone, order,
  2285. high_wmark_pages(zone), 0, 0)) {
  2286. end_zone = i;
  2287. break;
  2288. } else {
  2289. /* If balanced, clear the congested flag */
  2290. zone_clear_flag(zone, ZONE_CONGESTED);
  2291. }
  2292. }
  2293. if (i < 0)
  2294. goto out;
  2295. for (i = 0; i <= end_zone; i++) {
  2296. struct zone *zone = pgdat->node_zones + i;
  2297. lru_pages += zone_reclaimable_pages(zone);
  2298. }
  2299. /*
  2300. * Now scan the zone in the dma->highmem direction, stopping
  2301. * at the last zone which needs scanning.
  2302. *
  2303. * We do this because the page allocator works in the opposite
  2304. * direction. This prevents the page allocator from allocating
  2305. * pages behind kswapd's direction of progress, which would
  2306. * cause too much scanning of the lower zones.
  2307. */
  2308. for (i = 0; i <= end_zone; i++) {
  2309. struct zone *zone = pgdat->node_zones + i;
  2310. int nr_slab, testorder;
  2311. unsigned long balance_gap;
  2312. if (!populated_zone(zone))
  2313. continue;
  2314. if (zone->all_unreclaimable &&
  2315. sc.priority != DEF_PRIORITY)
  2316. continue;
  2317. sc.nr_scanned = 0;
  2318. nr_soft_scanned = 0;
  2319. /*
  2320. * Call soft limit reclaim before calling shrink_zone.
  2321. */
  2322. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  2323. order, sc.gfp_mask,
  2324. &nr_soft_scanned);
  2325. sc.nr_reclaimed += nr_soft_reclaimed;
  2326. total_scanned += nr_soft_scanned;
  2327. /*
  2328. * We put equal pressure on every zone, unless
  2329. * one zone has way too many pages free
  2330. * already. The "too many pages" is defined
  2331. * as the high wmark plus a "gap" where the
  2332. * gap is either the low watermark or 1%
  2333. * of the zone, whichever is smaller.
  2334. */
  2335. balance_gap = min(low_wmark_pages(zone),
  2336. (zone->present_pages +
  2337. KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  2338. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  2339. /*
  2340. * Kswapd reclaims only single pages with compaction
  2341. * enabled. Trying too hard to reclaim until contiguous
  2342. * free pages have become available can hurt performance
  2343. * by evicting too much useful data from memory.
  2344. * Do not reclaim more than needed for compaction.
  2345. */
  2346. testorder = order;
  2347. if (COMPACTION_BUILD && order &&
  2348. compaction_suitable(zone, order) !=
  2349. COMPACT_SKIPPED)
  2350. testorder = 0;
  2351. if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
  2352. !zone_watermark_ok_safe(zone, testorder,
  2353. high_wmark_pages(zone) + balance_gap,
  2354. end_zone, 0)) {
  2355. shrink_zone(zone, &sc);
  2356. reclaim_state->reclaimed_slab = 0;
  2357. nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
  2358. sc.nr_reclaimed += reclaim_state->reclaimed_slab;
  2359. total_scanned += sc.nr_scanned;
  2360. if (nr_slab == 0 && !zone_reclaimable(zone))
  2361. zone->all_unreclaimable = 1;
  2362. }
  2363. /*
  2364. * If we've done a decent amount of scanning and
  2365. * the reclaim ratio is low, start doing writepage
  2366. * even in laptop mode
  2367. */
  2368. if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
  2369. total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
  2370. sc.may_writepage = 1;
  2371. if (zone->all_unreclaimable) {
  2372. if (end_zone && end_zone == i)
  2373. end_zone--;
  2374. continue;
  2375. }
  2376. if (!zone_watermark_ok_safe(zone, testorder,
  2377. high_wmark_pages(zone), end_zone, 0)) {
  2378. all_zones_ok = 0;
  2379. /*
  2380. * We are still under min water mark. This
  2381. * means that we have a GFP_ATOMIC allocation
  2382. * failure risk. Hurry up!
