huge_memory.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!khugepaged_enabled())
  96. return 0;
  97. for_each_populated_zone(zone)
  98. nr_zones++;
  99. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  100. recommended_min = pageblock_nr_pages * nr_zones * 2;
  101. /*
  102. * Make sure that on average at least two pageblocks are almost free
  103. * of another type, one for a migratetype to fall back to and a
  104. * second to avoid subsequent fallbacks of other types There are 3
  105. * MIGRATE_TYPES we care about.
  106. */
  107. recommended_min += pageblock_nr_pages * nr_zones *
  108. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  109. /* don't ever allow to reserve more than 5% of the lowmem */
  110. recommended_min = min(recommended_min,
  111. (unsigned long) nr_free_buffer_pages() / 20);
  112. recommended_min <<= (PAGE_SHIFT-10);
  113. if (recommended_min > min_free_kbytes)
  114. min_free_kbytes = recommended_min;
  115. setup_per_zone_wmarks();
  116. return 0;
  117. }
  118. late_initcall(set_recommended_min_free_kbytes);
  119. static int start_khugepaged(void)
  120. {
  121. int err = 0;
  122. if (khugepaged_enabled()) {
  123. if (!khugepaged_thread)
  124. khugepaged_thread = kthread_run(khugepaged, NULL,
  125. "khugepaged");
  126. if (unlikely(IS_ERR(khugepaged_thread))) {
  127. printk(KERN_ERR
  128. "khugepaged: kthread_run(khugepaged) failed\n");
  129. err = PTR_ERR(khugepaged_thread);
  130. khugepaged_thread = NULL;
  131. }
  132. if (!list_empty(&khugepaged_scan.mm_head))
  133. wake_up_interruptible(&khugepaged_wait);
  134. set_recommended_min_free_kbytes();
  135. } else if (khugepaged_thread) {
  136. kthread_stop(khugepaged_thread);
  137. khugepaged_thread = NULL;
  138. }
  139. return err;
  140. }
  141. #ifdef CONFIG_SYSFS
  142. static ssize_t double_flag_show(struct kobject *kobj,
  143. struct kobj_attribute *attr, char *buf,
  144. enum transparent_hugepage_flag enabled,
  145. enum transparent_hugepage_flag req_madv)
  146. {
  147. if (test_bit(enabled, &transparent_hugepage_flags)) {
  148. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  149. return sprintf(buf, "[always] madvise never\n");
  150. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  151. return sprintf(buf, "always [madvise] never\n");
  152. else
  153. return sprintf(buf, "always madvise [never]\n");
  154. }
  155. static ssize_t double_flag_store(struct kobject *kobj,
  156. struct kobj_attribute *attr,
  157. const char *buf, size_t count,
  158. enum transparent_hugepage_flag enabled,
  159. enum transparent_hugepage_flag req_madv)
  160. {
  161. if (!memcmp("always", buf,
  162. min(sizeof("always")-1, count))) {
  163. set_bit(enabled, &transparent_hugepage_flags);
  164. clear_bit(req_madv, &transparent_hugepage_flags);
  165. } else if (!memcmp("madvise", buf,
  166. min(sizeof("madvise")-1, count))) {
  167. clear_bit(enabled, &transparent_hugepage_flags);
  168. set_bit(req_madv, &transparent_hugepage_flags);
  169. } else if (!memcmp("never", buf,
  170. min(sizeof("never")-1, count))) {
  171. clear_bit(enabled, &transparent_hugepage_flags);
  172. clear_bit(req_madv, &transparent_hugepage_flags);
  173. } else
  174. return -EINVAL;
  175. return count;
  176. }
  177. static ssize_t enabled_show(struct kobject *kobj,
  178. struct kobj_attribute *attr, char *buf)
  179. {
  180. return double_flag_show(kobj, attr, buf,
  181. TRANSPARENT_HUGEPAGE_FLAG,
  182. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  183. }
  184. static ssize_t enabled_store(struct kobject *kobj,
  185. struct kobj_attribute *attr,
  186. const char *buf, size_t count)
  187. {
  188. ssize_t ret;
  189. ret = double_flag_store(kobj, attr, buf, count,
  190. TRANSPARENT_HUGEPAGE_FLAG,
  191. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  192. if (ret > 0) {
  193. int err;
  194. mutex_lock(&khugepaged_mutex);
  195. err = start_khugepaged();
  196. mutex_unlock(&khugepaged_mutex);
  197. if (err)
  198. ret = err;
  199. }
  200. return ret;
  201. }
  202. static struct kobj_attribute enabled_attr =
  203. __ATTR(enabled, 0644, enabled_show, enabled_store);
  204. static ssize_t single_flag_show(struct kobject *kobj,
  205. struct kobj_attribute *attr, char *buf,
  206. enum transparent_hugepage_flag flag)
  207. {
  208. return sprintf(buf, "%d\n",
  209. !!test_bit(flag, &transparent_hugepage_flags));
  210. }
  211. static ssize_t single_flag_store(struct kobject *kobj,
  212. struct kobj_attribute *attr,
  213. const char *buf, size_t count,
  214. enum transparent_hugepage_flag flag)
  215. {
  216. unsigned long value;
  217. int ret;
  218. ret = kstrtoul(buf, 10, &value);
  219. if (ret < 0)
  220. return ret;
  221. if (value > 1)
  222. return -EINVAL;
  223. if (value)
  224. set_bit(flag, &transparent_hugepage_flags);
  225. else
  226. clear_bit(flag, &transparent_hugepage_flags);
  227. return count;
  228. }
  229. /*
  230. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  231. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  232. * memory just to allocate one more hugepage.
  233. */
  234. static ssize_t defrag_show(struct kobject *kobj,
  235. struct kobj_attribute *attr, char *buf)
  236. {
  237. return double_flag_show(kobj, attr, buf,
  238. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  239. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  240. }
  241. static ssize_t defrag_store(struct kobject *kobj,
  242. struct kobj_attribute *attr,
  243. const char *buf, size_t count)
  244. {
  245. return double_flag_store(kobj, attr, buf, count,
  246. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  247. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  248. }
  249. static struct kobj_attribute defrag_attr =
  250. __ATTR(defrag, 0644, defrag_show, defrag_store);
  251. #ifdef CONFIG_DEBUG_VM
  252. static ssize_t debug_cow_show(struct kobject *kobj,
  253. struct kobj_attribute *attr, char *buf)
  254. {
  255. return single_flag_show(kobj, attr, buf,
  256. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  257. }
  258. static ssize_t debug_cow_store(struct kobject *kobj,
  259. struct kobj_attribute *attr,
  260. const char *buf, size_t count)
  261. {
  262. return single_flag_store(kobj, attr, buf, count,
  263. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  264. }
  265. static struct kobj_attribute debug_cow_attr =
  266. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  267. #endif /* CONFIG_DEBUG_VM */
  268. static struct attribute *hugepage_attr[] = {
  269. &enabled_attr.attr,
  270. &defrag_attr.attr,
  271. #ifdef CONFIG_DEBUG_VM
  272. &debug_cow_attr.attr,
  273. #endif
  274. NULL,
  275. };
  276. static struct attribute_group hugepage_attr_group = {
  277. .attrs = hugepage_attr,
  278. };
  279. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  280. struct kobj_attribute *attr,
  281. char *buf)
  282. {
  283. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  284. }
  285. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  286. struct kobj_attribute *attr,
  287. const char *buf, size_t count)
  288. {
  289. unsigned long msecs;
  290. int err;
  291. err = strict_strtoul(buf, 10, &msecs);
  292. if (err || msecs > UINT_MAX)
  293. return -EINVAL;
  294. khugepaged_scan_sleep_millisecs = msecs;
  295. wake_up_interruptible(&khugepaged_wait);
  296. return count;
  297. }
  298. static struct kobj_attribute scan_sleep_millisecs_attr =
  299. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  300. scan_sleep_millisecs_store);
  301. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  302. struct kobj_attribute *attr,
  303. char *buf)
  304. {
  305. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  306. }
  307. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  308. struct kobj_attribute *attr,
  309. const char *buf, size_t count)
  310. {
  311. unsigned long msecs;
  312. int err;
  313. err = strict_strtoul(buf, 10, &msecs);
  314. if (err || msecs > UINT_MAX)
  315. return -EINVAL;
  316. khugepaged_alloc_sleep_millisecs = msecs;
  317. wake_up_interruptible(&khugepaged_wait);
  318. return count;
  319. }
  320. static struct kobj_attribute alloc_sleep_millisecs_attr =
  321. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  322. alloc_sleep_millisecs_store);
  323. static ssize_t pages_to_scan_show(struct kobject *kobj,
  324. struct kobj_attribute *attr,
  325. char *buf)
  326. {
  327. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  328. }
  329. static ssize_t pages_to_scan_store(struct kobject *kobj,
  330. struct kobj_attribute *attr,
  331. const char *buf, size_t count)
  332. {
  333. int err;
  334. unsigned long pages;
  335. err = strict_strtoul(buf, 10, &pages);
  336. if (err || !pages || pages > UINT_MAX)
  337. return -EINVAL;
  338. khugepaged_pages_to_scan = pages;
  339. return count;
  340. }
  341. static struct kobj_attribute pages_to_scan_attr =
  342. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  343. pages_to_scan_store);
  344. static ssize_t pages_collapsed_show(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. char *buf)
  347. {
  348. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  349. }
  350. static struct kobj_attribute pages_collapsed_attr =
  351. __ATTR_RO(pages_collapsed);
  352. static ssize_t full_scans_show(struct kobject *kobj,
  353. struct kobj_attribute *attr,
  354. char *buf)
  355. {
  356. return sprintf(buf, "%u\n", khugepaged_full_scans);
  357. }
  358. static struct kobj_attribute full_scans_attr =
  359. __ATTR_RO(full_scans);
  360. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  361. struct kobj_attribute *attr, char *buf)
  362. {
  363. return single_flag_show(kobj, attr, buf,
  364. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  365. }
  366. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. return single_flag_store(kobj, attr, buf, count,
  371. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  372. }
  373. static struct kobj_attribute khugepaged_defrag_attr =
  374. __ATTR(defrag, 0644, khugepaged_defrag_show,
  375. khugepaged_defrag_store);
  376. /*
  377. * max_ptes_none controls if khugepaged should collapse hugepages over
  378. * any unmapped ptes in turn potentially increasing the memory
  379. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  380. * reduce the available free memory in the system as it
  381. * runs. Increasing max_ptes_none will instead potentially reduce the
  382. * free memory in the system during the khugepaged scan.
