bio.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/iocontext.h>
  23. #include <linux/slab.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/export.h>
  27. #include <linux/mempool.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/cgroup.h>
  30. #include <scsi/sg.h> /* for struct sg_iovec */
  31. #include <trace/events/block.h>
  32. /*
  33. * Test patch to inline a certain number of bi_io_vec's inside the bio
  34. * itself, to shrink a bio data allocation from two mempool calls to one
  35. */
  36. #define BIO_INLINE_VECS 4
  37. static mempool_t *bio_split_pool __read_mostly;
  38. /*
  39. * if you change this list, also change bvec_alloc or things will
  40. * break badly! cannot be bigger than what you can fit into an
  41. * unsigned short
  42. */
  43. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  44. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  45. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  46. };
  47. #undef BV
  48. /*
  49. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  50. * IO code that does not need private memory pools.
  51. */
  52. struct bio_set *fs_bio_set;
  53. EXPORT_SYMBOL(fs_bio_set);
  54. /*
  55. * Our slab pool management
  56. */
  57. struct bio_slab {
  58. struct kmem_cache *slab;
  59. unsigned int slab_ref;
  60. unsigned int slab_size;
  61. char name[8];
  62. };
  63. static DEFINE_MUTEX(bio_slab_lock);
  64. static struct bio_slab *bio_slabs;
  65. static unsigned int bio_slab_nr, bio_slab_max;
  66. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  67. {
  68. unsigned int sz = sizeof(struct bio) + extra_size;
  69. struct kmem_cache *slab = NULL;
  70. struct bio_slab *bslab, *new_bio_slabs;
  71. unsigned int i, entry = -1;
  72. mutex_lock(&bio_slab_lock);
  73. i = 0;
  74. while (i < bio_slab_nr) {
  75. bslab = &bio_slabs[i];
  76. if (!bslab->slab && entry == -1)
  77. entry = i;
  78. else if (bslab->slab_size == sz) {
  79. slab = bslab->slab;
  80. bslab->slab_ref++;
  81. break;
  82. }
  83. i++;
  84. }
  85. if (slab)
  86. goto out_unlock;
  87. if (bio_slab_nr == bio_slab_max && entry == -1) {
  88. bio_slab_max <<= 1;
  89. new_bio_slabs = krealloc(bio_slabs,
  90. bio_slab_max * sizeof(struct bio_slab),
  91. GFP_KERNEL);
  92. if (!new_bio_slabs)
  93. goto out_unlock;
  94. bio_slabs = new_bio_slabs;
  95. }
  96. if (entry == -1)
  97. entry = bio_slab_nr++;
  98. bslab = &bio_slabs[entry];
  99. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  100. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  101. if (!slab)
  102. goto out_unlock;
  103. printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
  104. bslab->slab = slab;
  105. bslab->slab_ref = 1;
  106. bslab->slab_size = sz;
  107. out_unlock:
  108. mutex_unlock(&bio_slab_lock);
  109. return slab;
  110. }
  111. static void bio_put_slab(struct bio_set *bs)
  112. {
  113. struct bio_slab *bslab = NULL;
  114. unsigned int i;
  115. mutex_lock(&bio_slab_lock);
  116. for (i = 0; i < bio_slab_nr; i++) {
  117. if (bs->bio_slab == bio_slabs[i].slab) {
  118. bslab = &bio_slabs[i];
  119. break;
  120. }
  121. }
  122. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  123. goto out;
  124. WARN_ON(!bslab->slab_ref);
  125. if (--bslab->slab_ref)
  126. goto out;
  127. kmem_cache_destroy(bslab->slab);
  128. bslab->slab = NULL;
  129. out:
  130. mutex_unlock(&bio_slab_lock);
  131. }
  132. unsigned int bvec_nr_vecs(unsigned short idx)
  133. {
  134. return bvec_slabs[idx].nr_vecs;
  135. }
  136. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  137. {
  138. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  139. if (idx == BIOVEC_MAX_IDX)
  140. mempool_free(bv, bs->bvec_pool);
  141. else {
  142. struct biovec_slab *bvs = bvec_slabs + idx;
  143. kmem_cache_free(bvs->slab, bv);
  144. }
  145. }
  146. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  147. struct bio_set *bs)
  148. {
  149. struct bio_vec *bvl;
  150. /*
  151. * see comment near bvec_array define!
  152. */
  153. switch (nr) {
  154. case 1:
  155. *idx = 0;
  156. break;
  157. case 2 ... 4:
  158. *idx = 1;
  159. break;
  160. case 5 ... 16:
  161. *idx = 2;
  162. break;
  163. case 17 ... 64:
  164. *idx = 3;
  165. break;
  166. case 65 ... 128:
  167. *idx = 4;
  168. break;
  169. case 129 ... BIO_MAX_PAGES:
  170. *idx = 5;
  171. break;
  172. default:
  173. return NULL;
  174. }
  175. /*
  176. * idx now points to the pool we want to allocate from. only the
  177. * 1-vec entry pool is mempool backed.
  178. */
  179. if (*idx == BIOVEC_MAX_IDX) {
  180. fallback:
  181. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  182. } else {
  183. struct biovec_slab *bvs = bvec_slabs + *idx;
  184. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  185. /*
  186. * Make this allocation restricted and don't dump info on
  187. * allocation failures, since we'll fallback to the mempool
  188. * in case of failure.