  2383. */
  2384. if (!zone_watermark_ok_safe(zone, order,
  2385. min_wmark_pages(zone), end_zone, 0))
  2386. has_under_min_watermark_zone = 1;
  2387. } else {
  2388. /*
  2389. * If a zone reaches its high watermark,
  2390. * consider it to be no longer congested. It's
  2391. * possible there are dirty pages backed by
  2392. * congested BDIs but as pressure is relieved,
  2393. * speculatively avoid congestion waits
  2394. */
  2395. zone_clear_flag(zone, ZONE_CONGESTED);
  2396. if (i <= *classzone_idx)
  2397. balanced += zone->present_pages;
  2398. }
  2399. }
  2400. /*
  2401. * If the low watermark is met there is no need for processes
  2402. * to be throttled on pfmemalloc_wait as they should not be
  2403. * able to safely make forward progress. Wake them
  2404. */
  2405. if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
  2406. pfmemalloc_watermark_ok(pgdat))
  2407. wake_up(&pgdat->pfmemalloc_wait);
  2408. if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
  2409. break; /* kswapd: all done */
  2410. /*
  2411. * OK, kswapd is getting into trouble. Take a nap, then take
  2412. * another pass across the zones.
  2413. */
  2414. if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
  2415. if (has_under_min_watermark_zone)
  2416. count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
  2417. else
  2418. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2419. }
  2420. /*
  2421. * We do this so kswapd doesn't build up large priorities for
  2422. * example when it is freeing in parallel with allocators. It
  2423. * matches the direct reclaim path behaviour in terms of impact
  2424. * on zone->*_priority.
  2425. */
  2426. if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
  2427. break;
  2428. } while (--sc.priority >= 0);
  2429. out:
  2430. /*
  2431. * order-0: All zones must meet high watermark for a balanced node
  2432. * high-order: Balanced zones must make up at least 25% of the node
  2433. * for the node to be balanced
  2434. */
  2435. if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
  2436. cond_resched();
  2437. try_to_freeze();
  2438. /*
  2439. * Fragmentation may mean that the system cannot be
  2440. * rebalanced for high-order allocations in all zones.
  2441. * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
  2442. * it means the zones have been fully scanned and are still
  2443. * not balanced. For high-order allocations, there is
  2444. * little point trying all over again as kswapd may
  2445. * infinite loop.
  2446. *
  2447. * Instead, recheck all watermarks at order-0 as they
  2448. * are the most important. If watermarks are ok, kswapd will go
  2449. * back to sleep. High-order users can still perform direct
  2450. * reclaim if they wish.
  2451. */
  2452. if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
  2453. order = sc.order = 0;
  2454. goto loop_again;
  2455. }
  2456. /*
  2457. * If kswapd was reclaiming at a higher order, it has the option of
  2458. * sleeping without all zones being balanced. Before it does, it must
  2459. * ensure that the watermarks for order-0 on *all* zones are met and
  2460. * that the congestion flags are cleared. The congestion flag must
  2461. * be cleared as kswapd is the only mechanism that clears the flag
  2462. * and it is potentially going to sleep here.