  383. */
  384. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  385. struct kobj_attribute *attr,
  386. char *buf)
  387. {
  388. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  389. }
  390. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  391. struct kobj_attribute *attr,
  392. const char *buf, size_t count)
  393. {
  394. int err;
  395. unsigned long max_ptes_none;
  396. err = strict_strtoul(buf, 10, &max_ptes_none);
  397. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  398. return -EINVAL;
  399. khugepaged_max_ptes_none = max_ptes_none;
  400. return count;
  401. }
  402. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  403. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  404. khugepaged_max_ptes_none_store);
  405. static struct attribute *khugepaged_attr[] = {
  406. &khugepaged_defrag_attr.attr,
  407. &khugepaged_max_ptes_none_attr.attr,
  408. &pages_to_scan_attr.attr,
  409. &pages_collapsed_attr.attr,
  410. &full_scans_attr.attr,
  411. &scan_sleep_millisecs_attr.attr,
  412. &alloc_sleep_millisecs_attr.attr,
  413. NULL,
  414. };
  415. static struct attribute_group khugepaged_attr_group = {
  416. .attrs = khugepaged_attr,
  417. .name = "khugepaged",
  418. };
  419. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  420. {
  421. int err;
  422. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  423. if (unlikely(!*hugepage_kobj)) {
  424. printk(KERN_ERR "hugepage: failed kobject create\n");
  425. return -ENOMEM;
  426. }
  427. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  428. if (err) {
  429. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  430. goto delete_obj;
  431. }
  432. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  433. if (err) {
  434. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  435. goto remove_hp_group;
  436. }
  437. return 0;
  438. remove_hp_group:
  439. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  440. delete_obj:
  441. kobject_put(*hugepage_kobj);
  442. return err;
  443. }
  444. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  445. {
  446. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  447. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  448. kobject_put(hugepage_kobj);
  449. }
  450. #else
  451. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  452. {
  453. return 0;
  454. }
  455. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  456. {
  457. }
  458. #endif /* CONFIG_SYSFS */
  459. static int __init hugepage_init(void)
  460. {
  461. int err;
  462. struct kobject *hugepage_kobj;
  463. if (!has_transparent_hugepage()) {
  464. transparent_hugepage_flags = 0;
  465. return -EINVAL;
  466. }
  467. err = hugepage_init_sysfs(&hugepage_kobj);
  468. if (err)
  469. return err;
  470. err = khugepaged_slab_init();
  471. if (err)
  472. goto out;
  473. err = mm_slots_hash_init();
  474. if (err) {
  475. khugepaged_slab_free();
  476. goto out;
  477. }
  478. /*
  479. * By default disable transparent hugepages on smaller systems,
  480. * where the extra memory used could hurt more than TLB overhead
  481. * is likely to save. The admin can still enable it through /sys.
  482. */
  483. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  484. transparent_hugepage_flags = 0;
  485. start_khugepaged();
  486. return 0;
  487. out:
  488. hugepage_exit_sysfs(hugepage_kobj);
  489. return err;
  490. }
  491. module_init(hugepage_init)
  492. static int __init setup_transparent_hugepage(char *str)
  493. {
  494. int ret = 0;
  495. if (!str)
  496. goto out;
  497. if (!strcmp(str, "always")) {
  498. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  499. &transparent_hugepage_flags);
  500. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  501. &transparent_hugepage_flags);
  502. ret = 1;
  503. } else if (!strcmp(str, "madvise")) {
  504. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  505. &transparent_hugepage_flags);
  506. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  507. &transparent_hugepage_flags);
  508. ret = 1;
  509. } else if (!strcmp(str, "never")) {
  510. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  511. &transparent_hugepage_flags);
  512. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  513. &transparent_hugepage_flags);
  514. ret = 1;
  515. }
  516. out:
  517. if (!ret)
  518. printk(KERN_WARNING
  519. "transparent_hugepage= cannot parse, ignored\n");
  520. return ret;
  521. }
  522. __setup("transparent_hugepage=", setup_transparent_hugepage);
  523. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  524. {
  525. if (likely(vma->vm_flags & VM_WRITE))
  526. pmd = pmd_mkwrite(pmd);
  527. return pmd;
  528. }
  529. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  530. struct vm_area_struct *vma,
  531. unsigned long haddr, pmd_t *pmd,
  532. struct page *page)
  533. {
  534. pgtable_t pgtable;
  535. VM_BUG_ON(!PageCompound(page));
  536. pgtable = pte_alloc_one(mm, haddr);
  537. if (unlikely(!pgtable))
  538. return VM_FAULT_OOM;
  539. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  540. __SetPageUptodate(page);
  541. spin_lock(&mm->page_table_lock);
  542. if (unlikely(!pmd_none(*pmd))) {
  543. spin_unlock(&mm->page_table_lock);
  544. mem_cgroup_uncharge_page(page);
  545. put_page(page);
  546. pte_free(mm, pgtable);
  547. } else {
  548. pmd_t entry;
  549. entry = mk_pmd(page, vma->vm_page_prot);
  550. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  551. entry = pmd_mkhuge(entry);
  552. /*
  553. * The spinlocking to take the lru_lock inside
  554. * page_add_new_anon_rmap() acts as a full memory
  555. * barrier to be sure clear_huge_page writes become
  556. * visible after the set_pmd_at() write.
  557. */
  558. page_add_new_anon_rmap(page, vma, haddr);
  559. set_pmd_at(mm, haddr, pmd, entry);
  560. pgtable_trans_huge_deposit(mm, pgtable);
  561. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  562. mm->nr_ptes++;
  563. spin_unlock(&mm->page_table_lock);
  564. }
  565. return 0;
  566. }
  567. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  568. {
  569. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  570. }
  571. static inline struct page *alloc_hugepage_vma(int defrag,
  572. struct vm_area_struct *vma,
  573. unsigned long haddr, int nd,
  574. gfp_t extra_gfp)
  575. {
  576. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  577. HPAGE_PMD_ORDER, vma, haddr, nd);
  578. }
  579. #ifndef CONFIG_NUMA
  580. static inline struct page *alloc_hugepage(int defrag)
  581. {
  582. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  583. HPAGE_PMD_ORDER);
  584. }
  585. #endif
  586. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  587. unsigned long address, pmd_t *pmd,
  588. unsigned int flags)
  589. {
  590. struct page *page;
  591. unsigned long haddr = address & HPAGE_PMD_MASK;
  592. pte_t *pte;
  593. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  594. if (unlikely(anon_vma_prepare(vma)))
  595. return VM_FAULT_OOM;
  596. if (unlikely(khugepaged_enter(vma)))
  597. return VM_FAULT_OOM;
  598. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  599. vma, haddr, numa_node_id(), 0);
  600. if (unlikely(!page)) {
  601. count_vm_event(THP_FAULT_FALLBACK);
  602. goto out;
  603. }
  604. count_vm_event(THP_FAULT_ALLOC);
  605. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  606. put_page(page);
  607. goto out;
  608. }
  609. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  610. page))) {
  611. mem_cgroup_uncharge_page(page);
  612. put_page(page);
  613. goto out;
  614. }
  615. return 0;
  616. }
  617. out:
  618. /*
  619. * Use __pte_alloc instead of pte_alloc_map, because we can't
  620. * run pte_offset_map on the pmd, if an huge pmd could
  621. * materialize from under us from a different thread.
  622. */
  623. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  624. return VM_FAULT_OOM;
  625. /* if an huge pmd materialized from under us just retry later */
  626. if (unlikely(pmd_trans_huge(*pmd)))
  627. return 0;
  628. /*
  629. * A regular pmd is established and it can't morph into a huge pmd
  630. * from under us anymore at this point because we hold the mmap_sem
  631. * read mode and khugepaged takes it in write mode. So now it's
  632. * safe to run pte_offset_map().