  189. */
  190. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  191. /*
  192. * Try a slab allocation. If this fails and __GFP_WAIT
  193. * is set, retry with the 1-entry mempool
  194. */
  195. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  196. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  197. *idx = BIOVEC_MAX_IDX;
  198. goto fallback;
  199. }
  200. }
  201. return bvl;
  202. }
  203. static void __bio_free(struct bio *bio)
  204. {
  205. bio_disassociate_task(bio);
  206. if (bio_integrity(bio))
  207. bio_integrity_free(bio);
  208. }
  209. static void bio_free(struct bio *bio)
  210. {
  211. struct bio_set *bs = bio->bi_pool;
  212. void *p;
  213. __bio_free(bio);
  214. if (bs) {
  215. if (bio_has_allocated_vec(bio))
  216. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  217. /*
  218. * If we have front padding, adjust the bio pointer before freeing
  219. */
  220. p = bio;
  221. p -= bs->front_pad;
  222. mempool_free(p, bs->bio_pool);
  223. } else {
  224. /* Bio was allocated by bio_kmalloc() */
  225. kfree(bio);
  226. }
  227. }
  228. void bio_init(struct bio *bio)
  229. {
  230. memset(bio, 0, sizeof(*bio));
  231. bio->bi_flags = 1 << BIO_UPTODATE;
  232. atomic_set(&bio->bi_cnt, 1);
  233. }
  234. EXPORT_SYMBOL(bio_init);
  235. /**
  236. * bio_reset - reinitialize a bio
  237. * @bio: bio to reset
  238. *
  239. * Description:
  240. * After calling bio_reset(), @bio will be in the same state as a freshly
  241. * allocated bio returned bio bio_alloc_bioset() - the only fields that are
  242. * preserved are the ones that are initialized by bio_alloc_bioset(). See
  243. * comment in struct bio.
  244. */
  245. void bio_reset(struct bio *bio)
  246. {
  247. unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
  248. __bio_free(bio);
  249. memset(bio, 0, BIO_RESET_BYTES);
  250. bio->bi_flags = flags|(1 << BIO_UPTODATE);
  251. }
  252. EXPORT_SYMBOL(bio_reset);
  253. /**
  254. * bio_alloc_bioset - allocate a bio for I/O
  255. * @gfp_mask: the GFP_ mask given to the slab allocator
  256. * @nr_iovecs: number of iovecs to pre-allocate
  257. * @bs: the bio_set to allocate from.
  258. *
  259. * Description:
  260. * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
  261. * backed by the @bs's mempool.
  262. *
  263. * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
  264. * able to allocate a bio. This is due to the mempool guarantees. To make this
  265. * work, callers must never allocate more than 1 bio at a time from this pool.
  266. * Callers that need to allocate more than 1 bio must always submit the
  267. * previously allocated bio for IO before attempting to allocate a new one.
  268. * Failure to do so can cause deadlocks under memory pressure.
  269. *
  270. * RETURNS:
  271. * Pointer to new bio on success, NULL on failure.
  272. */
  273. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  274. {
  275. unsigned front_pad;
  276. unsigned inline_vecs;
  277. unsigned long idx = BIO_POOL_NONE;
  278. struct bio_vec *bvl = NULL;
  279. struct bio *bio;
  280. void *p;
  281. if (!bs) {
  282. if (nr_iovecs > UIO_MAXIOV)
  283. return NULL;
  284. p = kmalloc(sizeof(struct bio) +
  285. nr_iovecs * sizeof(struct bio_vec),
  286. gfp_mask);
  287. front_pad = 0;
  288. inline_vecs = nr_iovecs;
  289. } else {
  290. p = mempool_alloc(bs->bio_pool, gfp_mask);
  291. front_pad = bs->front_pad;
  292. inline_vecs = BIO_INLINE_VECS;
  293. }
  294. if (unlikely(!p))
  295. return NULL;
  296. bio = p + front_pad;
  297. bio_init(bio);
  298. if (nr_iovecs > inline_vecs) {
  299. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  300. if (unlikely(!bvl))
  301. goto err_free;
  302. } else if (nr_iovecs) {
  303. bvl = bio->bi_inline_vecs;
  304. }
  305. bio->bi_pool = bs;
  306. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  307. bio->bi_max_vecs = nr_iovecs;
  308. bio->bi_io_vec = bvl;
  309. return bio;
  310. err_free:
  311. mempool_free(p, bs->bio_pool);
  312. return NULL;
  313. }
  314. EXPORT_SYMBOL(bio_alloc_bioset);
  315. void zero_fill_bio(struct bio *bio)
  316. {
  317. unsigned long flags;
  318. struct bio_vec *bv;
  319. int i;
  320. bio_for_each_segment(bv, bio, i) {
  321. char *data = bvec_kmap_irq(bv, &flags);
  322. memset(data, 0, bv->bv_len);
  323. flush_dcache_page(bv->bv_page);
  324. bvec_kunmap_irq(data, &flags);
  325. }
  326. }
  327. EXPORT_SYMBOL(zero_fill_bio);
  328. /**
  329. * bio_put - release a reference to a bio
  330. * @bio: bio to release reference to
  331. *
  332. * Description:
  333. * Put a reference to a &struct bio, either one you have gotten with
  334. * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
  335. **/
  336. void bio_put(struct bio *bio)
  337. {
  338. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  339. /*
  340. * last put frees it
  341. */
  342. if (atomic_dec_and_test(&bio->bi_cnt))
  343. bio_free(bio);
  344. }
  345. EXPORT_SYMBOL(bio_put);
  346. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  347. {
  348. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  349. blk_recount_segments(q, bio);
  350. return bio->bi_phys_segments;
  351. }
  352. EXPORT_SYMBOL(bio_phys_segments);
  353. /**
  354. * __bio_clone - clone a bio
  355. * @bio: destination bio
  356. * @bio_src: bio to clone
  357. *
  358. * Clone a &bio. Caller will own the returned bio, but not
  359. * the actual data it points to. Reference count of returned
  360. * bio will be one.
  361. */
  362. void __bio_clone(struct bio *bio, struct bio *bio_src)
  363. {
  364. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  365. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  366. /*
  367. * most users will be overriding ->bi_bdev with a new target,
  368. * so we don't set nor calculate new physical/hw segment counts here
  369. */
  370. bio->bi_sector = bio_src->bi_sector;
  371. bio->bi_bdev = bio_src->bi_bdev;
  372. bio->bi_flags |= 1 << BIO_CLONED;
  373. bio->bi_rw = bio_src->bi_rw;
  374. bio->bi_vcnt = bio_src->bi_vcnt;
  375. bio->bi_size = bio_src->bi_size;
  376. bio->bi_idx = bio_src->bi_idx;
  377. }
  378. EXPORT_SYMBOL(__bio_clone);
  379. /**
  380. * bio_clone_bioset - clone a bio
  381. * @bio: bio to clone
  382. * @gfp_mask: allocation priority
  383. * @bs: bio_set to allocate from
  384. *
  385. * Like __bio_clone, only also allocates the returned bio
  386. */
  387. struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
  388. struct bio_set *bs)
  389. {
  390. struct bio *b;
  391. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
  392. if (!b)
  393. return NULL;
  394. __bio_clone(b, bio);
  395. if (bio_integrity(bio)) {
  396. int ret;
  397. ret = bio_integrity_clone(b, bio, gfp_mask);
  398. if (ret < 0) {
  399. bio_put(b);
  400. return NULL;
  401. }
  402. }
  403. return b;
  404. }
  405. EXPORT_SYMBOL(bio_clone_bioset);
  406. /**
  407. * bio_get_nr_vecs - return approx number of vecs
  408. * @bdev: I/O target
  409. *
  410. * Return the approximate number of pages we can send to this target.