  2463. */
  2464. if (order) {
  2465. int zones_need_compaction = 1;
  2466. for (i = 0; i <= end_zone; i++) {
  2467. struct zone *zone = pgdat->node_zones + i;
  2468. if (!populated_zone(zone))
  2469. continue;
  2470. if (zone->all_unreclaimable &&
  2471. sc.priority != DEF_PRIORITY)
  2472. continue;
  2473. /* Would compaction fail due to lack of free memory? */
  2474. if (COMPACTION_BUILD &&
  2475. compaction_suitable(zone, order) == COMPACT_SKIPPED)
  2476. goto loop_again;
  2477. /* Confirm the zone is balanced for order-0 */
  2478. if (!zone_watermark_ok(zone, 0,
  2479. high_wmark_pages(zone), 0, 0)) {
  2480. order = sc.order = 0;
  2481. goto loop_again;
  2482. }
  2483. /* Check if the memory needs to be defragmented. */
  2484. if (zone_watermark_ok(zone, order,
  2485. low_wmark_pages(zone), *classzone_idx, 0))
  2486. zones_need_compaction = 0;
  2487. /* If balanced, clear the congested flag */
  2488. zone_clear_flag(zone, ZONE_CONGESTED);
  2489. }
  2490. if (zones_need_compaction)
  2491. compact_pgdat(pgdat, order);
  2492. }
  2493. /*
  2494. * Return the order we were reclaiming at so prepare_kswapd_sleep()
  2495. * makes a decision on the order we were last reclaiming at. However,
  2496. * if another caller entered the allocator slow path while kswapd
  2497. * was awake, order will remain at the higher level
  2498. */
  2499. *classzone_idx = end_zone;
  2500. return order;
  2501. }
  2502. static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
  2503. {
  2504. long remaining = 0;
  2505. DEFINE_WAIT(wait);
  2506. if (freezing(current) || kthread_should_stop())
  2507. return;
  2508. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2509. /* Try to sleep for a short interval */
  2510. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2511. remaining = schedule_timeout(HZ/10);
  2512. finish_wait(&pgdat->kswapd_wait, &wait);
  2513. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2514. }
  2515. /*
  2516. * After a short sleep, check if it was a premature sleep. If not, then
  2517. * go fully to sleep until explicitly woken up.
  2518. */
  2519. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2520. trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
  2521. /*
  2522. * vmstat counters are not perfectly accurate and the estimated
  2523. * value for counters such as NR_FREE_PAGES can deviate from the
  2524. * true value by nr_online_cpus * threshold. To avoid the zone
  2525. * watermarks being breached while under pressure, we reduce the
  2526. * per-cpu vmstat threshold while kswapd is awake and restore
  2527. * them before going back to sleep.
  2528. */
  2529. set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
  2530. /*
  2531. * Compaction records what page blocks it recently failed to
  2532. * isolate pages from and skips them in the future scanning.
  2533. * When kswapd is going to sleep, it is reasonable to assume
  2534. * that pages and compaction may succeed so reset the cache.
  2535. */
  2536. reset_isolation_suitable(pgdat);
  2537. if (!kthread_should_stop())
  2538. schedule();
  2539. set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
  2540. } else {
  2541. if (remaining)
  2542. count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
  2543. else
  2544. count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
  2545. }
  2546. finish_wait(&pgdat->kswapd_wait, &wait);
  2547. }
  2548. /*
  2549. * The background pageout daemon, started as a kernel thread
  2550. * from the init process.
  2551. *
  2552. * This basically trickles out pages so that we have _some_
  2553. * free memory available even if there is no other activity
  2554. * that frees anything up. This is needed for things like routing
  2555. * etc, where we otherwise might have all activity going on in
  2556. * asynchronous contexts that cannot page things out.
  2557. *
  2558. * If there are applications that are active memory-allocators
  2559. * (most normal use), this basically shouldn't matter.
  2560. */
  2561. static int kswapd(void *p)
  2562. {
  2563. unsigned long order, new_order;
  2564. unsigned balanced_order;
  2565. int classzone_idx, new_classzone_idx;
  2566. int balanced_classzone_idx;
  2567. pg_data_t *pgdat = (pg_data_t*)p;
  2568. struct task_struct *tsk = current;
  2569. struct reclaim_state reclaim_state = {
  2570. .reclaimed_slab = 0,
  2571. };
  2572. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  2573. lockdep_set_current_reclaim_state(GFP_KERNEL);
  2574. if (!cpumask_empty(cpumask))
  2575. set_cpus_allowed_ptr(tsk, cpumask);
  2576. current->reclaim_state = &reclaim_state;
  2577. /*
  2578. * Tell the memory management that we're a "memory allocator",
  2579. * and that if we need more memory we should get access to it
  2580. * regardless (see "__alloc_pages()"). "kswapd" should
  2581. * never get caught in the normal page freeing logic.