  633. */
  634. pte = pte_offset_map(pmd, address);
  635. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  636. }
  637. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  638. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  639. struct vm_area_struct *vma)
  640. {
  641. struct page *src_page;
  642. pmd_t pmd;
  643. pgtable_t pgtable;
  644. int ret;
  645. ret = -ENOMEM;
  646. pgtable = pte_alloc_one(dst_mm, addr);
  647. if (unlikely(!pgtable))
  648. goto out;
  649. spin_lock(&dst_mm->page_table_lock);
  650. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  651. ret = -EAGAIN;
  652. pmd = *src_pmd;
  653. if (unlikely(!pmd_trans_huge(pmd))) {
  654. pte_free(dst_mm, pgtable);
  655. goto out_unlock;
  656. }
  657. if (unlikely(pmd_trans_splitting(pmd))) {
  658. /* split huge page running from under us */
  659. spin_unlock(&src_mm->page_table_lock);
  660. spin_unlock(&dst_mm->page_table_lock);
  661. pte_free(dst_mm, pgtable);
  662. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  663. goto out;
  664. }
  665. src_page = pmd_page(pmd);
  666. VM_BUG_ON(!PageHead(src_page));
  667. get_page(src_page);
  668. page_dup_rmap(src_page);
  669. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  670. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  671. pmd = pmd_mkold(pmd_wrprotect(pmd));
  672. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  673. pgtable_trans_huge_deposit(dst_mm, pgtable);
  674. dst_mm->nr_ptes++;
  675. ret = 0;
  676. out_unlock:
  677. spin_unlock(&src_mm->page_table_lock);
  678. spin_unlock(&dst_mm->page_table_lock);
  679. out:
  680. return ret;
  681. }
  682. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  683. struct vm_area_struct *vma,
  684. unsigned long address,
  685. pmd_t *pmd, pmd_t orig_pmd,
  686. struct page *page,
  687. unsigned long haddr)
  688. {
  689. pgtable_t pgtable;
  690. pmd_t _pmd;
  691. int ret = 0, i;
  692. struct page **pages;
  693. unsigned long mmun_start; /* For mmu_notifiers */
  694. unsigned long mmun_end; /* For mmu_notifiers */
  695. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  696. GFP_KERNEL);
  697. if (unlikely(!pages)) {
  698. ret |= VM_FAULT_OOM;
  699. goto out;
  700. }
  701. for (i = 0; i < HPAGE_PMD_NR; i++) {
  702. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  703. __GFP_OTHER_NODE,
  704. vma, address, page_to_nid(page));
  705. if (unlikely(!pages[i] ||
  706. mem_cgroup_newpage_charge(pages[i], mm,
  707. GFP_KERNEL))) {
  708. if (pages[i])
  709. put_page(pages[i]);
  710. mem_cgroup_uncharge_start();
  711. while (--i >= 0) {
  712. mem_cgroup_uncharge_page(pages[i]);
  713. put_page(pages[i]);
  714. }
  715. mem_cgroup_uncharge_end();
  716. kfree(pages);
  717. ret |= VM_FAULT_OOM;
  718. goto out;
  719. }
  720. }
  721. for (i = 0; i < HPAGE_PMD_NR; i++) {
  722. copy_user_highpage(pages[i], page + i,
  723. haddr + PAGE_SIZE * i, vma);
  724. __SetPageUptodate(pages[i]);
  725. cond_resched();
  726. }
  727. mmun_start = haddr;
  728. mmun_end = haddr + HPAGE_PMD_SIZE;
  729. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  730. spin_lock(&mm->page_table_lock);
  731. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  732. goto out_free_pages;
  733. VM_BUG_ON(!PageHead(page));
  734. pmdp_clear_flush(vma, haddr, pmd);
  735. /* leave pmd empty until pte is filled */
  736. pgtable = pgtable_trans_huge_withdraw(mm);
  737. pmd_populate(mm, &_pmd, pgtable);
  738. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  739. pte_t *pte, entry;
  740. entry = mk_pte(pages[i], vma->vm_page_prot);
  741. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  742. page_add_new_anon_rmap(pages[i], vma, haddr);
  743. pte = pte_offset_map(&_pmd, haddr);
  744. VM_BUG_ON(!pte_none(*pte));
  745. set_pte_at(mm, haddr, pte, entry);
  746. pte_unmap(pte);
  747. }
  748. kfree(pages);
  749. smp_wmb(); /* make pte visible before pmd */
  750. pmd_populate(mm, pmd, pgtable);
  751. page_remove_rmap(page);
  752. spin_unlock(&mm->page_table_lock);
  753. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  754. ret |= VM_FAULT_WRITE;
  755. put_page(page);
  756. out:
  757. return ret;
  758. out_free_pages:
  759. spin_unlock(&mm->page_table_lock);
  760. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  761. mem_cgroup_uncharge_start();
  762. for (i = 0; i < HPAGE_PMD_NR; i++) {
  763. mem_cgroup_uncharge_page(pages[i]);
  764. put_page(pages[i]);
  765. }
  766. mem_cgroup_uncharge_end();
  767. kfree(pages);
  768. goto out;
  769. }
  770. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  771. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  772. {
  773. int ret = 0;
  774. struct page *page, *new_page;
  775. unsigned long haddr;
  776. unsigned long mmun_start; /* For mmu_notifiers */
  777. unsigned long mmun_end; /* For mmu_notifiers */
  778. VM_BUG_ON(!vma->anon_vma);
  779. spin_lock(&mm->page_table_lock);
  780. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  781. goto out_unlock;
  782. page = pmd_page(orig_pmd);
  783. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  784. haddr = address & HPAGE_PMD_MASK;
  785. if (page_mapcount(page) == 1) {
  786. pmd_t entry;
  787. entry = pmd_mkyoung(orig_pmd);
  788. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  789. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  790. update_mmu_cache_pmd(vma, address, pmd);
  791. ret |= VM_FAULT_WRITE;
  792. goto out_unlock;
  793. }
  794. get_page(page);
  795. spin_unlock(&mm->page_table_lock);
  796. if (transparent_hugepage_enabled(vma) &&
  797. !transparent_hugepage_debug_cow())
  798. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  799. vma, haddr, numa_node_id(), 0);
  800. else
  801. new_page = NULL;
  802. if (unlikely(!new_page)) {
  803. count_vm_event(THP_FAULT_FALLBACK);
  804. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  805. pmd, orig_pmd, page, haddr);
  806. if (ret & VM_FAULT_OOM)
  807. split_huge_page(page);
  808. put_page(page);
  809. goto out;
  810. }
  811. count_vm_event(THP_FAULT_ALLOC);
  812. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  813. put_page(new_page);
  814. split_huge_page(page);
  815. put_page(page);
  816. ret |= VM_FAULT_OOM;
  817. goto out;
  818. }
  819. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  820. __SetPageUptodate(new_page);
  821. mmun_start = haddr;
  822. mmun_end = haddr + HPAGE_PMD_SIZE;
  823. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  824. spin_lock(&mm->page_table_lock);
  825. put_page(page);
  826. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  827. spin_unlock(&mm->page_table_lock);
  828. mem_cgroup_uncharge_page(new_page);
  829. put_page(new_page);
  830. goto out_mn;
  831. } else {
  832. pmd_t entry;
  833. VM_BUG_ON(!PageHead(page));
  834. entry = mk_pmd(new_page, vma->vm_page_prot);
  835. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  836. entry = pmd_mkhuge(entry);
  837. pmdp_clear_flush(vma, haddr, pmd);
  838. page_add_new_anon_rmap(new_page, vma, haddr);
  839. set_pmd_at(mm, haddr, pmd, entry);
  840. update_mmu_cache_pmd(vma, address, pmd);
  841. page_remove_rmap(page);
  842. put_page(page);
  843. ret |= VM_FAULT_WRITE;
  844. }
  845. spin_unlock(&mm->page_table_lock);
  846. out_mn:
  847. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  848. out:
  849. return ret;
  850. out_unlock:
  851. spin_unlock(&mm->page_table_lock);
  852. return ret;
  853. }
  854. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  855. unsigned long addr,
  856. pmd_t *pmd,
  857. unsigned int flags)
  858. {
  859. struct mm_struct *mm = vma->vm_mm;
  860. struct page *page = NULL;
  861. assert_spin_locked(&mm->page_table_lock);
  862. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  863. goto out;
  864. page = pmd_page(*pmd);
  865. VM_BUG_ON(!PageHead(page));
  866. if (flags & FOLL_TOUCH) {
  867. pmd_t _pmd;
  868. /*
  869. * We should set the dirty bit only for FOLL_WRITE but
  870. * for now the dirty bit in the pmd is meaningless.
  871. * And if the dirty bit will become meaningful and
  872. * we'll only set it with FOLL_WRITE, an atomic
  873. * set_bit will be required on the pmd to set the
  874. * young bit, instead of the current set_pmd_at.