  411. * There's no guarantee that you will be able to fit this number of pages
  412. * into a bio, it does not account for dynamic restrictions that vary
  413. * on offset.
  414. */
  415. int bio_get_nr_vecs(struct block_device *bdev)
  416. {
  417. struct request_queue *q = bdev_get_queue(bdev);
  418. int nr_pages;
  419. nr_pages = min_t(unsigned,
  420. queue_max_segments(q),
  421. queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
  422. return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
  423. }
  424. EXPORT_SYMBOL(bio_get_nr_vecs);
  425. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  426. *page, unsigned int len, unsigned int offset,
  427. unsigned short max_sectors)
  428. {
  429. int retried_segments = 0;
  430. struct bio_vec *bvec;
  431. /*
  432. * cloned bio must not modify vec list
  433. */
  434. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  435. return 0;
  436. if (((bio->bi_size + len) >> 9) > max_sectors)
  437. return 0;
  438. /*
  439. * For filesystems with a blocksize smaller than the pagesize
  440. * we will often be called with the same page as last time and
  441. * a consecutive offset. Optimize this special case.
  442. */
  443. if (bio->bi_vcnt > 0) {
  444. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  445. if (page == prev->bv_page &&
  446. offset == prev->bv_offset + prev->bv_len) {
  447. unsigned int prev_bv_len = prev->bv_len;
  448. prev->bv_len += len;
  449. if (q->merge_bvec_fn) {
  450. struct bvec_merge_data bvm = {
  451. /* prev_bvec is already charged in
  452. bi_size, discharge it in order to
  453. simulate merging updated prev_bvec
  454. as new bvec. */
  455. .bi_bdev = bio->bi_bdev,
  456. .bi_sector = bio->bi_sector,
  457. .bi_size = bio->bi_size - prev_bv_len,
  458. .bi_rw = bio->bi_rw,
  459. };
  460. if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
  461. prev->bv_len -= len;
  462. return 0;
  463. }
  464. }
  465. goto done;
  466. }
  467. }
  468. if (bio->bi_vcnt >= bio->bi_max_vecs)
  469. return 0;
  470. /*
  471. * we might lose a segment or two here, but rather that than
  472. * make this too complex.
  473. */
  474. while (bio->bi_phys_segments >= queue_max_segments(q)) {
  475. if (retried_segments)
  476. return 0;
  477. retried_segments = 1;
  478. blk_recount_segments(q, bio);
  479. }
  480. /*
  481. * setup the new entry, we might clear it again later if we
  482. * cannot add the page
  483. */
  484. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  485. bvec->bv_page = page;
  486. bvec->bv_len = len;
  487. bvec->bv_offset = offset;
  488. /*
  489. * if queue has other restrictions (eg varying max sector size
  490. * depending on offset), it can specify a merge_bvec_fn in the
  491. * queue to get further control
  492. */
  493. if (q->merge_bvec_fn) {
  494. struct bvec_merge_data bvm = {
  495. .bi_bdev = bio->bi_bdev,
  496. .bi_sector = bio->bi_sector,
  497. .bi_size = bio->bi_size,
  498. .bi_rw = bio->bi_rw,
  499. };
  500. /*
  501. * merge_bvec_fn() returns number of bytes it can accept
  502. * at this offset
  503. */
  504. if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
  505. bvec->bv_page = NULL;
  506. bvec->bv_len = 0;
  507. bvec->bv_offset = 0;
  508. return 0;
  509. }
  510. }
  511. /* If we may be able to merge these biovecs, force a recount */
  512. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  513. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  514. bio->bi_vcnt++;
  515. bio->bi_phys_segments++;
  516. done:
  517. bio->bi_size += len;
  518. return len;
  519. }
  520. /**
  521. * bio_add_pc_page - attempt to add page to bio
  522. * @q: the target queue
  523. * @bio: destination bio
  524. * @page: page to add
  525. * @len: vec entry length
  526. * @offset: vec entry offset
  527. *
  528. * Attempt to add a page to the bio_vec maplist. This can fail for a
  529. * number of reasons, such as the bio being full or target block device
  530. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  531. * so it is always possible to add a single page to an empty bio.
  532. *
  533. * This should only be used by REQ_PC bios.
  534. */
  535. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  536. unsigned int len, unsigned int offset)
  537. {
  538. return __bio_add_page(q, bio, page, len, offset,
  539. queue_max_hw_sectors(q));
  540. }
  541. EXPORT_SYMBOL(bio_add_pc_page);
  542. /**
  543. * bio_add_page - attempt to add page to bio
  544. * @bio: destination bio
  545. * @page: page to add
  546. * @len: vec entry length
  547. * @offset: vec entry offset
  548. *
  549. * Attempt to add a page to the bio_vec maplist. This can fail for a
  550. * number of reasons, such as the bio being full or target block device
  551. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  552. * so it is always possible to add a single page to an empty bio.
