sched.c 229 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. unsigned int nr_spread_over;
  273. #ifdef CONFIG_FAIR_GROUP_SCHED
  274. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  275. /*
  276. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  277. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  278. * (like users, containers etc.)
  279. *
  280. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  281. * list is used during load balance.
  282. */
  283. int on_list;
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * Maintaining per-cpu shares distribution for group scheduling
  300. *
  301. * load_stamp is the last time we updated the load average
  302. * load_last is the last time we updated the load average and saw load
  303. * load_unacc_exec_time is currently unaccounted execution time
  304. */
  305. u64 load_avg;
  306. u64 load_period;
  307. u64 load_stamp, load_last, load_unacc_exec_time;
  308. unsigned long load_contribution;
  309. #endif
  310. #endif
  311. };
  312. /* Real-Time classes' related field in a runqueue: */
  313. struct rt_rq {
  314. struct rt_prio_array active;
  315. unsigned long rt_nr_running;
  316. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  317. struct {
  318. int curr; /* highest queued rt task prio */
  319. #ifdef CONFIG_SMP
  320. int next; /* next highest */
  321. #endif
  322. } highest_prio;
  323. #endif
  324. #ifdef CONFIG_SMP
  325. unsigned long rt_nr_migratory;
  326. unsigned long rt_nr_total;
  327. int overloaded;
  328. struct plist_head pushable_tasks;
  329. #endif
  330. int rt_throttled;
  331. u64 rt_time;
  332. u64 rt_runtime;
  333. /* Nests inside the rq lock: */
  334. raw_spinlock_t rt_runtime_lock;
  335. #ifdef CONFIG_RT_GROUP_SCHED
  336. unsigned long rt_nr_boosted;
  337. struct rq *rq;
  338. struct list_head leaf_rt_rq_list;
  339. struct task_group *tg;
  340. #endif
  341. };
  342. #ifdef CONFIG_SMP
  343. /*
  344. * We add the notion of a root-domain which will be used to define per-domain
  345. * variables. Each exclusive cpuset essentially defines an island domain by
  346. * fully partitioning the member cpus from any other cpuset. Whenever a new
  347. * exclusive cpuset is created, we also create and attach a new root-domain
  348. * object.
  349. *
  350. */
  351. struct root_domain {
  352. atomic_t refcount;
  353. cpumask_var_t span;
  354. cpumask_var_t online;
  355. /*
  356. * The "RT overload" flag: it gets set if a CPU has more than
  357. * one runnable RT task.
  358. */
  359. cpumask_var_t rto_mask;
  360. atomic_t rto_count;
  361. struct cpupri cpupri;
  362. };
  363. /*
  364. * By default the system creates a single root-domain with all cpus as
  365. * members (mimicking the global state we have today).
  366. */
  367. static struct root_domain def_root_domain;
  368. #endif /* CONFIG_SMP */
  369. /*
  370. * This is the main, per-CPU runqueue data structure.
  371. *
  372. * Locking rule: those places that want to lock multiple runqueues
  373. * (such as the load balancing or the thread migration code), lock
  374. * acquire operations must be ordered by ascending &runqueue.
  375. */
  376. struct rq {
  377. /* runqueue lock: */
  378. raw_spinlock_t lock;
  379. /*
  380. * nr_running and cpu_load should be in the same cacheline because
  381. * remote CPUs use both these fields when doing load calculation.
  382. */
  383. unsigned long nr_running;
  384. #define CPU_LOAD_IDX_MAX 5
  385. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  386. unsigned long last_load_update_tick;
  387. #ifdef CONFIG_NO_HZ
  388. u64 nohz_stamp;
  389. unsigned char nohz_balance_kick;
  390. #endif
  391. unsigned int skip_clock_update;
  392. /* capture load from *all* tasks on this cpu: */
  393. struct load_weight load;
  394. unsigned long nr_load_updates;
  395. u64 nr_switches;
  396. struct cfs_rq cfs;
  397. struct rt_rq rt;
  398. #ifdef CONFIG_FAIR_GROUP_SCHED
  399. /* list of leaf cfs_rq on this cpu: */
  400. struct list_head leaf_cfs_rq_list;
  401. #endif
  402. #ifdef CONFIG_RT_GROUP_SCHED
  403. struct list_head leaf_rt_rq_list;
  404. #endif
  405. /*
  406. * This is part of a global counter where only the total sum
  407. * over all CPUs matters. A task can increase this counter on
  408. * one CPU and if it got migrated afterwards it may decrease
  409. * it on another CPU. Always updated under the runqueue lock:
  410. */
  411. unsigned long nr_uninterruptible;
  412. struct task_struct *curr, *idle, *stop;
  413. unsigned long next_balance;
  414. struct mm_struct *prev_mm;
  415. u64 clock;
  416. u64 clock_task;
  417. atomic_t nr_iowait;
  418. #ifdef CONFIG_SMP
  419. struct root_domain *rd;
  420. struct sched_domain *sd;
  421. unsigned long cpu_power;
  422. unsigned char idle_at_tick;
  423. /* For active balancing */
  424. int post_schedule;
  425. int active_balance;
  426. int push_cpu;
  427. struct cpu_stop_work active_balance_work;
  428. /* cpu of this runqueue: */
  429. int cpu;
  430. int online;
  431. unsigned long avg_load_per_task;
  432. u64 rt_avg;
  433. u64 age_stamp;
  434. u64 idle_stamp;
  435. u64 avg_idle;
  436. #endif
  437. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  438. u64 prev_irq_time;
  439. #endif
  440. /* calc_load related fields */
  441. unsigned long calc_load_update;
  442. long calc_load_active;
  443. #ifdef CONFIG_SCHED_HRTICK
  444. #ifdef CONFIG_SMP
  445. int hrtick_csd_pending;
  446. struct call_single_data hrtick_csd;
  447. #endif
  448. struct hrtimer hrtick_timer;
  449. #endif
  450. #ifdef CONFIG_SCHEDSTATS
  451. /* latency stats */
  452. struct sched_info rq_sched_info;
  453. unsigned long long rq_cpu_time;
  454. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  455. /* sys_sched_yield() stats */
  456. unsigned int yld_count;
  457. /* schedule() stats */
  458. unsigned int sched_switch;
  459. unsigned int sched_count;
  460. unsigned int sched_goidle;
  461. /* try_to_wake_up() stats */
  462. unsigned int ttwu_count;
  463. unsigned int ttwu_local;
  464. #endif
  465. };
  466. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  467. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  468. static inline int cpu_of(struct rq *rq)
  469. {
  470. #ifdef CONFIG_SMP
  471. return rq->cpu;
  472. #else
  473. return 0;
  474. #endif
  475. }
  476. #define rcu_dereference_check_sched_domain(p) \
  477. rcu_dereference_check((p), \
  478. rcu_read_lock_sched_held() || \
  479. lockdep_is_held(&sched_domains_mutex))
  480. /*
  481. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  482. * See detach_destroy_domains: synchronize_sched for details.
  483. *
  484. * The domain tree of any CPU may only be accessed from within
  485. * preempt-disabled sections.
  486. */
  487. #define for_each_domain(cpu, __sd) \
  488. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  489. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  490. #define this_rq() (&__get_cpu_var(runqueues))
  491. #define task_rq(p) cpu_rq(task_cpu(p))
  492. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  493. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  494. #ifdef CONFIG_CGROUP_SCHED
  495. /*
  496. * Return the group to which this tasks belongs.
  497. *
  498. * We use task_subsys_state_check() and extend the RCU verification
  499. * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
  500. * holds that lock for each task it moves into the cgroup. Therefore
  501. * by holding that lock, we pin the task to the current cgroup.
  502. */
  503. static inline struct task_group *task_group(struct task_struct *p)
  504. {
  505. struct task_group *tg;
  506. struct cgroup_subsys_state *css;
  507. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  508. lockdep_is_held(&p->pi_lock));
  509. tg = container_of(css, struct task_group, css);
  510. return autogroup_task_group(p, tg);
  511. }
  512. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  513. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  514. {
  515. #ifdef CONFIG_FAIR_GROUP_SCHED
  516. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  517. p->se.parent = task_group(p)->se[cpu];
  518. #endif
  519. #ifdef CONFIG_RT_GROUP_SCHED
  520. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  521. p->rt.parent = task_group(p)->rt_se[cpu];
  522. #endif
  523. }
  524. #else /* CONFIG_CGROUP_SCHED */
  525. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  526. static inline struct task_group *task_group(struct task_struct *p)
  527. {
  528. return NULL;
  529. }
  530. #endif /* CONFIG_CGROUP_SCHED */
  531. static void update_rq_clock_task(struct rq *rq, s64 delta);
  532. static void update_rq_clock(struct rq *rq)
  533. {
  534. s64 delta;
  535. if (rq->skip_clock_update)
  536. return;
  537. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  538. rq->clock += delta;
  539. update_rq_clock_task(rq, delta);
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  551. * @cpu: the processor in question.
  552. *
  553. * This interface allows printk to be called with the runqueue lock
  554. * held and know whether or not it is OK to wake up the klogd.
  555. */
  556. int runqueue_is_locked(int cpu)
  557. {
  558. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  559. }
  560. /*
  561. * Debugging: various feature bits
  562. */
  563. #define SCHED_FEAT(name, enabled) \
  564. __SCHED_FEAT_##name ,
  565. enum {
  566. #include "sched_features.h"
  567. };
  568. #undef SCHED_FEAT
  569. #define SCHED_FEAT(name, enabled) \
  570. (1UL << __SCHED_FEAT_##name) * enabled |
  571. const_debug unsigned int sysctl_sched_features =
  572. #include "sched_features.h"
  573. 0;
  574. #undef SCHED_FEAT
  575. #ifdef CONFIG_SCHED_DEBUG
  576. #define SCHED_FEAT(name, enabled) \
  577. #name ,
  578. static __read_mostly char *sched_feat_names[] = {
  579. #include "sched_features.h"
  580. NULL
  581. };
  582. #undef SCHED_FEAT
  583. static int sched_feat_show(struct seq_file *m, void *v)
  584. {
  585. int i;
  586. for (i = 0; sched_feat_names[i]; i++) {
  587. if (!(sysctl_sched_features & (1UL << i)))
  588. seq_puts(m, "NO_");
  589. seq_printf(m, "%s ", sched_feat_names[i]);
  590. }
  591. seq_puts(m, "\n");
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_write(struct file *filp, const char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char buf[64];
  599. char *cmp;
  600. int neg = 0;
  601. int i;
  602. if (cnt > 63)
  603. cnt = 63;
  604. if (copy_from_user(&buf, ubuf, cnt))
  605. return -EFAULT;
  606. buf[cnt] = 0;
  607. cmp = strstrip(buf);
  608. if (strncmp(cmp, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  614. if (neg)
  615. sysctl_sched_features &= ~(1UL << i);
  616. else
  617. sysctl_sched_features |= (1UL << i);
  618. break;
  619. }
  620. }
  621. if (!sched_feat_names[i])
  622. return -EINVAL;
  623. *ppos += cnt;
  624. return cnt;
  625. }
  626. static int sched_feat_open(struct inode *inode, struct file *filp)
  627. {
  628. return single_open(filp, sched_feat_show, NULL);
  629. }
  630. static const struct file_operations sched_feat_fops = {
  631. .open = sched_feat_open,
  632. .write = sched_feat_write,
  633. .read = seq_read,
  634. .llseek = seq_lseek,
  635. .release = single_release,
  636. };
  637. static __init int sched_init_debug(void)
  638. {
  639. debugfs_create_file("sched_features", 0644, NULL, NULL,
  640. &sched_feat_fops);
  641. return 0;
  642. }
  643. late_initcall(sched_init_debug);
  644. #endif
  645. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  646. /*
  647. * Number of tasks to iterate in a single balance run.
  648. * Limited because this is done with IRQs disabled.
  649. */
  650. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  651. /*
  652. * period over which we average the RT time consumption, measured
  653. * in ms.
  654. *
  655. * default: 1s
  656. */
  657. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  658. /*
  659. * period over which we measure -rt task cpu usage in us.
  660. * default: 1s
  661. */
  662. unsigned int sysctl_sched_rt_period = 1000000;
  663. static __read_mostly int scheduler_running;
  664. /*
  665. * part of the period that we allow rt tasks to run in us.
  666. * default: 0.95s
  667. */
  668. int sysctl_sched_rt_runtime = 950000;
  669. static inline u64 global_rt_period(void)
  670. {
  671. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  672. }
  673. static inline u64 global_rt_runtime(void)
  674. {
  675. if (sysctl_sched_rt_runtime < 0)
  676. return RUNTIME_INF;
  677. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  678. }
  679. #ifndef prepare_arch_switch
  680. # define prepare_arch_switch(next) do { } while (0)
  681. #endif
  682. #ifndef finish_arch_switch
  683. # define finish_arch_switch(prev) do { } while (0)
  684. #endif
  685. static inline int task_current(struct rq *rq, struct task_struct *p)
  686. {
  687. return rq->curr == p;
  688. }
  689. static inline int task_running(struct rq *rq, struct task_struct *p)
  690. {
  691. #ifdef CONFIG_SMP
  692. return p->on_cpu;
  693. #else
  694. return task_current(rq, p);
  695. #endif
  696. }
  697. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  698. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  699. {
  700. #ifdef CONFIG_SMP
  701. /*
  702. * We can optimise this out completely for !SMP, because the
  703. * SMP rebalancing from interrupt is the only thing that cares
  704. * here.
  705. */
  706. next->on_cpu = 1;
  707. #endif
  708. }
  709. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  710. {
  711. #ifdef CONFIG_SMP
  712. /*
  713. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  714. * We must ensure this doesn't happen until the switch is completely
  715. * finished.
  716. */
  717. smp_wmb();
  718. prev->on_cpu = 0;
  719. #endif
  720. #ifdef CONFIG_DEBUG_SPINLOCK
  721. /* this is a valid case when another task releases the spinlock */
  722. rq->lock.owner = current;
  723. #endif
  724. /*
  725. * If we are tracking spinlock dependencies then we have to
  726. * fix up the runqueue lock - which gets 'carried over' from
  727. * prev into current:
  728. */
  729. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  730. raw_spin_unlock_irq(&rq->lock);
  731. }
  732. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->on_cpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->on_cpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * __task_rq_lock - lock the rq @p resides on.
  767. */
  768. static inline struct rq *__task_rq_lock(struct task_struct *p)
  769. __acquires(rq->lock)
  770. {
  771. struct rq *rq;
  772. lockdep_assert_held(&p->pi_lock);
  773. for (;;) {
  774. rq = task_rq(p);
  775. raw_spin_lock(&rq->lock);
  776. if (likely(rq == task_rq(p)))
  777. return rq;
  778. raw_spin_unlock(&rq->lock);
  779. }
  780. }
  781. /*
  782. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  783. */
  784. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  785. __acquires(p->pi_lock)
  786. __acquires(rq->lock)
  787. {
  788. struct rq *rq;
  789. for (;;) {
  790. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  791. rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. raw_spin_unlock(&rq->lock);
  796. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  797. }
  798. }
  799. static void __task_rq_unlock(struct rq *rq)
  800. __releases(rq->lock)
  801. {
  802. raw_spin_unlock(&rq->lock);
  803. }
  804. static inline void
  805. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  806. __releases(rq->lock)
  807. __releases(p->pi_lock)
  808. {
  809. raw_spin_unlock(&rq->lock);
  810. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  811. }
  812. /*
  813. * this_rq_lock - lock this runqueue and disable interrupts.
  814. */
  815. static struct rq *this_rq_lock(void)
  816. __acquires(rq->lock)
  817. {
  818. struct rq *rq;
  819. local_irq_disable();
  820. rq = this_rq();
  821. raw_spin_lock(&rq->lock);
  822. return rq;
  823. }
  824. #ifdef CONFIG_SCHED_HRTICK
  825. /*
  826. * Use HR-timers to deliver accurate preemption points.
  827. *
  828. * Its all a bit involved since we cannot program an hrt while holding the
  829. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  830. * reschedule event.
  831. *
  832. * When we get rescheduled we reprogram the hrtick_timer outside of the
  833. * rq->lock.
  834. */
  835. /*
  836. * Use hrtick when:
  837. * - enabled by features
  838. * - hrtimer is actually high res
  839. */
  840. static inline int hrtick_enabled(struct rq *rq)
  841. {
  842. if (!sched_feat(HRTICK))
  843. return 0;
  844. if (!cpu_active(cpu_of(rq)))
  845. return 0;
  846. return hrtimer_is_hres_active(&rq->hrtick_timer);
  847. }
  848. static void hrtick_clear(struct rq *rq)
  849. {
  850. if (hrtimer_active(&rq->hrtick_timer))
  851. hrtimer_cancel(&rq->hrtick_timer);
  852. }
  853. /*
  854. * High-resolution timer tick.
  855. * Runs from hardirq context with interrupts disabled.
  856. */
  857. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  858. {
  859. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  860. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  861. raw_spin_lock(&rq->lock);
  862. update_rq_clock(rq);
  863. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  864. raw_spin_unlock(&rq->lock);
  865. return HRTIMER_NORESTART;
  866. }
  867. #ifdef CONFIG_SMP
  868. /*
  869. * called from hardirq (IPI) context
  870. */
  871. static void __hrtick_start(void *arg)
  872. {
  873. struct rq *rq = arg;
  874. raw_spin_lock(&rq->lock);
  875. hrtimer_restart(&rq->hrtick_timer);
  876. rq->hrtick_csd_pending = 0;
  877. raw_spin_unlock(&rq->lock);
  878. }
  879. /*
  880. * Called to set the hrtick timer state.
  881. *
  882. * called with rq->lock held and irqs disabled
  883. */
  884. static void hrtick_start(struct rq *rq, u64 delay)
  885. {
  886. struct hrtimer *timer = &rq->hrtick_timer;
  887. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  888. hrtimer_set_expires(timer, time);
  889. if (rq == this_rq()) {
  890. hrtimer_restart(timer);
  891. } else if (!rq->hrtick_csd_pending) {
  892. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  893. rq->hrtick_csd_pending = 1;
  894. }
  895. }
  896. static int
  897. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  898. {
  899. int cpu = (int)(long)hcpu;
  900. switch (action) {
  901. case CPU_UP_CANCELED:
  902. case CPU_UP_CANCELED_FROZEN:
  903. case CPU_DOWN_PREPARE:
  904. case CPU_DOWN_PREPARE_FROZEN:
  905. case CPU_DEAD:
  906. case CPU_DEAD_FROZEN:
  907. hrtick_clear(cpu_rq(cpu));
  908. return NOTIFY_OK;
  909. }
  910. return NOTIFY_DONE;
  911. }
  912. static __init void init_hrtick(void)
  913. {
  914. hotcpu_notifier(hotplug_hrtick, 0);
  915. }
  916. #else
  917. /*
  918. * Called to set the hrtick timer state.
  919. *
  920. * called with rq->lock held and irqs disabled
  921. */
  922. static void hrtick_start(struct rq *rq, u64 delay)
  923. {
  924. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  925. HRTIMER_MODE_REL_PINNED, 0);
  926. }
  927. static inline void init_hrtick(void)
  928. {
  929. }
  930. #endif /* CONFIG_SMP */
  931. static void init_rq_hrtick(struct rq *rq)
  932. {
  933. #ifdef CONFIG_SMP
  934. rq->hrtick_csd_pending = 0;
  935. rq->hrtick_csd.flags = 0;
  936. rq->hrtick_csd.func = __hrtick_start;
  937. rq->hrtick_csd.info = rq;
  938. #endif
  939. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  940. rq->hrtick_timer.function = hrtick;
  941. }
  942. #else /* CONFIG_SCHED_HRTICK */
  943. static inline void hrtick_clear(struct rq *rq)
  944. {
  945. }
  946. static inline void init_rq_hrtick(struct rq *rq)
  947. {
  948. }
  949. static inline void init_hrtick(void)
  950. {
  951. }
  952. #endif /* CONFIG_SCHED_HRTICK */
  953. /*
  954. * resched_task - mark a task 'to be rescheduled now'.
  955. *
  956. * On UP this means the setting of the need_resched flag, on SMP it
  957. * might also involve a cross-CPU call to trigger the scheduler on
  958. * the target CPU.
  959. */
  960. #ifdef CONFIG_SMP
  961. #ifndef tsk_is_polling
  962. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  963. #endif
  964. static void resched_task(struct task_struct *p)
  965. {
  966. int cpu;
  967. assert_raw_spin_locked(&task_rq(p)->lock);
  968. if (test_tsk_need_resched(p))
  969. return;
  970. set_tsk_need_resched(p);
  971. cpu = task_cpu(p);
  972. if (cpu == smp_processor_id())
  973. return;
  974. /* NEED_RESCHED must be visible before we test polling */
  975. smp_mb();
  976. if (!tsk_is_polling(p))
  977. smp_send_reschedule(cpu);
  978. }
  979. static void resched_cpu(int cpu)
  980. {
  981. struct rq *rq = cpu_rq(cpu);
  982. unsigned long flags;
  983. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  984. return;
  985. resched_task(cpu_curr(cpu));
  986. raw_spin_unlock_irqrestore(&rq->lock, flags);
  987. }
  988. #ifdef CONFIG_NO_HZ
  989. /*
  990. * In the semi idle case, use the nearest busy cpu for migrating timers
  991. * from an idle cpu. This is good for power-savings.
  992. *
  993. * We don't do similar optimization for completely idle system, as
  994. * selecting an idle cpu will add more delays to the timers than intended
  995. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  996. */
  997. int get_nohz_timer_target(void)
  998. {
  999. int cpu = smp_processor_id();
  1000. int i;
  1001. struct sched_domain *sd;
  1002. for_each_domain(cpu, sd) {
  1003. for_each_cpu(i, sched_domain_span(sd))
  1004. if (!idle_cpu(i))
  1005. return i;
  1006. }
  1007. return cpu;
  1008. }
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. /*
  1054. * Inline assembly required to prevent the compiler
  1055. * optimising this loop into a divmod call.
  1056. * See __iter_div_u64_rem() for another example of this.
  1057. */
  1058. asm("" : "+rm" (rq->age_stamp));
  1059. rq->age_stamp += period;
  1060. rq->rt_avg /= 2;
  1061. }
  1062. }
  1063. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1064. {
  1065. rq->rt_avg += rt_delta;
  1066. sched_avg_update(rq);
  1067. }
  1068. #else /* !CONFIG_SMP */
  1069. static void resched_task(struct task_struct *p)
  1070. {
  1071. assert_raw_spin_locked(&task_rq(p)->lock);
  1072. set_tsk_need_resched(p);
  1073. }
  1074. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1075. {
  1076. }
  1077. static void sched_avg_update(struct rq *rq)
  1078. {
  1079. }
  1080. #endif /* CONFIG_SMP */
  1081. #if BITS_PER_LONG == 32
  1082. # define WMULT_CONST (~0UL)
  1083. #else
  1084. # define WMULT_CONST (1UL << 32)
  1085. #endif
  1086. #define WMULT_SHIFT 32
  1087. /*
  1088. * Shift right and round:
  1089. */
  1090. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1091. /*
  1092. * delta *= weight / lw
  1093. */
  1094. static unsigned long
  1095. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1096. struct load_weight *lw)
  1097. {
  1098. u64 tmp;
  1099. if (!lw->inv_weight) {
  1100. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1101. lw->inv_weight = 1;
  1102. else
  1103. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1104. / (lw->weight+1);
  1105. }
  1106. tmp = (u64)delta_exec * weight;
  1107. /*
  1108. * Check whether we'd overflow the 64-bit multiplication:
  1109. */
  1110. if (unlikely(tmp > WMULT_CONST))
  1111. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1112. WMULT_SHIFT/2);
  1113. else
  1114. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1115. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1116. }
  1117. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1118. {
  1119. lw->weight += inc;
  1120. lw->inv_weight = 0;
  1121. }
  1122. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1123. {
  1124. lw->weight -= dec;
  1125. lw->inv_weight = 0;
  1126. }
  1127. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1128. {
  1129. lw->weight = w;
  1130. lw->inv_weight = 0;
  1131. }
  1132. /*
  1133. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1134. * of tasks with abnormal "nice" values across CPUs the contribution that
  1135. * each task makes to its run queue's load is weighted according to its
  1136. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1137. * scaled version of the new time slice allocation that they receive on time
  1138. * slice expiry etc.
  1139. */
  1140. #define WEIGHT_IDLEPRIO 3
  1141. #define WMULT_IDLEPRIO 1431655765
  1142. /*
  1143. * Nice levels are multiplicative, with a gentle 10% change for every
  1144. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1145. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1146. * that remained on nice 0.
  1147. *
  1148. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1149. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1150. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1151. * If a task goes up by ~10% and another task goes down by ~10% then
  1152. * the relative distance between them is ~25%.)
  1153. */
  1154. static const int prio_to_weight[40] = {
  1155. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1156. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1157. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1158. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1159. /* 0 */ 1024, 820, 655, 526, 423,
  1160. /* 5 */ 335, 272, 215, 172, 137,
  1161. /* 10 */ 110, 87, 70, 56, 45,
  1162. /* 15 */ 36, 29, 23, 18, 15,
  1163. };
  1164. /*
  1165. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1166. *
  1167. * In cases where the weight does not change often, we can use the
  1168. * precalculated inverse to speed up arithmetics by turning divisions
  1169. * into multiplications:
  1170. */
  1171. static const u32 prio_to_wmult[40] = {
  1172. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1173. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1174. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1175. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1176. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1177. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1178. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1179. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1180. };
  1181. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1182. enum cpuacct_stat_index {
  1183. CPUACCT_STAT_USER, /* ... user mode */
  1184. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1185. CPUACCT_STAT_NSTATS,
  1186. };
  1187. #ifdef CONFIG_CGROUP_CPUACCT
  1188. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1189. static void cpuacct_update_stats(struct task_struct *tsk,
  1190. enum cpuacct_stat_index idx, cputime_t val);
  1191. #else
  1192. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1193. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1194. enum cpuacct_stat_index idx, cputime_t val) {}
  1195. #endif
  1196. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1197. {
  1198. update_load_add(&rq->load, load);
  1199. }
  1200. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1201. {
  1202. update_load_sub(&rq->load, load);
  1203. }
  1204. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1205. typedef int (*tg_visitor)(struct task_group *, void *);
  1206. /*
  1207. * Iterate the full tree, calling @down when first entering a node and @up when
  1208. * leaving it for the final time.