  875. */
  876. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  877. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  878. }
  879. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  880. if (page->mapping && trylock_page(page)) {
  881. lru_add_drain();
  882. if (page->mapping)
  883. mlock_vma_page(page);
  884. unlock_page(page);
  885. }
  886. }
  887. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  888. VM_BUG_ON(!PageCompound(page));
  889. if (flags & FOLL_GET)
  890. get_page_foll(page);
  891. out:
  892. return page;
  893. }
  894. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  895. pmd_t *pmd, unsigned long addr)
  896. {
  897. int ret = 0;
  898. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  899. struct page *page;
  900. pgtable_t pgtable;
  901. pmd_t orig_pmd;
  902. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  903. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  904. page = pmd_page(orig_pmd);
  905. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  906. page_remove_rmap(page);
  907. VM_BUG_ON(page_mapcount(page) < 0);
  908. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  909. VM_BUG_ON(!PageHead(page));
  910. tlb->mm->nr_ptes--;
  911. spin_unlock(&tlb->mm->page_table_lock);
  912. tlb_remove_page(tlb, page);
  913. pte_free(tlb->mm, pgtable);
  914. ret = 1;
  915. }
  916. return ret;
  917. }
  918. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  919. unsigned long addr, unsigned long end,
  920. unsigned char *vec)
  921. {
  922. int ret = 0;
  923. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  924. /*
  925. * All logical pages in the range are present
  926. * if backed by a huge page.
  927. */
  928. spin_unlock(&vma->vm_mm->page_table_lock);
  929. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  930. ret = 1;
  931. }
  932. return ret;
  933. }
  934. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  935. unsigned long old_addr,
  936. unsigned long new_addr, unsigned long old_end,
  937. pmd_t *old_pmd, pmd_t *new_pmd)
  938. {
  939. int ret = 0;
  940. pmd_t pmd;
  941. struct mm_struct *mm = vma->vm_mm;
  942. if ((old_addr & ~HPAGE_PMD_MASK) ||
  943. (new_addr & ~HPAGE_PMD_MASK) ||
  944. old_end - old_addr < HPAGE_PMD_SIZE ||
  945. (new_vma->vm_flags & VM_NOHUGEPAGE))
  946. goto out;
  947. /*
  948. * The destination pmd shouldn't be established, free_pgtables()
  949. * should have release it.
  950. */
  951. if (WARN_ON(!pmd_none(*new_pmd))) {
  952. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  953. goto out;
  954. }
  955. ret = __pmd_trans_huge_lock(old_pmd, vma);
  956. if (ret == 1) {
  957. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  958. VM_BUG_ON(!pmd_none(*new_pmd));
  959. set_pmd_at(mm, new_addr, new_pmd, pmd);
  960. spin_unlock(&mm->page_table_lock);
  961. }
  962. out:
  963. return ret;
  964. }
  965. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  966. unsigned long addr, pgprot_t newprot)
  967. {
  968. struct mm_struct *mm = vma->vm_mm;
  969. int ret = 0;
  970. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  971. pmd_t entry;
  972. entry = pmdp_get_and_clear(mm, addr, pmd);
  973. entry = pmd_modify(entry, newprot);
  974. set_pmd_at(mm, addr, pmd, entry);
  975. spin_unlock(&vma->vm_mm->page_table_lock);
  976. ret = 1;
  977. }
  978. return ret;
  979. }
  980. /*
  981. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  982. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  983. *
  984. * Note that if it returns 1, this routine returns without unlocking page
  985. * table locks. So callers must unlock them.
  986. */
  987. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  988. {
  989. spin_lock(&vma->vm_mm->page_table_lock);
  990. if (likely(pmd_trans_huge(*pmd))) {
  991. if (unlikely(pmd_trans_splitting(*pmd))) {
  992. spin_unlock(&vma->vm_mm->page_table_lock);
  993. wait_split_huge_page(vma->anon_vma, pmd);
  994. return -1;
  995. } else {
  996. /* Thp mapped by 'pmd' is stable, so we can
  997. * handle it as it is. */
  998. return 1;
  999. }
  1000. }
  1001. spin_unlock(&vma->vm_mm->page_table_lock);
  1002. return 0;
  1003. }
  1004. pmd_t *page_check_address_pmd(struct page *page,
  1005. struct mm_struct *mm,
  1006. unsigned long address,
  1007. enum page_check_address_pmd_flag flag)
  1008. {
  1009. pgd_t *pgd;
  1010. pud_t *pud;
  1011. pmd_t *pmd, *ret = NULL;
  1012. if (address & ~HPAGE_PMD_MASK)
  1013. goto out;
  1014. pgd = pgd_offset(mm, address);
  1015. if (!pgd_present(*pgd))
  1016. goto out;
  1017. pud = pud_offset(pgd, address);
  1018. if (!pud_present(*pud))
  1019. goto out;
  1020. pmd = pmd_offset(pud, address);
  1021. if (pmd_none(*pmd))
  1022. goto out;
  1023. if (pmd_page(*pmd) != page)
  1024. goto out;
  1025. /*
  1026. * split_vma() may create temporary aliased mappings. There is
  1027. * no risk as long as all huge pmd are found and have their
  1028. * splitting bit set before __split_huge_page_refcount
  1029. * runs. Finding the same huge pmd more than once during the
  1030. * same rmap walk is not a problem.
  1031. */
  1032. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1033. pmd_trans_splitting(*pmd))
  1034. goto out;
  1035. if (pmd_trans_huge(*pmd)) {
  1036. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1037. !pmd_trans_splitting(*pmd));
  1038. ret = pmd;
  1039. }
  1040. out:
  1041. return ret;
  1042. }
  1043. static int __split_huge_page_splitting(struct page *page,
  1044. struct vm_area_struct *vma,
  1045. unsigned long address)
  1046. {
  1047. struct mm_struct *mm = vma->vm_mm;
  1048. pmd_t *pmd;
  1049. int ret = 0;
  1050. /* For mmu_notifiers */
  1051. const unsigned long mmun_start = address;
  1052. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1053. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1054. spin_lock(&mm->page_table_lock);
  1055. pmd = page_check_address_pmd(page, mm, address,
  1056. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1057. if (pmd) {
  1058. /*
  1059. * We can't temporarily set the pmd to null in order
  1060. * to split it, the pmd must remain marked huge at all
  1061. * times or the VM won't take the pmd_trans_huge paths
  1062. * and it won't wait on the anon_vma->root->mutex to
  1063. * serialize against split_huge_page*.
  1064. */
  1065. pmdp_splitting_flush(vma, address, pmd);
  1066. ret = 1;
  1067. }
  1068. spin_unlock(&mm->page_table_lock);
  1069. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1070. return ret;
  1071. }
  1072. static void __split_huge_page_refcount(struct page *page)
  1073. {
  1074. int i;
  1075. struct zone *zone = page_zone(page);
  1076. struct lruvec *lruvec;
  1077. int tail_count = 0;
  1078. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1079. spin_lock_irq(&zone->lru_lock);
  1080. lruvec = mem_cgroup_page_lruvec(page, zone);
  1081. compound_lock(page);
  1082. /* complete memcg works before add pages to LRU */
  1083. mem_cgroup_split_huge_fixup(page);
  1084. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1085. struct page *page_tail = page + i;
  1086. /* tail_page->_mapcount cannot change */
  1087. BUG_ON(page_mapcount(page_tail) < 0);
  1088. tail_count += page_mapcount(page_tail);
  1089. /* check for overflow */
  1090. BUG_ON(tail_count < 0);
  1091. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1092. /*
  1093. * tail_page->_count is zero and not changing from
  1094. * under us. But get_page_unless_zero() may be running
  1095. * from under us on the tail_page. If we used
  1096. * atomic_set() below instead of atomic_add(), we
  1097. * would then run atomic_set() concurrently with
  1098. * get_page_unless_zero(), and atomic_set() is
  1099. * implemented in C not using locked ops. spin_unlock
  1100. * on x86 sometime uses locked ops because of PPro
  1101. * errata 66, 92, so unless somebody can guarantee
  1102. * atomic_set() here would be safe on all archs (and
  1103. * not only on x86), it's safer to use atomic_add().
  1104. */
  1105. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1106. &page_tail->_count);
  1107. /* after clearing PageTail the gup refcount can be released */
  1108. smp_mb();
  1109. /*
  1110. * retain hwpoison flag of the poisoned tail page:
  1111. * fix for the unsuitable process killed on Guest Machine(KVM)
  1112. * by the memory-failure.
  1113. */
  1114. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1115. page_tail->flags |= (page->flags &
  1116. ((1L << PG_referenced) |
  1117. (1L << PG_swapbacked) |
  1118. (1L << PG_mlocked) |
  1119. (1L << PG_uptodate)));
  1120. page_tail->flags |= (1L << PG_dirty);
  1121. /* clear PageTail before overwriting first_page */
  1122. smp_wmb();
  1123. /*
  1124. * __split_huge_page_splitting() already set the
  1125. * splitting bit in all pmd that could map this
  1126. * hugepage, that will ensure no CPU can alter the
  1127. * mapcount on the head page. The mapcount is only
  1128. * accounted in the head page and it has to be
  1129. * transferred to all tail pages in the below code. So
  1130. * for this code to be safe, the split the mapcount
  1131. * can't change. But that doesn't mean userland can't
  1132. * keep changing and reading the page contents while
  1133. * we transfer the mapcount, so the pmd splitting
  1134. * status is achieved setting a reserved bit in the
  1135. * pmd, not by clearing the present bit.