  553. */
  554. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  555. unsigned int offset)
  556. {
  557. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  558. return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  559. }
  560. EXPORT_SYMBOL(bio_add_page);
  561. struct bio_map_data {
  562. struct bio_vec *iovecs;
  563. struct sg_iovec *sgvecs;
  564. int nr_sgvecs;
  565. int is_our_pages;
  566. };
  567. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  568. struct sg_iovec *iov, int iov_count,
  569. int is_our_pages)
  570. {
  571. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  572. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  573. bmd->nr_sgvecs = iov_count;
  574. bmd->is_our_pages = is_our_pages;
  575. bio->bi_private = bmd;
  576. }
  577. static void bio_free_map_data(struct bio_map_data *bmd)
  578. {
  579. kfree(bmd->iovecs);
  580. kfree(bmd->sgvecs);
  581. kfree(bmd);
  582. }
  583. static struct bio_map_data *bio_alloc_map_data(int nr_segs,
  584. unsigned int iov_count,
  585. gfp_t gfp_mask)
  586. {
  587. struct bio_map_data *bmd;
  588. if (iov_count > UIO_MAXIOV)
  589. return NULL;
  590. bmd = kmalloc(sizeof(*bmd), gfp_mask);
  591. if (!bmd)
  592. return NULL;
  593. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  594. if (!bmd->iovecs) {
  595. kfree(bmd);
  596. return NULL;
  597. }
  598. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  599. if (bmd->sgvecs)
  600. return bmd;
  601. kfree(bmd->iovecs);
  602. kfree(bmd);
  603. return NULL;
  604. }
  605. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  606. struct sg_iovec *iov, int iov_count,
  607. int to_user, int from_user, int do_free_page)
  608. {
  609. int ret = 0, i;
  610. struct bio_vec *bvec;
  611. int iov_idx = 0;
  612. unsigned int iov_off = 0;
  613. __bio_for_each_segment(bvec, bio, i, 0) {
  614. char *bv_addr = page_address(bvec->bv_page);
  615. unsigned int bv_len = iovecs[i].bv_len;
  616. while (bv_len && iov_idx < iov_count) {
  617. unsigned int bytes;
  618. char __user *iov_addr;
  619. bytes = min_t(unsigned int,
  620. iov[iov_idx].iov_len - iov_off, bv_len);
  621. iov_addr = iov[iov_idx].iov_base + iov_off;
  622. if (!ret) {
  623. if (to_user)
  624. ret = copy_to_user(iov_addr, bv_addr,
  625. bytes);
  626. if (from_user)
  627. ret = copy_from_user(bv_addr, iov_addr,
  628. bytes);
  629. if (ret)
  630. ret = -EFAULT;
  631. }
  632. bv_len -= bytes;
  633. bv_addr += bytes;
  634. iov_addr += bytes;
  635. iov_off += bytes;
  636. if (iov[iov_idx].iov_len == iov_off) {
  637. iov_idx++;
  638. iov_off = 0;
  639. }
  640. }
  641. if (do_free_page)
  642. __free_page(bvec->bv_page);
  643. }
  644. return ret;
  645. }
  646. /**
  647. * bio_uncopy_user - finish previously mapped bio
  648. * @bio: bio being terminated
  649. *
  650. * Free pages allocated from bio_copy_user() and write back data
  651. * to user space in case of a read.
  652. */
  653. int bio_uncopy_user(struct bio *bio)
  654. {
  655. struct bio_map_data *bmd = bio->bi_private;
  656. int ret = 0;
  657. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  658. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  659. bmd->nr_sgvecs, bio_data_dir(bio) == READ,
  660. 0, bmd->is_our_pages);
  661. bio_free_map_data(bmd);
  662. bio_put(bio);
  663. return ret;
  664. }
  665. EXPORT_SYMBOL(bio_uncopy_user);
  666. /**
  667. * bio_copy_user_iov - copy user data to bio
  668. * @q: destination block queue
  669. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  670. * @iov: the iovec.
  671. * @iov_count: number of elements in the iovec
  672. * @write_to_vm: bool indicating writing to pages or not
  673. * @gfp_mask: memory allocation flags
  674. *
  675. * Prepares and returns a bio for indirect user io, bouncing data
  676. * to/from kernel pages as necessary. Must be paired with
  677. * call bio_uncopy_user() on io completion.
  678. */
  679. struct bio *bio_copy_user_iov(struct request_queue *q,
  680. struct rq_map_data *map_data,
  681. struct sg_iovec *iov, int iov_count,
  682. int write_to_vm, gfp_t gfp_mask)
  683. {
  684. struct bio_map_data *bmd;
  685. struct bio_vec *bvec;
  686. struct page *page;
  687. struct bio *bio;
  688. int i, ret;
  689. int nr_pages = 0;
  690. unsigned int len = 0;
  691. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  692. for (i = 0; i < iov_count; i++) {
  693. unsigned long uaddr;
  694. unsigned long end;
  695. unsigned long start;
  696. uaddr = (unsigned long)iov[i].iov_base;
  697. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  698. start = uaddr >> PAGE_SHIFT;
  699. /*
  700. * Overflow, abort
  701. */
  702. if (end < start)
  703. return ERR_PTR(-EINVAL);
  704. nr_pages += end - start;
  705. len += iov[i].iov_len;
  706. }
  707. if (offset)
  708. nr_pages++;
  709. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  710. if (!bmd)
  711. return ERR_PTR(-ENOMEM);
  712. ret = -ENOMEM;
  713. bio = bio_kmalloc(gfp_mask, nr_pages);
  714. if (!bio)
  715. goto out_bmd;
  716. if (!write_to_vm)
  717. bio->bi_rw |= REQ_WRITE;
  718. ret = 0;
  719. if (map_data) {
  720. nr_pages = 1 << map_data->page_order;
  721. i = map_data->offset / PAGE_SIZE;
  722. }
  723. while (len) {
  724. unsigned int bytes = PAGE_SIZE;
  725. bytes -= offset;
  726. if (bytes > len)
  727. bytes = len;
  728. if (map_data) {
  729. if (i == map_data->nr_entries * nr_pages) {
  730. ret = -ENOMEM;
  731. break;
  732. }
  733. page = map_data->pages[i / nr_pages];
  734. page += (i % nr_pages);
  735. i++;
  736. } else {
  737. page = alloc_page(q->bounce_gfp | gfp_mask);
  738. if (!page) {
  739. ret = -ENOMEM;
  740. break;
  741. }
  742. }
  743. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  744. break;
  745. len -= bytes;
  746. offset = 0;
  747. }
  748. if (ret)
  749. goto cleanup;
  750. /*
  751. * success
  752. */
  753. if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
  754. (map_data && map_data->from_user)) {
  755. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
  756. if (ret)
  757. goto cleanup;
  758. }
  759. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  760. return bio;
  761. cleanup:
  762. if (!map_data)
  763. bio_for_each_segment(bvec, bio, i)
  764. __free_page(bvec->bv_page);
  765. bio_put(bio);
  766. out_bmd:
  767. bio_free_map_data(bmd);
  768. return ERR_PTR(ret);
  769. }
  770. /**
  771. * bio_copy_user - copy user data to bio
  772. * @q: destination block queue
  773. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  774. * @uaddr: start of user address
  775. * @len: length in bytes
  776. * @write_to_vm: bool indicating writing to pages or not
  777. * @gfp_mask: memory allocation flags
  778. *
  779. * Prepares and returns a bio for indirect user io, bouncing data
  780. * to/from kernel pages as necessary. Must be paired with
  781. * call bio_uncopy_user() on io completion.