  1209. */
  1210. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1211. {
  1212. struct task_group *parent, *child;
  1213. int ret;
  1214. rcu_read_lock();
  1215. parent = &root_task_group;
  1216. down:
  1217. ret = (*down)(parent, data);
  1218. if (ret)
  1219. goto out_unlock;
  1220. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1221. parent = child;
  1222. goto down;
  1223. up:
  1224. continue;
  1225. }
  1226. ret = (*up)(parent, data);
  1227. if (ret)
  1228. goto out_unlock;
  1229. child = parent;
  1230. parent = parent->parent;
  1231. if (parent)
  1232. goto up;
  1233. out_unlock:
  1234. rcu_read_unlock();
  1235. return ret;
  1236. }
  1237. static int tg_nop(struct task_group *tg, void *data)
  1238. {
  1239. return 0;
  1240. }
  1241. #endif
  1242. #ifdef CONFIG_SMP
  1243. /* Used instead of source_load when we know the type == 0 */
  1244. static unsigned long weighted_cpuload(const int cpu)
  1245. {
  1246. return cpu_rq(cpu)->load.weight;
  1247. }
  1248. /*
  1249. * Return a low guess at the load of a migration-source cpu weighted
  1250. * according to the scheduling class and "nice" value.
  1251. *
  1252. * We want to under-estimate the load of migration sources, to
  1253. * balance conservatively.
  1254. */
  1255. static unsigned long source_load(int cpu, int type)
  1256. {
  1257. struct rq *rq = cpu_rq(cpu);
  1258. unsigned long total = weighted_cpuload(cpu);
  1259. if (type == 0 || !sched_feat(LB_BIAS))
  1260. return total;
  1261. return min(rq->cpu_load[type-1], total);
  1262. }
  1263. /*
  1264. * Return a high guess at the load of a migration-target cpu weighted
  1265. * according to the scheduling class and "nice" value.
  1266. */
  1267. static unsigned long target_load(int cpu, int type)
  1268. {
  1269. struct rq *rq = cpu_rq(cpu);
  1270. unsigned long total = weighted_cpuload(cpu);
  1271. if (type == 0 || !sched_feat(LB_BIAS))
  1272. return total;
  1273. return max(rq->cpu_load[type-1], total);
  1274. }
  1275. static unsigned long power_of(int cpu)
  1276. {
  1277. return cpu_rq(cpu)->cpu_power;
  1278. }
  1279. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1280. static unsigned long cpu_avg_load_per_task(int cpu)
  1281. {
  1282. struct rq *rq = cpu_rq(cpu);
  1283. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1284. if (nr_running)
  1285. rq->avg_load_per_task = rq->load.weight / nr_running;
  1286. else
  1287. rq->avg_load_per_task = 0;
  1288. return rq->avg_load_per_task;
  1289. }
  1290. #ifdef CONFIG_FAIR_GROUP_SCHED
  1291. /*
  1292. * Compute the cpu's hierarchical load factor for each task group.
  1293. * This needs to be done in a top-down fashion because the load of a child
  1294. * group is a fraction of its parents load.
  1295. */
  1296. static int tg_load_down(struct task_group *tg, void *data)
  1297. {
  1298. unsigned long load;
  1299. long cpu = (long)data;
  1300. if (!tg->parent) {
  1301. load = cpu_rq(cpu)->load.weight;
  1302. } else {
  1303. load = tg->parent->cfs_rq[cpu]->h_load;
  1304. load *= tg->se[cpu]->load.weight;
  1305. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1306. }
  1307. tg->cfs_rq[cpu]->h_load = load;
  1308. return 0;
  1309. }
  1310. static void update_h_load(long cpu)
  1311. {
  1312. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1313. }
  1314. #endif
  1315. #ifdef CONFIG_PREEMPT
  1316. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1317. /*
  1318. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1319. * way at the expense of forcing extra atomic operations in all
  1320. * invocations. This assures that the double_lock is acquired using the
  1321. * same underlying policy as the spinlock_t on this architecture, which
  1322. * reduces latency compared to the unfair variant below. However, it
  1323. * also adds more overhead and therefore may reduce throughput.
  1324. */
  1325. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1326. __releases(this_rq->lock)
  1327. __acquires(busiest->lock)
  1328. __acquires(this_rq->lock)
  1329. {
  1330. raw_spin_unlock(&this_rq->lock);
  1331. double_rq_lock(this_rq, busiest);
  1332. return 1;
  1333. }
  1334. #else
  1335. /*
  1336. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1337. * latency by eliminating extra atomic operations when the locks are
  1338. * already in proper order on entry. This favors lower cpu-ids and will
  1339. * grant the double lock to lower cpus over higher ids under contention,
  1340. * regardless of entry order into the function.
  1341. */
  1342. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1343. __releases(this_rq->lock)
  1344. __acquires(busiest->lock)
  1345. __acquires(this_rq->lock)
  1346. {
  1347. int ret = 0;
  1348. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1349. if (busiest < this_rq) {
  1350. raw_spin_unlock(&this_rq->lock);
  1351. raw_spin_lock(&busiest->lock);
  1352. raw_spin_lock_nested(&this_rq->lock,
  1353. SINGLE_DEPTH_NESTING);
  1354. ret = 1;
  1355. } else
  1356. raw_spin_lock_nested(&busiest->lock,
  1357. SINGLE_DEPTH_NESTING);
  1358. }
  1359. return ret;
  1360. }
  1361. #endif /* CONFIG_PREEMPT */
  1362. /*
  1363. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1364. */
  1365. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1366. {
  1367. if (unlikely(!irqs_disabled())) {
  1368. /* printk() doesn't work good under rq->lock */
  1369. raw_spin_unlock(&this_rq->lock);
  1370. BUG_ON(1);
  1371. }
  1372. return _double_lock_balance(this_rq, busiest);
  1373. }
  1374. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1375. __releases(busiest->lock)
  1376. {
  1377. raw_spin_unlock(&busiest->lock);
  1378. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1379. }
  1380. /*
  1381. * double_rq_lock - safely lock two runqueues
  1382. *
  1383. * Note this does not disable interrupts like task_rq_lock,
  1384. * you need to do so manually before calling.
  1385. */
  1386. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1387. __acquires(rq1->lock)
  1388. __acquires(rq2->lock)
  1389. {
  1390. BUG_ON(!irqs_disabled());
  1391. if (rq1 == rq2) {
  1392. raw_spin_lock(&rq1->lock);
  1393. __acquire(rq2->lock); /* Fake it out ;) */
  1394. } else {
  1395. if (rq1 < rq2) {
  1396. raw_spin_lock(&rq1->lock);
  1397. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1398. } else {
  1399. raw_spin_lock(&rq2->lock);
  1400. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1401. }
  1402. }
  1403. }
  1404. /*
  1405. * double_rq_unlock - safely unlock two runqueues
  1406. *
  1407. * Note this does not restore interrupts like task_rq_unlock,
  1408. * you need to do so manually after calling.
  1409. */
  1410. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1411. __releases(rq1->lock)
  1412. __releases(rq2->lock)
  1413. {
  1414. raw_spin_unlock(&rq1->lock);
  1415. if (rq1 != rq2)
  1416. raw_spin_unlock(&rq2->lock);
  1417. else
  1418. __release(rq2->lock);
  1419. }
  1420. #else /* CONFIG_SMP */
  1421. /*
  1422. * double_rq_lock - safely lock two runqueues
  1423. *
  1424. * Note this does not disable interrupts like task_rq_lock,
  1425. * you need to do so manually before calling.
  1426. */
  1427. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1428. __acquires(rq1->lock)
  1429. __acquires(rq2->lock)
  1430. {
  1431. BUG_ON(!irqs_disabled());
  1432. BUG_ON(rq1 != rq2);
  1433. raw_spin_lock(&rq1->lock);
  1434. __acquire(rq2->lock); /* Fake it out ;) */
  1435. }
  1436. /*
  1437. * double_rq_unlock - safely unlock two runqueues
  1438. *
  1439. * Note this does not restore interrupts like task_rq_unlock,
  1440. * you need to do so manually after calling.
  1441. */
  1442. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1443. __releases(rq1->lock)
  1444. __releases(rq2->lock)
  1445. {
  1446. BUG_ON(rq1 != rq2);
  1447. raw_spin_unlock(&rq1->lock);
  1448. __release(rq2->lock);
  1449. }
  1450. #endif
  1451. static void calc_load_account_idle(struct rq *this_rq);
  1452. static void update_sysctl(void);
  1453. static int get_update_sysctl_factor(void);
  1454. static void update_cpu_load(struct rq *this_rq);
  1455. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1456. {
  1457. set_task_rq(p, cpu);
  1458. #ifdef CONFIG_SMP
  1459. /*
  1460. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1461. * successfuly executed on another CPU. We must ensure that updates of
  1462. * per-task data have been completed by this moment.
  1463. */
  1464. smp_wmb();
  1465. task_thread_info(p)->cpu = cpu;
  1466. #endif
  1467. }
  1468. static const struct sched_class rt_sched_class;
  1469. #define sched_class_highest (&stop_sched_class)
  1470. #define for_each_class(class) \
  1471. for (class = sched_class_highest; class; class = class->next)
  1472. #include "sched_stats.h"
  1473. static void inc_nr_running(struct rq *rq)
  1474. {
  1475. rq->nr_running++;
  1476. }
  1477. static void dec_nr_running(struct rq *rq)
  1478. {
  1479. rq->nr_running--;
  1480. }
  1481. static void set_load_weight(struct task_struct *p)
  1482. {
  1483. /*
  1484. * SCHED_IDLE tasks get minimal weight:
  1485. */
  1486. if (p->policy == SCHED_IDLE) {
  1487. p->se.load.weight = WEIGHT_IDLEPRIO;
  1488. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1489. return;
  1490. }
  1491. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1492. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1493. }
  1494. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1495. {
  1496. update_rq_clock(rq);
  1497. sched_info_queued(p);
  1498. p->sched_class->enqueue_task(rq, p, flags);
  1499. }
  1500. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1501. {
  1502. update_rq_clock(rq);
  1503. sched_info_dequeued(p);
  1504. p->sched_class->dequeue_task(rq, p, flags);
  1505. }
  1506. /*
  1507. * activate_task - move a task to the runqueue.
  1508. */
  1509. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1510. {
  1511. if (task_contributes_to_load(p))
  1512. rq->nr_uninterruptible--;
  1513. enqueue_task(rq, p, flags);
  1514. inc_nr_running(rq);
  1515. }
  1516. /*
  1517. * deactivate_task - remove a task from the runqueue.
  1518. */
  1519. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1520. {
  1521. if (task_contributes_to_load(p))
  1522. rq->nr_uninterruptible++;
  1523. dequeue_task(rq, p, flags);
  1524. dec_nr_running(rq);
  1525. }
  1526. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1527. /*
  1528. * There are no locks covering percpu hardirq/softirq time.
  1529. * They are only modified in account_system_vtime, on corresponding CPU
  1530. * with interrupts disabled. So, writes are safe.
  1531. * They are read and saved off onto struct rq in update_rq_clock().
  1532. * This may result in other CPU reading this CPU's irq time and can
  1533. * race with irq/account_system_vtime on this CPU. We would either get old
  1534. * or new value with a side effect of accounting a slice of irq time to wrong
  1535. * task when irq is in progress while we read rq->clock. That is a worthy
  1536. * compromise in place of having locks on each irq in account_system_time.
  1537. */
  1538. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1539. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1540. static DEFINE_PER_CPU(u64, irq_start_time);
  1541. static int sched_clock_irqtime;
  1542. void enable_sched_clock_irqtime(void)
  1543. {
  1544. sched_clock_irqtime = 1;
  1545. }
  1546. void disable_sched_clock_irqtime(void)
  1547. {
  1548. sched_clock_irqtime = 0;
  1549. }
  1550. #ifndef CONFIG_64BIT
  1551. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1552. static inline void irq_time_write_begin(void)
  1553. {
  1554. __this_cpu_inc(irq_time_seq.sequence);
  1555. smp_wmb();
  1556. }
  1557. static inline void irq_time_write_end(void)
  1558. {
  1559. smp_wmb();
  1560. __this_cpu_inc(irq_time_seq.sequence);
  1561. }
  1562. static inline u64 irq_time_read(int cpu)
  1563. {
  1564. u64 irq_time;
  1565. unsigned seq;
  1566. do {
  1567. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1568. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1569. per_cpu(cpu_hardirq_time, cpu);
  1570. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1571. return irq_time;
  1572. }
  1573. #else /* CONFIG_64BIT */
  1574. static inline void irq_time_write_begin(void)
  1575. {
  1576. }
  1577. static inline void irq_time_write_end(void)
  1578. {
  1579. }
  1580. static inline u64 irq_time_read(int cpu)
  1581. {
  1582. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1583. }
  1584. #endif /* CONFIG_64BIT */
  1585. /*
  1586. * Called before incrementing preempt_count on {soft,}irq_enter
  1587. * and before decrementing preempt_count on {soft,}irq_exit.
  1588. */
  1589. void account_system_vtime(struct task_struct *curr)
  1590. {
  1591. unsigned long flags;
  1592. s64 delta;
  1593. int cpu;
  1594. if (!sched_clock_irqtime)
  1595. return;
  1596. local_irq_save(flags);
  1597. cpu = smp_processor_id();
  1598. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1599. __this_cpu_add(irq_start_time, delta);
  1600. irq_time_write_begin();
  1601. /*
  1602. * We do not account for softirq time from ksoftirqd here.
  1603. * We want to continue accounting softirq time to ksoftirqd thread
  1604. * in that case, so as not to confuse scheduler with a special task
  1605. * that do not consume any time, but still wants to run.
  1606. */
  1607. if (hardirq_count())
  1608. __this_cpu_add(cpu_hardirq_time, delta);
  1609. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1610. __this_cpu_add(cpu_softirq_time, delta);
  1611. irq_time_write_end();
  1612. local_irq_restore(flags);
  1613. }
  1614. EXPORT_SYMBOL_GPL(account_system_vtime);
  1615. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1616. {
  1617. s64 irq_delta;
  1618. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1619. /*
  1620. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1621. * this case when a previous update_rq_clock() happened inside a
  1622. * {soft,}irq region.
  1623. *
  1624. * When this happens, we stop ->clock_task and only update the
  1625. * prev_irq_time stamp to account for the part that fit, so that a next
  1626. * update will consume the rest. This ensures ->clock_task is
  1627. * monotonic.
  1628. *
  1629. * It does however cause some slight miss-attribution of {soft,}irq
  1630. * time, a more accurate solution would be to update the irq_time using
  1631. * the current rq->clock timestamp, except that would require using
  1632. * atomic ops.
  1633. */
  1634. if (irq_delta > delta)
  1635. irq_delta = delta;
  1636. rq->prev_irq_time += irq_delta;
  1637. delta -= irq_delta;
  1638. rq->clock_task += delta;
  1639. if (irq_delta && sched_feat(NONIRQ_POWER))
  1640. sched_rt_avg_update(rq, irq_delta);
  1641. }
  1642. static int irqtime_account_hi_update(void)
  1643. {
  1644. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1645. unsigned long flags;
  1646. u64 latest_ns;
  1647. int ret = 0;
  1648. local_irq_save(flags);
  1649. latest_ns = this_cpu_read(cpu_hardirq_time);
  1650. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1651. ret = 1;
  1652. local_irq_restore(flags);
  1653. return ret;
  1654. }
  1655. static int irqtime_account_si_update(void)
  1656. {
  1657. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1658. unsigned long flags;
  1659. u64 latest_ns;
  1660. int ret = 0;
  1661. local_irq_save(flags);
  1662. latest_ns = this_cpu_read(cpu_softirq_time);
  1663. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1664. ret = 1;
  1665. local_irq_restore(flags);
  1666. return ret;
  1667. }
  1668. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1669. #define sched_clock_irqtime (0)
  1670. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1671. {
  1672. rq->clock_task += delta;
  1673. }
  1674. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1675. #include "sched_idletask.c"
  1676. #include "sched_fair.c"
  1677. #include "sched_rt.c"
  1678. #include "sched_autogroup.c"
  1679. #include "sched_stoptask.c"
  1680. #ifdef CONFIG_SCHED_DEBUG
  1681. # include "sched_debug.c"
  1682. #endif
  1683. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1684. {
  1685. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1686. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1687. if (stop) {
  1688. /*
  1689. * Make it appear like a SCHED_FIFO task, its something
  1690. * userspace knows about and won't get confused about.
  1691. *
  1692. * Also, it will make PI more or less work without too
  1693. * much confusion -- but then, stop work should not
  1694. * rely on PI working anyway.
  1695. */
  1696. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1697. stop->sched_class = &stop_sched_class;
  1698. }
  1699. cpu_rq(cpu)->stop = stop;
  1700. if (old_stop) {
  1701. /*
  1702. * Reset it back to a normal scheduling class so that
  1703. * it can die in pieces.
  1704. */
  1705. old_stop->sched_class = &rt_sched_class;
  1706. }
  1707. }
  1708. /*
  1709. * __normal_prio - return the priority that is based on the static prio
  1710. */
  1711. static inline int __normal_prio(struct task_struct *p)
  1712. {
  1713. return p->static_prio;
  1714. }
  1715. /*
  1716. * Calculate the expected normal priority: i.e. priority
  1717. * without taking RT-inheritance into account. Might be
  1718. * boosted by interactivity modifiers. Changes upon fork,
  1719. * setprio syscalls, and whenever the interactivity
  1720. * estimator recalculates.
  1721. */
  1722. static inline int normal_prio(struct task_struct *p)
  1723. {
  1724. int prio;
  1725. if (task_has_rt_policy(p))
  1726. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1727. else
  1728. prio = __normal_prio(p);
  1729. return prio;
  1730. }
  1731. /*
  1732. * Calculate the current priority, i.e. the priority
  1733. * taken into account by the scheduler. This value might
  1734. * be boosted by RT tasks, or might be boosted by
  1735. * interactivity modifiers. Will be RT if the task got
  1736. * RT-boosted. If not then it returns p->normal_prio.
  1737. */
  1738. static int effective_prio(struct task_struct *p)
  1739. {
  1740. p->normal_prio = normal_prio(p);
  1741. /*
  1742. * If we are RT tasks or we were boosted to RT priority,
  1743. * keep the priority unchanged. Otherwise, update priority
  1744. * to the normal priority:
  1745. */
  1746. if (!rt_prio(p->prio))
  1747. return p->normal_prio;
  1748. return p->prio;
  1749. }
  1750. /**
  1751. * task_curr - is this task currently executing on a CPU?
  1752. * @p: the task in question.
  1753. */
  1754. inline int task_curr(const struct task_struct *p)
  1755. {
  1756. return cpu_curr(task_cpu(p)) == p;
  1757. }
  1758. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1759. const struct sched_class *prev_class,
  1760. int oldprio)
  1761. {
  1762. if (prev_class != p->sched_class) {
  1763. if (prev_class->switched_from)
  1764. prev_class->switched_from(rq, p);
  1765. p->sched_class->switched_to(rq, p);
  1766. } else if (oldprio != p->prio)
  1767. p->sched_class->prio_changed(rq, p, oldprio);
  1768. }
  1769. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1770. {
  1771. const struct sched_class *class;
  1772. if (p->sched_class == rq->curr->sched_class) {
  1773. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1774. } else {
  1775. for_each_class(class) {
  1776. if (class == rq->curr->sched_class)
  1777. break;
  1778. if (class == p->sched_class) {
  1779. resched_task(rq->curr);
  1780. break;
  1781. }
  1782. }
  1783. }
  1784. /*
  1785. * A queue event has occurred, and we're going to schedule. In
  1786. * this case, we can save a useless back to back clock update.
  1787. */
  1788. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1789. rq->skip_clock_update = 1;
  1790. }
  1791. #ifdef CONFIG_SMP
  1792. /*
  1793. * Is this task likely cache-hot:
  1794. */
  1795. static int
  1796. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1797. {
  1798. s64 delta;
  1799. if (p->sched_class != &fair_sched_class)
  1800. return 0;
  1801. if (unlikely(p->policy == SCHED_IDLE))
  1802. return 0;
  1803. /*
  1804. * Buddy candidates are cache hot:
  1805. */
  1806. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1807. (&p->se == cfs_rq_of(&p->se)->next ||
  1808. &p->se == cfs_rq_of(&p->se)->last))
  1809. return 1;
  1810. if (sysctl_sched_migration_cost == -1)
  1811. return 1;
  1812. if (sysctl_sched_migration_cost == 0)
  1813. return 0;
  1814. delta = now - p->se.exec_start;
  1815. return delta < (s64)sysctl_sched_migration_cost;
  1816. }
  1817. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1818. {
  1819. #ifdef CONFIG_SCHED_DEBUG
  1820. /*
  1821. * We should never call set_task_cpu() on a blocked task,
  1822. * ttwu() will sort out the placement.
  1823. */
  1824. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1825. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1826. #ifdef CONFIG_LOCKDEP
  1827. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1828. lockdep_is_held(&task_rq(p)->lock)));
  1829. #endif
  1830. #endif
  1831. trace_sched_migrate_task(p, new_cpu);
  1832. if (task_cpu(p) != new_cpu) {
  1833. p->se.nr_migrations++;
  1834. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1835. }
  1836. __set_task_cpu(p, new_cpu);
  1837. }
  1838. struct migration_arg {
  1839. struct task_struct *task;
  1840. int dest_cpu;
  1841. };
  1842. static int migration_cpu_stop(void *data);
  1843. /*
  1844. * The task's runqueue lock must be held.
  1845. * Returns true if you have to wait for migration thread.
  1846. */
  1847. static bool need_migrate_task(struct task_struct *p)
  1848. {
  1849. /*
  1850. * If the task is not on a runqueue (and not running), then
  1851. * the next wake-up will properly place the task.
  1852. */
  1853. bool running = p->on_rq || p->on_cpu;
  1854. smp_rmb(); /* finish_lock_switch() */
  1855. return running;
  1856. }
  1857. /*
  1858. * wait_task_inactive - wait for a thread to unschedule.
  1859. *
  1860. * If @match_state is nonzero, it's the @p->state value just checked and
  1861. * not expected to change. If it changes, i.e. @p might have woken up,
  1862. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1863. * we return a positive number (its total switch count). If a second call
  1864. * a short while later returns the same number, the caller can be sure that
  1865. * @p has remained unscheduled the whole time.
  1866. *
  1867. * The caller must ensure that the task *will* unschedule sometime soon,
  1868. * else this function might spin for a *long* time. This function can't
  1869. * be called with interrupts off, or it may introduce deadlock with
  1870. * smp_call_function() if an IPI is sent by the same process we are
  1871. * waiting to become inactive.
  1872. */
  1873. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1874. {
  1875. unsigned long flags;
  1876. int running, on_rq;
  1877. unsigned long ncsw;
  1878. struct rq *rq;
  1879. for (;;) {
  1880. /*
  1881. * We do the initial early heuristics without holding
  1882. * any task-queue locks at all. We'll only try to get
  1883. * the runqueue lock when things look like they will
  1884. * work out!
  1885. */
  1886. rq = task_rq(p);
  1887. /*
  1888. * If the task is actively running on another CPU
  1889. * still, just relax and busy-wait without holding
  1890. * any locks.
  1891. *
  1892. * NOTE! Since we don't hold any locks, it's not
  1893. * even sure that "rq" stays as the right runqueue!
  1894. * But we don't care, since "task_running()" will
  1895. * return false if the runqueue has changed and p
  1896. * is actually now running somewhere else!
  1897. */
  1898. while (task_running(rq, p)) {
  1899. if (match_state && unlikely(p->state != match_state))
  1900. return 0;
  1901. cpu_relax();
  1902. }
  1903. /*
  1904. * Ok, time to look more closely! We need the rq
  1905. * lock now, to be *sure*. If we're wrong, we'll
  1906. * just go back and repeat.
  1907. */
  1908. rq = task_rq_lock(p, &flags);
  1909. trace_sched_wait_task(p);
  1910. running = task_running(rq, p);
  1911. on_rq = p->on_rq;
  1912. ncsw = 0;
  1913. if (!match_state || p->state == match_state)
  1914. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1915. task_rq_unlock(rq, p, &flags);
  1916. /*
  1917. * If it changed from the expected state, bail out now.
  1918. */
  1919. if (unlikely(!ncsw))
  1920. break;
  1921. /*
  1922. * Was it really running after all now that we
  1923. * checked with the proper locks actually held?
  1924. *
  1925. * Oops. Go back and try again..
  1926. */
  1927. if (unlikely(running)) {
  1928. cpu_relax();
  1929. continue;
  1930. }
  1931. /*
  1932. * It's not enough that it's not actively running,
  1933. * it must be off the runqueue _entirely_, and not
  1934. * preempted!
  1935. *
  1936. * So if it was still runnable (but just not actively
  1937. * running right now), it's preempted, and we should
  1938. * yield - it could be a while.
  1939. */
  1940. if (unlikely(on_rq)) {
  1941. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1942. set_current_state(TASK_UNINTERRUPTIBLE);
  1943. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1944. continue;
  1945. }
  1946. /*
  1947. * Ahh, all good. It wasn't running, and it wasn't
  1948. * runnable, which means that it will never become
  1949. * running in the future either. We're all done!
  1950. */
  1951. break;
  1952. }
  1953. return ncsw;
  1954. }
  1955. /***
  1956. * kick_process - kick a running thread to enter/exit the kernel
  1957. * @p: the to-be-kicked thread
  1958. *
  1959. * Cause a process which is running on another CPU to enter
  1960. * kernel-mode, without any delay. (to get signals handled.)
  1961. *
  1962. * NOTE: this function doesn't have to take the runqueue lock,
  1963. * because all it wants to ensure is that the remote task enters
  1964. * the kernel. If the IPI races and the task has been migrated
  1965. * to another CPU then no harm is done and the purpose has been
  1966. * achieved as well.
