swiotlb.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/export.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <linux/gfp.h>
  31. #include <asm/io.h>
  32. #include <asm/dma.h>
  33. #include <asm/scatterlist.h>
  34. #include <linux/init.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/iommu-helper.h>
  37. #define OFFSET(val,align) ((unsigned long) \
  38. ( (val) & ( (align) - 1)))
  39. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  40. /*
  41. * Minimum IO TLB size to bother booting with. Systems with mainly
  42. * 64bit capable cards will only lightly use the swiotlb. If we can't
  43. * allocate a contiguous 1MB, we're probably in trouble anyway.
  44. */
  45. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  46. int swiotlb_force;
  47. /*
  48. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  49. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  50. * API.
  51. */
  52. static char *io_tlb_start, *io_tlb_end;
  53. /*
  54. * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  55. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  56. */
  57. static unsigned long io_tlb_nslabs;
  58. /*
  59. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  60. */
  61. static unsigned long io_tlb_overflow = 32*1024;
  62. static void *io_tlb_overflow_buffer;
  63. /*
  64. * This is a free list describing the number of free entries available from
  65. * each index
  66. */
  67. static unsigned int *io_tlb_list;
  68. static unsigned int io_tlb_index;
  69. /*
  70. * We need to save away the original address corresponding to a mapped entry
  71. * for the sync operations.
  72. */
  73. static phys_addr_t *io_tlb_orig_addr;
  74. /*
  75. * Protect the above data structures in the map and unmap calls
  76. */
  77. static DEFINE_SPINLOCK(io_tlb_lock);
  78. static int late_alloc;
  79. static int __init
  80. setup_io_tlb_npages(char *str)
  81. {
  82. if (isdigit(*str)) {
  83. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  84. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  85. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  86. }
  87. if (*str == ',')
  88. ++str;
  89. if (!strcmp(str, "force"))
  90. swiotlb_force = 1;
  91. return 1;
  92. }
  93. __setup("swiotlb=", setup_io_tlb_npages);
  94. /* make io_tlb_overflow tunable too? */
  95. unsigned long swiotlb_nr_tbl(void)
  96. {
  97. return io_tlb_nslabs;
  98. }
  99. EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
  100. /* Note that this doesn't work with highmem page */
  101. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  102. volatile void *address)
  103. {
  104. return phys_to_dma(hwdev, virt_to_phys(address));
  105. }
  106. void swiotlb_print_info(void)
  107. {
  108. unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  109. phys_addr_t pstart, pend;
  110. pstart = virt_to_phys(io_tlb_start);
  111. pend = virt_to_phys(io_tlb_end);
  112. printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
  113. (unsigned long long)pstart, (unsigned long long)pend - 1,
  114. bytes >> 20, io_tlb_start, io_tlb_end - 1);
  115. }
  116. void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
  117. {
  118. unsigned long i, bytes;
  119. bytes = nslabs << IO_TLB_SHIFT;
  120. io_tlb_nslabs = nslabs;
  121. io_tlb_start = tlb;
  122. io_tlb_end = io_tlb_start + bytes;
  123. /*
  124. * Allocate and initialize the free list array. This array is used
  125. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  126. * between io_tlb_start and io_tlb_end.
  127. */
  128. io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  129. for (i = 0; i < io_tlb_nslabs; i++)
  130. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  131. io_tlb_index = 0;
  132. io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  133. /*
  134. * Get the overflow emergency buffer
  135. */
  136. io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
  137. if (!io_tlb_overflow_buffer)
  138. panic("Cannot allocate SWIOTLB overflow buffer!\n");
  139. if (verbose)
  140. swiotlb_print_info();
  141. }
  142. /*
  143. * Statically reserve bounce buffer space and initialize bounce buffer data
  144. * structures for the software IO TLB used to implement the DMA API.
  145. */
  146. static void __init
  147. swiotlb_init_with_default_size(size_t default_size, int verbose)
  148. {
  149. unsigned long bytes;
  150. if (!io_tlb_nslabs) {
  151. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  152. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  153. }
  154. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  155. /*
  156. * Get IO TLB memory from the low pages
  157. */
  158. io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
  159. if (!io_tlb_start)
  160. panic("Cannot allocate SWIOTLB buffer");
  161. swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
  162. }
  163. void __init
  164. swiotlb_init(int verbose)
  165. {
  166. swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
  167. }
  168. /*
  169. * Systems with larger DMA zones (those that don't support ISA) can
  170. * initialize the swiotlb later using the slab allocator if needed.