  2582. *
  2583. * (Kswapd normally doesn't need memory anyway, but sometimes
  2584. * you need a small amount of memory in order to be able to
  2585. * page out something else, and this flag essentially protects
  2586. * us from recursively trying to free more memory as we're
  2587. * trying to free the first piece of memory in the first place).
  2588. */
  2589. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  2590. set_freezable();
  2591. order = new_order = 0;
  2592. balanced_order = 0;
  2593. classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
  2594. balanced_classzone_idx = classzone_idx;
  2595. for ( ; ; ) {
  2596. int ret;
  2597. /*
  2598. * If the last balance_pgdat was unsuccessful it's unlikely a
  2599. * new request of a similar or harder type will succeed soon
  2600. * so consider going to sleep on the basis we reclaimed at
  2601. */
  2602. if (balanced_classzone_idx >= new_classzone_idx &&
  2603. balanced_order == new_order) {
  2604. new_order = pgdat->kswapd_max_order;
  2605. new_classzone_idx = pgdat->classzone_idx;
  2606. pgdat->kswapd_max_order = 0;
  2607. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2608. }
  2609. if (order < new_order || classzone_idx > new_classzone_idx) {
  2610. /*
  2611. * Don't sleep if someone wants a larger 'order'
  2612. * allocation or has tigher zone constraints
  2613. */
  2614. order = new_order;
  2615. classzone_idx = new_classzone_idx;
  2616. } else {
  2617. kswapd_try_to_sleep(pgdat, balanced_order,
  2618. balanced_classzone_idx);
  2619. order = pgdat->kswapd_max_order;
  2620. classzone_idx = pgdat->classzone_idx;
  2621. new_order = order;
  2622. new_classzone_idx = classzone_idx;
  2623. pgdat->kswapd_max_order = 0;
  2624. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2625. }
  2626. ret = try_to_freeze();
  2627. if (kthread_should_stop())
  2628. break;
  2629. /*
  2630. * We can speed up thawing tasks if we don't call balance_pgdat
  2631. * after returning from the refrigerator
  2632. */
  2633. if (!ret) {
  2634. trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
  2635. balanced_classzone_idx = classzone_idx;
  2636. balanced_order = balance_pgdat(pgdat, order,
  2637. &balanced_classzone_idx);
  2638. }
  2639. }
  2640. return 0;
  2641. }
  2642. /*
  2643. * A zone is low on free memory, so wake its kswapd task to service it.
  2644. */
  2645. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
  2646. {
  2647. pg_data_t *pgdat;
  2648. if (!populated_zone(zone))
  2649. return;
  2650. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2651. return;
  2652. pgdat = zone->zone_pgdat;
  2653. if (pgdat->kswapd_max_order < order) {
  2654. pgdat->kswapd_max_order = order;
  2655. pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
  2656. }
  2657. if (!waitqueue_active(&pgdat->kswapd_wait))
  2658. return;
  2659. if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
  2660. return;
  2661. trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
  2662. wake_up_interruptible(&pgdat->kswapd_wait);
  2663. }
  2664. /*
  2665. * The reclaimable count would be mostly accurate.