  1136. */
  1137. page_tail->_mapcount = page->_mapcount;
  1138. BUG_ON(page_tail->mapping);
  1139. page_tail->mapping = page->mapping;
  1140. page_tail->index = page->index + i;
  1141. BUG_ON(!PageAnon(page_tail));
  1142. BUG_ON(!PageUptodate(page_tail));
  1143. BUG_ON(!PageDirty(page_tail));
  1144. BUG_ON(!PageSwapBacked(page_tail));
  1145. lru_add_page_tail(page, page_tail, lruvec);
  1146. }
  1147. atomic_sub(tail_count, &page->_count);
  1148. BUG_ON(atomic_read(&page->_count) <= 0);
  1149. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1150. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1151. ClearPageCompound(page);
  1152. compound_unlock(page);
  1153. spin_unlock_irq(&zone->lru_lock);
  1154. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1155. struct page *page_tail = page + i;
  1156. BUG_ON(page_count(page_tail) <= 0);
  1157. /*
  1158. * Tail pages may be freed if there wasn't any mapping
  1159. * like if add_to_swap() is running on a lru page that
  1160. * had its mapping zapped. And freeing these pages
  1161. * requires taking the lru_lock so we do the put_page
  1162. * of the tail pages after the split is complete.
  1163. */
  1164. put_page(page_tail);
  1165. }
  1166. /*
  1167. * Only the head page (now become a regular page) is required
  1168. * to be pinned by the caller.
  1169. */
  1170. BUG_ON(page_count(page) <= 0);
  1171. }
  1172. static int __split_huge_page_map(struct page *page,
  1173. struct vm_area_struct *vma,
  1174. unsigned long address)
  1175. {
  1176. struct mm_struct *mm = vma->vm_mm;
  1177. pmd_t *pmd, _pmd;
  1178. int ret = 0, i;
  1179. pgtable_t pgtable;
  1180. unsigned long haddr;
  1181. spin_lock(&mm->page_table_lock);
  1182. pmd = page_check_address_pmd(page, mm, address,
  1183. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1184. if (pmd) {
  1185. pgtable = pgtable_trans_huge_withdraw(mm);
  1186. pmd_populate(mm, &_pmd, pgtable);
  1187. haddr = address;
  1188. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1189. pte_t *pte, entry;
  1190. BUG_ON(PageCompound(page+i));
  1191. entry = mk_pte(page + i, vma->vm_page_prot);
  1192. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1193. if (!pmd_write(*pmd))
  1194. entry = pte_wrprotect(entry);
  1195. else
  1196. BUG_ON(page_mapcount(page) != 1);
  1197. if (!pmd_young(*pmd))
  1198. entry = pte_mkold(entry);
  1199. pte = pte_offset_map(&_pmd, haddr);
  1200. BUG_ON(!pte_none(*pte));
  1201. set_pte_at(mm, haddr, pte, entry);
  1202. pte_unmap(pte);
  1203. }
  1204. smp_wmb(); /* make pte visible before pmd */
  1205. /*
  1206. * Up to this point the pmd is present and huge and
  1207. * userland has the whole access to the hugepage
  1208. * during the split (which happens in place). If we
  1209. * overwrite the pmd with the not-huge version
  1210. * pointing to the pte here (which of course we could
  1211. * if all CPUs were bug free), userland could trigger
  1212. * a small page size TLB miss on the small sized TLB
  1213. * while the hugepage TLB entry is still established
  1214. * in the huge TLB. Some CPU doesn't like that. See
  1215. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1216. * Erratum 383 on page 93. Intel should be safe but is
  1217. * also warns that it's only safe if the permission
  1218. * and cache attributes of the two entries loaded in
  1219. * the two TLB is identical (which should be the case
  1220. * here). But it is generally safer to never allow
  1221. * small and huge TLB entries for the same virtual
  1222. * address to be loaded simultaneously. So instead of
  1223. * doing "pmd_populate(); flush_tlb_range();" we first
  1224. * mark the current pmd notpresent (atomically because
  1225. * here the pmd_trans_huge and pmd_trans_splitting
  1226. * must remain set at all times on the pmd until the
  1227. * split is complete for this pmd), then we flush the
  1228. * SMP TLB and finally we write the non-huge version
  1229. * of the pmd entry with pmd_populate.
  1230. */
  1231. pmdp_invalidate(vma, address, pmd);
  1232. pmd_populate(mm, pmd, pgtable);
  1233. ret = 1;
  1234. }
  1235. spin_unlock(&mm->page_table_lock);
  1236. return ret;
  1237. }
  1238. /* must be called with anon_vma->root->mutex hold */
  1239. static void __split_huge_page(struct page *page,
  1240. struct anon_vma *anon_vma)
  1241. {
  1242. int mapcount, mapcount2;
  1243. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1244. struct anon_vma_chain *avc;
  1245. BUG_ON(!PageHead(page));
  1246. BUG_ON(PageTail(page));
  1247. mapcount = 0;
  1248. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1249. struct vm_area_struct *vma = avc->vma;
  1250. unsigned long addr = vma_address(page, vma);
  1251. BUG_ON(is_vma_temporary_stack(vma));
  1252. mapcount += __split_huge_page_splitting(page, vma, addr);
  1253. }
  1254. /*
  1255. * It is critical that new vmas are added to the tail of the
  1256. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1257. * and establishes a child pmd before
  1258. * __split_huge_page_splitting() freezes the parent pmd (so if
  1259. * we fail to prevent copy_huge_pmd() from running until the
  1260. * whole __split_huge_page() is complete), we will still see
  1261. * the newly established pmd of the child later during the
  1262. * walk, to be able to set it as pmd_trans_splitting too.
  1263. */
  1264. if (mapcount != page_mapcount(page))
  1265. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1266. mapcount, page_mapcount(page));
  1267. BUG_ON(mapcount != page_mapcount(page));
  1268. __split_huge_page_refcount(page);
  1269. mapcount2 = 0;
  1270. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1271. struct vm_area_struct *vma = avc->vma;
  1272. unsigned long addr = vma_address(page, vma);
  1273. BUG_ON(is_vma_temporary_stack(vma));
  1274. mapcount2 += __split_huge_page_map(page, vma, addr);
  1275. }
  1276. if (mapcount != mapcount2)
  1277. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1278. mapcount, mapcount2, page_mapcount(page));
  1279. BUG_ON(mapcount != mapcount2);
  1280. }
  1281. int split_huge_page(struct page *page)
  1282. {
  1283. struct anon_vma *anon_vma;
  1284. int ret = 1;
  1285. BUG_ON(!PageAnon(page));
  1286. anon_vma = page_lock_anon_vma(page);
  1287. if (!anon_vma)
  1288. goto out;
  1289. ret = 0;
  1290. if (!PageCompound(page))
  1291. goto out_unlock;
  1292. BUG_ON(!PageSwapBacked(page));
  1293. __split_huge_page(page, anon_vma);
  1294. count_vm_event(THP_SPLIT);
  1295. BUG_ON(PageCompound(page));
  1296. out_unlock:
  1297. page_unlock_anon_vma(anon_vma);
  1298. out:
  1299. return ret;
  1300. }
  1301. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1302. int hugepage_madvise(struct vm_area_struct *vma,
  1303. unsigned long *vm_flags, int advice)
  1304. {
  1305. struct mm_struct *mm = vma->vm_mm;
  1306. switch (advice) {
  1307. case MADV_HUGEPAGE:
  1308. /*
  1309. * Be somewhat over-protective like KSM for now!
  1310. */
  1311. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1312. return -EINVAL;
  1313. if (mm->def_flags & VM_NOHUGEPAGE)
  1314. return -EINVAL;
  1315. *vm_flags &= ~VM_NOHUGEPAGE;
  1316. *vm_flags |= VM_HUGEPAGE;
  1317. /*
  1318. * If the vma become good for khugepaged to scan,
  1319. * register it here without waiting a page fault that
  1320. * may not happen any time soon.
  1321. */
  1322. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1323. return -ENOMEM;
  1324. break;
  1325. case MADV_NOHUGEPAGE:
  1326. /*
  1327. * Be somewhat over-protective like KSM for now!
  1328. */
  1329. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1330. return -EINVAL;
  1331. *vm_flags &= ~VM_HUGEPAGE;
  1332. *vm_flags |= VM_NOHUGEPAGE;
  1333. /*
  1334. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1335. * this vma even if we leave the mm registered in khugepaged if
  1336. * it got registered before VM_NOHUGEPAGE was set.