  1967. */
  1968. void kick_process(struct task_struct *p)
  1969. {
  1970. int cpu;
  1971. preempt_disable();
  1972. cpu = task_cpu(p);
  1973. if ((cpu != smp_processor_id()) && task_curr(p))
  1974. smp_send_reschedule(cpu);
  1975. preempt_enable();
  1976. }
  1977. EXPORT_SYMBOL_GPL(kick_process);
  1978. #endif /* CONFIG_SMP */
  1979. #ifdef CONFIG_SMP
  1980. /*
  1981. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1982. */
  1983. static int select_fallback_rq(int cpu, struct task_struct *p)
  1984. {
  1985. int dest_cpu;
  1986. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1987. /* Look for allowed, online CPU in same node. */
  1988. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1989. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1990. return dest_cpu;
  1991. /* Any allowed, online CPU? */
  1992. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1993. if (dest_cpu < nr_cpu_ids)
  1994. return dest_cpu;
  1995. /* No more Mr. Nice Guy. */
  1996. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1997. /*
  1998. * Don't tell them about moving exiting tasks or
  1999. * kernel threads (both mm NULL), since they never
  2000. * leave kernel.
  2001. */
  2002. if (p->mm && printk_ratelimit()) {
  2003. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2004. task_pid_nr(p), p->comm, cpu);
  2005. }
  2006. return dest_cpu;
  2007. }
  2008. /*
  2009. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2010. */
  2011. static inline
  2012. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2013. {
  2014. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2015. /*
  2016. * In order not to call set_task_cpu() on a blocking task we need
  2017. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2018. * cpu.
  2019. *
  2020. * Since this is common to all placement strategies, this lives here.
  2021. *
  2022. * [ this allows ->select_task() to simply return task_cpu(p) and
  2023. * not worry about this generic constraint ]
  2024. */
  2025. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2026. !cpu_online(cpu)))
  2027. cpu = select_fallback_rq(task_cpu(p), p);
  2028. return cpu;
  2029. }
  2030. static void update_avg(u64 *avg, u64 sample)
  2031. {
  2032. s64 diff = sample - *avg;
  2033. *avg += diff >> 3;
  2034. }
  2035. #endif
  2036. static void
  2037. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2038. {
  2039. #ifdef CONFIG_SCHEDSTATS
  2040. struct rq *rq = this_rq();
  2041. #ifdef CONFIG_SMP
  2042. int this_cpu = smp_processor_id();
  2043. if (cpu == this_cpu) {
  2044. schedstat_inc(rq, ttwu_local);
  2045. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2046. } else {
  2047. struct sched_domain *sd;
  2048. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2049. for_each_domain(this_cpu, sd) {
  2050. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2051. schedstat_inc(sd, ttwu_wake_remote);
  2052. break;
  2053. }
  2054. }
  2055. }
  2056. #endif /* CONFIG_SMP */
  2057. schedstat_inc(rq, ttwu_count);
  2058. schedstat_inc(p, se.statistics.nr_wakeups);
  2059. if (wake_flags & WF_SYNC)
  2060. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2061. if (cpu != task_cpu(p))
  2062. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2063. #endif /* CONFIG_SCHEDSTATS */
  2064. }
  2065. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2066. {
  2067. activate_task(rq, p, en_flags);
  2068. p->on_rq = 1;
  2069. /* if a worker is waking up, notify workqueue */
  2070. if (p->flags & PF_WQ_WORKER)
  2071. wq_worker_waking_up(p, cpu_of(rq));
  2072. }
  2073. /*
  2074. * Mark the task runnable and perform wakeup-preemption.
  2075. */
  2076. static void
  2077. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2078. {
  2079. trace_sched_wakeup(p, true);
  2080. check_preempt_curr(rq, p, wake_flags);
  2081. p->state = TASK_RUNNING;
  2082. #ifdef CONFIG_SMP
  2083. if (p->sched_class->task_woken)
  2084. p->sched_class->task_woken(rq, p);
  2085. if (unlikely(rq->idle_stamp)) {
  2086. u64 delta = rq->clock - rq->idle_stamp;
  2087. u64 max = 2*sysctl_sched_migration_cost;
  2088. if (delta > max)
  2089. rq->avg_idle = max;
  2090. else
  2091. update_avg(&rq->avg_idle, delta);
  2092. rq->idle_stamp = 0;
  2093. }
  2094. #endif
  2095. }
  2096. static void
  2097. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2098. {
  2099. #ifdef CONFIG_SMP
  2100. if (p->sched_contributes_to_load)
  2101. rq->nr_uninterruptible--;
  2102. #endif
  2103. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2104. ttwu_do_wakeup(rq, p, wake_flags);
  2105. }
  2106. /*
  2107. * Called in case the task @p isn't fully descheduled from its runqueue,
  2108. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2109. * since all we need to do is flip p->state to TASK_RUNNING, since
  2110. * the task is still ->on_rq.
  2111. */
  2112. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2113. {
  2114. struct rq *rq;
  2115. int ret = 0;
  2116. rq = __task_rq_lock(p);
  2117. if (p->on_rq) {
  2118. ttwu_do_wakeup(rq, p, wake_flags);
  2119. ret = 1;
  2120. }
  2121. __task_rq_unlock(rq);
  2122. return ret;
  2123. }
  2124. static void ttwu_queue(struct task_struct *p, int cpu)
  2125. {
  2126. struct rq *rq = cpu_rq(cpu);
  2127. raw_spin_lock(&rq->lock);
  2128. ttwu_do_activate(rq, p, 0);
  2129. raw_spin_unlock(&rq->lock);
  2130. }
  2131. /**
  2132. * try_to_wake_up - wake up a thread
  2133. * @p: the thread to be awakened
  2134. * @state: the mask of task states that can be woken
  2135. * @wake_flags: wake modifier flags (WF_*)
  2136. *
  2137. * Put it on the run-queue if it's not already there. The "current"
  2138. * thread is always on the run-queue (except when the actual
  2139. * re-schedule is in progress), and as such you're allowed to do
  2140. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2141. * runnable without the overhead of this.
  2142. *
  2143. * Returns %true if @p was woken up, %false if it was already running
  2144. * or @state didn't match @p's state.
  2145. */
  2146. static int
  2147. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2148. {
  2149. unsigned long flags;
  2150. int cpu, success = 0;
  2151. smp_wmb();
  2152. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2153. if (!(p->state & state))
  2154. goto out;
  2155. success = 1; /* we're going to change ->state */
  2156. cpu = task_cpu(p);
  2157. if (p->on_rq && ttwu_remote(p, wake_flags))
  2158. goto stat;
  2159. #ifdef CONFIG_SMP
  2160. /*
  2161. * If the owning (remote) cpu is still in the middle of schedule() with
  2162. * this task as prev, wait until its done referencing the task.
  2163. */
  2164. while (p->on_cpu) {
  2165. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2166. /*
  2167. * If called from interrupt context we could have landed in the
  2168. * middle of schedule(), in this case we should take care not
  2169. * to spin on ->on_cpu if p is current, since that would
  2170. * deadlock.
  2171. */
  2172. if (p == current) {
  2173. ttwu_queue(p, cpu);
  2174. goto stat;
  2175. }
  2176. #endif
  2177. cpu_relax();
  2178. }
  2179. /*
  2180. * Pairs with the smp_wmb() in finish_lock_switch().
  2181. */
  2182. smp_rmb();
  2183. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2184. p->state = TASK_WAKING;
  2185. if (p->sched_class->task_waking)
  2186. p->sched_class->task_waking(p);
  2187. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2188. if (task_cpu(p) != cpu)
  2189. set_task_cpu(p, cpu);
  2190. #endif /* CONFIG_SMP */
  2191. ttwu_queue(p, cpu);
  2192. stat:
  2193. ttwu_stat(p, cpu, wake_flags);
  2194. out:
  2195. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2196. return success;
  2197. }
  2198. /**
  2199. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2200. * @p: the thread to be awakened
  2201. *
  2202. * Put @p on the run-queue if it's not already there. The caller must
  2203. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2204. * the current task.
  2205. */
  2206. static void try_to_wake_up_local(struct task_struct *p)
  2207. {
  2208. struct rq *rq = task_rq(p);
  2209. BUG_ON(rq != this_rq());
  2210. BUG_ON(p == current);
  2211. lockdep_assert_held(&rq->lock);
  2212. if (!raw_spin_trylock(&p->pi_lock)) {
  2213. raw_spin_unlock(&rq->lock);
  2214. raw_spin_lock(&p->pi_lock);
  2215. raw_spin_lock(&rq->lock);
  2216. }
  2217. if (!(p->state & TASK_NORMAL))
  2218. goto out;
  2219. if (!p->on_rq)
  2220. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2221. ttwu_do_wakeup(rq, p, 0);
  2222. ttwu_stat(p, smp_processor_id(), 0);
  2223. out:
  2224. raw_spin_unlock(&p->pi_lock);
  2225. }
  2226. /**
  2227. * wake_up_process - Wake up a specific process
  2228. * @p: The process to be woken up.
  2229. *
  2230. * Attempt to wake up the nominated process and move it to the set of runnable
  2231. * processes. Returns 1 if the process was woken up, 0 if it was already
  2232. * running.
  2233. *
  2234. * It may be assumed that this function implies a write memory barrier before
  2235. * changing the task state if and only if any tasks are woken up.
  2236. */
  2237. int wake_up_process(struct task_struct *p)
  2238. {
  2239. return try_to_wake_up(p, TASK_ALL, 0);
  2240. }
  2241. EXPORT_SYMBOL(wake_up_process);
  2242. int wake_up_state(struct task_struct *p, unsigned int state)
  2243. {
  2244. return try_to_wake_up(p, state, 0);
  2245. }
  2246. /*
  2247. * Perform scheduler related setup for a newly forked process p.
  2248. * p is forked by current.
  2249. *
  2250. * __sched_fork() is basic setup used by init_idle() too:
  2251. */
  2252. static void __sched_fork(struct task_struct *p)
  2253. {
  2254. p->on_rq = 0;
  2255. p->se.on_rq = 0;
  2256. p->se.exec_start = 0;
  2257. p->se.sum_exec_runtime = 0;
  2258. p->se.prev_sum_exec_runtime = 0;
  2259. p->se.nr_migrations = 0;
  2260. p->se.vruntime = 0;
  2261. INIT_LIST_HEAD(&p->se.group_node);
  2262. #ifdef CONFIG_SCHEDSTATS
  2263. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2264. #endif
  2265. INIT_LIST_HEAD(&p->rt.run_list);
  2266. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2267. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2268. #endif
  2269. }
  2270. /*
  2271. * fork()/clone()-time setup:
  2272. */
  2273. void sched_fork(struct task_struct *p, int clone_flags)
  2274. {
  2275. unsigned long flags;
  2276. int cpu = get_cpu();
  2277. __sched_fork(p);
  2278. /*
  2279. * We mark the process as running here. This guarantees that
  2280. * nobody will actually run it, and a signal or other external
  2281. * event cannot wake it up and insert it on the runqueue either.
  2282. */
  2283. p->state = TASK_RUNNING;
  2284. /*
  2285. * Revert to default priority/policy on fork if requested.
  2286. */
  2287. if (unlikely(p->sched_reset_on_fork)) {
  2288. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2289. p->policy = SCHED_NORMAL;
  2290. p->normal_prio = p->static_prio;
  2291. }
  2292. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2293. p->static_prio = NICE_TO_PRIO(0);
  2294. p->normal_prio = p->static_prio;
  2295. set_load_weight(p);
  2296. }
  2297. /*
  2298. * We don't need the reset flag anymore after the fork. It has
  2299. * fulfilled its duty:
  2300. */
  2301. p->sched_reset_on_fork = 0;
  2302. }
  2303. /*
  2304. * Make sure we do not leak PI boosting priority to the child.
  2305. */
  2306. p->prio = current->normal_prio;
  2307. if (!rt_prio(p->prio))
  2308. p->sched_class = &fair_sched_class;
  2309. if (p->sched_class->task_fork)
  2310. p->sched_class->task_fork(p);
  2311. /*
  2312. * The child is not yet in the pid-hash so no cgroup attach races,
  2313. * and the cgroup is pinned to this child due to cgroup_fork()
  2314. * is ran before sched_fork().
  2315. *
  2316. * Silence PROVE_RCU.
  2317. */
  2318. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2319. set_task_cpu(p, cpu);
  2320. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2321. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2322. if (likely(sched_info_on()))
  2323. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2324. #endif
  2325. #if defined(CONFIG_SMP)
  2326. p->on_cpu = 0;
  2327. #endif
  2328. #ifdef CONFIG_PREEMPT
  2329. /* Want to start with kernel preemption disabled. */
  2330. task_thread_info(p)->preempt_count = 1;
  2331. #endif
  2332. #ifdef CONFIG_SMP
  2333. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2334. #endif
  2335. put_cpu();
  2336. }
  2337. /*
  2338. * wake_up_new_task - wake up a newly created task for the first time.
  2339. *
  2340. * This function will do some initial scheduler statistics housekeeping
  2341. * that must be done for every newly created context, then puts the task
  2342. * on the runqueue and wakes it.
  2343. */
  2344. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2345. {
  2346. unsigned long flags;
  2347. struct rq *rq;
  2348. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2349. #ifdef CONFIG_SMP
  2350. /*
  2351. * Fork balancing, do it here and not earlier because:
  2352. * - cpus_allowed can change in the fork path
  2353. * - any previously selected cpu might disappear through hotplug
  2354. */
  2355. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2356. #endif
  2357. rq = __task_rq_lock(p);
  2358. activate_task(rq, p, 0);
  2359. p->on_rq = 1;
  2360. trace_sched_wakeup_new(p, true);
  2361. check_preempt_curr(rq, p, WF_FORK);
  2362. #ifdef CONFIG_SMP
  2363. if (p->sched_class->task_woken)
  2364. p->sched_class->task_woken(rq, p);
  2365. #endif
  2366. task_rq_unlock(rq, p, &flags);
  2367. }
  2368. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2369. /**
  2370. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2371. * @notifier: notifier struct to register
  2372. */
  2373. void preempt_notifier_register(struct preempt_notifier *notifier)
  2374. {
  2375. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2376. }
  2377. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2378. /**
  2379. * preempt_notifier_unregister - no longer interested in preemption notifications
  2380. * @notifier: notifier struct to unregister
  2381. *
  2382. * This is safe to call from within a preemption notifier.
  2383. */
  2384. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2385. {
  2386. hlist_del(&notifier->link);
  2387. }
  2388. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2389. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2390. {
  2391. struct preempt_notifier *notifier;
  2392. struct hlist_node *node;
  2393. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2394. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2395. }
  2396. static void
  2397. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2398. struct task_struct *next)
  2399. {
  2400. struct preempt_notifier *notifier;
  2401. struct hlist_node *node;
  2402. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2403. notifier->ops->sched_out(notifier, next);
  2404. }
  2405. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2406. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2407. {
  2408. }
  2409. static void
  2410. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2411. struct task_struct *next)
  2412. {
  2413. }
  2414. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2415. /**
  2416. * prepare_task_switch - prepare to switch tasks
  2417. * @rq: the runqueue preparing to switch
  2418. * @prev: the current task that is being switched out
  2419. * @next: the task we are going to switch to.
  2420. *
  2421. * This is called with the rq lock held and interrupts off. It must
  2422. * be paired with a subsequent finish_task_switch after the context
  2423. * switch.
  2424. *
  2425. * prepare_task_switch sets up locking and calls architecture specific
  2426. * hooks.
  2427. */
  2428. static inline void
  2429. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2430. struct task_struct *next)
  2431. {
  2432. sched_info_switch(prev, next);
  2433. perf_event_task_sched_out(prev, next);
  2434. fire_sched_out_preempt_notifiers(prev, next);
  2435. prepare_lock_switch(rq, next);
  2436. prepare_arch_switch(next);
  2437. trace_sched_switch(prev, next);
  2438. }
  2439. /**
  2440. * finish_task_switch - clean up after a task-switch
  2441. * @rq: runqueue associated with task-switch
  2442. * @prev: the thread we just switched away from.
  2443. *
  2444. * finish_task_switch must be called after the context switch, paired
  2445. * with a prepare_task_switch call before the context switch.
  2446. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2447. * and do any other architecture-specific cleanup actions.
  2448. *
  2449. * Note that we may have delayed dropping an mm in context_switch(). If
  2450. * so, we finish that here outside of the runqueue lock. (Doing it
  2451. * with the lock held can cause deadlocks; see schedule() for
  2452. * details.)
  2453. */
  2454. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2455. __releases(rq->lock)
  2456. {
  2457. struct mm_struct *mm = rq->prev_mm;
  2458. long prev_state;
  2459. rq->prev_mm = NULL;
  2460. /*
  2461. * A task struct has one reference for the use as "current".
  2462. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2463. * schedule one last time. The schedule call will never return, and
  2464. * the scheduled task must drop that reference.
  2465. * The test for TASK_DEAD must occur while the runqueue locks are
  2466. * still held, otherwise prev could be scheduled on another cpu, die
  2467. * there before we look at prev->state, and then the reference would
  2468. * be dropped twice.
  2469. * Manfred Spraul <manfred@colorfullife.com>
  2470. */
  2471. prev_state = prev->state;
  2472. finish_arch_switch(prev);
  2473. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2474. local_irq_disable();
  2475. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2476. perf_event_task_sched_in(current);
  2477. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2478. local_irq_enable();
  2479. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2480. finish_lock_switch(rq, prev);
  2481. fire_sched_in_preempt_notifiers(current);
  2482. if (mm)
  2483. mmdrop(mm);
  2484. if (unlikely(prev_state == TASK_DEAD)) {
  2485. /*
  2486. * Remove function-return probe instances associated with this
  2487. * task and put them back on the free list.
  2488. */
  2489. kprobe_flush_task(prev);
  2490. put_task_struct(prev);
  2491. }
  2492. }
  2493. #ifdef CONFIG_SMP
  2494. /* assumes rq->lock is held */
  2495. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2496. {
  2497. if (prev->sched_class->pre_schedule)
  2498. prev->sched_class->pre_schedule(rq, prev);
  2499. }
  2500. /* rq->lock is NOT held, but preemption is disabled */
  2501. static inline void post_schedule(struct rq *rq)
  2502. {
  2503. if (rq->post_schedule) {
  2504. unsigned long flags;
  2505. raw_spin_lock_irqsave(&rq->lock, flags);
  2506. if (rq->curr->sched_class->post_schedule)
  2507. rq->curr->sched_class->post_schedule(rq);
  2508. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2509. rq->post_schedule = 0;
  2510. }
  2511. }
  2512. #else
  2513. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2514. {
  2515. }
  2516. static inline void post_schedule(struct rq *rq)
  2517. {
  2518. }
  2519. #endif
  2520. /**
  2521. * schedule_tail - first thing a freshly forked thread must call.
  2522. * @prev: the thread we just switched away from.
  2523. */
  2524. asmlinkage void schedule_tail(struct task_struct *prev)
  2525. __releases(rq->lock)
  2526. {
  2527. struct rq *rq = this_rq();
  2528. finish_task_switch(rq, prev);
  2529. /*
  2530. * FIXME: do we need to worry about rq being invalidated by the
  2531. * task_switch?
  2532. */
  2533. post_schedule(rq);
  2534. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2535. /* In this case, finish_task_switch does not reenable preemption */
  2536. preempt_enable();
  2537. #endif
  2538. if (current->set_child_tid)
  2539. put_user(task_pid_vnr(current), current->set_child_tid);
  2540. }
  2541. /*
  2542. * context_switch - switch to the new MM and the new
  2543. * thread's register state.
  2544. */
  2545. static inline void
  2546. context_switch(struct rq *rq, struct task_struct *prev,
  2547. struct task_struct *next)
  2548. {
  2549. struct mm_struct *mm, *oldmm;
  2550. prepare_task_switch(rq, prev, next);
  2551. mm = next->mm;
  2552. oldmm = prev->active_mm;
  2553. /*
  2554. * For paravirt, this is coupled with an exit in switch_to to
  2555. * combine the page table reload and the switch backend into
  2556. * one hypercall.
  2557. */
  2558. arch_start_context_switch(prev);
  2559. if (!mm) {
  2560. next->active_mm = oldmm;
  2561. atomic_inc(&oldmm->mm_count);
  2562. enter_lazy_tlb(oldmm, next);
  2563. } else
  2564. switch_mm(oldmm, mm, next);
  2565. if (!prev->mm) {
  2566. prev->active_mm = NULL;
  2567. rq->prev_mm = oldmm;
  2568. }
  2569. /*
  2570. * Since the runqueue lock will be released by the next
  2571. * task (which is an invalid locking op but in the case
  2572. * of the scheduler it's an obvious special-case), so we
  2573. * do an early lockdep release here:
  2574. */
  2575. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2576. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2577. #endif
  2578. /* Here we just switch the register state and the stack. */
  2579. switch_to(prev, next, prev);
  2580. barrier();
  2581. /*
  2582. * this_rq must be evaluated again because prev may have moved
  2583. * CPUs since it called schedule(), thus the 'rq' on its stack
  2584. * frame will be invalid.
  2585. */
  2586. finish_task_switch(this_rq(), prev);
  2587. }
  2588. /*
  2589. * nr_running, nr_uninterruptible and nr_context_switches:
  2590. *
  2591. * externally visible scheduler statistics: current number of runnable
  2592. * threads, current number of uninterruptible-sleeping threads, total
  2593. * number of context switches performed since bootup.
  2594. */
  2595. unsigned long nr_running(void)
  2596. {
  2597. unsigned long i, sum = 0;
  2598. for_each_online_cpu(i)
  2599. sum += cpu_rq(i)->nr_running;
  2600. return sum;
  2601. }
  2602. unsigned long nr_uninterruptible(void)
  2603. {
  2604. unsigned long i, sum = 0;
  2605. for_each_possible_cpu(i)
  2606. sum += cpu_rq(i)->nr_uninterruptible;
  2607. /*
  2608. * Since we read the counters lockless, it might be slightly
  2609. * inaccurate. Do not allow it to go below zero though:
  2610. */
  2611. if (unlikely((long)sum < 0))
  2612. sum = 0;
  2613. return sum;
  2614. }
  2615. unsigned long long nr_context_switches(void)
  2616. {
  2617. int i;
  2618. unsigned long long sum = 0;
  2619. for_each_possible_cpu(i)
  2620. sum += cpu_rq(i)->nr_switches;
  2621. return sum;
  2622. }
  2623. unsigned long nr_iowait(void)
  2624. {
  2625. unsigned long i, sum = 0;
  2626. for_each_possible_cpu(i)
  2627. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2628. return sum;
  2629. }
  2630. unsigned long nr_iowait_cpu(int cpu)
  2631. {
  2632. struct rq *this = cpu_rq(cpu);
  2633. return atomic_read(&this->nr_iowait);
  2634. }
  2635. unsigned long this_cpu_load(void)
  2636. {
  2637. struct rq *this = this_rq();
  2638. return this->cpu_load[0];
  2639. }
  2640. /* Variables and functions for calc_load */
  2641. static atomic_long_t calc_load_tasks;
  2642. static unsigned long calc_load_update;
  2643. unsigned long avenrun[3];
  2644. EXPORT_SYMBOL(avenrun);
  2645. static long calc_load_fold_active(struct rq *this_rq)
  2646. {
  2647. long nr_active, delta = 0;
  2648. nr_active = this_rq->nr_running;
  2649. nr_active += (long) this_rq->nr_uninterruptible;
  2650. if (nr_active != this_rq->calc_load_active) {
  2651. delta = nr_active - this_rq->calc_load_active;
  2652. this_rq->calc_load_active = nr_active;
  2653. }
  2654. return delta;
  2655. }
  2656. static unsigned long
  2657. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2658. {
  2659. load *= exp;
  2660. load += active * (FIXED_1 - exp);
  2661. load += 1UL << (FSHIFT - 1);
  2662. return load >> FSHIFT;
  2663. }
  2664. #ifdef CONFIG_NO_HZ
  2665. /*
  2666. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2667. *
  2668. * When making the ILB scale, we should try to pull this in as well.
  2669. */
  2670. static atomic_long_t calc_load_tasks_idle;
  2671. static void calc_load_account_idle(struct rq *this_rq)
  2672. {
  2673. long delta;
  2674. delta = calc_load_fold_active(this_rq);
  2675. if (delta)
  2676. atomic_long_add(delta, &calc_load_tasks_idle);
  2677. }
  2678. static long calc_load_fold_idle(void)
  2679. {
  2680. long delta = 0;
  2681. /*
  2682. * Its got a race, we don't care...
  2683. */
  2684. if (atomic_long_read(&calc_load_tasks_idle))
  2685. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2686. return delta;
  2687. }
  2688. /**
  2689. * fixed_power_int - compute: x^n, in O(log n) time
  2690. *
  2691. * @x: base of the power
  2692. * @frac_bits: fractional bits of @x
  2693. * @n: power to raise @x to.
  2694. *
  2695. * By exploiting the relation between the definition of the natural power
  2696. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2697. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2698. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2699. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2700. * of course trivially computable in O(log_2 n), the length of our binary
  2701. * vector.
  2702. */
  2703. static unsigned long
  2704. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2705. {
  2706. unsigned long result = 1UL << frac_bits;
  2707. if (n) for (;;) {
  2708. if (n & 1) {
  2709. result *= x;
  2710. result += 1UL << (frac_bits - 1);
  2711. result >>= frac_bits;
  2712. }
  2713. n >>= 1;
  2714. if (!n)
  2715. break;
  2716. x *= x;
  2717. x += 1UL << (frac_bits - 1);
  2718. x >>= frac_bits;
  2719. }
  2720. return result;
  2721. }
  2722. /*
  2723. * a1 = a0 * e + a * (1 - e)
  2724. *
  2725. * a2 = a1 * e + a * (1 - e)
  2726. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2727. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2728. *
  2729. * a3 = a2 * e + a * (1 - e)
  2730. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2731. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2732. *
  2733. * ...