  2666. * The less reclaimable pages may be
  2667. * - mlocked pages, which will be moved to unevictable list when encountered
  2668. * - mapped pages, which may require several travels to be reclaimed
  2669. * - dirty pages, which is not "instantly" reclaimable
  2670. */
  2671. unsigned long global_reclaimable_pages(void)
  2672. {
  2673. int nr;
  2674. nr = global_page_state(NR_ACTIVE_FILE) +
  2675. global_page_state(NR_INACTIVE_FILE);
  2676. if (nr_swap_pages > 0)
  2677. nr += global_page_state(NR_ACTIVE_ANON) +
  2678. global_page_state(NR_INACTIVE_ANON);
  2679. return nr;
  2680. }
  2681. unsigned long zone_reclaimable_pages(struct zone *zone)
  2682. {
  2683. int nr;
  2684. nr = zone_page_state(zone, NR_ACTIVE_FILE) +
  2685. zone_page_state(zone, NR_INACTIVE_FILE);
  2686. if (nr_swap_pages > 0)
  2687. nr += zone_page_state(zone, NR_ACTIVE_ANON) +
  2688. zone_page_state(zone, NR_INACTIVE_ANON);
  2689. return nr;
  2690. }
  2691. #ifdef CONFIG_HIBERNATION
  2692. /*
  2693. * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
  2694. * freed pages.
  2695. *
  2696. * Rather than trying to age LRUs the aim is to preserve the overall
  2697. * LRU order by reclaiming preferentially
  2698. * inactive > active > active referenced > active mapped
  2699. */
  2700. unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
  2701. {
  2702. struct reclaim_state reclaim_state;
  2703. struct scan_control sc = {
  2704. .gfp_mask = GFP_HIGHUSER_MOVABLE,
  2705. .may_swap = 1,
  2706. .may_unmap = 1,
  2707. .may_writepage = 1,
  2708. .nr_to_reclaim = nr_to_reclaim,
  2709. .hibernation_mode = 1,
  2710. .order = 0,
  2711. .priority = DEF_PRIORITY,
  2712. };
  2713. struct shrink_control shrink = {
  2714. .gfp_mask = sc.gfp_mask,
  2715. };
  2716. struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
  2717. struct task_struct *p = current;
  2718. unsigned long nr_reclaimed;
  2719. p->flags |= PF_MEMALLOC;
  2720. lockdep_set_current_reclaim_state(sc.gfp_mask);
  2721. reclaim_state.reclaimed_slab = 0;
  2722. p->reclaim_state = &reclaim_state;
  2723. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2724. p->reclaim_state = NULL;
  2725. lockdep_clear_current_reclaim_state();
  2726. p->flags &= ~PF_MEMALLOC;
  2727. return nr_reclaimed;
  2728. }
  2729. #endif /* CONFIG_HIBERNATION */
  2730. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  2731. not required for correctness. So if the last cpu in a node goes
  2732. away, we get changed to run anywhere: as the first one comes back,
  2733. restore their cpu bindings. */
  2734. static int __devinit cpu_callback(struct notifier_block *nfb,
  2735. unsigned long action, void *hcpu)
  2736. {
  2737. int nid;
  2738. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
  2739. for_each_node_state(nid, N_HIGH_MEMORY) {
  2740. pg_data_t *pgdat = NODE_DATA(nid);
  2741. const struct cpumask *mask;
  2742. mask = cpumask_of_node(pgdat->node_id);
  2743. if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
  2744. /* One of our CPUs online: restore mask */
  2745. set_cpus_allowed_ptr(pgdat->kswapd, mask);
  2746. }
  2747. }
  2748. return NOTIFY_OK;
  2749. }
  2750. /*
  2751. * This kswapd start function will be called by init and node-hot-add.
  2752. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  2753. */
  2754. int kswapd_run(int nid)
  2755. {
  2756. pg_data_t *pgdat = NODE_DATA(nid);
  2757. int ret = 0;
  2758. if (pgdat->kswapd)
  2759. return 0;
  2760. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  2761. if (IS_ERR(pgdat->kswapd)) {
  2762. /* failure at boot is fatal */
  2763. BUG_ON(system_state == SYSTEM_BOOTING);
  2764. pgdat->kswapd = NULL;
  2765. pr_err("Failed to start kswapd on node %d\n", nid);
  2766. ret = PTR_ERR(pgdat->kswapd);
  2767. }
  2768. return ret;
  2769. }
  2770. /*
  2771. * Called by memory hotplug when all memory in a node is offlined. Caller must
  2772. * hold lock_memory_hotplug().