  782. */
  783. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  784. unsigned long uaddr, unsigned int len,
  785. int write_to_vm, gfp_t gfp_mask)
  786. {
  787. struct sg_iovec iov;
  788. iov.iov_base = (void __user *)uaddr;
  789. iov.iov_len = len;
  790. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  791. }
  792. EXPORT_SYMBOL(bio_copy_user);
  793. static struct bio *__bio_map_user_iov(struct request_queue *q,
  794. struct block_device *bdev,
  795. struct sg_iovec *iov, int iov_count,
  796. int write_to_vm, gfp_t gfp_mask)
  797. {
  798. int i, j;
  799. int nr_pages = 0;
  800. struct page **pages;
  801. struct bio *bio;
  802. int cur_page = 0;
  803. int ret, offset;
  804. for (i = 0; i < iov_count; i++) {
  805. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  806. unsigned long len = iov[i].iov_len;
  807. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  808. unsigned long start = uaddr >> PAGE_SHIFT;
  809. /*
  810. * Overflow, abort
  811. */
  812. if (end < start)
  813. return ERR_PTR(-EINVAL);
  814. nr_pages += end - start;
  815. /*
  816. * buffer must be aligned to at least hardsector size for now
  817. */
  818. if (uaddr & queue_dma_alignment(q))
  819. return ERR_PTR(-EINVAL);
  820. }
  821. if (!nr_pages)
  822. return ERR_PTR(-EINVAL);
  823. bio = bio_kmalloc(gfp_mask, nr_pages);
  824. if (!bio)
  825. return ERR_PTR(-ENOMEM);
  826. ret = -ENOMEM;
  827. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  828. if (!pages)
  829. goto out;
  830. for (i = 0; i < iov_count; i++) {
  831. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  832. unsigned long len = iov[i].iov_len;
  833. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  834. unsigned long start = uaddr >> PAGE_SHIFT;
  835. const int local_nr_pages = end - start;
  836. const int page_limit = cur_page + local_nr_pages;
  837. ret = get_user_pages_fast(uaddr, local_nr_pages,
  838. write_to_vm, &pages[cur_page]);
  839. if (ret < local_nr_pages) {
  840. ret = -EFAULT;
  841. goto out_unmap;
  842. }
  843. offset = uaddr & ~PAGE_MASK;
  844. for (j = cur_page; j < page_limit; j++) {
  845. unsigned int bytes = PAGE_SIZE - offset;
  846. if (len <= 0)
  847. break;
  848. if (bytes > len)
  849. bytes = len;
  850. /*
  851. * sorry...
  852. */
  853. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  854. bytes)
  855. break;
  856. len -= bytes;
  857. offset = 0;
  858. }
  859. cur_page = j;
  860. /*
  861. * release the pages we didn't map into the bio, if any
  862. */
  863. while (j < page_limit)
  864. page_cache_release(pages[j++]);
  865. }
  866. kfree(pages);
  867. /*
  868. * set data direction, and check if mapped pages need bouncing
  869. */
  870. if (!write_to_vm)
  871. bio->bi_rw |= REQ_WRITE;
  872. bio->bi_bdev = bdev;
  873. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  874. return bio;
  875. out_unmap:
  876. for (i = 0; i < nr_pages; i++) {
  877. if(!pages[i])
  878. break;
  879. page_cache_release(pages[i]);
  880. }
  881. out:
  882. kfree(pages);
  883. bio_put(bio);
  884. return ERR_PTR(ret);
  885. }
  886. /**
  887. * bio_map_user - map user address into bio
  888. * @q: the struct request_queue for the bio
  889. * @bdev: destination block device
  890. * @uaddr: start of user address
  891. * @len: length in bytes
  892. * @write_to_vm: bool indicating writing to pages or not
  893. * @gfp_mask: memory allocation flags
  894. *
  895. * Map the user space address into a bio suitable for io to a block
  896. * device. Returns an error pointer in case of error.
  897. */
  898. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  899. unsigned long uaddr, unsigned int len, int write_to_vm,
  900. gfp_t gfp_mask)
  901. {
  902. struct sg_iovec iov;
  903. iov.iov_base = (void __user *)uaddr;
  904. iov.iov_len = len;
  905. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  906. }
  907. EXPORT_SYMBOL(bio_map_user);
  908. /**
  909. * bio_map_user_iov - map user sg_iovec table into bio
  910. * @q: the struct request_queue for the bio
  911. * @bdev: destination block device
  912. * @iov: the iovec.
  913. * @iov_count: number of elements in the iovec
  914. * @write_to_vm: bool indicating writing to pages or not
  915. * @gfp_mask: memory allocation flags
  916. *
  917. * Map the user space address into a bio suitable for io to a block
  918. * device. Returns an error pointer in case of error.
  919. */
  920. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  921. struct sg_iovec *iov, int iov_count,
  922. int write_to_vm, gfp_t gfp_mask)
  923. {
  924. struct bio *bio;
  925. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  926. gfp_mask);
  927. if (IS_ERR(bio))
  928. return bio;
  929. /*
  930. * subtle -- if __bio_map_user() ended up bouncing a bio,
  931. * it would normally disappear when its bi_end_io is run.
  932. * however, we need it for the unmap, so grab an extra
  933. * reference to it
  934. */
  935. bio_get(bio);
  936. return bio;
  937. }
  938. static void __bio_unmap_user(struct bio *bio)
  939. {
  940. struct bio_vec *bvec;
  941. int i;
  942. /*
  943. * make sure we dirty pages we wrote to
  944. */
  945. __bio_for_each_segment(bvec, bio, i, 0) {
  946. if (bio_data_dir(bio) == READ)
  947. set_page_dirty_lock(bvec->bv_page);
  948. page_cache_release(bvec->bv_page);
  949. }
  950. bio_put(bio);
  951. }
  952. /**
  953. * bio_unmap_user - unmap a bio
  954. * @bio: the bio being unmapped
  955. *
  956. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  957. * a process context.