  171. * This should be just like above, but with some error catching.
  172. */
  173. int
  174. swiotlb_late_init_with_default_size(size_t default_size)
  175. {
  176. unsigned long bytes, req_nslabs = io_tlb_nslabs;
  177. unsigned int order;
  178. int rc = 0;
  179. if (!io_tlb_nslabs) {
  180. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  181. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  182. }
  183. /*
  184. * Get IO TLB memory from the low pages
  185. */
  186. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  187. io_tlb_nslabs = SLABS_PER_PAGE << order;
  188. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  189. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  190. io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  191. order);
  192. if (io_tlb_start)
  193. break;
  194. order--;
  195. }
  196. if (!io_tlb_start) {
  197. io_tlb_nslabs = req_nslabs;
  198. return -ENOMEM;
  199. }
  200. if (order != get_order(bytes)) {
  201. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  202. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  203. io_tlb_nslabs = SLABS_PER_PAGE << order;
  204. }
  205. rc = swiotlb_late_init_with_tbl(io_tlb_start, io_tlb_nslabs);
  206. if (rc)
  207. free_pages((unsigned long)io_tlb_start, order);
  208. return rc;
  209. }
  210. int
  211. swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
  212. {
  213. unsigned long i, bytes;
  214. bytes = nslabs << IO_TLB_SHIFT;
  215. io_tlb_nslabs = nslabs;
  216. io_tlb_start = tlb;
  217. io_tlb_end = io_tlb_start + bytes;
  218. memset(io_tlb_start, 0, bytes);
  219. /*
  220. * Allocate and initialize the free list array. This array is used
  221. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  222. * between io_tlb_start and io_tlb_end.
  223. */
  224. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  225. get_order(io_tlb_nslabs * sizeof(int)));
  226. if (!io_tlb_list)
  227. goto cleanup2;
  228. for (i = 0; i < io_tlb_nslabs; i++)
  229. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  230. io_tlb_index = 0;
  231. io_tlb_orig_addr = (phys_addr_t *)
  232. __get_free_pages(GFP_KERNEL,
  233. get_order(io_tlb_nslabs *
  234. sizeof(phys_addr_t)));
  235. if (!io_tlb_orig_addr)
  236. goto cleanup3;
  237. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  238. /*
  239. * Get the overflow emergency buffer
  240. */
  241. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  242. get_order(io_tlb_overflow));
  243. if (!io_tlb_overflow_buffer)
  244. goto cleanup4;
  245. swiotlb_print_info();
  246. late_alloc = 1;
  247. return 0;
  248. cleanup4:
  249. free_pages((unsigned long)io_tlb_orig_addr,
  250. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  251. io_tlb_orig_addr = NULL;
  252. cleanup3:
  253. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  254. sizeof(int)));
  255. io_tlb_list = NULL;
  256. cleanup2:
  257. io_tlb_end = NULL;
  258. io_tlb_start = NULL;
  259. io_tlb_nslabs = 0;
  260. return -ENOMEM;
  261. }
  262. void __init swiotlb_free(void)
  263. {
  264. if (!io_tlb_overflow_buffer)
  265. return;
  266. if (late_alloc) {
  267. free_pages((unsigned long)io_tlb_overflow_buffer,
  268. get_order(io_tlb_overflow));
  269. free_pages((unsigned long)io_tlb_orig_addr,
  270. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  271. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  272. sizeof(int)));
  273. free_pages((unsigned long)io_tlb_start,
  274. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  275. } else {
  276. free_bootmem_late(__pa(io_tlb_overflow_buffer),
  277. PAGE_ALIGN(io_tlb_overflow));
  278. free_bootmem_late(__pa(io_tlb_orig_addr),
  279. PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  280. free_bootmem_late(__pa(io_tlb_list),
  281. PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  282. free_bootmem_late(__pa(io_tlb_start),
  283. PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
  284. }
  285. io_tlb_nslabs = 0;