  2773. */
  2774. void kswapd_stop(int nid)
  2775. {
  2776. struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
  2777. if (kswapd) {
  2778. kthread_stop(kswapd);
  2779. NODE_DATA(nid)->kswapd = NULL;
  2780. }
  2781. }
  2782. static int __init kswapd_init(void)
  2783. {
  2784. int nid;
  2785. swap_setup();
  2786. for_each_node_state(nid, N_HIGH_MEMORY)
  2787. kswapd_run(nid);
  2788. hotcpu_notifier(cpu_callback, 0);
  2789. return 0;
  2790. }
  2791. module_init(kswapd_init)
  2792. #ifdef CONFIG_NUMA
  2793. /*
  2794. * Zone reclaim mode
  2795. *
  2796. * If non-zero call zone_reclaim when the number of free pages falls below
  2797. * the watermarks.
  2798. */
  2799. int zone_reclaim_mode __read_mostly;
  2800. #define RECLAIM_OFF 0
  2801. #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
  2802. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  2803. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  2804. /*
  2805. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  2806. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  2807. * a zone.
  2808. */
  2809. #define ZONE_RECLAIM_PRIORITY 4
  2810. /*
  2811. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  2812. * occur.
  2813. */
  2814. int sysctl_min_unmapped_ratio = 1;
  2815. /*
  2816. * If the number of slab pages in a zone grows beyond this percentage then
  2817. * slab reclaim needs to occur.
  2818. */
  2819. int sysctl_min_slab_ratio = 5;
  2820. static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
  2821. {
  2822. unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
  2823. unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
  2824. zone_page_state(zone, NR_ACTIVE_FILE);
  2825. /*
  2826. * It's possible for there to be more file mapped pages than
  2827. * accounted for by the pages on the file LRU lists because
  2828. * tmpfs pages accounted for as ANON can also be FILE_MAPPED
  2829. */
  2830. return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
  2831. }
  2832. /* Work out how many page cache pages we can reclaim in this reclaim_mode */
  2833. static long zone_pagecache_reclaimable(struct zone *zone)
  2834. {
  2835. long nr_pagecache_reclaimable;
  2836. long delta = 0;
  2837. /*
  2838. * If RECLAIM_SWAP is set, then all file pages are considered
  2839. * potentially reclaimable. Otherwise, we have to worry about
  2840. * pages like swapcache and zone_unmapped_file_pages() provides
  2841. * a better estimate
  2842. */
  2843. if (zone_reclaim_mode & RECLAIM_SWAP)
  2844. nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
  2845. else
  2846. nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
  2847. /* If we can't clean pages, remove dirty pages from consideration */
  2848. if (!(zone_reclaim_mode & RECLAIM_WRITE))
  2849. delta += zone_page_state(zone, NR_FILE_DIRTY);
  2850. /* Watch for any possible underflows due to delta */
  2851. if (unlikely(delta > nr_pagecache_reclaimable))
  2852. delta = nr_pagecache_reclaimable;
  2853. return nr_pagecache_reclaimable - delta;
  2854. }
  2855. /*
  2856. * Try to free up some pages from this zone through reclaim.
  2857. */
  2858. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2859. {
  2860. /* Minimum pages needed in order to stay on node */
  2861. const unsigned long nr_pages = 1 << order;
  2862. struct task_struct *p = current;
  2863. struct reclaim_state reclaim_state;
  2864. struct scan_control sc = {
  2865. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  2866. .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  2867. .may_swap = 1,
  2868. .nr_to_reclaim = max_t(unsigned long, nr_pages,
  2869. SWAP_CLUSTER_MAX),
  2870. .gfp_mask = gfp_mask,
  2871. .order = order,
  2872. .priority = ZONE_RECLAIM_PRIORITY,
  2873. };
  2874. struct shrink_control shrink = {
  2875. .gfp_mask = sc.gfp_mask,
  2876. };
  2877. unsigned long nr_slab_pages0, nr_slab_pages1;
  2878. cond_resched();
  2879. /*
  2880. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  2881. * and we also need to be able to write out pages for RECLAIM_WRITE
  2882. * and RECLAIM_SWAP.