  2734. *
  2735. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2736. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2737. * = a0 * e^n + a * (1 - e^n)
  2738. *
  2739. * [1] application of the geometric series:
  2740. *
  2741. * n 1 - x^(n+1)
  2742. * S_n := \Sum x^i = -------------
  2743. * i=0 1 - x
  2744. */
  2745. static unsigned long
  2746. calc_load_n(unsigned long load, unsigned long exp,
  2747. unsigned long active, unsigned int n)
  2748. {
  2749. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2750. }
  2751. /*
  2752. * NO_HZ can leave us missing all per-cpu ticks calling
  2753. * calc_load_account_active(), but since an idle CPU folds its delta into
  2754. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2755. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2756. *
  2757. * Once we've updated the global active value, we need to apply the exponential
  2758. * weights adjusted to the number of cycles missed.
  2759. */
  2760. static void calc_global_nohz(unsigned long ticks)
  2761. {
  2762. long delta, active, n;
  2763. if (time_before(jiffies, calc_load_update))
  2764. return;
  2765. /*
  2766. * If we crossed a calc_load_update boundary, make sure to fold
  2767. * any pending idle changes, the respective CPUs might have
  2768. * missed the tick driven calc_load_account_active() update
  2769. * due to NO_HZ.
  2770. */
  2771. delta = calc_load_fold_idle();
  2772. if (delta)
  2773. atomic_long_add(delta, &calc_load_tasks);
  2774. /*
  2775. * If we were idle for multiple load cycles, apply them.
  2776. */
  2777. if (ticks >= LOAD_FREQ) {
  2778. n = ticks / LOAD_FREQ;
  2779. active = atomic_long_read(&calc_load_tasks);
  2780. active = active > 0 ? active * FIXED_1 : 0;
  2781. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2782. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2783. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2784. calc_load_update += n * LOAD_FREQ;
  2785. }
  2786. /*
  2787. * Its possible the remainder of the above division also crosses
  2788. * a LOAD_FREQ period, the regular check in calc_global_load()
  2789. * which comes after this will take care of that.
  2790. *
  2791. * Consider us being 11 ticks before a cycle completion, and us
  2792. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2793. * age us 4 cycles, and the test in calc_global_load() will
  2794. * pick up the final one.
  2795. */
  2796. }
  2797. #else
  2798. static void calc_load_account_idle(struct rq *this_rq)
  2799. {
  2800. }
  2801. static inline long calc_load_fold_idle(void)
  2802. {
  2803. return 0;
  2804. }
  2805. static void calc_global_nohz(unsigned long ticks)
  2806. {
  2807. }
  2808. #endif
  2809. /**
  2810. * get_avenrun - get the load average array
  2811. * @loads: pointer to dest load array
  2812. * @offset: offset to add
  2813. * @shift: shift count to shift the result left
  2814. *
  2815. * These values are estimates at best, so no need for locking.
  2816. */
  2817. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2818. {
  2819. loads[0] = (avenrun[0] + offset) << shift;
  2820. loads[1] = (avenrun[1] + offset) << shift;
  2821. loads[2] = (avenrun[2] + offset) << shift;
  2822. }
  2823. /*
  2824. * calc_load - update the avenrun load estimates 10 ticks after the
  2825. * CPUs have updated calc_load_tasks.
  2826. */
  2827. void calc_global_load(unsigned long ticks)
  2828. {
  2829. long active;
  2830. calc_global_nohz(ticks);
  2831. if (time_before(jiffies, calc_load_update + 10))
  2832. return;
  2833. active = atomic_long_read(&calc_load_tasks);
  2834. active = active > 0 ? active * FIXED_1 : 0;
  2835. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2836. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2837. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2838. calc_load_update += LOAD_FREQ;
  2839. }
  2840. /*
  2841. * Called from update_cpu_load() to periodically update this CPU's
  2842. * active count.
  2843. */
  2844. static void calc_load_account_active(struct rq *this_rq)
  2845. {
  2846. long delta;
  2847. if (time_before(jiffies, this_rq->calc_load_update))
  2848. return;
  2849. delta = calc_load_fold_active(this_rq);
  2850. delta += calc_load_fold_idle();
  2851. if (delta)
  2852. atomic_long_add(delta, &calc_load_tasks);
  2853. this_rq->calc_load_update += LOAD_FREQ;
  2854. }
  2855. /*
  2856. * The exact cpuload at various idx values, calculated at every tick would be
  2857. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2858. *
  2859. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2860. * on nth tick when cpu may be busy, then we have:
  2861. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2862. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2863. *
  2864. * decay_load_missed() below does efficient calculation of
  2865. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2866. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2867. *
  2868. * The calculation is approximated on a 128 point scale.
  2869. * degrade_zero_ticks is the number of ticks after which load at any
  2870. * particular idx is approximated to be zero.
  2871. * degrade_factor is a precomputed table, a row for each load idx.
  2872. * Each column corresponds to degradation factor for a power of two ticks,
  2873. * based on 128 point scale.
  2874. * Example:
  2875. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2876. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2877. *
  2878. * With this power of 2 load factors, we can degrade the load n times
  2879. * by looking at 1 bits in n and doing as many mult/shift instead of
  2880. * n mult/shifts needed by the exact degradation.
  2881. */
  2882. #define DEGRADE_SHIFT 7
  2883. static const unsigned char
  2884. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2885. static const unsigned char
  2886. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2887. {0, 0, 0, 0, 0, 0, 0, 0},
  2888. {64, 32, 8, 0, 0, 0, 0, 0},
  2889. {96, 72, 40, 12, 1, 0, 0},
  2890. {112, 98, 75, 43, 15, 1, 0},
  2891. {120, 112, 98, 76, 45, 16, 2} };
  2892. /*
  2893. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2894. * would be when CPU is idle and so we just decay the old load without
  2895. * adding any new load.
  2896. */
  2897. static unsigned long
  2898. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2899. {
  2900. int j = 0;
  2901. if (!missed_updates)
  2902. return load;
  2903. if (missed_updates >= degrade_zero_ticks[idx])
  2904. return 0;
  2905. if (idx == 1)
  2906. return load >> missed_updates;
  2907. while (missed_updates) {
  2908. if (missed_updates % 2)
  2909. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2910. missed_updates >>= 1;
  2911. j++;
  2912. }
  2913. return load;
  2914. }
  2915. /*
  2916. * Update rq->cpu_load[] statistics. This function is usually called every
  2917. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2918. * every tick. We fix it up based on jiffies.
  2919. */
  2920. static void update_cpu_load(struct rq *this_rq)
  2921. {
  2922. unsigned long this_load = this_rq->load.weight;
  2923. unsigned long curr_jiffies = jiffies;
  2924. unsigned long pending_updates;
  2925. int i, scale;
  2926. this_rq->nr_load_updates++;
  2927. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2928. if (curr_jiffies == this_rq->last_load_update_tick)
  2929. return;
  2930. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2931. this_rq->last_load_update_tick = curr_jiffies;
  2932. /* Update our load: */
  2933. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2934. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2935. unsigned long old_load, new_load;
  2936. /* scale is effectively 1 << i now, and >> i divides by scale */
  2937. old_load = this_rq->cpu_load[i];
  2938. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2939. new_load = this_load;
  2940. /*
  2941. * Round up the averaging division if load is increasing. This
  2942. * prevents us from getting stuck on 9 if the load is 10, for
  2943. * example.
  2944. */
  2945. if (new_load > old_load)
  2946. new_load += scale - 1;
  2947. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2948. }
  2949. sched_avg_update(this_rq);
  2950. }
  2951. static void update_cpu_load_active(struct rq *this_rq)
  2952. {
  2953. update_cpu_load(this_rq);
  2954. calc_load_account_active(this_rq);
  2955. }
  2956. #ifdef CONFIG_SMP
  2957. /*
  2958. * sched_exec - execve() is a valuable balancing opportunity, because at
  2959. * this point the task has the smallest effective memory and cache footprint.
  2960. */
  2961. void sched_exec(void)
  2962. {
  2963. struct task_struct *p = current;
  2964. unsigned long flags;
  2965. int dest_cpu;
  2966. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2967. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2968. if (dest_cpu == smp_processor_id())
  2969. goto unlock;
  2970. if (likely(cpu_active(dest_cpu))) {
  2971. struct migration_arg arg = { p, dest_cpu };
  2972. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2973. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2974. return;
  2975. }
  2976. unlock:
  2977. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2978. }
  2979. #endif
  2980. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2981. EXPORT_PER_CPU_SYMBOL(kstat);
  2982. /*
  2983. * Return any ns on the sched_clock that have not yet been accounted in
  2984. * @p in case that task is currently running.
  2985. *
  2986. * Called with task_rq_lock() held on @rq.
  2987. */
  2988. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2989. {
  2990. u64 ns = 0;
  2991. if (task_current(rq, p)) {
  2992. update_rq_clock(rq);
  2993. ns = rq->clock_task - p->se.exec_start;
  2994. if ((s64)ns < 0)
  2995. ns = 0;
  2996. }
  2997. return ns;
  2998. }
  2999. unsigned long long task_delta_exec(struct task_struct *p)
  3000. {
  3001. unsigned long flags;
  3002. struct rq *rq;
  3003. u64 ns = 0;
  3004. rq = task_rq_lock(p, &flags);
  3005. ns = do_task_delta_exec(p, rq);
  3006. task_rq_unlock(rq, p, &flags);
  3007. return ns;
  3008. }
  3009. /*
  3010. * Return accounted runtime for the task.
  3011. * In case the task is currently running, return the runtime plus current's
  3012. * pending runtime that have not been accounted yet.
  3013. */
  3014. unsigned long long task_sched_runtime(struct task_struct *p)
  3015. {
  3016. unsigned long flags;
  3017. struct rq *rq;
  3018. u64 ns = 0;
  3019. rq = task_rq_lock(p, &flags);
  3020. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3021. task_rq_unlock(rq, p, &flags);
  3022. return ns;
  3023. }
  3024. /*
  3025. * Return sum_exec_runtime for the thread group.
  3026. * In case the task is currently running, return the sum plus current's
  3027. * pending runtime that have not been accounted yet.
  3028. *
  3029. * Note that the thread group might have other running tasks as well,
  3030. * so the return value not includes other pending runtime that other
  3031. * running tasks might have.
  3032. */
  3033. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3034. {
  3035. struct task_cputime totals;
  3036. unsigned long flags;
  3037. struct rq *rq;
  3038. u64 ns;
  3039. rq = task_rq_lock(p, &flags);
  3040. thread_group_cputime(p, &totals);
  3041. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3042. task_rq_unlock(rq, p, &flags);
  3043. return ns;
  3044. }
  3045. /*
  3046. * Account user cpu time to a process.
  3047. * @p: the process that the cpu time gets accounted to
  3048. * @cputime: the cpu time spent in user space since the last update
  3049. * @cputime_scaled: cputime scaled by cpu frequency
  3050. */
  3051. void account_user_time(struct task_struct *p, cputime_t cputime,
  3052. cputime_t cputime_scaled)
  3053. {
  3054. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3055. cputime64_t tmp;
  3056. /* Add user time to process. */
  3057. p->utime = cputime_add(p->utime, cputime);
  3058. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3059. account_group_user_time(p, cputime);
  3060. /* Add user time to cpustat. */
  3061. tmp = cputime_to_cputime64(cputime);
  3062. if (TASK_NICE(p) > 0)
  3063. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3064. else
  3065. cpustat->user = cputime64_add(cpustat->user, tmp);
  3066. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3067. /* Account for user time used */
  3068. acct_update_integrals(p);
  3069. }
  3070. /*
  3071. * Account guest cpu time to a process.
  3072. * @p: the process that the cpu time gets accounted to
  3073. * @cputime: the cpu time spent in virtual machine since the last update
  3074. * @cputime_scaled: cputime scaled by cpu frequency
  3075. */
  3076. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3077. cputime_t cputime_scaled)
  3078. {
  3079. cputime64_t tmp;
  3080. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3081. tmp = cputime_to_cputime64(cputime);
  3082. /* Add guest time to process. */
  3083. p->utime = cputime_add(p->utime, cputime);
  3084. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3085. account_group_user_time(p, cputime);
  3086. p->gtime = cputime_add(p->gtime, cputime);
  3087. /* Add guest time to cpustat. */
  3088. if (TASK_NICE(p) > 0) {
  3089. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3090. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3091. } else {
  3092. cpustat->user = cputime64_add(cpustat->user, tmp);
  3093. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3094. }
  3095. }
  3096. /*
  3097. * Account system cpu time to a process and desired cpustat field
  3098. * @p: the process that the cpu time gets accounted to
  3099. * @cputime: the cpu time spent in kernel space since the last update
  3100. * @cputime_scaled: cputime scaled by cpu frequency
  3101. * @target_cputime64: pointer to cpustat field that has to be updated
  3102. */
  3103. static inline
  3104. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3105. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3106. {
  3107. cputime64_t tmp = cputime_to_cputime64(cputime);
  3108. /* Add system time to process. */
  3109. p->stime = cputime_add(p->stime, cputime);
  3110. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3111. account_group_system_time(p, cputime);
  3112. /* Add system time to cpustat. */
  3113. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3114. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3115. /* Account for system time used */
  3116. acct_update_integrals(p);
  3117. }
  3118. /*
  3119. * Account system cpu time to a process.
  3120. * @p: the process that the cpu time gets accounted to
  3121. * @hardirq_offset: the offset to subtract from hardirq_count()
  3122. * @cputime: the cpu time spent in kernel space since the last update
  3123. * @cputime_scaled: cputime scaled by cpu frequency
  3124. */
  3125. void account_system_time(struct task_struct *p, int hardirq_offset,
  3126. cputime_t cputime, cputime_t cputime_scaled)
  3127. {
  3128. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3129. cputime64_t *target_cputime64;
  3130. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3131. account_guest_time(p, cputime, cputime_scaled);
  3132. return;
  3133. }
  3134. if (hardirq_count() - hardirq_offset)
  3135. target_cputime64 = &cpustat->irq;
  3136. else if (in_serving_softirq())
  3137. target_cputime64 = &cpustat->softirq;
  3138. else
  3139. target_cputime64 = &cpustat->system;
  3140. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3141. }
  3142. /*
  3143. * Account for involuntary wait time.
  3144. * @cputime: the cpu time spent in involuntary wait
  3145. */
  3146. void account_steal_time(cputime_t cputime)
  3147. {
  3148. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3149. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3150. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3151. }
  3152. /*
  3153. * Account for idle time.
  3154. * @cputime: the cpu time spent in idle wait
  3155. */
  3156. void account_idle_time(cputime_t cputime)
  3157. {
  3158. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3159. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3160. struct rq *rq = this_rq();
  3161. if (atomic_read(&rq->nr_iowait) > 0)
  3162. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3163. else
  3164. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3165. }
  3166. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3167. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3168. /*
  3169. * Account a tick to a process and cpustat
  3170. * @p: the process that the cpu time gets accounted to
  3171. * @user_tick: is the tick from userspace
  3172. * @rq: the pointer to rq
  3173. *
  3174. * Tick demultiplexing follows the order
  3175. * - pending hardirq update
  3176. * - pending softirq update
  3177. * - user_time
  3178. * - idle_time
  3179. * - system time
  3180. * - check for guest_time
  3181. * - else account as system_time
  3182. *
  3183. * Check for hardirq is done both for system and user time as there is
  3184. * no timer going off while we are on hardirq and hence we may never get an
  3185. * opportunity to update it solely in system time.
  3186. * p->stime and friends are only updated on system time and not on irq
  3187. * softirq as those do not count in task exec_runtime any more.
  3188. */
  3189. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3190. struct rq *rq)
  3191. {
  3192. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3193. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3194. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3195. if (irqtime_account_hi_update()) {
  3196. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3197. } else if (irqtime_account_si_update()) {
  3198. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3199. } else if (this_cpu_ksoftirqd() == p) {
  3200. /*
  3201. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3202. * So, we have to handle it separately here.
  3203. * Also, p->stime needs to be updated for ksoftirqd.
  3204. */
  3205. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3206. &cpustat->softirq);
  3207. } else if (user_tick) {
  3208. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3209. } else if (p == rq->idle) {
  3210. account_idle_time(cputime_one_jiffy);
  3211. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3212. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3213. } else {
  3214. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3215. &cpustat->system);
  3216. }
  3217. }
  3218. static void irqtime_account_idle_ticks(int ticks)
  3219. {
  3220. int i;
  3221. struct rq *rq = this_rq();
  3222. for (i = 0; i < ticks; i++)
  3223. irqtime_account_process_tick(current, 0, rq);
  3224. }
  3225. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3226. static void irqtime_account_idle_ticks(int ticks) {}
  3227. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3228. struct rq *rq) {}
  3229. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3230. /*
  3231. * Account a single tick of cpu time.
  3232. * @p: the process that the cpu time gets accounted to
  3233. * @user_tick: indicates if the tick is a user or a system tick
  3234. */
  3235. void account_process_tick(struct task_struct *p, int user_tick)
  3236. {
  3237. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3238. struct rq *rq = this_rq();
  3239. if (sched_clock_irqtime) {
  3240. irqtime_account_process_tick(p, user_tick, rq);
  3241. return;
  3242. }
  3243. if (user_tick)
  3244. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3245. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3246. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3247. one_jiffy_scaled);
  3248. else
  3249. account_idle_time(cputime_one_jiffy);
  3250. }
  3251. /*
  3252. * Account multiple ticks of steal time.
  3253. * @p: the process from which the cpu time has been stolen
  3254. * @ticks: number of stolen ticks
  3255. */
  3256. void account_steal_ticks(unsigned long ticks)
  3257. {
  3258. account_steal_time(jiffies_to_cputime(ticks));
  3259. }
  3260. /*
  3261. * Account multiple ticks of idle time.
  3262. * @ticks: number of stolen ticks
  3263. */
  3264. void account_idle_ticks(unsigned long ticks)
  3265. {
  3266. if (sched_clock_irqtime) {
  3267. irqtime_account_idle_ticks(ticks);
  3268. return;
  3269. }
  3270. account_idle_time(jiffies_to_cputime(ticks));
  3271. }
  3272. #endif
  3273. /*
  3274. * Use precise platform statistics if available:
  3275. */
  3276. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3277. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3278. {
  3279. *ut = p->utime;
  3280. *st = p->stime;
  3281. }
  3282. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3283. {
  3284. struct task_cputime cputime;
  3285. thread_group_cputime(p, &cputime);
  3286. *ut = cputime.utime;
  3287. *st = cputime.stime;
  3288. }
  3289. #else
  3290. #ifndef nsecs_to_cputime
  3291. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3292. #endif
  3293. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3294. {
  3295. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3296. /*
  3297. * Use CFS's precise accounting:
  3298. */
  3299. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3300. if (total) {
  3301. u64 temp = rtime;
  3302. temp *= utime;
  3303. do_div(temp, total);
  3304. utime = (cputime_t)temp;
  3305. } else
  3306. utime = rtime;
  3307. /*
  3308. * Compare with previous values, to keep monotonicity:
  3309. */
  3310. p->prev_utime = max(p->prev_utime, utime);
  3311. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3312. *ut = p->prev_utime;
  3313. *st = p->prev_stime;
  3314. }
  3315. /*
  3316. * Must be called with siglock held.
  3317. */
  3318. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3319. {
  3320. struct signal_struct *sig = p->signal;
  3321. struct task_cputime cputime;
  3322. cputime_t rtime, utime, total;
  3323. thread_group_cputime(p, &cputime);
  3324. total = cputime_add(cputime.utime, cputime.stime);
  3325. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3326. if (total) {
  3327. u64 temp = rtime;
  3328. temp *= cputime.utime;
  3329. do_div(temp, total);
  3330. utime = (cputime_t)temp;
  3331. } else
  3332. utime = rtime;
  3333. sig->prev_utime = max(sig->prev_utime, utime);
  3334. sig->prev_stime = max(sig->prev_stime,
  3335. cputime_sub(rtime, sig->prev_utime));
  3336. *ut = sig->prev_utime;
  3337. *st = sig->prev_stime;
  3338. }
  3339. #endif
  3340. /*
  3341. * This function gets called by the timer code, with HZ frequency.
  3342. * We call it with interrupts disabled.
  3343. *
  3344. * It also gets called by the fork code, when changing the parent's
  3345. * timeslices.
  3346. */
  3347. void scheduler_tick(void)
  3348. {
  3349. int cpu = smp_processor_id();
  3350. struct rq *rq = cpu_rq(cpu);
  3351. struct task_struct *curr = rq->curr;
  3352. sched_clock_tick();
  3353. raw_spin_lock(&rq->lock);
  3354. update_rq_clock(rq);
  3355. update_cpu_load_active(rq);
  3356. curr->sched_class->task_tick(rq, curr, 0);
  3357. raw_spin_unlock(&rq->lock);
  3358. perf_event_task_tick();
  3359. #ifdef CONFIG_SMP
  3360. rq->idle_at_tick = idle_cpu(cpu);
  3361. trigger_load_balance(rq, cpu);
  3362. #endif
  3363. }
  3364. notrace unsigned long get_parent_ip(unsigned long addr)
  3365. {
  3366. if (in_lock_functions(addr)) {
  3367. addr = CALLER_ADDR2;
  3368. if (in_lock_functions(addr))
  3369. addr = CALLER_ADDR3;
  3370. }
  3371. return addr;
  3372. }
  3373. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3374. defined(CONFIG_PREEMPT_TRACER))
  3375. void __kprobes add_preempt_count(int val)
  3376. {
  3377. #ifdef CONFIG_DEBUG_PREEMPT
  3378. /*
  3379. * Underflow?
  3380. */
  3381. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3382. return;
  3383. #endif
  3384. preempt_count() += val;
  3385. #ifdef CONFIG_DEBUG_PREEMPT
  3386. /*
  3387. * Spinlock count overflowing soon?
  3388. */
  3389. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3390. PREEMPT_MASK - 10);
  3391. #endif
  3392. if (preempt_count() == val)
  3393. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3394. }
  3395. EXPORT_SYMBOL(add_preempt_count);
  3396. void __kprobes sub_preempt_count(int val)
  3397. {
  3398. #ifdef CONFIG_DEBUG_PREEMPT
  3399. /*
  3400. * Underflow?
  3401. */
  3402. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3403. return;
  3404. /*
  3405. * Is the spinlock portion underflowing?
  3406. */
  3407. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3408. !(preempt_count() & PREEMPT_MASK)))
  3409. return;
  3410. #endif
  3411. if (preempt_count() == val)
  3412. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3413. preempt_count() -= val;
  3414. }
  3415. EXPORT_SYMBOL(sub_preempt_count);
  3416. #endif
  3417. /*
  3418. * Print scheduling while atomic bug:
  3419. */
  3420. static noinline void __schedule_bug(struct task_struct *prev)
  3421. {
  3422. struct pt_regs *regs = get_irq_regs();
  3423. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3424. prev->comm, prev->pid, preempt_count());
  3425. debug_show_held_locks(prev);
  3426. print_modules();
  3427. if (irqs_disabled())
  3428. print_irqtrace_events(prev);
  3429. if (regs)
  3430. show_regs(regs);
  3431. else
  3432. dump_stack();
  3433. }
  3434. /*
  3435. * Various schedule()-time debugging checks and statistics:
  3436. */
  3437. static inline void schedule_debug(struct task_struct *prev)
  3438. {
  3439. /*
  3440. * Test if we are atomic. Since do_exit() needs to call into
  3441. * schedule() atomically, we ignore that path for now.
  3442. * Otherwise, whine if we are scheduling when we should not be.
  3443. */
  3444. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3445. __schedule_bug(prev);
  3446. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3447. schedstat_inc(this_rq(), sched_count);
  3448. #ifdef CONFIG_SCHEDSTATS
  3449. if (unlikely(prev->lock_depth >= 0)) {
  3450. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3451. schedstat_inc(prev, sched_info.bkl_count);
  3452. }
  3453. #endif
  3454. }
  3455. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3456. {
  3457. if (prev->on_rq)
  3458. update_rq_clock(rq);
  3459. prev->sched_class->put_prev_task(rq, prev);
  3460. }
  3461. /*
  3462. * Pick up the highest-prio task:
  3463. */
  3464. static inline struct task_struct *
  3465. pick_next_task(struct rq *rq)
  3466. {
  3467. const struct sched_class *class;
  3468. struct task_struct *p;
  3469. /*
  3470. * Optimization: we know that if all tasks are in
  3471. * the fair class we can call that function directly:
  3472. */
  3473. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3474. p = fair_sched_class.pick_next_task(rq);
  3475. if (likely(p))
  3476. return p;
  3477. }
  3478. for_each_class(class) {
  3479. p = class->pick_next_task(rq);
  3480. if (p)
  3481. return p;
  3482. }
  3483. BUG(); /* the idle class will always have a runnable task */
  3484. }
  3485. /*
  3486. * schedule() is the main scheduler function.
  3487. */
  3488. asmlinkage void __sched schedule(void)
  3489. {
  3490. struct task_struct *prev, *next;
  3491. unsigned long *switch_count;
  3492. struct rq *rq;
  3493. int cpu;
  3494. need_resched:
  3495. preempt_disable();
  3496. cpu = smp_processor_id();
  3497. rq = cpu_rq(cpu);
  3498. rcu_note_context_switch(cpu);
  3499. prev = rq->curr;
  3500. schedule_debug(prev);
  3501. if (sched_feat(HRTICK))
  3502. hrtick_clear(rq);
  3503. raw_spin_lock_irq(&rq->lock);
  3504. switch_count = &prev->nivcsw;
  3505. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3506. if (unlikely(signal_pending_state(prev->state, prev))) {
  3507. prev->state = TASK_RUNNING;
  3508. } else {
  3509. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3510. prev->on_rq = 0;
  3511. /*
  3512. * If a worker went to sleep, notify and ask workqueue
  3513. * whether it wants to wake up a task to maintain
  3514. * concurrency.
  3515. */
  3516. if (prev->flags & PF_WQ_WORKER) {
  3517. struct task_struct *to_wakeup;
  3518. to_wakeup = wq_worker_sleeping(prev, cpu);
  3519. if (to_wakeup)
  3520. try_to_wake_up_local(to_wakeup);
  3521. }
  3522. /*
  3523. * If we are going to sleep and we have plugged IO
  3524. * queued, make sure to submit it to avoid deadlocks.