  286. }
  287. static int is_swiotlb_buffer(phys_addr_t paddr)
  288. {
  289. return paddr >= virt_to_phys(io_tlb_start) &&
  290. paddr < virt_to_phys(io_tlb_end);
  291. }
  292. /*
  293. * Bounce: copy the swiotlb buffer back to the original dma location
  294. */
  295. void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
  296. enum dma_data_direction dir)
  297. {
  298. unsigned long pfn = PFN_DOWN(phys);
  299. if (PageHighMem(pfn_to_page(pfn))) {
  300. /* The buffer does not have a mapping. Map it in and copy */
  301. unsigned int offset = phys & ~PAGE_MASK;
  302. char *buffer;
  303. unsigned int sz = 0;
  304. unsigned long flags;
  305. while (size) {
  306. sz = min_t(size_t, PAGE_SIZE - offset, size);
  307. local_irq_save(flags);
  308. buffer = kmap_atomic(pfn_to_page(pfn));
  309. if (dir == DMA_TO_DEVICE)
  310. memcpy(dma_addr, buffer + offset, sz);
  311. else
  312. memcpy(buffer + offset, dma_addr, sz);
  313. kunmap_atomic(buffer);
  314. local_irq_restore(flags);
  315. size -= sz;
  316. pfn++;
  317. dma_addr += sz;
  318. offset = 0;
  319. }
  320. } else {
  321. if (dir == DMA_TO_DEVICE)
  322. memcpy(dma_addr, phys_to_virt(phys), size);
  323. else
  324. memcpy(phys_to_virt(phys), dma_addr, size);
  325. }
  326. }
  327. EXPORT_SYMBOL_GPL(swiotlb_bounce);
  328. void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
  329. phys_addr_t phys, size_t size,
  330. enum dma_data_direction dir)
  331. {
  332. unsigned long flags;
  333. char *dma_addr;
  334. unsigned int nslots, stride, index, wrap;
  335. int i;
  336. unsigned long mask;
  337. unsigned long offset_slots;
  338. unsigned long max_slots;
  339. mask = dma_get_seg_boundary(hwdev);
  340. tbl_dma_addr &= mask;
  341. offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  342. /*
  343. * Carefully handle integer overflow which can occur when mask == ~0UL.
  344. */
  345. max_slots = mask + 1
  346. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  347. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  348. /*
  349. * For mappings greater than a page, we limit the stride (and
  350. * hence alignment) to a page size.
  351. */
  352. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  353. if (size > PAGE_SIZE)
  354. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  355. else
  356. stride = 1;
  357. BUG_ON(!nslots);
  358. /*
  359. * Find suitable number of IO TLB entries size that will fit this
  360. * request and allocate a buffer from that IO TLB pool.
  361. */
  362. spin_lock_irqsave(&io_tlb_lock, flags);
  363. index = ALIGN(io_tlb_index, stride);
  364. if (index >= io_tlb_nslabs)
  365. index = 0;
  366. wrap = index;
  367. do {
  368. while (iommu_is_span_boundary(index, nslots, offset_slots,
  369. max_slots)) {
  370. index += stride;
  371. if (index >= io_tlb_nslabs)
  372. index = 0;
  373. if (index == wrap)
  374. goto not_found;
  375. }
  376. /*
  377. * If we find a slot that indicates we have 'nslots' number of
  378. * contiguous buffers, we allocate the buffers from that slot
  379. * and mark the entries as '0' indicating unavailable.
  380. */
  381. if (io_tlb_list[index] >= nslots) {
  382. int count = 0;
  383. for (i = index; i < (int) (index + nslots); i++)
  384. io_tlb_list[i] = 0;
  385. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  386. io_tlb_list[i] = ++count;
  387. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  388. /*
  389. * Update the indices to avoid searching in the next
  390. * round.
  391. */
  392. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  393. ? (index + nslots) : 0);
  394. goto found;
  395. }
  396. index += stride;
  397. if (index >= io_tlb_nslabs)
  398. index = 0;
  399. } while (index != wrap);
  400. not_found:
  401. spin_unlock_irqrestore(&io_tlb_lock, flags);
  402. return NULL;
  403. found:
  404. spin_unlock_irqrestore(&io_tlb_lock, flags);
  405. /*
  406. * Save away the mapping from the original address to the DMA address.