  2883. */
  2884. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  2885. lockdep_set_current_reclaim_state(gfp_mask);
  2886. reclaim_state.reclaimed_slab = 0;
  2887. p->reclaim_state = &reclaim_state;
  2888. if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
  2889. /*
  2890. * Free memory by calling shrink zone with increasing
  2891. * priorities until we have enough memory freed.
  2892. */
  2893. do {
  2894. shrink_zone(zone, &sc);
  2895. } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
  2896. }
  2897. nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2898. if (nr_slab_pages0 > zone->min_slab_pages) {
  2899. /*
  2900. * shrink_slab() does not currently allow us to determine how
  2901. * many pages were freed in this zone. So we take the current
  2902. * number of slab pages and shake the slab until it is reduced
  2903. * by the same nr_pages that we used for reclaiming unmapped
  2904. * pages.
  2905. *
  2906. * Note that shrink_slab will free memory on all zones and may
  2907. * take a long time.
  2908. */
  2909. for (;;) {
  2910. unsigned long lru_pages = zone_reclaimable_pages(zone);
  2911. /* No reclaimable slab or very low memory pressure */
  2912. if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
  2913. break;
  2914. /* Freed enough memory */
  2915. nr_slab_pages1 = zone_page_state(zone,
  2916. NR_SLAB_RECLAIMABLE);
  2917. if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
  2918. break;
  2919. }
  2920. /*
  2921. * Update nr_reclaimed by the number of slab pages we
  2922. * reclaimed from this zone.
  2923. */
  2924. nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2925. if (nr_slab_pages1 < nr_slab_pages0)
  2926. sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
  2927. }
  2928. p->reclaim_state = NULL;
  2929. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  2930. lockdep_clear_current_reclaim_state();
  2931. return sc.nr_reclaimed >= nr_pages;
  2932. }
  2933. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2934. {
  2935. int node_id;
  2936. int ret;
  2937. /*
  2938. * Zone reclaim reclaims unmapped file backed pages and
  2939. * slab pages if we are over the defined limits.
  2940. *
  2941. * A small portion of unmapped file backed pages is needed for
  2942. * file I/O otherwise pages read by file I/O will be immediately
  2943. * thrown out if the zone is overallocated. So we do not reclaim
  2944. * if less than a specified percentage of the zone is used by
  2945. * unmapped file backed pages.
  2946. */
  2947. if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
  2948. zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
  2949. return ZONE_RECLAIM_FULL;
  2950. if (zone->all_unreclaimable)
  2951. return ZONE_RECLAIM_FULL;
  2952. /*
  2953. * Do not scan if the allocation should not be delayed.
  2954. */
  2955. if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
  2956. return ZONE_RECLAIM_NOSCAN;
  2957. /*
  2958. * Only run zone reclaim on the local zone or on zones that do not
  2959. * have associated processors. This will favor the local processor
  2960. * over remote processors and spread off node memory allocations
  2961. * as wide as possible.
  2962. */
  2963. node_id = zone_to_nid(zone);
  2964. if (node_state(node_id, N_CPU) && node_id != numa_node_id())
  2965. return ZONE_RECLAIM_NOSCAN;
  2966. if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
  2967. return ZONE_RECLAIM_NOSCAN;
  2968. ret = __zone_reclaim(zone, gfp_mask, order);
  2969. zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
  2970. if (!ret)
  2971. count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
  2972. return ret;
  2973. }
  2974. #endif
  2975. /*
  2976. * page_evictable - test whether a page is evictable
  2977. * @page: the page to test
  2978. *
  2979. * Test whether page is evictable--i.e., should be placed on active/inactive
  2980. * lists vs unevictable list.