  3525. */
  3526. if (blk_needs_flush_plug(prev)) {
  3527. raw_spin_unlock(&rq->lock);
  3528. blk_flush_plug(prev);
  3529. raw_spin_lock(&rq->lock);
  3530. }
  3531. }
  3532. switch_count = &prev->nvcsw;
  3533. }
  3534. pre_schedule(rq, prev);
  3535. if (unlikely(!rq->nr_running))
  3536. idle_balance(cpu, rq);
  3537. put_prev_task(rq, prev);
  3538. next = pick_next_task(rq);
  3539. clear_tsk_need_resched(prev);
  3540. rq->skip_clock_update = 0;
  3541. if (likely(prev != next)) {
  3542. rq->nr_switches++;
  3543. rq->curr = next;
  3544. ++*switch_count;
  3545. context_switch(rq, prev, next); /* unlocks the rq */
  3546. /*
  3547. * The context switch have flipped the stack from under us
  3548. * and restored the local variables which were saved when
  3549. * this task called schedule() in the past. prev == current
  3550. * is still correct, but it can be moved to another cpu/rq.
  3551. */
  3552. cpu = smp_processor_id();
  3553. rq = cpu_rq(cpu);
  3554. } else
  3555. raw_spin_unlock_irq(&rq->lock);
  3556. post_schedule(rq);
  3557. preempt_enable_no_resched();
  3558. if (need_resched())
  3559. goto need_resched;
  3560. }
  3561. EXPORT_SYMBOL(schedule);
  3562. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3563. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3564. {
  3565. bool ret = false;
  3566. rcu_read_lock();
  3567. if (lock->owner != owner)
  3568. goto fail;
  3569. /*
  3570. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3571. * lock->owner still matches owner, if that fails, owner might
  3572. * point to free()d memory, if it still matches, the rcu_read_lock()
  3573. * ensures the memory stays valid.
  3574. */
  3575. barrier();
  3576. ret = owner->on_cpu;
  3577. fail:
  3578. rcu_read_unlock();
  3579. return ret;
  3580. }
  3581. /*
  3582. * Look out! "owner" is an entirely speculative pointer
  3583. * access and not reliable.
  3584. */
  3585. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3586. {
  3587. if (!sched_feat(OWNER_SPIN))
  3588. return 0;
  3589. while (owner_running(lock, owner)) {
  3590. if (need_resched())
  3591. return 0;
  3592. arch_mutex_cpu_relax();
  3593. }
  3594. /*
  3595. * If the owner changed to another task there is likely
  3596. * heavy contention, stop spinning.
  3597. */
  3598. if (lock->owner)
  3599. return 0;
  3600. return 1;
  3601. }
  3602. #endif
  3603. #ifdef CONFIG_PREEMPT
  3604. /*
  3605. * this is the entry point to schedule() from in-kernel preemption
  3606. * off of preempt_enable. Kernel preemptions off return from interrupt
  3607. * occur there and call schedule directly.
  3608. */
  3609. asmlinkage void __sched notrace preempt_schedule(void)
  3610. {
  3611. struct thread_info *ti = current_thread_info();
  3612. /*
  3613. * If there is a non-zero preempt_count or interrupts are disabled,
  3614. * we do not want to preempt the current task. Just return..
  3615. */
  3616. if (likely(ti->preempt_count || irqs_disabled()))
  3617. return;
  3618. do {
  3619. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3620. schedule();
  3621. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3622. /*
  3623. * Check again in case we missed a preemption opportunity
  3624. * between schedule and now.
  3625. */
  3626. barrier();
  3627. } while (need_resched());
  3628. }
  3629. EXPORT_SYMBOL(preempt_schedule);
  3630. /*
  3631. * this is the entry point to schedule() from kernel preemption
  3632. * off of irq context.
  3633. * Note, that this is called and return with irqs disabled. This will
  3634. * protect us against recursive calling from irq.
  3635. */
  3636. asmlinkage void __sched preempt_schedule_irq(void)
  3637. {
  3638. struct thread_info *ti = current_thread_info();
  3639. /* Catch callers which need to be fixed */
  3640. BUG_ON(ti->preempt_count || !irqs_disabled());
  3641. do {
  3642. add_preempt_count(PREEMPT_ACTIVE);
  3643. local_irq_enable();
  3644. schedule();
  3645. local_irq_disable();
  3646. sub_preempt_count(PREEMPT_ACTIVE);
  3647. /*
  3648. * Check again in case we missed a preemption opportunity
  3649. * between schedule and now.
  3650. */
  3651. barrier();
  3652. } while (need_resched());
  3653. }
  3654. #endif /* CONFIG_PREEMPT */
  3655. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3656. void *key)
  3657. {
  3658. return try_to_wake_up(curr->private, mode, wake_flags);
  3659. }
  3660. EXPORT_SYMBOL(default_wake_function);
  3661. /*
  3662. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3663. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3664. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3665. *
  3666. * There are circumstances in which we can try to wake a task which has already
  3667. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3668. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3669. */
  3670. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3671. int nr_exclusive, int wake_flags, void *key)
  3672. {
  3673. wait_queue_t *curr, *next;
  3674. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3675. unsigned flags = curr->flags;
  3676. if (curr->func(curr, mode, wake_flags, key) &&
  3677. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3678. break;
  3679. }
  3680. }
  3681. /**
  3682. * __wake_up - wake up threads blocked on a waitqueue.
  3683. * @q: the waitqueue
  3684. * @mode: which threads
  3685. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3686. * @key: is directly passed to the wakeup function
  3687. *
  3688. * It may be assumed that this function implies a write memory barrier before
  3689. * changing the task state if and only if any tasks are woken up.
  3690. */
  3691. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3692. int nr_exclusive, void *key)
  3693. {
  3694. unsigned long flags;
  3695. spin_lock_irqsave(&q->lock, flags);
  3696. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3697. spin_unlock_irqrestore(&q->lock, flags);
  3698. }
  3699. EXPORT_SYMBOL(__wake_up);
  3700. /*
  3701. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3702. */
  3703. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3704. {
  3705. __wake_up_common(q, mode, 1, 0, NULL);
  3706. }
  3707. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3708. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3709. {
  3710. __wake_up_common(q, mode, 1, 0, key);
  3711. }
  3712. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3713. /**
  3714. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3715. * @q: the waitqueue
  3716. * @mode: which threads
  3717. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3718. * @key: opaque value to be passed to wakeup targets
  3719. *
  3720. * The sync wakeup differs that the waker knows that it will schedule
  3721. * away soon, so while the target thread will be woken up, it will not
  3722. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3723. * with each other. This can prevent needless bouncing between CPUs.
  3724. *
  3725. * On UP it can prevent extra preemption.
  3726. *
  3727. * It may be assumed that this function implies a write memory barrier before
  3728. * changing the task state if and only if any tasks are woken up.
  3729. */
  3730. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3731. int nr_exclusive, void *key)
  3732. {
  3733. unsigned long flags;
  3734. int wake_flags = WF_SYNC;
  3735. if (unlikely(!q))
  3736. return;
  3737. if (unlikely(!nr_exclusive))
  3738. wake_flags = 0;
  3739. spin_lock_irqsave(&q->lock, flags);
  3740. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3741. spin_unlock_irqrestore(&q->lock, flags);
  3742. }
  3743. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3744. /*
  3745. * __wake_up_sync - see __wake_up_sync_key()
  3746. */
  3747. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3748. {
  3749. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3750. }
  3751. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3752. /**
  3753. * complete: - signals a single thread waiting on this completion
  3754. * @x: holds the state of this particular completion
  3755. *
  3756. * This will wake up a single thread waiting on this completion. Threads will be
  3757. * awakened in the same order in which they were queued.
  3758. *
  3759. * See also complete_all(), wait_for_completion() and related routines.
  3760. *
  3761. * It may be assumed that this function implies a write memory barrier before
  3762. * changing the task state if and only if any tasks are woken up.
  3763. */
  3764. void complete(struct completion *x)
  3765. {
  3766. unsigned long flags;
  3767. spin_lock_irqsave(&x->wait.lock, flags);
  3768. x->done++;
  3769. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3770. spin_unlock_irqrestore(&x->wait.lock, flags);
  3771. }
  3772. EXPORT_SYMBOL(complete);
  3773. /**
  3774. * complete_all: - signals all threads waiting on this completion
  3775. * @x: holds the state of this particular completion
  3776. *
  3777. * This will wake up all threads waiting on this particular completion event.
  3778. *
  3779. * It may be assumed that this function implies a write memory barrier before
  3780. * changing the task state if and only if any tasks are woken up.
  3781. */
  3782. void complete_all(struct completion *x)
  3783. {
  3784. unsigned long flags;
  3785. spin_lock_irqsave(&x->wait.lock, flags);
  3786. x->done += UINT_MAX/2;
  3787. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3788. spin_unlock_irqrestore(&x->wait.lock, flags);
  3789. }
  3790. EXPORT_SYMBOL(complete_all);
  3791. static inline long __sched
  3792. do_wait_for_common(struct completion *x, long timeout, int state)
  3793. {
  3794. if (!x->done) {
  3795. DECLARE_WAITQUEUE(wait, current);
  3796. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3797. do {
  3798. if (signal_pending_state(state, current)) {
  3799. timeout = -ERESTARTSYS;
  3800. break;
  3801. }
  3802. __set_current_state(state);
  3803. spin_unlock_irq(&x->wait.lock);
  3804. timeout = schedule_timeout(timeout);
  3805. spin_lock_irq(&x->wait.lock);
  3806. } while (!x->done && timeout);
  3807. __remove_wait_queue(&x->wait, &wait);
  3808. if (!x->done)
  3809. return timeout;
  3810. }
  3811. x->done--;
  3812. return timeout ?: 1;
  3813. }
  3814. static long __sched
  3815. wait_for_common(struct completion *x, long timeout, int state)
  3816. {
  3817. might_sleep();
  3818. spin_lock_irq(&x->wait.lock);
  3819. timeout = do_wait_for_common(x, timeout, state);
  3820. spin_unlock_irq(&x->wait.lock);
  3821. return timeout;
  3822. }
  3823. /**
  3824. * wait_for_completion: - waits for completion of a task
  3825. * @x: holds the state of this particular completion
  3826. *
  3827. * This waits to be signaled for completion of a specific task. It is NOT
  3828. * interruptible and there is no timeout.
  3829. *
  3830. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3831. * and interrupt capability. Also see complete().
  3832. */
  3833. void __sched wait_for_completion(struct completion *x)
  3834. {
  3835. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3836. }
  3837. EXPORT_SYMBOL(wait_for_completion);
  3838. /**
  3839. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3840. * @x: holds the state of this particular completion
  3841. * @timeout: timeout value in jiffies
  3842. *
  3843. * This waits for either a completion of a specific task to be signaled or for a
  3844. * specified timeout to expire. The timeout is in jiffies. It is not
  3845. * interruptible.
  3846. */
  3847. unsigned long __sched
  3848. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3849. {
  3850. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3851. }
  3852. EXPORT_SYMBOL(wait_for_completion_timeout);
  3853. /**
  3854. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3855. * @x: holds the state of this particular completion
  3856. *
  3857. * This waits for completion of a specific task to be signaled. It is
  3858. * interruptible.
  3859. */
  3860. int __sched wait_for_completion_interruptible(struct completion *x)
  3861. {
  3862. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3863. if (t == -ERESTARTSYS)
  3864. return t;
  3865. return 0;
  3866. }
  3867. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3868. /**
  3869. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3870. * @x: holds the state of this particular completion
  3871. * @timeout: timeout value in jiffies
  3872. *
  3873. * This waits for either a completion of a specific task to be signaled or for a
  3874. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3875. */
  3876. long __sched
  3877. wait_for_completion_interruptible_timeout(struct completion *x,
  3878. unsigned long timeout)
  3879. {
  3880. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3881. }
  3882. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3883. /**
  3884. * wait_for_completion_killable: - waits for completion of a task (killable)
  3885. * @x: holds the state of this particular completion
  3886. *
  3887. * This waits to be signaled for completion of a specific task. It can be
  3888. * interrupted by a kill signal.
  3889. */
  3890. int __sched wait_for_completion_killable(struct completion *x)
  3891. {
  3892. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3893. if (t == -ERESTARTSYS)
  3894. return t;
  3895. return 0;
  3896. }
  3897. EXPORT_SYMBOL(wait_for_completion_killable);
  3898. /**
  3899. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3900. * @x: holds the state of this particular completion
  3901. * @timeout: timeout value in jiffies
  3902. *
  3903. * This waits for either a completion of a specific task to be
  3904. * signaled or for a specified timeout to expire. It can be
  3905. * interrupted by a kill signal. The timeout is in jiffies.
  3906. */
  3907. long __sched
  3908. wait_for_completion_killable_timeout(struct completion *x,
  3909. unsigned long timeout)
  3910. {
  3911. return wait_for_common(x, timeout, TASK_KILLABLE);
  3912. }
  3913. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3914. /**
  3915. * try_wait_for_completion - try to decrement a completion without blocking
  3916. * @x: completion structure
  3917. *
  3918. * Returns: 0 if a decrement cannot be done without blocking
  3919. * 1 if a decrement succeeded.
  3920. *
  3921. * If a completion is being used as a counting completion,
  3922. * attempt to decrement the counter without blocking. This
  3923. * enables us to avoid waiting if the resource the completion
  3924. * is protecting is not available.
  3925. */
  3926. bool try_wait_for_completion(struct completion *x)
  3927. {
  3928. unsigned long flags;
  3929. int ret = 1;
  3930. spin_lock_irqsave(&x->wait.lock, flags);
  3931. if (!x->done)
  3932. ret = 0;
  3933. else
  3934. x->done--;
  3935. spin_unlock_irqrestore(&x->wait.lock, flags);
  3936. return ret;
  3937. }
  3938. EXPORT_SYMBOL(try_wait_for_completion);
  3939. /**
  3940. * completion_done - Test to see if a completion has any waiters
  3941. * @x: completion structure
  3942. *
  3943. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3944. * 1 if there are no waiters.
  3945. *
  3946. */
  3947. bool completion_done(struct completion *x)
  3948. {
  3949. unsigned long flags;
  3950. int ret = 1;
  3951. spin_lock_irqsave(&x->wait.lock, flags);
  3952. if (!x->done)
  3953. ret = 0;
  3954. spin_unlock_irqrestore(&x->wait.lock, flags);
  3955. return ret;
  3956. }
  3957. EXPORT_SYMBOL(completion_done);
  3958. static long __sched
  3959. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3960. {
  3961. unsigned long flags;
  3962. wait_queue_t wait;
  3963. init_waitqueue_entry(&wait, current);
  3964. __set_current_state(state);
  3965. spin_lock_irqsave(&q->lock, flags);
  3966. __add_wait_queue(q, &wait);
  3967. spin_unlock(&q->lock);
  3968. timeout = schedule_timeout(timeout);
  3969. spin_lock_irq(&q->lock);
  3970. __remove_wait_queue(q, &wait);
  3971. spin_unlock_irqrestore(&q->lock, flags);
  3972. return timeout;
  3973. }
  3974. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3975. {
  3976. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3977. }
  3978. EXPORT_SYMBOL(interruptible_sleep_on);
  3979. long __sched
  3980. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3981. {
  3982. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3983. }
  3984. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3985. void __sched sleep_on(wait_queue_head_t *q)
  3986. {
  3987. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3988. }
  3989. EXPORT_SYMBOL(sleep_on);
  3990. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3991. {
  3992. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3993. }
  3994. EXPORT_SYMBOL(sleep_on_timeout);
  3995. #ifdef CONFIG_RT_MUTEXES
  3996. /*
  3997. * rt_mutex_setprio - set the current priority of a task
  3998. * @p: task
  3999. * @prio: prio value (kernel-internal form)
  4000. *
  4001. * This function changes the 'effective' priority of a task. It does
  4002. * not touch ->normal_prio like __setscheduler().
  4003. *
  4004. * Used by the rt_mutex code to implement priority inheritance logic.
  4005. */
  4006. void rt_mutex_setprio(struct task_struct *p, int prio)
  4007. {
  4008. int oldprio, on_rq, running;
  4009. struct rq *rq;
  4010. const struct sched_class *prev_class;
  4011. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4012. rq = __task_rq_lock(p);
  4013. trace_sched_pi_setprio(p, prio);
  4014. oldprio = p->prio;
  4015. prev_class = p->sched_class;
  4016. on_rq = p->on_rq;
  4017. running = task_current(rq, p);
  4018. if (on_rq)
  4019. dequeue_task(rq, p, 0);
  4020. if (running)
  4021. p->sched_class->put_prev_task(rq, p);
  4022. if (rt_prio(prio))
  4023. p->sched_class = &rt_sched_class;
  4024. else
  4025. p->sched_class = &fair_sched_class;
  4026. p->prio = prio;
  4027. if (running)
  4028. p->sched_class->set_curr_task(rq);
  4029. if (on_rq)
  4030. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4031. check_class_changed(rq, p, prev_class, oldprio);
  4032. __task_rq_unlock(rq);
  4033. }
  4034. #endif
  4035. void set_user_nice(struct task_struct *p, long nice)
  4036. {
  4037. int old_prio, delta, on_rq;
  4038. unsigned long flags;
  4039. struct rq *rq;
  4040. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4041. return;
  4042. /*
  4043. * We have to be careful, if called from sys_setpriority(),
  4044. * the task might be in the middle of scheduling on another CPU.
  4045. */
  4046. rq = task_rq_lock(p, &flags);
  4047. /*
  4048. * The RT priorities are set via sched_setscheduler(), but we still
  4049. * allow the 'normal' nice value to be set - but as expected
  4050. * it wont have any effect on scheduling until the task is
  4051. * SCHED_FIFO/SCHED_RR:
  4052. */
  4053. if (task_has_rt_policy(p)) {
  4054. p->static_prio = NICE_TO_PRIO(nice);
  4055. goto out_unlock;
  4056. }
  4057. on_rq = p->on_rq;
  4058. if (on_rq)
  4059. dequeue_task(rq, p, 0);
  4060. p->static_prio = NICE_TO_PRIO(nice);
  4061. set_load_weight(p);
  4062. old_prio = p->prio;
  4063. p->prio = effective_prio(p);
  4064. delta = p->prio - old_prio;
  4065. if (on_rq) {
  4066. enqueue_task(rq, p, 0);
  4067. /*
  4068. * If the task increased its priority or is running and
  4069. * lowered its priority, then reschedule its CPU:
  4070. */
  4071. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4072. resched_task(rq->curr);
  4073. }
  4074. out_unlock:
  4075. task_rq_unlock(rq, p, &flags);
  4076. }
  4077. EXPORT_SYMBOL(set_user_nice);
  4078. /*
  4079. * can_nice - check if a task can reduce its nice value
  4080. * @p: task
  4081. * @nice: nice value
  4082. */
  4083. int can_nice(const struct task_struct *p, const int nice)
  4084. {
  4085. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4086. int nice_rlim = 20 - nice;
  4087. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4088. capable(CAP_SYS_NICE));
  4089. }
  4090. #ifdef __ARCH_WANT_SYS_NICE
  4091. /*
  4092. * sys_nice - change the priority of the current process.
  4093. * @increment: priority increment
  4094. *
  4095. * sys_setpriority is a more generic, but much slower function that
  4096. * does similar things.
  4097. */
  4098. SYSCALL_DEFINE1(nice, int, increment)
  4099. {
  4100. long nice, retval;
  4101. /*
  4102. * Setpriority might change our priority at the same moment.
  4103. * We don't have to worry. Conceptually one call occurs first
  4104. * and we have a single winner.
  4105. */
  4106. if (increment < -40)
  4107. increment = -40;
  4108. if (increment > 40)
  4109. increment = 40;
  4110. nice = TASK_NICE(current) + increment;
  4111. if (nice < -20)
  4112. nice = -20;
  4113. if (nice > 19)
  4114. nice = 19;
  4115. if (increment < 0 && !can_nice(current, nice))
  4116. return -EPERM;
  4117. retval = security_task_setnice(current, nice);
  4118. if (retval)
  4119. return retval;
  4120. set_user_nice(current, nice);
  4121. return 0;
  4122. }
  4123. #endif
  4124. /**
  4125. * task_prio - return the priority value of a given task.
  4126. * @p: the task in question.
  4127. *
  4128. * This is the priority value as seen by users in /proc.
  4129. * RT tasks are offset by -200. Normal tasks are centered
  4130. * around 0, value goes from -16 to +15.
  4131. */
  4132. int task_prio(const struct task_struct *p)
  4133. {
  4134. return p->prio - MAX_RT_PRIO;
  4135. }
  4136. /**
  4137. * task_nice - return the nice value of a given task.
  4138. * @p: the task in question.
  4139. */
  4140. int task_nice(const struct task_struct *p)
  4141. {
  4142. return TASK_NICE(p);
  4143. }
  4144. EXPORT_SYMBOL(task_nice);
  4145. /**
  4146. * idle_cpu - is a given cpu idle currently?
  4147. * @cpu: the processor in question.
  4148. */
  4149. int idle_cpu(int cpu)
  4150. {
  4151. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4152. }
  4153. /**
  4154. * idle_task - return the idle task for a given cpu.
  4155. * @cpu: the processor in question.
  4156. */
  4157. struct task_struct *idle_task(int cpu)
  4158. {
  4159. return cpu_rq(cpu)->idle;
  4160. }
  4161. /**
  4162. * find_process_by_pid - find a process with a matching PID value.
  4163. * @pid: the pid in question.
  4164. */
  4165. static struct task_struct *find_process_by_pid(pid_t pid)
  4166. {
  4167. return pid ? find_task_by_vpid(pid) : current;
  4168. }
  4169. /* Actually do priority change: must hold rq lock. */
  4170. static void
  4171. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4172. {
  4173. p->policy = policy;
  4174. p->rt_priority = prio;
  4175. p->normal_prio = normal_prio(p);
  4176. /* we are holding p->pi_lock already */
  4177. p->prio = rt_mutex_getprio(p);
  4178. if (rt_prio(p->prio))
  4179. p->sched_class = &rt_sched_class;
  4180. else
  4181. p->sched_class = &fair_sched_class;
  4182. set_load_weight(p);
  4183. }
  4184. /*
  4185. * check the target process has a UID that matches the current process's
  4186. */
  4187. static bool check_same_owner(struct task_struct *p)
  4188. {
  4189. const struct cred *cred = current_cred(), *pcred;
  4190. bool match;
  4191. rcu_read_lock();
  4192. pcred = __task_cred(p);
  4193. if (cred->user->user_ns == pcred->user->user_ns)
  4194. match = (cred->euid == pcred->euid ||
  4195. cred->euid == pcred->uid);
  4196. else
  4197. match = false;
  4198. rcu_read_unlock();
  4199. return match;
  4200. }
  4201. static int __sched_setscheduler(struct task_struct *p, int policy,
  4202. const struct sched_param *param, bool user)
  4203. {
  4204. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4205. unsigned long flags;
  4206. const struct sched_class *prev_class;
  4207. struct rq *rq;
  4208. int reset_on_fork;
  4209. /* may grab non-irq protected spin_locks */
  4210. BUG_ON(in_interrupt());
  4211. recheck:
  4212. /* double check policy once rq lock held */
  4213. if (policy < 0) {
  4214. reset_on_fork = p->sched_reset_on_fork;
  4215. policy = oldpolicy = p->policy;
  4216. } else {
  4217. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4218. policy &= ~SCHED_RESET_ON_FORK;
  4219. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4220. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4221. policy != SCHED_IDLE)
  4222. return -EINVAL;
  4223. }
  4224. /*
  4225. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4226. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4227. * SCHED_BATCH and SCHED_IDLE is 0.
  4228. */
  4229. if (param->sched_priority < 0 ||
  4230. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4231. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4232. return -EINVAL;
  4233. if (rt_policy(policy) != (param->sched_priority != 0))
  4234. return -EINVAL;
  4235. /*
  4236. * Allow unprivileged RT tasks to decrease priority:
  4237. */
  4238. if (user && !capable(CAP_SYS_NICE)) {
  4239. if (rt_policy(policy)) {
  4240. unsigned long rlim_rtprio =
  4241. task_rlimit(p, RLIMIT_RTPRIO);
  4242. /* can't set/change the rt policy */
  4243. if (policy != p->policy && !rlim_rtprio)
  4244. return -EPERM;
  4245. /* can't increase priority */
  4246. if (param->sched_priority > p->rt_priority &&
  4247. param->sched_priority > rlim_rtprio)
  4248. return -EPERM;
  4249. }
  4250. /*
  4251. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4252. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4253. */
  4254. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4255. if (!can_nice(p, TASK_NICE(p)))
  4256. return -EPERM;
  4257. }
  4258. /* can't change other user's priorities */
  4259. if (!check_same_owner(p))
  4260. return -EPERM;
  4261. /* Normal users shall not reset the sched_reset_on_fork flag */
  4262. if (p->sched_reset_on_fork && !reset_on_fork)
  4263. return -EPERM;
  4264. }
  4265. if (user) {
  4266. retval = security_task_setscheduler(p);
  4267. if (retval)
  4268. return retval;
  4269. }
  4270. /*
  4271. * make sure no PI-waiters arrive (or leave) while we are
  4272. * changing the priority of the task:
  4273. *
  4274. * To be able to change p->policy safely, the appropriate
  4275. * runqueue lock must be held.
  4276. */
  4277. rq = task_rq_lock(p, &flags);
  4278. /*
  4279. * Changing the policy of the stop threads its a very bad idea
  4280. */
  4281. if (p == rq->stop) {
  4282. task_rq_unlock(rq, p, &flags);
  4283. return -EINVAL;
  4284. }
  4285. /*
  4286. * If not changing anything there's no need to proceed further:
  4287. */
  4288. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4289. param->sched_priority == p->rt_priority))) {
  4290. __task_rq_unlock(rq);
  4291. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4292. return 0;
  4293. }
  4294. #ifdef CONFIG_RT_GROUP_SCHED
  4295. if (user) {
  4296. /*
  4297. * Do not allow realtime tasks into groups that have no runtime
  4298. * assigned.