  407. * This is needed when we sync the memory. Then we sync the buffer if
  408. * needed.
  409. */
  410. for (i = 0; i < nslots; i++)
  411. io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
  412. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  413. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  414. return dma_addr;
  415. }
  416. EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
  417. /*
  418. * Allocates bounce buffer and returns its kernel virtual address.
  419. */
  420. static void *
  421. map_single(struct device *hwdev, phys_addr_t phys, size_t size,
  422. enum dma_data_direction dir)
  423. {
  424. dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
  425. return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
  426. }
  427. /*
  428. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  429. */
  430. void
  431. swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
  432. enum dma_data_direction dir)
  433. {
  434. unsigned long flags;
  435. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  436. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  437. phys_addr_t phys = io_tlb_orig_addr[index];
  438. /*
  439. * First, sync the memory before unmapping the entry
  440. */
  441. if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  442. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  443. /*
  444. * Return the buffer to the free list by setting the corresponding
  445. * entries to indicate the number of contiguous entries available.
  446. * While returning the entries to the free list, we merge the entries
  447. * with slots below and above the pool being returned.
  448. */
  449. spin_lock_irqsave(&io_tlb_lock, flags);
  450. {
  451. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  452. io_tlb_list[index + nslots] : 0);
  453. /*
  454. * Step 1: return the slots to the free list, merging the
  455. * slots with superceeding slots
  456. */
  457. for (i = index + nslots - 1; i >= index; i--)
  458. io_tlb_list[i] = ++count;
  459. /*
  460. * Step 2: merge the returned slots with the preceding slots,
  461. * if available (non zero)
  462. */
  463. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  464. io_tlb_list[i] = ++count;
  465. }
  466. spin_unlock_irqrestore(&io_tlb_lock, flags);
  467. }
  468. EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
  469. void
  470. swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
  471. enum dma_data_direction dir,
  472. enum dma_sync_target target)
  473. {
  474. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  475. phys_addr_t phys = io_tlb_orig_addr[index];
  476. phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
  477. switch (target) {
  478. case SYNC_FOR_CPU:
  479. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  480. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  481. else
  482. BUG_ON(dir != DMA_TO_DEVICE);
  483. break;
  484. case SYNC_FOR_DEVICE:
  485. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  486. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  487. else
  488. BUG_ON(dir != DMA_FROM_DEVICE);
  489. break;
  490. default:
  491. BUG();
  492. }
  493. }
  494. EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
  495. void *
  496. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  497. dma_addr_t *dma_handle, gfp_t flags)
  498. {
  499. dma_addr_t dev_addr;
  500. void *ret;
  501. int order = get_order(size);
  502. u64 dma_mask = DMA_BIT_MASK(32);
  503. if (hwdev && hwdev->coherent_dma_mask)
  504. dma_mask = hwdev->coherent_dma_mask;
  505. ret = (void *)__get_free_pages(flags, order);
  506. if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
  507. /*
  508. * The allocated memory isn't reachable by the device.
  509. */
  510. free_pages((unsigned long) ret, order);
  511. ret = NULL;
  512. }
  513. if (!ret) {
  514. /*
  515. * We are either out of memory or the device can't DMA to
  516. * GFP_DMA memory; fall back on map_single(), which
  517. * will grab memory from the lowest available address range.
  518. */
  519. ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  520. if (!ret)
  521. return NULL;
  522. }
  523. memset(ret, 0, size);
  524. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  525. /* Confirm address can be DMA'd by device */
  526. if (dev_addr + size - 1 > dma_mask) {
  527. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  528. (unsigned long long)dma_mask,
  529. (unsigned long long)dev_addr);
  530. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  531. swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
  532. return NULL;
  533. }
  534. *dma_handle = dev_addr;
  535. return ret;
  536. }
  537. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  538. void
  539. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  540. dma_addr_t dev_addr)
  541. {
  542. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  543. WARN_ON(irqs_disabled());
  544. if (!is_swiotlb_buffer(paddr))
  545. free_pages((unsigned long)vaddr, get_order(size));
  546. else
  547. /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
  548. swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
  549. }
  550. EXPORT_SYMBOL(swiotlb_free_coherent);
  551. static void
  552. swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
  553. int do_panic)
  554. {
  555. /*
  556. * Ran out of IOMMU space for this operation. This is very bad.