  2981. *
  2982. * Reasons page might not be evictable:
  2983. * (1) page's mapping marked unevictable
  2984. * (2) page is part of an mlocked VMA
  2985. *
  2986. */
  2987. int page_evictable(struct page *page)
  2988. {
  2989. return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
  2990. }
  2991. #ifdef CONFIG_SHMEM
  2992. /**
  2993. * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
  2994. * @pages: array of pages to check
  2995. * @nr_pages: number of pages to check
  2996. *
  2997. * Checks pages for evictability and moves them to the appropriate lru list.
  2998. *
  2999. * This function is only used for SysV IPC SHM_UNLOCK.
  3000. */
  3001. void check_move_unevictable_pages(struct page **pages, int nr_pages)
  3002. {
  3003. struct lruvec *lruvec;
  3004. struct zone *zone = NULL;
  3005. int pgscanned = 0;
  3006. int pgrescued = 0;
  3007. int i;
  3008. for (i = 0; i < nr_pages; i++) {
  3009. struct page *page = pages[i];
  3010. struct zone *pagezone;
  3011. pgscanned++;
  3012. pagezone = page_zone(page);
  3013. if (pagezone != zone) {
  3014. if (zone)
  3015. spin_unlock_irq(&zone->lru_lock);
  3016. zone = pagezone;
  3017. spin_lock_irq(&zone->lru_lock);
  3018. }
  3019. lruvec = mem_cgroup_page_lruvec(page, zone);
  3020. if (!PageLRU(page) || !PageUnevictable(page))
  3021. continue;
  3022. if (page_evictable(page)) {
  3023. enum lru_list lru = page_lru_base_type(page);
  3024. VM_BUG_ON(PageActive(page));
  3025. ClearPageUnevictable(page);
  3026. del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
  3027. add_page_to_lru_list(page, lruvec, lru);
  3028. pgrescued++;
  3029. }
  3030. }
  3031. if (zone) {
  3032. __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  3033. __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
  3034. spin_unlock_irq(&zone->lru_lock);
  3035. }
  3036. }
  3037. #endif /* CONFIG_SHMEM */
  3038. static void warn_scan_unevictable_pages(void)
  3039. {
  3040. printk_once(KERN_WARNING
  3041. "%s: The scan_unevictable_pages sysctl/node-interface has been "
  3042. "disabled for lack of a legitimate use case. If you have "
  3043. "one, please send an email to linux-mm@kvack.org.\n",
  3044. current->comm);
  3045. }
  3046. /*
  3047. * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
  3048. * all nodes' unevictable lists for evictable pages
  3049. */
  3050. unsigned long scan_unevictable_pages;
  3051. int scan_unevictable_handler(struct ctl_table *table, int write,
  3052. void __user *buffer,
  3053. size_t *length, loff_t *ppos)
  3054. {
  3055. warn_scan_unevictable_pages();
  3056. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  3057. scan_unevictable_pages = 0;
  3058. return 0;
  3059. }
  3060. #ifdef CONFIG_NUMA
  3061. /*
  3062. * per node 'scan_unevictable_pages' attribute. On demand re-scan of
  3063. * a specified node's per zone unevictable lists for evictable pages.
  3064. */
  3065. static ssize_t read_scan_unevictable_node(struct device *dev,
  3066. struct device_attribute *attr,
  3067. char *buf)
  3068. {
  3069. warn_scan_unevictable_pages();
  3070. return sprintf(buf, "0\n"); /* always zero; should fit... */
  3071. }
  3072. static ssize_t write_scan_unevictable_node(struct device *dev,
  3073. struct device_attribute *attr,
  3074. const char *buf, size_t count)
  3075. {
  3076. warn_scan_unevictable_pages();
  3077. return 1;
  3078. }
  3079. static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
  3080. read_scan_unevictable_node,
  3081. write_scan_unevictable_node);
  3082. int scan_unevictable_register_node(struct node *node)
  3083. {
  3084. return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3085. }
  3086. void scan_unevictable_unregister_node(struct node *node)
  3087. {
  3088. device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3089. }
  3090. #endif