  4299. */
  4300. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4301. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4302. !task_group_is_autogroup(task_group(p))) {
  4303. task_rq_unlock(rq, p, &flags);
  4304. return -EPERM;
  4305. }
  4306. }
  4307. #endif
  4308. /* recheck policy now with rq lock held */
  4309. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4310. policy = oldpolicy = -1;
  4311. task_rq_unlock(rq, p, &flags);
  4312. goto recheck;
  4313. }
  4314. on_rq = p->on_rq;
  4315. running = task_current(rq, p);
  4316. if (on_rq)
  4317. deactivate_task(rq, p, 0);
  4318. if (running)
  4319. p->sched_class->put_prev_task(rq, p);
  4320. p->sched_reset_on_fork = reset_on_fork;
  4321. oldprio = p->prio;
  4322. prev_class = p->sched_class;
  4323. __setscheduler(rq, p, policy, param->sched_priority);
  4324. if (running)
  4325. p->sched_class->set_curr_task(rq);
  4326. if (on_rq)
  4327. activate_task(rq, p, 0);
  4328. check_class_changed(rq, p, prev_class, oldprio);
  4329. task_rq_unlock(rq, p, &flags);
  4330. rt_mutex_adjust_pi(p);
  4331. return 0;
  4332. }
  4333. /**
  4334. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4335. * @p: the task in question.
  4336. * @policy: new policy.
  4337. * @param: structure containing the new RT priority.
  4338. *
  4339. * NOTE that the task may be already dead.
  4340. */
  4341. int sched_setscheduler(struct task_struct *p, int policy,
  4342. const struct sched_param *param)
  4343. {
  4344. return __sched_setscheduler(p, policy, param, true);
  4345. }
  4346. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4347. /**
  4348. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4349. * @p: the task in question.
  4350. * @policy: new policy.
  4351. * @param: structure containing the new RT priority.
  4352. *
  4353. * Just like sched_setscheduler, only don't bother checking if the
  4354. * current context has permission. For example, this is needed in
  4355. * stop_machine(): we create temporary high priority worker threads,
  4356. * but our caller might not have that capability.
  4357. */
  4358. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4359. const struct sched_param *param)
  4360. {
  4361. return __sched_setscheduler(p, policy, param, false);
  4362. }
  4363. static int
  4364. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4365. {
  4366. struct sched_param lparam;
  4367. struct task_struct *p;
  4368. int retval;
  4369. if (!param || pid < 0)
  4370. return -EINVAL;
  4371. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4372. return -EFAULT;
  4373. rcu_read_lock();
  4374. retval = -ESRCH;
  4375. p = find_process_by_pid(pid);
  4376. if (p != NULL)
  4377. retval = sched_setscheduler(p, policy, &lparam);
  4378. rcu_read_unlock();
  4379. return retval;
  4380. }
  4381. /**
  4382. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4383. * @pid: the pid in question.
  4384. * @policy: new policy.
  4385. * @param: structure containing the new RT priority.
  4386. */
  4387. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4388. struct sched_param __user *, param)
  4389. {
  4390. /* negative values for policy are not valid */
  4391. if (policy < 0)
  4392. return -EINVAL;
  4393. return do_sched_setscheduler(pid, policy, param);
  4394. }
  4395. /**
  4396. * sys_sched_setparam - set/change the RT priority of a thread
  4397. * @pid: the pid in question.
  4398. * @param: structure containing the new RT priority.
  4399. */
  4400. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4401. {
  4402. return do_sched_setscheduler(pid, -1, param);
  4403. }
  4404. /**
  4405. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4406. * @pid: the pid in question.
  4407. */
  4408. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4409. {
  4410. struct task_struct *p;
  4411. int retval;
  4412. if (pid < 0)
  4413. return -EINVAL;
  4414. retval = -ESRCH;
  4415. rcu_read_lock();
  4416. p = find_process_by_pid(pid);
  4417. if (p) {
  4418. retval = security_task_getscheduler(p);
  4419. if (!retval)
  4420. retval = p->policy
  4421. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4422. }
  4423. rcu_read_unlock();
  4424. return retval;
  4425. }
  4426. /**
  4427. * sys_sched_getparam - get the RT priority of a thread
  4428. * @pid: the pid in question.
  4429. * @param: structure containing the RT priority.
  4430. */
  4431. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4432. {
  4433. struct sched_param lp;
  4434. struct task_struct *p;
  4435. int retval;
  4436. if (!param || pid < 0)
  4437. return -EINVAL;
  4438. rcu_read_lock();
  4439. p = find_process_by_pid(pid);
  4440. retval = -ESRCH;
  4441. if (!p)
  4442. goto out_unlock;
  4443. retval = security_task_getscheduler(p);
  4444. if (retval)
  4445. goto out_unlock;
  4446. lp.sched_priority = p->rt_priority;
  4447. rcu_read_unlock();
  4448. /*
  4449. * This one might sleep, we cannot do it with a spinlock held ...
  4450. */
  4451. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4452. return retval;
  4453. out_unlock:
  4454. rcu_read_unlock();
  4455. return retval;
  4456. }
  4457. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4458. {
  4459. cpumask_var_t cpus_allowed, new_mask;
  4460. struct task_struct *p;
  4461. int retval;
  4462. get_online_cpus();
  4463. rcu_read_lock();
  4464. p = find_process_by_pid(pid);
  4465. if (!p) {
  4466. rcu_read_unlock();
  4467. put_online_cpus();
  4468. return -ESRCH;
  4469. }
  4470. /* Prevent p going away */
  4471. get_task_struct(p);
  4472. rcu_read_unlock();
  4473. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4474. retval = -ENOMEM;
  4475. goto out_put_task;
  4476. }
  4477. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4478. retval = -ENOMEM;
  4479. goto out_free_cpus_allowed;
  4480. }
  4481. retval = -EPERM;
  4482. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4483. goto out_unlock;
  4484. retval = security_task_setscheduler(p);
  4485. if (retval)
  4486. goto out_unlock;
  4487. cpuset_cpus_allowed(p, cpus_allowed);
  4488. cpumask_and(new_mask, in_mask, cpus_allowed);
  4489. again:
  4490. retval = set_cpus_allowed_ptr(p, new_mask);
  4491. if (!retval) {
  4492. cpuset_cpus_allowed(p, cpus_allowed);
  4493. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4494. /*
  4495. * We must have raced with a concurrent cpuset
  4496. * update. Just reset the cpus_allowed to the
  4497. * cpuset's cpus_allowed
  4498. */
  4499. cpumask_copy(new_mask, cpus_allowed);
  4500. goto again;
  4501. }
  4502. }
  4503. out_unlock:
  4504. free_cpumask_var(new_mask);
  4505. out_free_cpus_allowed:
  4506. free_cpumask_var(cpus_allowed);
  4507. out_put_task:
  4508. put_task_struct(p);
  4509. put_online_cpus();
  4510. return retval;
  4511. }
  4512. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4513. struct cpumask *new_mask)
  4514. {
  4515. if (len < cpumask_size())
  4516. cpumask_clear(new_mask);
  4517. else if (len > cpumask_size())
  4518. len = cpumask_size();
  4519. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4520. }
  4521. /**
  4522. * sys_sched_setaffinity - set the cpu affinity of a process
  4523. * @pid: pid of the process
  4524. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4525. * @user_mask_ptr: user-space pointer to the new cpu mask
  4526. */
  4527. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4528. unsigned long __user *, user_mask_ptr)
  4529. {
  4530. cpumask_var_t new_mask;
  4531. int retval;
  4532. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4533. return -ENOMEM;
  4534. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4535. if (retval == 0)
  4536. retval = sched_setaffinity(pid, new_mask);
  4537. free_cpumask_var(new_mask);
  4538. return retval;
  4539. }
  4540. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4541. {
  4542. struct task_struct *p;
  4543. unsigned long flags;
  4544. int retval;
  4545. get_online_cpus();
  4546. rcu_read_lock();
  4547. retval = -ESRCH;
  4548. p = find_process_by_pid(pid);
  4549. if (!p)
  4550. goto out_unlock;
  4551. retval = security_task_getscheduler(p);
  4552. if (retval)
  4553. goto out_unlock;
  4554. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4555. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4556. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4557. out_unlock:
  4558. rcu_read_unlock();
  4559. put_online_cpus();
  4560. return retval;
  4561. }
  4562. /**
  4563. * sys_sched_getaffinity - get the cpu affinity of a process
  4564. * @pid: pid of the process
  4565. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4566. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4567. */
  4568. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4569. unsigned long __user *, user_mask_ptr)
  4570. {
  4571. int ret;
  4572. cpumask_var_t mask;
  4573. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4574. return -EINVAL;
  4575. if (len & (sizeof(unsigned long)-1))
  4576. return -EINVAL;
  4577. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4578. return -ENOMEM;
  4579. ret = sched_getaffinity(pid, mask);
  4580. if (ret == 0) {
  4581. size_t retlen = min_t(size_t, len, cpumask_size());
  4582. if (copy_to_user(user_mask_ptr, mask, retlen))
  4583. ret = -EFAULT;
  4584. else
  4585. ret = retlen;
  4586. }
  4587. free_cpumask_var(mask);
  4588. return ret;
  4589. }
  4590. /**
  4591. * sys_sched_yield - yield the current processor to other threads.
  4592. *
  4593. * This function yields the current CPU to other tasks. If there are no
  4594. * other threads running on this CPU then this function will return.
  4595. */
  4596. SYSCALL_DEFINE0(sched_yield)
  4597. {
  4598. struct rq *rq = this_rq_lock();
  4599. schedstat_inc(rq, yld_count);
  4600. current->sched_class->yield_task(rq);
  4601. /*
  4602. * Since we are going to call schedule() anyway, there's
  4603. * no need to preempt or enable interrupts:
  4604. */
  4605. __release(rq->lock);
  4606. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4607. do_raw_spin_unlock(&rq->lock);
  4608. preempt_enable_no_resched();
  4609. schedule();
  4610. return 0;
  4611. }
  4612. static inline int should_resched(void)
  4613. {
  4614. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4615. }
  4616. static void __cond_resched(void)
  4617. {
  4618. add_preempt_count(PREEMPT_ACTIVE);
  4619. schedule();
  4620. sub_preempt_count(PREEMPT_ACTIVE);
  4621. }
  4622. int __sched _cond_resched(void)
  4623. {
  4624. if (should_resched()) {
  4625. __cond_resched();
  4626. return 1;
  4627. }
  4628. return 0;
  4629. }
  4630. EXPORT_SYMBOL(_cond_resched);
  4631. /*
  4632. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4633. * call schedule, and on return reacquire the lock.
  4634. *
  4635. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4636. * operations here to prevent schedule() from being called twice (once via
  4637. * spin_unlock(), once by hand).
  4638. */
  4639. int __cond_resched_lock(spinlock_t *lock)
  4640. {
  4641. int resched = should_resched();
  4642. int ret = 0;
  4643. lockdep_assert_held(lock);
  4644. if (spin_needbreak(lock) || resched) {
  4645. spin_unlock(lock);
  4646. if (resched)
  4647. __cond_resched();
  4648. else
  4649. cpu_relax();
  4650. ret = 1;
  4651. spin_lock(lock);
  4652. }
  4653. return ret;
  4654. }
  4655. EXPORT_SYMBOL(__cond_resched_lock);
  4656. int __sched __cond_resched_softirq(void)
  4657. {
  4658. BUG_ON(!in_softirq());
  4659. if (should_resched()) {
  4660. local_bh_enable();
  4661. __cond_resched();
  4662. local_bh_disable();
  4663. return 1;
  4664. }
  4665. return 0;
  4666. }
  4667. EXPORT_SYMBOL(__cond_resched_softirq);
  4668. /**
  4669. * yield - yield the current processor to other threads.
  4670. *
  4671. * This is a shortcut for kernel-space yielding - it marks the
  4672. * thread runnable and calls sys_sched_yield().
  4673. */
  4674. void __sched yield(void)
  4675. {
  4676. set_current_state(TASK_RUNNING);
  4677. sys_sched_yield();
  4678. }
  4679. EXPORT_SYMBOL(yield);
  4680. /**
  4681. * yield_to - yield the current processor to another thread in
  4682. * your thread group, or accelerate that thread toward the
  4683. * processor it's on.
  4684. * @p: target task
  4685. * @preempt: whether task preemption is allowed or not
  4686. *
  4687. * It's the caller's job to ensure that the target task struct
  4688. * can't go away on us before we can do any checks.
  4689. *
  4690. * Returns true if we indeed boosted the target task.
  4691. */
  4692. bool __sched yield_to(struct task_struct *p, bool preempt)
  4693. {
  4694. struct task_struct *curr = current;
  4695. struct rq *rq, *p_rq;
  4696. unsigned long flags;
  4697. bool yielded = 0;
  4698. local_irq_save(flags);
  4699. rq = this_rq();
  4700. again:
  4701. p_rq = task_rq(p);
  4702. double_rq_lock(rq, p_rq);
  4703. while (task_rq(p) != p_rq) {
  4704. double_rq_unlock(rq, p_rq);
  4705. goto again;
  4706. }
  4707. if (!curr->sched_class->yield_to_task)
  4708. goto out;
  4709. if (curr->sched_class != p->sched_class)
  4710. goto out;
  4711. if (task_running(p_rq, p) || p->state)
  4712. goto out;
  4713. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4714. if (yielded) {
  4715. schedstat_inc(rq, yld_count);
  4716. /*
  4717. * Make p's CPU reschedule; pick_next_entity takes care of
  4718. * fairness.
  4719. */
  4720. if (preempt && rq != p_rq)
  4721. resched_task(p_rq->curr);
  4722. }
  4723. out:
  4724. double_rq_unlock(rq, p_rq);
  4725. local_irq_restore(flags);
  4726. if (yielded)
  4727. schedule();
  4728. return yielded;
  4729. }
  4730. EXPORT_SYMBOL_GPL(yield_to);
  4731. /*
  4732. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4733. * that process accounting knows that this is a task in IO wait state.
  4734. */
  4735. void __sched io_schedule(void)
  4736. {
  4737. struct rq *rq = raw_rq();
  4738. delayacct_blkio_start();
  4739. atomic_inc(&rq->nr_iowait);
  4740. blk_flush_plug(current);
  4741. current->in_iowait = 1;
  4742. schedule();
  4743. current->in_iowait = 0;
  4744. atomic_dec(&rq->nr_iowait);
  4745. delayacct_blkio_end();
  4746. }
  4747. EXPORT_SYMBOL(io_schedule);
  4748. long __sched io_schedule_timeout(long timeout)
  4749. {
  4750. struct rq *rq = raw_rq();
  4751. long ret;
  4752. delayacct_blkio_start();
  4753. atomic_inc(&rq->nr_iowait);
  4754. blk_flush_plug(current);
  4755. current->in_iowait = 1;
  4756. ret = schedule_timeout(timeout);
  4757. current->in_iowait = 0;
  4758. atomic_dec(&rq->nr_iowait);
  4759. delayacct_blkio_end();
  4760. return ret;
  4761. }
  4762. /**
  4763. * sys_sched_get_priority_max - return maximum RT priority.
  4764. * @policy: scheduling class.
  4765. *
  4766. * this syscall returns the maximum rt_priority that can be used
  4767. * by a given scheduling class.
  4768. */
  4769. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4770. {
  4771. int ret = -EINVAL;
  4772. switch (policy) {
  4773. case SCHED_FIFO:
  4774. case SCHED_RR:
  4775. ret = MAX_USER_RT_PRIO-1;
  4776. break;
  4777. case SCHED_NORMAL:
  4778. case SCHED_BATCH:
  4779. case SCHED_IDLE:
  4780. ret = 0;
  4781. break;
  4782. }
  4783. return ret;
  4784. }
  4785. /**
  4786. * sys_sched_get_priority_min - return minimum RT priority.
  4787. * @policy: scheduling class.
  4788. *
  4789. * this syscall returns the minimum rt_priority that can be used
  4790. * by a given scheduling class.
  4791. */
  4792. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4793. {
  4794. int ret = -EINVAL;
  4795. switch (policy) {
  4796. case SCHED_FIFO:
  4797. case SCHED_RR:
  4798. ret = 1;
  4799. break;
  4800. case SCHED_NORMAL:
  4801. case SCHED_BATCH:
  4802. case SCHED_IDLE:
  4803. ret = 0;
  4804. }
  4805. return ret;
  4806. }
  4807. /**
  4808. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4809. * @pid: pid of the process.
  4810. * @interval: userspace pointer to the timeslice value.
  4811. *
  4812. * this syscall writes the default timeslice value of a given process
  4813. * into the user-space timespec buffer. A value of '0' means infinity.
  4814. */
  4815. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4816. struct timespec __user *, interval)
  4817. {
  4818. struct task_struct *p;
  4819. unsigned int time_slice;
  4820. unsigned long flags;
  4821. struct rq *rq;
  4822. int retval;
  4823. struct timespec t;
  4824. if (pid < 0)
  4825. return -EINVAL;
  4826. retval = -ESRCH;
  4827. rcu_read_lock();
  4828. p = find_process_by_pid(pid);
  4829. if (!p)
  4830. goto out_unlock;
  4831. retval = security_task_getscheduler(p);
  4832. if (retval)
  4833. goto out_unlock;
  4834. rq = task_rq_lock(p, &flags);
  4835. time_slice = p->sched_class->get_rr_interval(rq, p);
  4836. task_rq_unlock(rq, p, &flags);
  4837. rcu_read_unlock();
  4838. jiffies_to_timespec(time_slice, &t);
  4839. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4840. return retval;
  4841. out_unlock:
  4842. rcu_read_unlock();
  4843. return retval;
  4844. }
  4845. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4846. void sched_show_task(struct task_struct *p)
  4847. {
  4848. unsigned long free = 0;
  4849. unsigned state;
  4850. state = p->state ? __ffs(p->state) + 1 : 0;
  4851. printk(KERN_INFO "%-15.15s %c", p->comm,
  4852. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4853. #if BITS_PER_LONG == 32
  4854. if (state == TASK_RUNNING)
  4855. printk(KERN_CONT " running ");
  4856. else
  4857. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4858. #else
  4859. if (state == TASK_RUNNING)
  4860. printk(KERN_CONT " running task ");
  4861. else
  4862. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4863. #endif
  4864. #ifdef CONFIG_DEBUG_STACK_USAGE
  4865. free = stack_not_used(p);
  4866. #endif
  4867. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4868. task_pid_nr(p), task_pid_nr(p->real_parent),
  4869. (unsigned long)task_thread_info(p)->flags);
  4870. show_stack(p, NULL);
  4871. }
  4872. void show_state_filter(unsigned long state_filter)
  4873. {
  4874. struct task_struct *g, *p;
  4875. #if BITS_PER_LONG == 32
  4876. printk(KERN_INFO
  4877. " task PC stack pid father\n");
  4878. #else
  4879. printk(KERN_INFO
  4880. " task PC stack pid father\n");
  4881. #endif
  4882. read_lock(&tasklist_lock);
  4883. do_each_thread(g, p) {
  4884. /*
  4885. * reset the NMI-timeout, listing all files on a slow
  4886. * console might take a lot of time:
  4887. */
  4888. touch_nmi_watchdog();
  4889. if (!state_filter || (p->state & state_filter))
  4890. sched_show_task(p);
  4891. } while_each_thread(g, p);
  4892. touch_all_softlockup_watchdogs();
  4893. #ifdef CONFIG_SCHED_DEBUG
  4894. sysrq_sched_debug_show();
  4895. #endif
  4896. read_unlock(&tasklist_lock);
  4897. /*
  4898. * Only show locks if all tasks are dumped:
  4899. */
  4900. if (!state_filter)
  4901. debug_show_all_locks();
  4902. }
  4903. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4904. {
  4905. idle->sched_class = &idle_sched_class;
  4906. }
  4907. /**
  4908. * init_idle - set up an idle thread for a given CPU
  4909. * @idle: task in question
  4910. * @cpu: cpu the idle task belongs to
  4911. *
  4912. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4913. * flag, to make booting more robust.
  4914. */
  4915. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4916. {
  4917. struct rq *rq = cpu_rq(cpu);
  4918. unsigned long flags;
  4919. raw_spin_lock_irqsave(&rq->lock, flags);
  4920. __sched_fork(idle);
  4921. idle->state = TASK_RUNNING;
  4922. idle->se.exec_start = sched_clock();
  4923. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4924. /*
  4925. * We're having a chicken and egg problem, even though we are
  4926. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4927. * lockdep check in task_group() will fail.
  4928. *
  4929. * Similar case to sched_fork(). / Alternatively we could
  4930. * use task_rq_lock() here and obtain the other rq->lock.
  4931. *
  4932. * Silence PROVE_RCU
  4933. */
  4934. rcu_read_lock();
  4935. __set_task_cpu(idle, cpu);
  4936. rcu_read_unlock();
  4937. rq->curr = rq->idle = idle;
  4938. #if defined(CONFIG_SMP)
  4939. idle->on_cpu = 1;
  4940. #endif
  4941. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4942. /* Set the preempt count _outside_ the spinlocks! */
  4943. #if defined(CONFIG_PREEMPT)
  4944. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4945. #else
  4946. task_thread_info(idle)->preempt_count = 0;
  4947. #endif
  4948. /*
  4949. * The idle tasks have their own, simple scheduling class:
  4950. */
  4951. idle->sched_class = &idle_sched_class;
  4952. ftrace_graph_init_idle_task(idle, cpu);
  4953. }
  4954. /*
  4955. * In a system that switches off the HZ timer nohz_cpu_mask
  4956. * indicates which cpus entered this state. This is used
  4957. * in the rcu update to wait only for active cpus. For system
  4958. * which do not switch off the HZ timer nohz_cpu_mask should
  4959. * always be CPU_BITS_NONE.
  4960. */
  4961. cpumask_var_t nohz_cpu_mask;
  4962. /*
  4963. * Increase the granularity value when there are more CPUs,
  4964. * because with more CPUs the 'effective latency' as visible
  4965. * to users decreases. But the relationship is not linear,
  4966. * so pick a second-best guess by going with the log2 of the
  4967. * number of CPUs.
  4968. *
  4969. * This idea comes from the SD scheduler of Con Kolivas:
  4970. */
  4971. static int get_update_sysctl_factor(void)
  4972. {
  4973. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4974. unsigned int factor;
  4975. switch (sysctl_sched_tunable_scaling) {
  4976. case SCHED_TUNABLESCALING_NONE:
  4977. factor = 1;
  4978. break;
  4979. case SCHED_TUNABLESCALING_LINEAR:
  4980. factor = cpus;
  4981. break;
  4982. case SCHED_TUNABLESCALING_LOG:
  4983. default:
  4984. factor = 1 + ilog2(cpus);
  4985. break;
  4986. }
  4987. return factor;
  4988. }
  4989. static void update_sysctl(void)
  4990. {
  4991. unsigned int factor = get_update_sysctl_factor();
  4992. #define SET_SYSCTL(name) \
  4993. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4994. SET_SYSCTL(sched_min_granularity);
  4995. SET_SYSCTL(sched_latency);
  4996. SET_SYSCTL(sched_wakeup_granularity);
  4997. #undef SET_SYSCTL
  4998. }
  4999. static inline void sched_init_granularity(void)
  5000. {
  5001. update_sysctl();
  5002. }
  5003. #ifdef CONFIG_SMP
  5004. /*
  5005. * This is how migration works:
  5006. *
  5007. * 1) we invoke migration_cpu_stop() on the target CPU using
  5008. * stop_one_cpu().
  5009. * 2) stopper starts to run (implicitly forcing the migrated thread
  5010. * off the CPU)
  5011. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5012. * 4) if it's in the wrong runqueue then the migration thread removes
  5013. * it and puts it into the right queue.
  5014. * 5) stopper completes and stop_one_cpu() returns and the migration
  5015. * is done.
  5016. */
  5017. /*
  5018. * Change a given task's CPU affinity. Migrate the thread to a
  5019. * proper CPU and schedule it away if the CPU it's executing on
  5020. * is removed from the allowed bitmask.
  5021. *
  5022. * NOTE: the caller must have a valid reference to the task, the
  5023. * task must not exit() & deallocate itself prematurely. The
  5024. * call is not atomic; no spinlocks may be held.
  5025. */
  5026. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5027. {
  5028. unsigned long flags;
  5029. struct rq *rq;
  5030. unsigned int dest_cpu;
  5031. int ret = 0;
  5032. rq = task_rq_lock(p, &flags);
  5033. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5034. ret = -EINVAL;
  5035. goto out;
  5036. }
  5037. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5038. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5039. ret = -EINVAL;
  5040. goto out;
  5041. }
  5042. if (p->sched_class->set_cpus_allowed)
  5043. p->sched_class->set_cpus_allowed(p, new_mask);
  5044. else {
  5045. cpumask_copy(&p->cpus_allowed, new_mask);
  5046. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5047. }
  5048. /* Can the task run on the task's current CPU? If so, we're done */
  5049. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5050. goto out;
  5051. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5052. if (need_migrate_task(p)) {
  5053. struct migration_arg arg = { p, dest_cpu };
  5054. /* Need help from migration thread: drop lock and wait. */
  5055. task_rq_unlock(rq, p, &flags);
  5056. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5057. tlb_migrate_finish(p->mm);
  5058. return 0;
  5059. }
  5060. out:
  5061. task_rq_unlock(rq, p, &flags);
  5062. return ret;
  5063. }
  5064. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5065. /*
  5066. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5067. * this because either it can't run here any more (set_cpus_allowed()
  5068. * away from this CPU, or CPU going down), or because we're
  5069. * attempting to rebalance this task on exec (sched_exec).
  5070. *
  5071. * So we race with normal scheduler movements, but that's OK, as long
  5072. * as the task is no longer on this CPU.
  5073. *
  5074. * Returns non-zero if task was successfully migrated.