  557. * Unfortunately the drivers cannot handle this operation properly.
  558. * unless they check for dma_mapping_error (most don't)
  559. * When the mapping is small enough return a static buffer to limit
  560. * the damage, or panic when the transfer is too big.
  561. */
  562. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  563. "device %s\n", size, dev ? dev_name(dev) : "?");
  564. if (size <= io_tlb_overflow || !do_panic)
  565. return;
  566. if (dir == DMA_BIDIRECTIONAL)
  567. panic("DMA: Random memory could be DMA accessed\n");
  568. if (dir == DMA_FROM_DEVICE)
  569. panic("DMA: Random memory could be DMA written\n");
  570. if (dir == DMA_TO_DEVICE)
  571. panic("DMA: Random memory could be DMA read\n");
  572. }
  573. /*
  574. * Map a single buffer of the indicated size for DMA in streaming mode. The
  575. * physical address to use is returned.
  576. *
  577. * Once the device is given the dma address, the device owns this memory until
  578. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  579. */
  580. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  581. unsigned long offset, size_t size,
  582. enum dma_data_direction dir,
  583. struct dma_attrs *attrs)
  584. {
  585. phys_addr_t phys = page_to_phys(page) + offset;
  586. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  587. void *map;
  588. BUG_ON(dir == DMA_NONE);
  589. /*
  590. * If the address happens to be in the device's DMA window,
  591. * we can safely return the device addr and not worry about bounce
  592. * buffering it.
  593. */
  594. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  595. return dev_addr;
  596. /*
  597. * Oh well, have to allocate and map a bounce buffer.
  598. */
  599. map = map_single(dev, phys, size, dir);
  600. if (!map) {
  601. swiotlb_full(dev, size, dir, 1);
  602. map = io_tlb_overflow_buffer;
  603. }
  604. dev_addr = swiotlb_virt_to_bus(dev, map);
  605. /*
  606. * Ensure that the address returned is DMA'ble
  607. */
  608. if (!dma_capable(dev, dev_addr, size)) {
  609. swiotlb_tbl_unmap_single(dev, map, size, dir);
  610. dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
  611. }
  612. return dev_addr;
  613. }
  614. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  615. /*
  616. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  617. * match what was provided for in a previous swiotlb_map_page call. All
  618. * other usages are undefined.
  619. *
  620. * After this call, reads by the cpu to the buffer are guaranteed to see
  621. * whatever the device wrote there.
  622. */
  623. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  624. size_t size, enum dma_data_direction dir)
  625. {
  626. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  627. BUG_ON(dir == DMA_NONE);
  628. if (is_swiotlb_buffer(paddr)) {
  629. swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  630. return;
  631. }
  632. if (dir != DMA_FROM_DEVICE)
  633. return;
  634. /*
  635. * phys_to_virt doesn't work with hihgmem page but we could
  636. * call dma_mark_clean() with hihgmem page here. However, we
  637. * are fine since dma_mark_clean() is null on POWERPC. We can
  638. * make dma_mark_clean() take a physical address if necessary.
  639. */
  640. dma_mark_clean(phys_to_virt(paddr), size);
  641. }
  642. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  643. size_t size, enum dma_data_direction dir,
  644. struct dma_attrs *attrs)
  645. {
  646. unmap_single(hwdev, dev_addr, size, dir);
  647. }
  648. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  649. /*
  650. * Make physical memory consistent for a single streaming mode DMA translation
  651. * after a transfer.