  1337. */
  1338. break;
  1339. }
  1340. return 0;
  1341. }
  1342. static int __init khugepaged_slab_init(void)
  1343. {
  1344. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1345. sizeof(struct mm_slot),
  1346. __alignof__(struct mm_slot), 0, NULL);
  1347. if (!mm_slot_cache)
  1348. return -ENOMEM;
  1349. return 0;
  1350. }
  1351. static void __init khugepaged_slab_free(void)
  1352. {
  1353. kmem_cache_destroy(mm_slot_cache);
  1354. mm_slot_cache = NULL;
  1355. }
  1356. static inline struct mm_slot *alloc_mm_slot(void)
  1357. {
  1358. if (!mm_slot_cache) /* initialization failed */
  1359. return NULL;
  1360. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1361. }
  1362. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1363. {
  1364. kmem_cache_free(mm_slot_cache, mm_slot);
  1365. }
  1366. static int __init mm_slots_hash_init(void)
  1367. {
  1368. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1369. GFP_KERNEL);
  1370. if (!mm_slots_hash)
  1371. return -ENOMEM;
  1372. return 0;
  1373. }
  1374. #if 0
  1375. static void __init mm_slots_hash_free(void)
  1376. {
  1377. kfree(mm_slots_hash);
  1378. mm_slots_hash = NULL;
  1379. }
  1380. #endif
  1381. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1382. {
  1383. struct mm_slot *mm_slot;
  1384. struct hlist_head *bucket;
  1385. struct hlist_node *node;
  1386. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1387. % MM_SLOTS_HASH_HEADS];
  1388. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1389. if (mm == mm_slot->mm)
  1390. return mm_slot;
  1391. }
  1392. return NULL;
  1393. }
  1394. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1395. struct mm_slot *mm_slot)
  1396. {
  1397. struct hlist_head *bucket;
  1398. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1399. % MM_SLOTS_HASH_HEADS];
  1400. mm_slot->mm = mm;
  1401. hlist_add_head(&mm_slot->hash, bucket);
  1402. }
  1403. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1404. {
  1405. return atomic_read(&mm->mm_users) == 0;
  1406. }
  1407. int __khugepaged_enter(struct mm_struct *mm)
  1408. {
  1409. struct mm_slot *mm_slot;
  1410. int wakeup;
  1411. mm_slot = alloc_mm_slot();
  1412. if (!mm_slot)
  1413. return -ENOMEM;
  1414. /* __khugepaged_exit() must not run from under us */
  1415. VM_BUG_ON(khugepaged_test_exit(mm));
  1416. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1417. free_mm_slot(mm_slot);
  1418. return 0;
  1419. }
  1420. spin_lock(&khugepaged_mm_lock);
  1421. insert_to_mm_slots_hash(mm, mm_slot);
  1422. /*
  1423. * Insert just behind the scanning cursor, to let the area settle
  1424. * down a little.
  1425. */
  1426. wakeup = list_empty(&khugepaged_scan.mm_head);
  1427. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1428. spin_unlock(&khugepaged_mm_lock);
  1429. atomic_inc(&mm->mm_count);
  1430. if (wakeup)
  1431. wake_up_interruptible(&khugepaged_wait);
  1432. return 0;
  1433. }
  1434. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1435. {
  1436. unsigned long hstart, hend;
  1437. if (!vma->anon_vma)
  1438. /*
  1439. * Not yet faulted in so we will register later in the
  1440. * page fault if needed.
  1441. */
  1442. return 0;
  1443. if (vma->vm_ops)
  1444. /* khugepaged not yet working on file or special mappings */
  1445. return 0;
  1446. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1447. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1448. hend = vma->vm_end & HPAGE_PMD_MASK;
  1449. if (hstart < hend)
  1450. return khugepaged_enter(vma);
  1451. return 0;
  1452. }
  1453. void __khugepaged_exit(struct mm_struct *mm)
  1454. {
  1455. struct mm_slot *mm_slot;
  1456. int free = 0;
  1457. spin_lock(&khugepaged_mm_lock);
  1458. mm_slot = get_mm_slot(mm);
  1459. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1460. hlist_del(&mm_slot->hash);
  1461. list_del(&mm_slot->mm_node);
  1462. free = 1;
  1463. }
  1464. spin_unlock(&khugepaged_mm_lock);
  1465. if (free) {
  1466. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1467. free_mm_slot(mm_slot);
  1468. mmdrop(mm);
  1469. } else if (mm_slot) {
  1470. /*
  1471. * This is required to serialize against
  1472. * khugepaged_test_exit() (which is guaranteed to run
  1473. * under mmap sem read mode). Stop here (after we
  1474. * return all pagetables will be destroyed) until
  1475. * khugepaged has finished working on the pagetables
  1476. * under the mmap_sem.
  1477. */
  1478. down_write(&mm->mmap_sem);
  1479. up_write(&mm->mmap_sem);
  1480. }
  1481. }
  1482. static void release_pte_page(struct page *page)
  1483. {
  1484. /* 0 stands for page_is_file_cache(page) == false */
  1485. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1486. unlock_page(page);
  1487. putback_lru_page(page);
  1488. }
  1489. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1490. {
  1491. while (--_pte >= pte) {
  1492. pte_t pteval = *_pte;
  1493. if (!pte_none(pteval))
  1494. release_pte_page(pte_page(pteval));
  1495. }
  1496. }
  1497. static void release_all_pte_pages(pte_t *pte)
  1498. {
  1499. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1500. }
  1501. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1502. unsigned long address,
  1503. pte_t *pte)
  1504. {
  1505. struct page *page;
  1506. pte_t *_pte;
  1507. int referenced = 0, isolated = 0, none = 0;
  1508. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1509. _pte++, address += PAGE_SIZE) {
  1510. pte_t pteval = *_pte;
  1511. if (pte_none(pteval)) {
  1512. if (++none <= khugepaged_max_ptes_none)
  1513. continue;
  1514. else {
  1515. release_pte_pages(pte, _pte);
  1516. goto out;
  1517. }
  1518. }
  1519. if (!pte_present(pteval) || !pte_write(pteval)) {
  1520. release_pte_pages(pte, _pte);
  1521. goto out;
  1522. }
  1523. page = vm_normal_page(vma, address, pteval);
  1524. if (unlikely(!page)) {
  1525. release_pte_pages(pte, _pte);
  1526. goto out;
  1527. }
  1528. VM_BUG_ON(PageCompound(page));
  1529. BUG_ON(!PageAnon(page));
  1530. VM_BUG_ON(!PageSwapBacked(page));
  1531. /* cannot use mapcount: can't collapse if there's a gup pin */
  1532. if (page_count(page) != 1) {
  1533. release_pte_pages(pte, _pte);
  1534. goto out;
  1535. }
  1536. /*
  1537. * We can do it before isolate_lru_page because the
  1538. * page can't be freed from under us. NOTE: PG_lock
  1539. * is needed to serialize against split_huge_page
  1540. * when invoked from the VM.
  1541. */
  1542. if (!trylock_page(page)) {
  1543. release_pte_pages(pte, _pte);
  1544. goto out;
  1545. }
  1546. /*
  1547. * Isolate the page to avoid collapsing an hugepage
  1548. * currently in use by the VM.
  1549. */
  1550. if (isolate_lru_page(page)) {
  1551. unlock_page(page);
  1552. release_pte_pages(pte, _pte);
  1553. goto out;
  1554. }
  1555. /* 0 stands for page_is_file_cache(page) == false */
  1556. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1557. VM_BUG_ON(!PageLocked(page));
  1558. VM_BUG_ON(PageLRU(page));
  1559. /* If there is no mapped pte young don't collapse the page */
  1560. if (pte_young(pteval) || PageReferenced(page) ||
  1561. mmu_notifier_test_young(vma->vm_mm, address))
  1562. referenced = 1;
  1563. }
  1564. if (unlikely(!referenced))
  1565. release_all_pte_pages(pte);
  1566. else
  1567. isolated = 1;
  1568. out:
  1569. return isolated;
  1570. }
  1571. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1572. struct vm_area_struct *vma,
  1573. unsigned long address,
  1574. spinlock_t *ptl)
  1575. {
  1576. pte_t *_pte;
  1577. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1578. pte_t pteval = *_pte;
  1579. struct page *src_page;
  1580. if (pte_none(pteval)) {
  1581. clear_user_highpage(page, address);
  1582. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1583. } else {
  1584. src_page = pte_page(pteval);
  1585. copy_user_highpage(page, src_page, address, vma);
  1586. VM_BUG_ON(page_mapcount(src_page) != 1);
  1587. release_pte_page(src_page);
  1588. /*
  1589. * ptl mostly unnecessary, but preempt has to
  1590. * be disabled to update the per-cpu stats
  1591. * inside page_remove_rmap().
  1592. */
  1593. spin_lock(ptl);
  1594. /*
  1595. * paravirt calls inside pte_clear here are
  1596. * superfluous.
  1597. */
  1598. pte_clear(vma->vm_mm, address, _pte);
  1599. page_remove_rmap(src_page);
  1600. spin_unlock(ptl);
  1601. free_page_and_swap_cache(src_page);
  1602. }
  1603. address += PAGE_SIZE;
  1604. page++;
  1605. }
  1606. }
  1607. static void khugepaged_alloc_sleep(void)
  1608. {
  1609. wait_event_freezable_timeout(khugepaged_wait, false,
  1610. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1611. }
  1612. #ifdef CONFIG_NUMA
  1613. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1614. {
  1615. if (IS_ERR(*hpage)) {
  1616. if (!*wait)
  1617. return false;
  1618. *wait = false;
  1619. *hpage = NULL;
  1620. khugepaged_alloc_sleep();
  1621. } else if (*hpage) {
  1622. put_page(*hpage);
  1623. *hpage = NULL;
  1624. }
  1625. return true;
  1626. }
  1627. static struct page
  1628. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1629. struct vm_area_struct *vma, unsigned long address,
  1630. int node)
  1631. {
  1632. VM_BUG_ON(*hpage);
  1633. /*
  1634. * Allocate the page while the vma is still valid and under
  1635. * the mmap_sem read mode so there is no memory allocation
  1636. * later when we take the mmap_sem in write mode. This is more
  1637. * friendly behavior (OTOH it may actually hide bugs) to
  1638. * filesystems in userland with daemons allocating memory in
  1639. * the userland I/O paths. Allocating memory with the
  1640. * mmap_sem in read mode is good idea also to allow greater
  1641. * scalability.