  5075. */
  5076. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5077. {
  5078. struct rq *rq_dest, *rq_src;
  5079. int ret = 0;
  5080. if (unlikely(!cpu_active(dest_cpu)))
  5081. return ret;
  5082. rq_src = cpu_rq(src_cpu);
  5083. rq_dest = cpu_rq(dest_cpu);
  5084. raw_spin_lock(&p->pi_lock);
  5085. double_rq_lock(rq_src, rq_dest);
  5086. /* Already moved. */
  5087. if (task_cpu(p) != src_cpu)
  5088. goto done;
  5089. /* Affinity changed (again). */
  5090. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5091. goto fail;
  5092. /*
  5093. * If we're not on a rq, the next wake-up will ensure we're
  5094. * placed properly.
  5095. */
  5096. if (p->on_rq) {
  5097. deactivate_task(rq_src, p, 0);
  5098. set_task_cpu(p, dest_cpu);
  5099. activate_task(rq_dest, p, 0);
  5100. check_preempt_curr(rq_dest, p, 0);
  5101. }
  5102. done:
  5103. ret = 1;
  5104. fail:
  5105. double_rq_unlock(rq_src, rq_dest);
  5106. raw_spin_unlock(&p->pi_lock);
  5107. return ret;
  5108. }
  5109. /*
  5110. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5111. * and performs thread migration by bumping thread off CPU then
  5112. * 'pushing' onto another runqueue.
  5113. */
  5114. static int migration_cpu_stop(void *data)
  5115. {
  5116. struct migration_arg *arg = data;
  5117. /*
  5118. * The original target cpu might have gone down and we might
  5119. * be on another cpu but it doesn't matter.
  5120. */
  5121. local_irq_disable();
  5122. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5123. local_irq_enable();
  5124. return 0;
  5125. }
  5126. #ifdef CONFIG_HOTPLUG_CPU
  5127. /*
  5128. * Ensures that the idle task is using init_mm right before its cpu goes
  5129. * offline.
  5130. */
  5131. void idle_task_exit(void)
  5132. {
  5133. struct mm_struct *mm = current->active_mm;
  5134. BUG_ON(cpu_online(smp_processor_id()));
  5135. if (mm != &init_mm)
  5136. switch_mm(mm, &init_mm, current);
  5137. mmdrop(mm);
  5138. }
  5139. /*
  5140. * While a dead CPU has no uninterruptible tasks queued at this point,
  5141. * it might still have a nonzero ->nr_uninterruptible counter, because
  5142. * for performance reasons the counter is not stricly tracking tasks to
  5143. * their home CPUs. So we just add the counter to another CPU's counter,
  5144. * to keep the global sum constant after CPU-down:
  5145. */
  5146. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5147. {
  5148. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5149. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5150. rq_src->nr_uninterruptible = 0;
  5151. }
  5152. /*
  5153. * remove the tasks which were accounted by rq from calc_load_tasks.
  5154. */
  5155. static void calc_global_load_remove(struct rq *rq)
  5156. {
  5157. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5158. rq->calc_load_active = 0;
  5159. }
  5160. /*
  5161. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5162. * try_to_wake_up()->select_task_rq().
  5163. *
  5164. * Called with rq->lock held even though we'er in stop_machine() and
  5165. * there's no concurrency possible, we hold the required locks anyway
  5166. * because of lock validation efforts.
  5167. */
  5168. static void migrate_tasks(unsigned int dead_cpu)
  5169. {
  5170. struct rq *rq = cpu_rq(dead_cpu);
  5171. struct task_struct *next, *stop = rq->stop;
  5172. int dest_cpu;
  5173. /*
  5174. * Fudge the rq selection such that the below task selection loop
  5175. * doesn't get stuck on the currently eligible stop task.
  5176. *
  5177. * We're currently inside stop_machine() and the rq is either stuck
  5178. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5179. * either way we should never end up calling schedule() until we're
  5180. * done here.
  5181. */
  5182. rq->stop = NULL;
  5183. for ( ; ; ) {
  5184. /*
  5185. * There's this thread running, bail when that's the only
  5186. * remaining thread.
  5187. */
  5188. if (rq->nr_running == 1)
  5189. break;
  5190. next = pick_next_task(rq);
  5191. BUG_ON(!next);
  5192. next->sched_class->put_prev_task(rq, next);
  5193. /* Find suitable destination for @next, with force if needed. */
  5194. dest_cpu = select_fallback_rq(dead_cpu, next);
  5195. raw_spin_unlock(&rq->lock);
  5196. __migrate_task(next, dead_cpu, dest_cpu);
  5197. raw_spin_lock(&rq->lock);
  5198. }
  5199. rq->stop = stop;
  5200. }
  5201. #endif /* CONFIG_HOTPLUG_CPU */
  5202. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5203. static struct ctl_table sd_ctl_dir[] = {
  5204. {
  5205. .procname = "sched_domain",
  5206. .mode = 0555,
  5207. },
  5208. {}
  5209. };
  5210. static struct ctl_table sd_ctl_root[] = {
  5211. {
  5212. .procname = "kernel",
  5213. .mode = 0555,
  5214. .child = sd_ctl_dir,
  5215. },
  5216. {}
  5217. };
  5218. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5219. {
  5220. struct ctl_table *entry =
  5221. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5222. return entry;
  5223. }
  5224. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5225. {
  5226. struct ctl_table *entry;
  5227. /*
  5228. * In the intermediate directories, both the child directory and
  5229. * procname are dynamically allocated and could fail but the mode
  5230. * will always be set. In the lowest directory the names are
  5231. * static strings and all have proc handlers.
  5232. */
  5233. for (entry = *tablep; entry->mode; entry++) {
  5234. if (entry->child)
  5235. sd_free_ctl_entry(&entry->child);
  5236. if (entry->proc_handler == NULL)
  5237. kfree(entry->procname);
  5238. }
  5239. kfree(*tablep);
  5240. *tablep = NULL;
  5241. }
  5242. static void
  5243. set_table_entry(struct ctl_table *entry,
  5244. const char *procname, void *data, int maxlen,
  5245. mode_t mode, proc_handler *proc_handler)
  5246. {
  5247. entry->procname = procname;
  5248. entry->data = data;
  5249. entry->maxlen = maxlen;
  5250. entry->mode = mode;
  5251. entry->proc_handler = proc_handler;
  5252. }
  5253. static struct ctl_table *
  5254. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5255. {
  5256. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5257. if (table == NULL)
  5258. return NULL;
  5259. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5260. sizeof(long), 0644, proc_doulongvec_minmax);
  5261. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5262. sizeof(long), 0644, proc_doulongvec_minmax);
  5263. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5264. sizeof(int), 0644, proc_dointvec_minmax);
  5265. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5266. sizeof(int), 0644, proc_dointvec_minmax);
  5267. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5268. sizeof(int), 0644, proc_dointvec_minmax);
  5269. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5270. sizeof(int), 0644, proc_dointvec_minmax);
  5271. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5272. sizeof(int), 0644, proc_dointvec_minmax);
  5273. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5274. sizeof(int), 0644, proc_dointvec_minmax);
  5275. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5276. sizeof(int), 0644, proc_dointvec_minmax);
  5277. set_table_entry(&table[9], "cache_nice_tries",
  5278. &sd->cache_nice_tries,
  5279. sizeof(int), 0644, proc_dointvec_minmax);
  5280. set_table_entry(&table[10], "flags", &sd->flags,
  5281. sizeof(int), 0644, proc_dointvec_minmax);
  5282. set_table_entry(&table[11], "name", sd->name,
  5283. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5284. /* &table[12] is terminator */
  5285. return table;
  5286. }
  5287. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5288. {
  5289. struct ctl_table *entry, *table;
  5290. struct sched_domain *sd;
  5291. int domain_num = 0, i;
  5292. char buf[32];
  5293. for_each_domain(cpu, sd)
  5294. domain_num++;
  5295. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5296. if (table == NULL)
  5297. return NULL;
  5298. i = 0;
  5299. for_each_domain(cpu, sd) {
  5300. snprintf(buf, 32, "domain%d", i);
  5301. entry->procname = kstrdup(buf, GFP_KERNEL);
  5302. entry->mode = 0555;
  5303. entry->child = sd_alloc_ctl_domain_table(sd);
  5304. entry++;
  5305. i++;
  5306. }
  5307. return table;
  5308. }
  5309. static struct ctl_table_header *sd_sysctl_header;
  5310. static void register_sched_domain_sysctl(void)
  5311. {
  5312. int i, cpu_num = num_possible_cpus();
  5313. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5314. char buf[32];
  5315. WARN_ON(sd_ctl_dir[0].child);
  5316. sd_ctl_dir[0].child = entry;
  5317. if (entry == NULL)
  5318. return;
  5319. for_each_possible_cpu(i) {
  5320. snprintf(buf, 32, "cpu%d", i);
  5321. entry->procname = kstrdup(buf, GFP_KERNEL);
  5322. entry->mode = 0555;
  5323. entry->child = sd_alloc_ctl_cpu_table(i);
  5324. entry++;
  5325. }
  5326. WARN_ON(sd_sysctl_header);
  5327. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5328. }
  5329. /* may be called multiple times per register */
  5330. static void unregister_sched_domain_sysctl(void)
  5331. {
  5332. if (sd_sysctl_header)
  5333. unregister_sysctl_table(sd_sysctl_header);
  5334. sd_sysctl_header = NULL;
  5335. if (sd_ctl_dir[0].child)
  5336. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5337. }
  5338. #else
  5339. static void register_sched_domain_sysctl(void)
  5340. {
  5341. }
  5342. static void unregister_sched_domain_sysctl(void)
  5343. {
  5344. }
  5345. #endif
  5346. static void set_rq_online(struct rq *rq)
  5347. {
  5348. if (!rq->online) {
  5349. const struct sched_class *class;
  5350. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5351. rq->online = 1;
  5352. for_each_class(class) {
  5353. if (class->rq_online)
  5354. class->rq_online(rq);
  5355. }
  5356. }
  5357. }
  5358. static void set_rq_offline(struct rq *rq)
  5359. {
  5360. if (rq->online) {
  5361. const struct sched_class *class;
  5362. for_each_class(class) {
  5363. if (class->rq_offline)
  5364. class->rq_offline(rq);
  5365. }
  5366. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5367. rq->online = 0;
  5368. }
  5369. }
  5370. /*
  5371. * migration_call - callback that gets triggered when a CPU is added.
  5372. * Here we can start up the necessary migration thread for the new CPU.
  5373. */
  5374. static int __cpuinit
  5375. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5376. {
  5377. int cpu = (long)hcpu;
  5378. unsigned long flags;
  5379. struct rq *rq = cpu_rq(cpu);
  5380. switch (action & ~CPU_TASKS_FROZEN) {
  5381. case CPU_UP_PREPARE:
  5382. rq->calc_load_update = calc_load_update;
  5383. break;
  5384. case CPU_ONLINE:
  5385. /* Update our root-domain */
  5386. raw_spin_lock_irqsave(&rq->lock, flags);
  5387. if (rq->rd) {
  5388. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5389. set_rq_online(rq);
  5390. }
  5391. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5392. break;
  5393. #ifdef CONFIG_HOTPLUG_CPU
  5394. case CPU_DYING:
  5395. /* Update our root-domain */
  5396. raw_spin_lock_irqsave(&rq->lock, flags);
  5397. if (rq->rd) {
  5398. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5399. set_rq_offline(rq);
  5400. }
  5401. migrate_tasks(cpu);
  5402. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5403. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5404. migrate_nr_uninterruptible(rq);
  5405. calc_global_load_remove(rq);
  5406. break;
  5407. #endif
  5408. }
  5409. update_max_interval();
  5410. return NOTIFY_OK;
  5411. }
  5412. /*
  5413. * Register at high priority so that task migration (migrate_all_tasks)
  5414. * happens before everything else. This has to be lower priority than
  5415. * the notifier in the perf_event subsystem, though.
  5416. */
  5417. static struct notifier_block __cpuinitdata migration_notifier = {
  5418. .notifier_call = migration_call,
  5419. .priority = CPU_PRI_MIGRATION,
  5420. };
  5421. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5422. unsigned long action, void *hcpu)
  5423. {
  5424. switch (action & ~CPU_TASKS_FROZEN) {
  5425. case CPU_ONLINE:
  5426. case CPU_DOWN_FAILED:
  5427. set_cpu_active((long)hcpu, true);
  5428. return NOTIFY_OK;
  5429. default:
  5430. return NOTIFY_DONE;
  5431. }
  5432. }
  5433. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5434. unsigned long action, void *hcpu)
  5435. {
  5436. switch (action & ~CPU_TASKS_FROZEN) {
  5437. case CPU_DOWN_PREPARE:
  5438. set_cpu_active((long)hcpu, false);
  5439. return NOTIFY_OK;
  5440. default:
  5441. return NOTIFY_DONE;
  5442. }
  5443. }
  5444. static int __init migration_init(void)
  5445. {
  5446. void *cpu = (void *)(long)smp_processor_id();
  5447. int err;
  5448. /* Initialize migration for the boot CPU */
  5449. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5450. BUG_ON(err == NOTIFY_BAD);
  5451. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5452. register_cpu_notifier(&migration_notifier);
  5453. /* Register cpu active notifiers */
  5454. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5455. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5456. return 0;
  5457. }
  5458. early_initcall(migration_init);
  5459. #endif
  5460. #ifdef CONFIG_SMP
  5461. #ifdef CONFIG_SCHED_DEBUG
  5462. static __read_mostly int sched_domain_debug_enabled;
  5463. static int __init sched_domain_debug_setup(char *str)
  5464. {
  5465. sched_domain_debug_enabled = 1;
  5466. return 0;
  5467. }
  5468. early_param("sched_debug", sched_domain_debug_setup);
  5469. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5470. struct cpumask *groupmask)
  5471. {
  5472. struct sched_group *group = sd->groups;
  5473. char str[256];
  5474. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5475. cpumask_clear(groupmask);
  5476. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5477. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5478. printk("does not load-balance\n");
  5479. if (sd->parent)
  5480. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5481. " has parent");
  5482. return -1;
  5483. }
  5484. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5485. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5486. printk(KERN_ERR "ERROR: domain->span does not contain "
  5487. "CPU%d\n", cpu);
  5488. }
  5489. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5490. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5491. " CPU%d\n", cpu);
  5492. }
  5493. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5494. do {
  5495. if (!group) {
  5496. printk("\n");
  5497. printk(KERN_ERR "ERROR: group is NULL\n");
  5498. break;
  5499. }
  5500. if (!group->cpu_power) {
  5501. printk(KERN_CONT "\n");
  5502. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5503. "set\n");
  5504. break;
  5505. }
  5506. if (!cpumask_weight(sched_group_cpus(group))) {
  5507. printk(KERN_CONT "\n");
  5508. printk(KERN_ERR "ERROR: empty group\n");
  5509. break;
  5510. }
  5511. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5512. printk(KERN_CONT "\n");
  5513. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5514. break;
  5515. }
  5516. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5517. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5518. printk(KERN_CONT " %s", str);
  5519. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5520. printk(KERN_CONT " (cpu_power = %d)",
  5521. group->cpu_power);
  5522. }
  5523. group = group->next;
  5524. } while (group != sd->groups);
  5525. printk(KERN_CONT "\n");
  5526. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5527. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5528. if (sd->parent &&
  5529. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5530. printk(KERN_ERR "ERROR: parent span is not a superset "
  5531. "of domain->span\n");
  5532. return 0;
  5533. }
  5534. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5535. {
  5536. cpumask_var_t groupmask;
  5537. int level = 0;
  5538. if (!sched_domain_debug_enabled)
  5539. return;
  5540. if (!sd) {
  5541. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5542. return;
  5543. }
  5544. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5545. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5546. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5547. return;
  5548. }
  5549. for (;;) {
  5550. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5551. break;
  5552. level++;
  5553. sd = sd->parent;
  5554. if (!sd)
  5555. break;
  5556. }
  5557. free_cpumask_var(groupmask);
  5558. }
  5559. #else /* !CONFIG_SCHED_DEBUG */
  5560. # define sched_domain_debug(sd, cpu) do { } while (0)
  5561. #endif /* CONFIG_SCHED_DEBUG */
  5562. static int sd_degenerate(struct sched_domain *sd)
  5563. {
  5564. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5565. return 1;
  5566. /* Following flags need at least 2 groups */
  5567. if (sd->flags & (SD_LOAD_BALANCE |
  5568. SD_BALANCE_NEWIDLE |
  5569. SD_BALANCE_FORK |
  5570. SD_BALANCE_EXEC |
  5571. SD_SHARE_CPUPOWER |
  5572. SD_SHARE_PKG_RESOURCES)) {
  5573. if (sd->groups != sd->groups->next)
  5574. return 0;
  5575. }
  5576. /* Following flags don't use groups */
  5577. if (sd->flags & (SD_WAKE_AFFINE))
  5578. return 0;
  5579. return 1;
  5580. }
  5581. static int
  5582. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5583. {
  5584. unsigned long cflags = sd->flags, pflags = parent->flags;
  5585. if (sd_degenerate(parent))
  5586. return 1;
  5587. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5588. return 0;
  5589. /* Flags needing groups don't count if only 1 group in parent */
  5590. if (parent->groups == parent->groups->next) {
  5591. pflags &= ~(SD_LOAD_BALANCE |
  5592. SD_BALANCE_NEWIDLE |
  5593. SD_BALANCE_FORK |
  5594. SD_BALANCE_EXEC |
  5595. SD_SHARE_CPUPOWER |
  5596. SD_SHARE_PKG_RESOURCES);
  5597. if (nr_node_ids == 1)
  5598. pflags &= ~SD_SERIALIZE;
  5599. }
  5600. if (~cflags & pflags)
  5601. return 0;
  5602. return 1;
  5603. }
  5604. static void free_rootdomain(struct root_domain *rd)
  5605. {
  5606. synchronize_sched();
  5607. cpupri_cleanup(&rd->cpupri);
  5608. free_cpumask_var(rd->rto_mask);
  5609. free_cpumask_var(rd->online);
  5610. free_cpumask_var(rd->span);
  5611. kfree(rd);
  5612. }
  5613. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5614. {
  5615. struct root_domain *old_rd = NULL;
  5616. unsigned long flags;
  5617. raw_spin_lock_irqsave(&rq->lock, flags);
  5618. if (rq->rd) {
  5619. old_rd = rq->rd;
  5620. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5621. set_rq_offline(rq);
  5622. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5623. /*
  5624. * If we dont want to free the old_rt yet then
  5625. * set old_rd to NULL to skip the freeing later
  5626. * in this function:
  5627. */
  5628. if (!atomic_dec_and_test(&old_rd->refcount))
  5629. old_rd = NULL;
  5630. }
  5631. atomic_inc(&rd->refcount);
  5632. rq->rd = rd;
  5633. cpumask_set_cpu(rq->cpu, rd->span);
  5634. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5635. set_rq_online(rq);
  5636. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5637. if (old_rd)
  5638. free_rootdomain(old_rd);
  5639. }
  5640. static int init_rootdomain(struct root_domain *rd)
  5641. {
  5642. memset(rd, 0, sizeof(*rd));
  5643. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5644. goto out;
  5645. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5646. goto free_span;
  5647. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5648. goto free_online;
  5649. if (cpupri_init(&rd->cpupri) != 0)
  5650. goto free_rto_mask;
  5651. return 0;
  5652. free_rto_mask:
  5653. free_cpumask_var(rd->rto_mask);
  5654. free_online:
  5655. free_cpumask_var(rd->online);
  5656. free_span:
  5657. free_cpumask_var(rd->span);
  5658. out:
  5659. return -ENOMEM;
  5660. }
  5661. static void init_defrootdomain(void)
  5662. {
  5663. init_rootdomain(&def_root_domain);
  5664. atomic_set(&def_root_domain.refcount, 1);
  5665. }
  5666. static struct root_domain *alloc_rootdomain(void)
  5667. {
  5668. struct root_domain *rd;
  5669. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5670. if (!rd)
  5671. return NULL;
  5672. if (init_rootdomain(rd) != 0) {
  5673. kfree(rd);
  5674. return NULL;
  5675. }
  5676. return rd;
  5677. }
  5678. /*
  5679. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5680. * hold the hotplug lock.
  5681. */
  5682. static void
  5683. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5684. {
  5685. struct rq *rq = cpu_rq(cpu);
  5686. struct sched_domain *tmp;
  5687. for (tmp = sd; tmp; tmp = tmp->parent)
  5688. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5689. /* Remove the sched domains which do not contribute to scheduling. */
  5690. for (tmp = sd; tmp; ) {
  5691. struct sched_domain *parent = tmp->parent;
  5692. if (!parent)
  5693. break;
  5694. if (sd_parent_degenerate(tmp, parent)) {
  5695. tmp->parent = parent->parent;
  5696. if (parent->parent)
  5697. parent->parent->child = tmp;
  5698. } else
  5699. tmp = tmp->parent;
  5700. }
  5701. if (sd && sd_degenerate(sd)) {
  5702. sd = sd->parent;
  5703. if (sd)
  5704. sd->child = NULL;
  5705. }
  5706. sched_domain_debug(sd, cpu);
  5707. rq_attach_root(rq, rd);
  5708. rcu_assign_pointer(rq->sd, sd);
  5709. }
  5710. /* cpus with isolated domains */
  5711. static cpumask_var_t cpu_isolated_map;
  5712. /* Setup the mask of cpus configured for isolated domains */
  5713. static int __init isolated_cpu_setup(char *str)
  5714. {
  5715. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5716. cpulist_parse(str, cpu_isolated_map);
  5717. return 1;
  5718. }
  5719. __setup("isolcpus=", isolated_cpu_setup);
  5720. /*
  5721. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5722. * to a function which identifies what group(along with sched group) a CPU
  5723. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5724. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5725. *
  5726. * init_sched_build_groups will build a circular linked list of the groups
  5727. * covered by the given span, and will set each group's ->cpumask correctly,
  5728. * and ->cpu_power to 0.
  5729. */
  5730. static void
  5731. init_sched_build_groups(const struct cpumask *span,
  5732. const struct cpumask *cpu_map,
  5733. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5734. struct sched_group **sg,
  5735. struct cpumask *tmpmask),
  5736. struct cpumask *covered, struct cpumask *tmpmask)
  5737. {
  5738. struct sched_group *first = NULL, *last = NULL;
  5739. int i;
  5740. cpumask_clear(covered);
  5741. for_each_cpu(i, span) {
  5742. struct sched_group *sg;
  5743. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5744. int j;
  5745. if (cpumask_test_cpu(i, covered))
  5746. continue;
  5747. cpumask_clear(sched_group_cpus(sg));
  5748. sg->cpu_power = 0;
  5749. for_each_cpu(j, span) {
  5750. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5751. continue;
  5752. cpumask_set_cpu(j, covered);
  5753. cpumask_set_cpu(j, sched_group_cpus(sg));
  5754. }
  5755. if (!first)
  5756. first = sg;
  5757. if (last)
  5758. last->next = sg;
  5759. last = sg;
  5760. }
  5761. last->next = first;
  5762. }
  5763. #define SD_NODES_PER_DOMAIN 16
  5764. #ifdef CONFIG_NUMA
  5765. /**
  5766. * find_next_best_node - find the next node to include in a sched_domain
  5767. * @node: node whose sched_domain we're building
  5768. * @used_nodes: nodes already in the sched_domain
  5769. *
  5770. * Find the next node to include in a given scheduling domain. Simply
  5771. * finds the closest node not already in the @used_nodes map.
  5772. *
  5773. * Should use nodemask_t.
  5774. */
  5775. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5776. {
  5777. int i, n, val, min_val, best_node = 0;
  5778. min_val = INT_MAX;
  5779. for (i = 0; i < nr_node_ids; i++) {
  5780. /* Start at @node */
  5781. n = (node + i) % nr_node_ids;
  5782. if (!nr_cpus_node(n))
  5783. continue;
  5784. /* Skip already used nodes */
  5785. if (node_isset(n, *used_nodes))
  5786. continue;
  5787. /* Simple min distance search */
  5788. val = node_distance(node, n);
  5789. if (val < min_val) {
  5790. min_val = val;
  5791. best_node = n;
  5792. }
  5793. }
  5794. node_set(best_node, *used_nodes);
  5795. return best_node;
  5796. }
  5797. /**
  5798. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5799. * @node: node whose cpumask we're constructing
  5800. * @span: resulting cpumask
  5801. *
  5802. * Given a node, construct a good cpumask for its sched_domain to span. It
  5803. * should be one that prevents unnecessary balancing, but also spreads tasks
  5804. * out optimally.
  5805. */
  5806. static void sched_domain_node_span(int node, struct cpumask *span)
  5807. {
  5808. nodemask_t used_nodes;
  5809. int i;
  5810. cpumask_clear(span);
  5811. nodes_clear(used_nodes);
  5812. cpumask_or(span, span, cpumask_of_node(node));
  5813. node_set(node, used_nodes);
  5814. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5815. int next_node = find_next_best_node(node, &used_nodes);
  5816. cpumask_or(span, span, cpumask_of_node(next_node));
  5817. }
  5818. }
  5819. #endif /* CONFIG_NUMA */
  5820. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5821. /*
  5822. * The cpus mask in sched_group and sched_domain hangs off the end.