  958. *
  959. * bio_unmap_user() may sleep.
  960. */
  961. void bio_unmap_user(struct bio *bio)
  962. {
  963. __bio_unmap_user(bio);
  964. bio_put(bio);
  965. }
  966. EXPORT_SYMBOL(bio_unmap_user);
  967. static void bio_map_kern_endio(struct bio *bio, int err)
  968. {
  969. bio_put(bio);
  970. }
  971. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  972. unsigned int len, gfp_t gfp_mask)
  973. {
  974. unsigned long kaddr = (unsigned long)data;
  975. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  976. unsigned long start = kaddr >> PAGE_SHIFT;
  977. const int nr_pages = end - start;
  978. int offset, i;
  979. struct bio *bio;
  980. bio = bio_kmalloc(gfp_mask, nr_pages);
  981. if (!bio)
  982. return ERR_PTR(-ENOMEM);
  983. offset = offset_in_page(kaddr);
  984. for (i = 0; i < nr_pages; i++) {
  985. unsigned int bytes = PAGE_SIZE - offset;
  986. if (len <= 0)
  987. break;
  988. if (bytes > len)
  989. bytes = len;
  990. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  991. offset) < bytes)
  992. break;
  993. data += bytes;
  994. len -= bytes;
  995. offset = 0;
  996. }
  997. bio->bi_end_io = bio_map_kern_endio;
  998. return bio;
  999. }
  1000. /**
  1001. * bio_map_kern - map kernel address into bio
  1002. * @q: the struct request_queue for the bio
  1003. * @data: pointer to buffer to map
  1004. * @len: length in bytes
  1005. * @gfp_mask: allocation flags for bio allocation
  1006. *
  1007. * Map the kernel address into a bio suitable for io to a block
  1008. * device. Returns an error pointer in case of error.
  1009. */
  1010. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  1011. gfp_t gfp_mask)
  1012. {
  1013. struct bio *bio;
  1014. bio = __bio_map_kern(q, data, len, gfp_mask);
  1015. if (IS_ERR(bio))
  1016. return bio;
  1017. if (bio->bi_size == len)
  1018. return bio;
  1019. /*
  1020. * Don't support partial mappings.
  1021. */
  1022. bio_put(bio);
  1023. return ERR_PTR(-EINVAL);
  1024. }
  1025. EXPORT_SYMBOL(bio_map_kern);
  1026. static void bio_copy_kern_endio(struct bio *bio, int err)
  1027. {
  1028. struct bio_vec *bvec;
  1029. const int read = bio_data_dir(bio) == READ;
  1030. struct bio_map_data *bmd = bio->bi_private;
  1031. int i;
  1032. char *p = bmd->sgvecs[0].iov_base;
  1033. __bio_for_each_segment(bvec, bio, i, 0) {
  1034. char *addr = page_address(bvec->bv_page);
  1035. int len = bmd->iovecs[i].bv_len;
  1036. if (read)
  1037. memcpy(p, addr, len);
  1038. __free_page(bvec->bv_page);
  1039. p += len;
  1040. }
  1041. bio_free_map_data(bmd);
  1042. bio_put(bio);
  1043. }
  1044. /**
  1045. * bio_copy_kern - copy kernel address into bio
  1046. * @q: the struct request_queue for the bio
  1047. * @data: pointer to buffer to copy
  1048. * @len: length in bytes
  1049. * @gfp_mask: allocation flags for bio and page allocation
  1050. * @reading: data direction is READ
  1051. *
  1052. * copy the kernel address into a bio suitable for io to a block
  1053. * device. Returns an error pointer in case of error.
  1054. */
  1055. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1056. gfp_t gfp_mask, int reading)
  1057. {
  1058. struct bio *bio;
  1059. struct bio_vec *bvec;
  1060. int i;
  1061. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1062. if (IS_ERR(bio))
  1063. return bio;
  1064. if (!reading) {
  1065. void *p = data;
  1066. bio_for_each_segment(bvec, bio, i) {
  1067. char *addr = page_address(bvec->bv_page);
  1068. memcpy(addr, p, bvec->bv_len);
  1069. p += bvec->bv_len;
  1070. }
  1071. }
  1072. bio->bi_end_io = bio_copy_kern_endio;
  1073. return bio;
  1074. }
  1075. EXPORT_SYMBOL(bio_copy_kern);
  1076. /*
  1077. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1078. * for performing direct-IO in BIOs.
  1079. *
  1080. * The problem is that we cannot run set_page_dirty() from interrupt context
  1081. * because the required locks are not interrupt-safe. So what we can do is to
  1082. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1083. * check that the pages are still dirty. If so, fine. If not, redirty them
  1084. * in process context.
  1085. *
  1086. * We special-case compound pages here: normally this means reads into hugetlb
  1087. * pages. The logic in here doesn't really work right for compound pages
  1088. * because the VM does not uniformly chase down the head page in all cases.
  1089. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1090. * handle them at all. So we skip compound pages here at an early stage.
  1091. *
  1092. * Note that this code is very hard to test under normal circumstances because
  1093. * direct-io pins the pages with get_user_pages(). This makes
  1094. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1095. * But other code (eg, flusher threads) could clean the pages if they are mapped
  1096. * pagecache.
  1097. *
  1098. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1099. * deferred bio dirtying paths.
  1100. */
  1101. /*
  1102. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1103. */
  1104. void bio_set_pages_dirty(struct bio *bio)
  1105. {
  1106. struct bio_vec *bvec = bio->bi_io_vec;
  1107. int i;
  1108. for (i = 0; i < bio->bi_vcnt; i++) {
  1109. struct page *page = bvec[i].bv_page;
  1110. if (page && !PageCompound(page))
  1111. set_page_dirty_lock(page);
  1112. }
  1113. }
  1114. static void bio_release_pages(struct bio *bio)
  1115. {
  1116. struct bio_vec *bvec = bio->bi_io_vec;
  1117. int i;
  1118. for (i = 0; i < bio->bi_vcnt; i++) {
  1119. struct page *page = bvec[i].bv_page;
  1120. if (page)
  1121. put_page(page);
  1122. }
  1123. }
  1124. /*
  1125. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1126. * If they are, then fine. If, however, some pages are clean then they must
  1127. * have been written out during the direct-IO read. So we take another ref on
  1128. * the BIO and the offending pages and re-dirty the pages in process context.