  652. *
  653. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  654. * using the cpu, yet do not wish to teardown the dma mapping, you must
  655. * call this function before doing so. At the next point you give the dma
  656. * address back to the card, you must first perform a
  657. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  658. */
  659. static void
  660. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  661. size_t size, enum dma_data_direction dir,
  662. enum dma_sync_target target)
  663. {
  664. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  665. BUG_ON(dir == DMA_NONE);
  666. if (is_swiotlb_buffer(paddr)) {
  667. swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
  668. target);
  669. return;
  670. }
  671. if (dir != DMA_FROM_DEVICE)
  672. return;
  673. dma_mark_clean(phys_to_virt(paddr), size);
  674. }
  675. void
  676. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  677. size_t size, enum dma_data_direction dir)
  678. {
  679. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  680. }
  681. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  682. void
  683. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  684. size_t size, enum dma_data_direction dir)
  685. {
  686. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  687. }
  688. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  689. /*
  690. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  691. * This is the scatter-gather version of the above swiotlb_map_page
  692. * interface. Here the scatter gather list elements are each tagged with the
  693. * appropriate dma address and length. They are obtained via
  694. * sg_dma_{address,length}(SG).
  695. *
  696. * NOTE: An implementation may be able to use a smaller number of
  697. * DMA address/length pairs than there are SG table elements.
  698. * (for example via virtual mapping capabilities)
  699. * The routine returns the number of addr/length pairs actually
  700. * used, at most nents.
  701. *
  702. * Device ownership issues as mentioned above for swiotlb_map_page are the
  703. * same here.
  704. */
  705. int
  706. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  707. enum dma_data_direction dir, struct dma_attrs *attrs)
  708. {
  709. struct scatterlist *sg;
  710. int i;
  711. BUG_ON(dir == DMA_NONE);
  712. for_each_sg(sgl, sg, nelems, i) {
  713. phys_addr_t paddr = sg_phys(sg);
  714. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  715. if (swiotlb_force ||
  716. !dma_capable(hwdev, dev_addr, sg->length)) {
  717. void *map = map_single(hwdev, sg_phys(sg),
  718. sg->length, dir);
  719. if (!map) {
  720. /* Don't panic here, we expect map_sg users
  721. to do proper error handling. */
  722. swiotlb_full(hwdev, sg->length, dir, 0);
  723. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  724. attrs);
  725. sgl[0].dma_length = 0;
  726. return 0;
  727. }
  728. sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
  729. } else
  730. sg->dma_address = dev_addr;
  731. sg->dma_length = sg->length;
  732. }
  733. return nelems;
  734. }
  735. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  736. int
  737. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  738. enum dma_data_direction dir)
  739. {
  740. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  741. }
  742. EXPORT_SYMBOL(swiotlb_map_sg);
  743. /*
  744. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  745. * concerning calls here are the same as for swiotlb_unmap_page() above.
  746. */
  747. void
  748. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  749. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  750. {
  751. struct scatterlist *sg;
  752. int i;
  753. BUG_ON(dir == DMA_NONE);
  754. for_each_sg(sgl, sg, nelems, i)
  755. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  756. }
  757. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  758. void
  759. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  760. enum dma_data_direction dir)
  761. {
  762. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  763. }
  764. EXPORT_SYMBOL(swiotlb_unmap_sg);
  765. /*
  766. * Make physical memory consistent for a set of streaming mode DMA translations
  767. * after a transfer.
  768. *
  769. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  770. * and usage.
  771. */
  772. static void
  773. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  774. int nelems, enum dma_data_direction dir,
  775. enum dma_sync_target target)
  776. {
  777. struct scatterlist *sg;
  778. int i;
  779. for_each_sg(sgl, sg, nelems, i)
  780. swiotlb_sync_single(hwdev, sg->dma_address,
  781. sg->dma_length, dir, target);
  782. }
  783. void
  784. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  785. int nelems, enum dma_data_direction dir)
  786. {
  787. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  788. }
  789. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  790. void
  791. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  792. int nelems, enum dma_data_direction dir)
  793. {
  794. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  795. }
  796. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  797. int
  798. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  799. {
  800. return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
  801. }
  802. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  803. /*
  804. * Return whether the given device DMA address mask can be supported
  805. * properly. For example, if your device can only drive the low 24-bits
  806. * during bus mastering, then you would pass 0x00ffffff as the mask to
  807. * this function.
  808. */
  809. int
  810. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  811. {
  812. return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
  813. }
  814. EXPORT_SYMBOL(swiotlb_dma_supported);