  1642. */
  1643. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1644. node, __GFP_OTHER_NODE);
  1645. /*
  1646. * After allocating the hugepage, release the mmap_sem read lock in
  1647. * preparation for taking it in write mode.
  1648. */
  1649. up_read(&mm->mmap_sem);
  1650. if (unlikely(!*hpage)) {
  1651. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1652. *hpage = ERR_PTR(-ENOMEM);
  1653. return NULL;
  1654. }
  1655. count_vm_event(THP_COLLAPSE_ALLOC);
  1656. return *hpage;
  1657. }
  1658. #else
  1659. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1660. {
  1661. struct page *hpage;
  1662. do {
  1663. hpage = alloc_hugepage(khugepaged_defrag());
  1664. if (!hpage) {
  1665. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1666. if (!*wait)
  1667. return NULL;
  1668. *wait = false;
  1669. khugepaged_alloc_sleep();
  1670. } else
  1671. count_vm_event(THP_COLLAPSE_ALLOC);
  1672. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1673. return hpage;
  1674. }
  1675. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1676. {
  1677. if (!*hpage)
  1678. *hpage = khugepaged_alloc_hugepage(wait);
  1679. if (unlikely(!*hpage))
  1680. return false;
  1681. return true;
  1682. }
  1683. static struct page
  1684. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1685. struct vm_area_struct *vma, unsigned long address,
  1686. int node)
  1687. {
  1688. up_read(&mm->mmap_sem);
  1689. VM_BUG_ON(!*hpage);
  1690. return *hpage;
  1691. }
  1692. #endif
  1693. static void collapse_huge_page(struct mm_struct *mm,
  1694. unsigned long address,
  1695. struct page **hpage,
  1696. struct vm_area_struct *vma,
  1697. int node)
  1698. {
  1699. pgd_t *pgd;
  1700. pud_t *pud;
  1701. pmd_t *pmd, _pmd;
  1702. pte_t *pte;
  1703. pgtable_t pgtable;
  1704. struct page *new_page;
  1705. spinlock_t *ptl;
  1706. int isolated;
  1707. unsigned long hstart, hend;
  1708. unsigned long mmun_start; /* For mmu_notifiers */
  1709. unsigned long mmun_end; /* For mmu_notifiers */
  1710. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1711. /* release the mmap_sem read lock. */
  1712. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1713. if (!new_page)
  1714. return;
  1715. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1716. return;
  1717. /*
  1718. * Prevent all access to pagetables with the exception of
  1719. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1720. * handled by the anon_vma lock + PG_lock.
  1721. */
  1722. down_write(&mm->mmap_sem);
  1723. if (unlikely(khugepaged_test_exit(mm)))
  1724. goto out;
  1725. vma = find_vma(mm, address);
  1726. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1727. hend = vma->vm_end & HPAGE_PMD_MASK;
  1728. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1729. goto out;
  1730. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1731. (vma->vm_flags & VM_NOHUGEPAGE))
  1732. goto out;
  1733. if (!vma->anon_vma || vma->vm_ops)
  1734. goto out;
  1735. if (is_vma_temporary_stack(vma))
  1736. goto out;
  1737. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1738. pgd = pgd_offset(mm, address);
  1739. if (!pgd_present(*pgd))
  1740. goto out;
  1741. pud = pud_offset(pgd, address);
  1742. if (!pud_present(*pud))
  1743. goto out;
  1744. pmd = pmd_offset(pud, address);
  1745. /* pmd can't go away or become huge under us */
  1746. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1747. goto out;
  1748. anon_vma_lock(vma->anon_vma);
  1749. pte = pte_offset_map(pmd, address);
  1750. ptl = pte_lockptr(mm, pmd);
  1751. mmun_start = address;
  1752. mmun_end = address + HPAGE_PMD_SIZE;
  1753. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1754. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1755. /*
  1756. * After this gup_fast can't run anymore. This also removes
  1757. * any huge TLB entry from the CPU so we won't allow
  1758. * huge and small TLB entries for the same virtual address
  1759. * to avoid the risk of CPU bugs in that area.
  1760. */
  1761. _pmd = pmdp_clear_flush(vma, address, pmd);
  1762. spin_unlock(&mm->page_table_lock);
  1763. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1764. spin_lock(ptl);
  1765. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1766. spin_unlock(ptl);
  1767. if (unlikely(!isolated)) {
  1768. pte_unmap(pte);
  1769. spin_lock(&mm->page_table_lock);
  1770. BUG_ON(!pmd_none(*pmd));
  1771. set_pmd_at(mm, address, pmd, _pmd);
  1772. spin_unlock(&mm->page_table_lock);
  1773. anon_vma_unlock(vma->anon_vma);
  1774. goto out;
  1775. }
  1776. /*
  1777. * All pages are isolated and locked so anon_vma rmap
  1778. * can't run anymore.
  1779. */
  1780. anon_vma_unlock(vma->anon_vma);
  1781. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1782. pte_unmap(pte);
  1783. __SetPageUptodate(new_page);
  1784. pgtable = pmd_pgtable(_pmd);
  1785. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1786. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1787. _pmd = pmd_mkhuge(_pmd);
  1788. /*
  1789. * spin_lock() below is not the equivalent of smp_wmb(), so
  1790. * this is needed to avoid the copy_huge_page writes to become
  1791. * visible after the set_pmd_at() write.
  1792. */
  1793. smp_wmb();
  1794. spin_lock(&mm->page_table_lock);
  1795. BUG_ON(!pmd_none(*pmd));
  1796. page_add_new_anon_rmap(new_page, vma, address);
  1797. set_pmd_at(mm, address, pmd, _pmd);
  1798. update_mmu_cache_pmd(vma, address, pmd);
  1799. pgtable_trans_huge_deposit(mm, pgtable);
  1800. spin_unlock(&mm->page_table_lock);
  1801. *hpage = NULL;
  1802. khugepaged_pages_collapsed++;
  1803. out_up_write:
  1804. up_write(&mm->mmap_sem);
  1805. return;
  1806. out:
  1807. mem_cgroup_uncharge_page(new_page);
  1808. goto out_up_write;
  1809. }
  1810. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1811. struct vm_area_struct *vma,
  1812. unsigned long address,
  1813. struct page **hpage)
  1814. {
  1815. pgd_t *pgd;
  1816. pud_t *pud;
  1817. pmd_t *pmd;
  1818. pte_t *pte, *_pte;
  1819. int ret = 0, referenced = 0, none = 0;
  1820. struct page *page;
  1821. unsigned long _address;
  1822. spinlock_t *ptl;
  1823. int node = -1;
  1824. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1825. pgd = pgd_offset(mm, address);
  1826. if (!pgd_present(*pgd))
  1827. goto out;
  1828. pud = pud_offset(pgd, address);
  1829. if (!pud_present(*pud))
  1830. goto out;
  1831. pmd = pmd_offset(pud, address);
  1832. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1833. goto out;
  1834. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1835. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1836. _pte++, _address += PAGE_SIZE) {
  1837. pte_t pteval = *_pte;
  1838. if (pte_none(pteval)) {
  1839. if (++none <= khugepaged_max_ptes_none)
  1840. continue;
  1841. else
  1842. goto out_unmap;
  1843. }
  1844. if (!pte_present(pteval) || !pte_write(pteval))
  1845. goto out_unmap;
  1846. page = vm_normal_page(vma, _address, pteval);
  1847. if (unlikely(!page))
  1848. goto out_unmap;
  1849. /*
  1850. * Chose the node of the first page. This could
  1851. * be more sophisticated and look at more pages,
  1852. * but isn't for now.
  1853. */
  1854. if (node == -1)
  1855. node = page_to_nid(page);
  1856. VM_BUG_ON(PageCompound(page));
  1857. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1858. goto out_unmap;
  1859. /* cannot use mapcount: can't collapse if there's a gup pin */
  1860. if (page_count(page) != 1)
  1861. goto out_unmap;
  1862. if (pte_young(pteval) || PageReferenced(page) ||
  1863. mmu_notifier_test_young(vma->vm_mm, address))
  1864. referenced = 1;
  1865. }
  1866. if (referenced)
  1867. ret = 1;
  1868. out_unmap:
  1869. pte_unmap_unlock(pte, ptl);
  1870. if (ret)
  1871. /* collapse_huge_page will return with the mmap_sem released */
  1872. collapse_huge_page(mm, address, hpage, vma, node);
  1873. out:
  1874. return ret;
  1875. }
  1876. static void collect_mm_slot(struct mm_slot *mm_slot)
  1877. {
  1878. struct mm_struct *mm = mm_slot->mm;
  1879. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1880. if (khugepaged_test_exit(mm)) {
  1881. /* free mm_slot */
  1882. hlist_del(&mm_slot->hash);
  1883. list_del(&mm_slot->mm_node);
  1884. /*
  1885. * Not strictly needed because the mm exited already.