  1129. *
  1130. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1131. * here on. It will run one page_cache_release() against each page and will
  1132. * run one bio_put() against the BIO.
  1133. */
  1134. static void bio_dirty_fn(struct work_struct *work);
  1135. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1136. static DEFINE_SPINLOCK(bio_dirty_lock);
  1137. static struct bio *bio_dirty_list;
  1138. /*
  1139. * This runs in process context
  1140. */
  1141. static void bio_dirty_fn(struct work_struct *work)
  1142. {
  1143. unsigned long flags;
  1144. struct bio *bio;
  1145. spin_lock_irqsave(&bio_dirty_lock, flags);
  1146. bio = bio_dirty_list;
  1147. bio_dirty_list = NULL;
  1148. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1149. while (bio) {
  1150. struct bio *next = bio->bi_private;
  1151. bio_set_pages_dirty(bio);
  1152. bio_release_pages(bio);
  1153. bio_put(bio);
  1154. bio = next;
  1155. }
  1156. }
  1157. void bio_check_pages_dirty(struct bio *bio)
  1158. {
  1159. struct bio_vec *bvec = bio->bi_io_vec;
  1160. int nr_clean_pages = 0;
  1161. int i;
  1162. for (i = 0; i < bio->bi_vcnt; i++) {
  1163. struct page *page = bvec[i].bv_page;
  1164. if (PageDirty(page) || PageCompound(page)) {
  1165. page_cache_release(page);
  1166. bvec[i].bv_page = NULL;
  1167. } else {
  1168. nr_clean_pages++;
  1169. }
  1170. }
  1171. if (nr_clean_pages) {
  1172. unsigned long flags;
  1173. spin_lock_irqsave(&bio_dirty_lock, flags);
  1174. bio->bi_private = bio_dirty_list;
  1175. bio_dirty_list = bio;
  1176. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1177. schedule_work(&bio_dirty_work);
  1178. } else {
  1179. bio_put(bio);
  1180. }
  1181. }
  1182. #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
  1183. void bio_flush_dcache_pages(struct bio *bi)
  1184. {
  1185. int i;
  1186. struct bio_vec *bvec;
  1187. bio_for_each_segment(bvec, bi, i)
  1188. flush_dcache_page(bvec->bv_page);
  1189. }
  1190. EXPORT_SYMBOL(bio_flush_dcache_pages);
  1191. #endif
  1192. /**
  1193. * bio_endio - end I/O on a bio
  1194. * @bio: bio
  1195. * @error: error, if any
  1196. *
  1197. * Description:
  1198. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1199. * preferred way to end I/O on a bio, it takes care of clearing
  1200. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1201. * established -Exxxx (-EIO, for instance) error values in case
  1202. * something went wrong. No one should call bi_end_io() directly on a
  1203. * bio unless they own it and thus know that it has an end_io
  1204. * function.
  1205. **/
  1206. void bio_endio(struct bio *bio, int error)
  1207. {
  1208. if (error)
  1209. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1210. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1211. error = -EIO;
  1212. if (bio->bi_end_io)
  1213. bio->bi_end_io(bio, error);
  1214. }
  1215. EXPORT_SYMBOL(bio_endio);
  1216. void bio_pair_release(struct bio_pair *bp)
  1217. {
  1218. if (atomic_dec_and_test(&bp->cnt)) {
  1219. struct bio *master = bp->bio1.bi_private;
  1220. bio_endio(master, bp->error);
  1221. mempool_free(bp, bp->bio2.bi_private);
  1222. }
  1223. }
  1224. EXPORT_SYMBOL(bio_pair_release);
  1225. static void bio_pair_end_1(struct bio *bi, int err)
  1226. {
  1227. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1228. if (err)
  1229. bp->error = err;
  1230. bio_pair_release(bp);
  1231. }
  1232. static void bio_pair_end_2(struct bio *bi, int err)
  1233. {
  1234. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1235. if (err)
  1236. bp->error = err;
  1237. bio_pair_release(bp);
  1238. }
  1239. /*
  1240. * split a bio - only worry about a bio with a single page in its iovec
  1241. */
  1242. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1243. {
  1244. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1245. if (!bp)
  1246. return bp;
  1247. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1248. bi->bi_sector + first_sectors);
  1249. BUG_ON(bi->bi_vcnt != 1 && bi->bi_vcnt != 0);
  1250. BUG_ON(bi->bi_idx != 0);
  1251. atomic_set(&bp->cnt, 3);
  1252. bp->error = 0;
  1253. bp->bio1 = *bi;
  1254. bp->bio2 = *bi;
  1255. bp->bio2.bi_sector += first_sectors;
  1256. bp->bio2.bi_size -= first_sectors << 9;
  1257. bp->bio1.bi_size = first_sectors << 9;
  1258. if (bi->bi_vcnt != 0) {
  1259. bp->bv1 = bi->bi_io_vec[0];
  1260. bp->bv2 = bi->bi_io_vec[0];
  1261. if (bio_is_rw(bi)) {
  1262. bp->bv2.bv_offset += first_sectors << 9;
  1263. bp->bv2.bv_len -= first_sectors << 9;
  1264. bp->bv1.bv_len = first_sectors << 9;
  1265. }
  1266. bp->bio1.bi_io_vec = &bp->bv1;
  1267. bp->bio2.bi_io_vec = &bp->bv2;
  1268. bp->bio1.bi_max_vecs = 1;
  1269. bp->bio2.bi_max_vecs = 1;
  1270. }
  1271. bp->bio1.bi_end_io = bio_pair_end_1;
  1272. bp->bio2.bi_end_io = bio_pair_end_2;
  1273. bp->bio1.bi_private = bi;
  1274. bp->bio2.bi_private = bio_split_pool;
  1275. if (bio_integrity(bi))
  1276. bio_integrity_split(bi, bp, first_sectors);
  1277. return bp;
  1278. }
  1279. EXPORT_SYMBOL(bio_split);
  1280. /**
  1281. * bio_sector_offset - Find hardware sector offset in bio
  1282. * @bio: bio to inspect
  1283. * @index: bio_vec index
  1284. * @offset: offset in bv_page
  1285. *
  1286. * Return the number of hardware sectors between beginning of bio
  1287. * and an end point indicated by a bio_vec index and an offset
  1288. * within that vector's page.