  1886. *
  1887. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1888. */
  1889. /* khugepaged_mm_lock actually not necessary for the below */
  1890. free_mm_slot(mm_slot);
  1891. mmdrop(mm);
  1892. }
  1893. }
  1894. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1895. struct page **hpage)
  1896. __releases(&khugepaged_mm_lock)
  1897. __acquires(&khugepaged_mm_lock)
  1898. {
  1899. struct mm_slot *mm_slot;
  1900. struct mm_struct *mm;
  1901. struct vm_area_struct *vma;
  1902. int progress = 0;
  1903. VM_BUG_ON(!pages);
  1904. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1905. if (khugepaged_scan.mm_slot)
  1906. mm_slot = khugepaged_scan.mm_slot;
  1907. else {
  1908. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1909. struct mm_slot, mm_node);
  1910. khugepaged_scan.address = 0;
  1911. khugepaged_scan.mm_slot = mm_slot;
  1912. }
  1913. spin_unlock(&khugepaged_mm_lock);
  1914. mm = mm_slot->mm;
  1915. down_read(&mm->mmap_sem);
  1916. if (unlikely(khugepaged_test_exit(mm)))
  1917. vma = NULL;
  1918. else
  1919. vma = find_vma(mm, khugepaged_scan.address);
  1920. progress++;
  1921. for (; vma; vma = vma->vm_next) {
  1922. unsigned long hstart, hend;
  1923. cond_resched();
  1924. if (unlikely(khugepaged_test_exit(mm))) {
  1925. progress++;
  1926. break;
  1927. }
  1928. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1929. !khugepaged_always()) ||
  1930. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1931. skip:
  1932. progress++;
  1933. continue;
  1934. }
  1935. if (!vma->anon_vma || vma->vm_ops)
  1936. goto skip;
  1937. if (is_vma_temporary_stack(vma))
  1938. goto skip;
  1939. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1940. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1941. hend = vma->vm_end & HPAGE_PMD_MASK;
  1942. if (hstart >= hend)
  1943. goto skip;
  1944. if (khugepaged_scan.address > hend)
  1945. goto skip;
  1946. if (khugepaged_scan.address < hstart)
  1947. khugepaged_scan.address = hstart;
  1948. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1949. while (khugepaged_scan.address < hend) {
  1950. int ret;
  1951. cond_resched();
  1952. if (unlikely(khugepaged_test_exit(mm)))
  1953. goto breakouterloop;
  1954. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1955. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1956. hend);
  1957. ret = khugepaged_scan_pmd(mm, vma,
  1958. khugepaged_scan.address,
  1959. hpage);
  1960. /* move to next address */
  1961. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1962. progress += HPAGE_PMD_NR;
  1963. if (ret)
  1964. /* we released mmap_sem so break loop */
  1965. goto breakouterloop_mmap_sem;
  1966. if (progress >= pages)
  1967. goto breakouterloop;
  1968. }
  1969. }
  1970. breakouterloop:
  1971. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1972. breakouterloop_mmap_sem:
  1973. spin_lock(&khugepaged_mm_lock);
  1974. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1975. /*
  1976. * Release the current mm_slot if this mm is about to die, or
  1977. * if we scanned all vmas of this mm.
  1978. */
  1979. if (khugepaged_test_exit(mm) || !vma) {
  1980. /*
  1981. * Make sure that if mm_users is reaching zero while
  1982. * khugepaged runs here, khugepaged_exit will find
  1983. * mm_slot not pointing to the exiting mm.
  1984. */
  1985. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1986. khugepaged_scan.mm_slot = list_entry(
  1987. mm_slot->mm_node.next,
  1988. struct mm_slot, mm_node);
  1989. khugepaged_scan.address = 0;
  1990. } else {
  1991. khugepaged_scan.mm_slot = NULL;
  1992. khugepaged_full_scans++;
  1993. }
  1994. collect_mm_slot(mm_slot);
  1995. }
  1996. return progress;
  1997. }
  1998. static int khugepaged_has_work(void)
  1999. {
  2000. return !list_empty(&khugepaged_scan.mm_head) &&
  2001. khugepaged_enabled();
  2002. }
  2003. static int khugepaged_wait_event(void)
  2004. {
  2005. return !list_empty(&khugepaged_scan.mm_head) ||
  2006. kthread_should_stop();
  2007. }
  2008. static void khugepaged_do_scan(void)
  2009. {
  2010. struct page *hpage = NULL;
  2011. unsigned int progress = 0, pass_through_head = 0;
  2012. unsigned int pages = khugepaged_pages_to_scan;
  2013. bool wait = true;
  2014. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2015. while (progress < pages) {
  2016. if (!khugepaged_prealloc_page(&hpage, &wait))
  2017. break;
  2018. cond_resched();
  2019. if (unlikely(kthread_should_stop() || freezing(current)))
  2020. break;
  2021. spin_lock(&khugepaged_mm_lock);
  2022. if (!khugepaged_scan.mm_slot)
  2023. pass_through_head++;
  2024. if (khugepaged_has_work() &&
  2025. pass_through_head < 2)
  2026. progress += khugepaged_scan_mm_slot(pages - progress,
  2027. &hpage);
  2028. else
  2029. progress = pages;
  2030. spin_unlock(&khugepaged_mm_lock);
  2031. }
  2032. if (!IS_ERR_OR_NULL(hpage))
  2033. put_page(hpage);
  2034. }
  2035. static void khugepaged_wait_work(void)
  2036. {
  2037. try_to_freeze();
  2038. if (khugepaged_has_work()) {
  2039. if (!khugepaged_scan_sleep_millisecs)
  2040. return;
  2041. wait_event_freezable_timeout(khugepaged_wait,
  2042. kthread_should_stop(),
  2043. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2044. return;
  2045. }
  2046. if (khugepaged_enabled())
  2047. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2048. }
  2049. static int khugepaged(void *none)
  2050. {
  2051. struct mm_slot *mm_slot;
  2052. set_freezable();
  2053. set_user_nice(current, 19);
  2054. while (!kthread_should_stop()) {
  2055. khugepaged_do_scan();
  2056. khugepaged_wait_work();
  2057. }
  2058. spin_lock(&khugepaged_mm_lock);
  2059. mm_slot = khugepaged_scan.mm_slot;
  2060. khugepaged_scan.mm_slot = NULL;
  2061. if (mm_slot)
  2062. collect_mm_slot(mm_slot);
  2063. spin_unlock(&khugepaged_mm_lock);
  2064. return 0;
  2065. }
  2066. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2067. {
  2068. struct page *page;
  2069. spin_lock(&mm->page_table_lock);
  2070. if (unlikely(!pmd_trans_huge(*pmd))) {
  2071. spin_unlock(&mm->page_table_lock);
  2072. return;
  2073. }
  2074. page = pmd_page(*pmd);
  2075. VM_BUG_ON(!page_count(page));
  2076. get_page(page);
  2077. spin_unlock(&mm->page_table_lock);
  2078. split_huge_page(page);
  2079. put_page(page);
  2080. BUG_ON(pmd_trans_huge(*pmd));
  2081. }
  2082. static void split_huge_page_address(struct mm_struct *mm,
  2083. unsigned long address)
  2084. {
  2085. pgd_t *pgd;
  2086. pud_t *pud;
  2087. pmd_t *pmd;
  2088. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2089. pgd = pgd_offset(mm, address);
  2090. if (!pgd_present(*pgd))
  2091. return;
  2092. pud = pud_offset(pgd, address);
  2093. if (!pud_present(*pud))
  2094. return;
  2095. pmd = pmd_offset(pud, address);
  2096. if (!pmd_present(*pmd))
  2097. return;
  2098. /*
  2099. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2100. * materialize from under us.
  2101. */
  2102. split_huge_page_pmd(mm, pmd);
  2103. }
  2104. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2105. unsigned long start,
  2106. unsigned long end,
  2107. long adjust_next)
  2108. {
  2109. /*
  2110. * If the new start address isn't hpage aligned and it could
  2111. * previously contain an hugepage: check if we need to split
  2112. * an huge pmd.
  2113. */
  2114. if (start & ~HPAGE_PMD_MASK &&
  2115. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2116. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2117. split_huge_page_address(vma->vm_mm, start);
  2118. /*
  2119. * If the new end address isn't hpage aligned and it could
  2120. * previously contain an hugepage: check if we need to split
  2121. * an huge pmd.
  2122. */
  2123. if (end & ~HPAGE_PMD_MASK &&
  2124. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2125. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2126. split_huge_page_address(vma->vm_mm, end);
  2127. /*
  2128. * If we're also updating the vma->vm_next->vm_start, if the new
  2129. * vm_next->vm_start isn't page aligned and it could previously
  2130. * contain an hugepage: check if we need to split an huge pmd.
  2131. */
  2132. if (adjust_next > 0) {
  2133. struct vm_area_struct *next = vma->vm_next;
  2134. unsigned long nstart = next->vm_start;
  2135. nstart += adjust_next << PAGE_SHIFT;
  2136. if (nstart & ~HPAGE_PMD_MASK &&
  2137. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2138. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2139. split_huge_page_address(next->vm_mm, nstart);
  2140. }
  2141. }