  1289. */
  1290. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1291. unsigned int offset)
  1292. {
  1293. unsigned int sector_sz;
  1294. struct bio_vec *bv;
  1295. sector_t sectors;
  1296. int i;
  1297. sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
  1298. sectors = 0;
  1299. if (index >= bio->bi_idx)
  1300. index = bio->bi_vcnt - 1;
  1301. __bio_for_each_segment(bv, bio, i, 0) {
  1302. if (i == index) {
  1303. if (offset > bv->bv_offset)
  1304. sectors += (offset - bv->bv_offset) / sector_sz;
  1305. break;
  1306. }
  1307. sectors += bv->bv_len / sector_sz;
  1308. }
  1309. return sectors;
  1310. }
  1311. EXPORT_SYMBOL(bio_sector_offset);
  1312. /*
  1313. * create memory pools for biovec's in a bio_set.
  1314. * use the global biovec slabs created for general use.
  1315. */
  1316. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1317. {
  1318. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1319. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1320. if (!bs->bvec_pool)
  1321. return -ENOMEM;
  1322. return 0;
  1323. }
  1324. static void biovec_free_pools(struct bio_set *bs)
  1325. {
  1326. mempool_destroy(bs->bvec_pool);
  1327. }
  1328. void bioset_free(struct bio_set *bs)
  1329. {
  1330. if (bs->bio_pool)
  1331. mempool_destroy(bs->bio_pool);
  1332. bioset_integrity_free(bs);
  1333. biovec_free_pools(bs);
  1334. bio_put_slab(bs);
  1335. kfree(bs);
  1336. }
  1337. EXPORT_SYMBOL(bioset_free);
  1338. /**
  1339. * bioset_create - Create a bio_set
  1340. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1341. * @front_pad: Number of bytes to allocate in front of the returned bio
  1342. *
  1343. * Description:
  1344. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1345. * to ask for a number of bytes to be allocated in front of the bio.
  1346. * Front pad allocation is useful for embedding the bio inside
  1347. * another structure, to avoid allocating extra data to go with the bio.
  1348. * Note that the bio must be embedded at the END of that structure always,
  1349. * or things will break badly.
  1350. */
  1351. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1352. {
  1353. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1354. struct bio_set *bs;
  1355. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1356. if (!bs)
  1357. return NULL;
  1358. bs->front_pad = front_pad;
  1359. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1360. if (!bs->bio_slab) {
  1361. kfree(bs);
  1362. return NULL;
  1363. }
  1364. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1365. if (!bs->bio_pool)
  1366. goto bad;
  1367. if (!biovec_create_pools(bs, pool_size))
  1368. return bs;
  1369. bad:
  1370. bioset_free(bs);
  1371. return NULL;
  1372. }
  1373. EXPORT_SYMBOL(bioset_create);
  1374. #ifdef CONFIG_BLK_CGROUP
  1375. /**
  1376. * bio_associate_current - associate a bio with %current
  1377. * @bio: target bio
  1378. *
  1379. * Associate @bio with %current if it hasn't been associated yet. Block
  1380. * layer will treat @bio as if it were issued by %current no matter which
  1381. * task actually issues it.
  1382. *
  1383. * This function takes an extra reference of @task's io_context and blkcg
  1384. * which will be put when @bio is released. The caller must own @bio,
  1385. * ensure %current->io_context exists, and is responsible for synchronizing
  1386. * calls to this function.
  1387. */
  1388. int bio_associate_current(struct bio *bio)
  1389. {
  1390. struct io_context *ioc;
  1391. struct cgroup_subsys_state *css;
  1392. if (bio->bi_ioc)
  1393. return -EBUSY;
  1394. ioc = current->io_context;
  1395. if (!ioc)
  1396. return -ENOENT;
  1397. /* acquire active ref on @ioc and associate */
  1398. get_io_context_active(ioc);
  1399. bio->bi_ioc = ioc;
  1400. /* associate blkcg if exists */
  1401. rcu_read_lock();
  1402. css = task_subsys_state(current, blkio_subsys_id);
  1403. if (css && css_tryget(css))
  1404. bio->bi_css = css;
  1405. rcu_read_unlock();
  1406. return 0;
  1407. }
  1408. /**
  1409. * bio_disassociate_task - undo bio_associate_current()
  1410. * @bio: target bio
  1411. */
  1412. void bio_disassociate_task(struct bio *bio)
  1413. {
  1414. if (bio->bi_ioc) {
  1415. put_io_context(bio->bi_ioc);
  1416. bio->bi_ioc = NULL;
  1417. }
  1418. if (bio->bi_css) {
  1419. css_put(bio->bi_css);
  1420. bio->bi_css = NULL;
  1421. }
  1422. }
  1423. #endif /* CONFIG_BLK_CGROUP */
  1424. static void __init biovec_init_slabs(void)
  1425. {
  1426. int i;
  1427. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1428. int size;
  1429. struct biovec_slab *bvs = bvec_slabs + i;
  1430. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1431. bvs->slab = NULL;
  1432. continue;
  1433. }
  1434. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1435. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1436. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1437. }
  1438. }
  1439. static int __init init_bio(void)
  1440. {
  1441. bio_slab_max = 2;
  1442. bio_slab_nr = 0;
  1443. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1444. if (!bio_slabs)
  1445. panic("bio: can't allocate bios\n");
  1446. bio_integrity_init();
  1447. biovec_init_slabs();
  1448. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1449. if (!fs_bio_set)
  1450. panic("bio: can't allocate bios\n");
  1451. if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
  1452. panic("bio: can't create integrity pool\n");
  1453. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1454. sizeof(struct bio_pair));
  1455. if (!bio_split_pool)
  1456. panic("bio: can't create split pool\n");
  1457. return 0;
  1458. }
  1459. subsys_initcall(init_bio);