  5823. *
  5824. * ( See the the comments in include/linux/sched.h:struct sched_group
  5825. * and struct sched_domain. )
  5826. */
  5827. struct static_sched_group {
  5828. struct sched_group sg;
  5829. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5830. };
  5831. struct static_sched_domain {
  5832. struct sched_domain sd;
  5833. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5834. };
  5835. struct s_data {
  5836. #ifdef CONFIG_NUMA
  5837. int sd_allnodes;
  5838. cpumask_var_t domainspan;
  5839. cpumask_var_t covered;
  5840. cpumask_var_t notcovered;
  5841. #endif
  5842. cpumask_var_t nodemask;
  5843. cpumask_var_t this_sibling_map;
  5844. cpumask_var_t this_core_map;
  5845. cpumask_var_t this_book_map;
  5846. cpumask_var_t send_covered;
  5847. cpumask_var_t tmpmask;
  5848. struct sched_group **sched_group_nodes;
  5849. struct root_domain *rd;
  5850. };
  5851. enum s_alloc {
  5852. sa_sched_groups = 0,
  5853. sa_rootdomain,
  5854. sa_tmpmask,
  5855. sa_send_covered,
  5856. sa_this_book_map,
  5857. sa_this_core_map,
  5858. sa_this_sibling_map,
  5859. sa_nodemask,
  5860. sa_sched_group_nodes,
  5861. #ifdef CONFIG_NUMA
  5862. sa_notcovered,
  5863. sa_covered,
  5864. sa_domainspan,
  5865. #endif
  5866. sa_none,
  5867. };
  5868. /*
  5869. * SMT sched-domains:
  5870. */
  5871. #ifdef CONFIG_SCHED_SMT
  5872. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5873. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5874. static int
  5875. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5876. struct sched_group **sg, struct cpumask *unused)
  5877. {
  5878. if (sg)
  5879. *sg = &per_cpu(sched_groups, cpu).sg;
  5880. return cpu;
  5881. }
  5882. #endif /* CONFIG_SCHED_SMT */
  5883. /*
  5884. * multi-core sched-domains:
  5885. */
  5886. #ifdef CONFIG_SCHED_MC
  5887. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5888. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5889. static int
  5890. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5891. struct sched_group **sg, struct cpumask *mask)
  5892. {
  5893. int group;
  5894. #ifdef CONFIG_SCHED_SMT
  5895. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5896. group = cpumask_first(mask);
  5897. #else
  5898. group = cpu;
  5899. #endif
  5900. if (sg)
  5901. *sg = &per_cpu(sched_group_core, group).sg;
  5902. return group;
  5903. }
  5904. #endif /* CONFIG_SCHED_MC */
  5905. /*
  5906. * book sched-domains:
  5907. */
  5908. #ifdef CONFIG_SCHED_BOOK
  5909. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5910. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5911. static int
  5912. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5913. struct sched_group **sg, struct cpumask *mask)
  5914. {
  5915. int group = cpu;
  5916. #ifdef CONFIG_SCHED_MC
  5917. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5918. group = cpumask_first(mask);
  5919. #elif defined(CONFIG_SCHED_SMT)
  5920. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5921. group = cpumask_first(mask);
  5922. #endif
  5923. if (sg)
  5924. *sg = &per_cpu(sched_group_book, group).sg;
  5925. return group;
  5926. }
  5927. #endif /* CONFIG_SCHED_BOOK */
  5928. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5929. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5930. static int
  5931. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5932. struct sched_group **sg, struct cpumask *mask)
  5933. {
  5934. int group;
  5935. #ifdef CONFIG_SCHED_BOOK
  5936. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5937. group = cpumask_first(mask);
  5938. #elif defined(CONFIG_SCHED_MC)
  5939. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5940. group = cpumask_first(mask);
  5941. #elif defined(CONFIG_SCHED_SMT)
  5942. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5943. group = cpumask_first(mask);
  5944. #else
  5945. group = cpu;
  5946. #endif
  5947. if (sg)
  5948. *sg = &per_cpu(sched_group_phys, group).sg;
  5949. return group;
  5950. }
  5951. #ifdef CONFIG_NUMA
  5952. /*
  5953. * The init_sched_build_groups can't handle what we want to do with node
  5954. * groups, so roll our own. Now each node has its own list of groups which
  5955. * gets dynamically allocated.
  5956. */
  5957. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5958. static struct sched_group ***sched_group_nodes_bycpu;
  5959. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5960. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5961. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5962. struct sched_group **sg,
  5963. struct cpumask *nodemask)
  5964. {
  5965. int group;
  5966. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5967. group = cpumask_first(nodemask);
  5968. if (sg)
  5969. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5970. return group;
  5971. }
  5972. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5973. {
  5974. struct sched_group *sg = group_head;
  5975. int j;
  5976. if (!sg)
  5977. return;
  5978. do {
  5979. for_each_cpu(j, sched_group_cpus(sg)) {
  5980. struct sched_domain *sd;
  5981. sd = &per_cpu(phys_domains, j).sd;
  5982. if (j != group_first_cpu(sd->groups)) {
  5983. /*
  5984. * Only add "power" once for each
  5985. * physical package.
  5986. */
  5987. continue;
  5988. }
  5989. sg->cpu_power += sd->groups->cpu_power;
  5990. }
  5991. sg = sg->next;
  5992. } while (sg != group_head);
  5993. }
  5994. static int build_numa_sched_groups(struct s_data *d,
  5995. const struct cpumask *cpu_map, int num)
  5996. {
  5997. struct sched_domain *sd;
  5998. struct sched_group *sg, *prev;
  5999. int n, j;
  6000. cpumask_clear(d->covered);
  6001. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  6002. if (cpumask_empty(d->nodemask)) {
  6003. d->sched_group_nodes[num] = NULL;
  6004. goto out;
  6005. }
  6006. sched_domain_node_span(num, d->domainspan);
  6007. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  6008. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6009. GFP_KERNEL, num);
  6010. if (!sg) {
  6011. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  6012. num);
  6013. return -ENOMEM;
  6014. }
  6015. d->sched_group_nodes[num] = sg;
  6016. for_each_cpu(j, d->nodemask) {
  6017. sd = &per_cpu(node_domains, j).sd;
  6018. sd->groups = sg;
  6019. }
  6020. sg->cpu_power = 0;
  6021. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  6022. sg->next = sg;
  6023. cpumask_or(d->covered, d->covered, d->nodemask);
  6024. prev = sg;
  6025. for (j = 0; j < nr_node_ids; j++) {
  6026. n = (num + j) % nr_node_ids;
  6027. cpumask_complement(d->notcovered, d->covered);
  6028. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6029. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6030. if (cpumask_empty(d->tmpmask))
  6031. break;
  6032. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6033. if (cpumask_empty(d->tmpmask))
  6034. continue;
  6035. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6036. GFP_KERNEL, num);
  6037. if (!sg) {
  6038. printk(KERN_WARNING
  6039. "Can not alloc domain group for node %d\n", j);
  6040. return -ENOMEM;
  6041. }
  6042. sg->cpu_power = 0;
  6043. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6044. sg->next = prev->next;
  6045. cpumask_or(d->covered, d->covered, d->tmpmask);
  6046. prev->next = sg;
  6047. prev = sg;
  6048. }
  6049. out:
  6050. return 0;
  6051. }
  6052. #endif /* CONFIG_NUMA */
  6053. #ifdef CONFIG_NUMA
  6054. /* Free memory allocated for various sched_group structures */
  6055. static void free_sched_groups(const struct cpumask *cpu_map,
  6056. struct cpumask *nodemask)
  6057. {
  6058. int cpu, i;
  6059. for_each_cpu(cpu, cpu_map) {
  6060. struct sched_group **sched_group_nodes
  6061. = sched_group_nodes_bycpu[cpu];
  6062. if (!sched_group_nodes)
  6063. continue;
  6064. for (i = 0; i < nr_node_ids; i++) {
  6065. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6066. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6067. if (cpumask_empty(nodemask))
  6068. continue;
  6069. if (sg == NULL)
  6070. continue;
  6071. sg = sg->next;
  6072. next_sg:
  6073. oldsg = sg;
  6074. sg = sg->next;
  6075. kfree(oldsg);
  6076. if (oldsg != sched_group_nodes[i])
  6077. goto next_sg;
  6078. }
  6079. kfree(sched_group_nodes);
  6080. sched_group_nodes_bycpu[cpu] = NULL;
  6081. }
  6082. }
  6083. #else /* !CONFIG_NUMA */
  6084. static void free_sched_groups(const struct cpumask *cpu_map,
  6085. struct cpumask *nodemask)
  6086. {
  6087. }
  6088. #endif /* CONFIG_NUMA */
  6089. /*
  6090. * Initialize sched groups cpu_power.
  6091. *
  6092. * cpu_power indicates the capacity of sched group, which is used while
  6093. * distributing the load between different sched groups in a sched domain.
  6094. * Typically cpu_power for all the groups in a sched domain will be same unless
  6095. * there are asymmetries in the topology. If there are asymmetries, group
  6096. * having more cpu_power will pickup more load compared to the group having
  6097. * less cpu_power.
  6098. */
  6099. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6100. {
  6101. struct sched_domain *child;
  6102. struct sched_group *group;
  6103. long power;
  6104. int weight;
  6105. WARN_ON(!sd || !sd->groups);
  6106. if (cpu != group_first_cpu(sd->groups))
  6107. return;
  6108. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6109. child = sd->child;
  6110. sd->groups->cpu_power = 0;
  6111. if (!child) {
  6112. power = SCHED_LOAD_SCALE;
  6113. weight = cpumask_weight(sched_domain_span(sd));
  6114. /*
  6115. * SMT siblings share the power of a single core.
  6116. * Usually multiple threads get a better yield out of
  6117. * that one core than a single thread would have,
  6118. * reflect that in sd->smt_gain.
  6119. */
  6120. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6121. power *= sd->smt_gain;
  6122. power /= weight;
  6123. power >>= SCHED_LOAD_SHIFT;
  6124. }
  6125. sd->groups->cpu_power += power;
  6126. return;
  6127. }
  6128. /*
  6129. * Add cpu_power of each child group to this groups cpu_power.
  6130. */
  6131. group = child->groups;
  6132. do {
  6133. sd->groups->cpu_power += group->cpu_power;
  6134. group = group->next;
  6135. } while (group != child->groups);
  6136. }
  6137. /*
  6138. * Initializers for schedule domains
  6139. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6140. */
  6141. #ifdef CONFIG_SCHED_DEBUG
  6142. # define SD_INIT_NAME(sd, type) sd->name = #type
  6143. #else
  6144. # define SD_INIT_NAME(sd, type) do { } while (0)
  6145. #endif
  6146. #define SD_INIT(sd, type) sd_init_##type(sd)
  6147. #define SD_INIT_FUNC(type) \
  6148. static noinline void sd_init_##type(struct sched_domain *sd) \
  6149. { \
  6150. memset(sd, 0, sizeof(*sd)); \
  6151. *sd = SD_##type##_INIT; \
  6152. sd->level = SD_LV_##type; \
  6153. SD_INIT_NAME(sd, type); \
  6154. }
  6155. SD_INIT_FUNC(CPU)
  6156. #ifdef CONFIG_NUMA
  6157. SD_INIT_FUNC(ALLNODES)
  6158. SD_INIT_FUNC(NODE)
  6159. #endif
  6160. #ifdef CONFIG_SCHED_SMT
  6161. SD_INIT_FUNC(SIBLING)
  6162. #endif
  6163. #ifdef CONFIG_SCHED_MC
  6164. SD_INIT_FUNC(MC)
  6165. #endif
  6166. #ifdef CONFIG_SCHED_BOOK
  6167. SD_INIT_FUNC(BOOK)
  6168. #endif
  6169. static int default_relax_domain_level = -1;
  6170. static int __init setup_relax_domain_level(char *str)
  6171. {
  6172. unsigned long val;
  6173. val = simple_strtoul(str, NULL, 0);
  6174. if (val < SD_LV_MAX)
  6175. default_relax_domain_level = val;
  6176. return 1;
  6177. }
  6178. __setup("relax_domain_level=", setup_relax_domain_level);
  6179. static void set_domain_attribute(struct sched_domain *sd,
  6180. struct sched_domain_attr *attr)
  6181. {
  6182. int request;
  6183. if (!attr || attr->relax_domain_level < 0) {
  6184. if (default_relax_domain_level < 0)
  6185. return;
  6186. else
  6187. request = default_relax_domain_level;
  6188. } else
  6189. request = attr->relax_domain_level;
  6190. if (request < sd->level) {
  6191. /* turn off idle balance on this domain */
  6192. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6193. } else {
  6194. /* turn on idle balance on this domain */
  6195. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6196. }
  6197. }
  6198. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6199. const struct cpumask *cpu_map)
  6200. {
  6201. switch (what) {
  6202. case sa_sched_groups:
  6203. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6204. d->sched_group_nodes = NULL;
  6205. case sa_rootdomain:
  6206. free_rootdomain(d->rd); /* fall through */
  6207. case sa_tmpmask:
  6208. free_cpumask_var(d->tmpmask); /* fall through */
  6209. case sa_send_covered:
  6210. free_cpumask_var(d->send_covered); /* fall through */
  6211. case sa_this_book_map:
  6212. free_cpumask_var(d->this_book_map); /* fall through */
  6213. case sa_this_core_map:
  6214. free_cpumask_var(d->this_core_map); /* fall through */
  6215. case sa_this_sibling_map:
  6216. free_cpumask_var(d->this_sibling_map); /* fall through */
  6217. case sa_nodemask:
  6218. free_cpumask_var(d->nodemask); /* fall through */
  6219. case sa_sched_group_nodes:
  6220. #ifdef CONFIG_NUMA
  6221. kfree(d->sched_group_nodes); /* fall through */
  6222. case sa_notcovered:
  6223. free_cpumask_var(d->notcovered); /* fall through */
  6224. case sa_covered:
  6225. free_cpumask_var(d->covered); /* fall through */
  6226. case sa_domainspan:
  6227. free_cpumask_var(d->domainspan); /* fall through */
  6228. #endif
  6229. case sa_none:
  6230. break;
  6231. }
  6232. }
  6233. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6234. const struct cpumask *cpu_map)
  6235. {
  6236. #ifdef CONFIG_NUMA
  6237. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6238. return sa_none;
  6239. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6240. return sa_domainspan;
  6241. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6242. return sa_covered;
  6243. /* Allocate the per-node list of sched groups */
  6244. d->sched_group_nodes = kcalloc(nr_node_ids,
  6245. sizeof(struct sched_group *), GFP_KERNEL);
  6246. if (!d->sched_group_nodes) {
  6247. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6248. return sa_notcovered;
  6249. }
  6250. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6251. #endif
  6252. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6253. return sa_sched_group_nodes;
  6254. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6255. return sa_nodemask;
  6256. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6257. return sa_this_sibling_map;
  6258. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6259. return sa_this_core_map;
  6260. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6261. return sa_this_book_map;
  6262. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6263. return sa_send_covered;
  6264. d->rd = alloc_rootdomain();
  6265. if (!d->rd) {
  6266. printk(KERN_WARNING "Cannot alloc root domain\n");
  6267. return sa_tmpmask;
  6268. }
  6269. return sa_rootdomain;
  6270. }
  6271. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6272. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6273. {
  6274. struct sched_domain *sd = NULL;
  6275. #ifdef CONFIG_NUMA
  6276. struct sched_domain *parent;
  6277. d->sd_allnodes = 0;
  6278. if (cpumask_weight(cpu_map) >
  6279. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6280. sd = &per_cpu(allnodes_domains, i).sd;
  6281. SD_INIT(sd, ALLNODES);
  6282. set_domain_attribute(sd, attr);
  6283. cpumask_copy(sched_domain_span(sd), cpu_map);
  6284. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6285. d->sd_allnodes = 1;
  6286. }
  6287. parent = sd;
  6288. sd = &per_cpu(node_domains, i).sd;
  6289. SD_INIT(sd, NODE);
  6290. set_domain_attribute(sd, attr);
  6291. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6292. sd->parent = parent;
  6293. if (parent)
  6294. parent->child = sd;
  6295. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6296. #endif
  6297. return sd;
  6298. }
  6299. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6300. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6301. struct sched_domain *parent, int i)
  6302. {
  6303. struct sched_domain *sd;
  6304. sd = &per_cpu(phys_domains, i).sd;
  6305. SD_INIT(sd, CPU);
  6306. set_domain_attribute(sd, attr);
  6307. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6308. sd->parent = parent;
  6309. if (parent)
  6310. parent->child = sd;
  6311. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6312. return sd;
  6313. }
  6314. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6315. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6316. struct sched_domain *parent, int i)
  6317. {
  6318. struct sched_domain *sd = parent;
  6319. #ifdef CONFIG_SCHED_BOOK
  6320. sd = &per_cpu(book_domains, i).sd;
  6321. SD_INIT(sd, BOOK);
  6322. set_domain_attribute(sd, attr);
  6323. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6324. sd->parent = parent;
  6325. parent->child = sd;
  6326. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6327. #endif
  6328. return sd;
  6329. }
  6330. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6331. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6332. struct sched_domain *parent, int i)
  6333. {
  6334. struct sched_domain *sd = parent;
  6335. #ifdef CONFIG_SCHED_MC
  6336. sd = &per_cpu(core_domains, i).sd;
  6337. SD_INIT(sd, MC);
  6338. set_domain_attribute(sd, attr);
  6339. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6340. sd->parent = parent;
  6341. parent->child = sd;
  6342. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6343. #endif
  6344. return sd;
  6345. }
  6346. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6347. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6348. struct sched_domain *parent, int i)
  6349. {
  6350. struct sched_domain *sd = parent;
  6351. #ifdef CONFIG_SCHED_SMT
  6352. sd = &per_cpu(cpu_domains, i).sd;
  6353. SD_INIT(sd, SIBLING);
  6354. set_domain_attribute(sd, attr);
  6355. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6356. sd->parent = parent;
  6357. parent->child = sd;
  6358. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6359. #endif
  6360. return sd;
  6361. }
  6362. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6363. const struct cpumask *cpu_map, int cpu)
  6364. {
  6365. switch (l) {
  6366. #ifdef CONFIG_SCHED_SMT
  6367. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6368. cpumask_and(d->this_sibling_map, cpu_map,
  6369. topology_thread_cpumask(cpu));
  6370. if (cpu == cpumask_first(d->this_sibling_map))
  6371. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6372. &cpu_to_cpu_group,
  6373. d->send_covered, d->tmpmask);
  6374. break;
  6375. #endif
  6376. #ifdef CONFIG_SCHED_MC
  6377. case SD_LV_MC: /* set up multi-core groups */
  6378. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6379. if (cpu == cpumask_first(d->this_core_map))
  6380. init_sched_build_groups(d->this_core_map, cpu_map,
  6381. &cpu_to_core_group,
  6382. d->send_covered, d->tmpmask);
  6383. break;
  6384. #endif
  6385. #ifdef CONFIG_SCHED_BOOK
  6386. case SD_LV_BOOK: /* set up book groups */
  6387. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6388. if (cpu == cpumask_first(d->this_book_map))
  6389. init_sched_build_groups(d->this_book_map, cpu_map,
  6390. &cpu_to_book_group,
  6391. d->send_covered, d->tmpmask);
  6392. break;
  6393. #endif
  6394. case SD_LV_CPU: /* set up physical groups */
  6395. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6396. if (!cpumask_empty(d->nodemask))
  6397. init_sched_build_groups(d->nodemask, cpu_map,
  6398. &cpu_to_phys_group,
  6399. d->send_covered, d->tmpmask);
  6400. break;
  6401. #ifdef CONFIG_NUMA
  6402. case SD_LV_ALLNODES:
  6403. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6404. d->send_covered, d->tmpmask);
  6405. break;
  6406. #endif
  6407. default:
  6408. break;
  6409. }
  6410. }
  6411. /*
  6412. * Build sched domains for a given set of cpus and attach the sched domains
  6413. * to the individual cpus
  6414. */
  6415. static int __build_sched_domains(const struct cpumask *cpu_map,
  6416. struct sched_domain_attr *attr)
  6417. {
  6418. enum s_alloc alloc_state = sa_none;
  6419. struct s_data d;
  6420. struct sched_domain *sd;
  6421. int i;
  6422. #ifdef CONFIG_NUMA
  6423. d.sd_allnodes = 0;
  6424. #endif
  6425. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6426. if (alloc_state != sa_rootdomain)
  6427. goto error;
  6428. alloc_state = sa_sched_groups;
  6429. /*
  6430. * Set up domains for cpus specified by the cpu_map.
  6431. */
  6432. for_each_cpu(i, cpu_map) {
  6433. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6434. cpu_map);
  6435. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6436. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6437. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6438. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6439. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6440. }
  6441. for_each_cpu(i, cpu_map) {
  6442. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6443. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6444. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6445. }
  6446. /* Set up physical groups */
  6447. for (i = 0; i < nr_node_ids; i++)
  6448. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6449. #ifdef CONFIG_NUMA
  6450. /* Set up node groups */
  6451. if (d.sd_allnodes)
  6452. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6453. for (i = 0; i < nr_node_ids; i++)
  6454. if (build_numa_sched_groups(&d, cpu_map, i))
  6455. goto error;
  6456. #endif
  6457. /* Calculate CPU power for physical packages and nodes */
  6458. #ifdef CONFIG_SCHED_SMT
  6459. for_each_cpu(i, cpu_map) {
  6460. sd = &per_cpu(cpu_domains, i).sd;
  6461. init_sched_groups_power(i, sd);
  6462. }
  6463. #endif
  6464. #ifdef CONFIG_SCHED_MC
  6465. for_each_cpu(i, cpu_map) {
  6466. sd = &per_cpu(core_domains, i).sd;
  6467. init_sched_groups_power(i, sd);
  6468. }
  6469. #endif
  6470. #ifdef CONFIG_SCHED_BOOK
  6471. for_each_cpu(i, cpu_map) {
  6472. sd = &per_cpu(book_domains, i).sd;
  6473. init_sched_groups_power(i, sd);
  6474. }
  6475. #endif
  6476. for_each_cpu(i, cpu_map) {
  6477. sd = &per_cpu(phys_domains, i).sd;
  6478. init_sched_groups_power(i, sd);
  6479. }
  6480. #ifdef CONFIG_NUMA
  6481. for (i = 0; i < nr_node_ids; i++)
  6482. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6483. if (d.sd_allnodes) {
  6484. struct sched_group *sg;
  6485. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6486. d.tmpmask);
  6487. init_numa_sched_groups_power(sg);
  6488. }
  6489. #endif
  6490. /* Attach the domains */
  6491. for_each_cpu(i, cpu_map) {
  6492. #ifdef CONFIG_SCHED_SMT
  6493. sd = &per_cpu(cpu_domains, i).sd;
  6494. #elif defined(CONFIG_SCHED_MC)
  6495. sd = &per_cpu(core_domains, i).sd;
  6496. #elif defined(CONFIG_SCHED_BOOK)
  6497. sd = &per_cpu(book_domains, i).sd;
  6498. #else
  6499. sd = &per_cpu(phys_domains, i).sd;
  6500. #endif
  6501. cpu_attach_domain(sd, d.rd, i);
  6502. }
  6503. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6504. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6505. return 0;
  6506. error:
  6507. __free_domain_allocs(&d, alloc_state, cpu_map);
  6508. return -ENOMEM;
  6509. }
  6510. static int build_sched_domains(const struct cpumask *cpu_map)
  6511. {
  6512. return __build_sched_domains(cpu_map, NULL);
  6513. }
  6514. static cpumask_var_t *doms_cur; /* current sched domains */
  6515. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6516. static struct sched_domain_attr *dattr_cur;
  6517. /* attribues of custom domains in 'doms_cur' */
  6518. /*
  6519. * Special case: If a kmalloc of a doms_cur partition (array of
  6520. * cpumask) fails, then fallback to a single sched domain,
  6521. * as determined by the single cpumask fallback_doms.
  6522. */
  6523. static cpumask_var_t fallback_doms;
  6524. /*
  6525. * arch_update_cpu_topology lets virtualized architectures update the
  6526. * cpu core maps. It is supposed to return 1 if the topology changed
  6527. * or 0 if it stayed the same.
  6528. */
  6529. int __attribute__((weak)) arch_update_cpu_topology(void)
  6530. {
  6531. return 0;
  6532. }
  6533. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6534. {
  6535. int i;
  6536. cpumask_var_t *doms;
  6537. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6538. if (!doms)
  6539. return NULL;
  6540. for (i = 0; i < ndoms; i++) {
  6541. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6542. free_sched_domains(doms, i);
  6543. return NULL;
  6544. }
  6545. }
  6546. return doms;
  6547. }
  6548. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6549. {
  6550. unsigned int i;
  6551. for (i = 0; i < ndoms; i++)
  6552. free_cpumask_var(doms[i]);
  6553. kfree(doms);
  6554. }
  6555. /*
  6556. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6557. * For now this just excludes isolated cpus, but could be used to
  6558. * exclude other special cases in the future.
  6559. */
  6560. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6561. {
  6562. int err;
  6563. arch_update_cpu_topology();
  6564. ndoms_cur = 1;
  6565. doms_cur = alloc_sched_domains(ndoms_cur);
  6566. if (!doms_cur)
  6567. doms_cur = &fallback_doms;
  6568. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6569. dattr_cur = NULL;
  6570. err = build_sched_domains(doms_cur[0]);
  6571. register_sched_domain_sysctl();
  6572. return err;
  6573. }
  6574. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6575. struct cpumask *tmpmask)
  6576. {
  6577. free_sched_groups(cpu_map, tmpmask);
  6578. }
  6579. /*
  6580. * Detach sched domains from a group of cpus specified in cpu_map
  6581. * These cpus will now be attached to the NULL domain
  6582. */
  6583. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6584. {
  6585. /* Save because hotplug lock held. */
  6586. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6587. int i;
  6588. for_each_cpu(i, cpu_map)
  6589. cpu_attach_domain(NULL, &def_root_domain, i);
  6590. synchronize_sched();
  6591. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6592. }
  6593. /* handle null as "default" */
  6594. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6595. struct sched_domain_attr *new, int idx_new)
  6596. {
  6597. struct sched_domain_attr tmp;
  6598. /* fast path */
  6599. if (!new && !cur)
  6600. return 1;
  6601. tmp = SD_ATTR_INIT;
  6602. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6603. new ? (new + idx_new) : &tmp,
  6604. sizeof(struct sched_domain_attr));
  6605. }
  6606. /*
  6607. * Partition sched domains as specified by the 'ndoms_new'
  6608. * cpumasks in the array doms_new[] of cpumasks. This compares
  6609. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6610. * It destroys each deleted domain and builds each new domain.
  6611. *
  6612. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6613. * The masks don't intersect (don't overlap.) We should setup one
  6614. * sched domain for each mask. CPUs not in any of the cpumasks will
  6615. * not be load balanced. If the same cpumask appears both in the
  6616. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6617. * it as it is.
  6618. *
  6619. * The passed in 'doms_new' should be allocated using
  6620. * alloc_sched_domains. This routine takes ownership of it and will
  6621. * free_sched_domains it when done with it. If the caller failed the
  6622. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6623. * and partition_sched_domains() will fallback to the single partition
  6624. * 'fallback_doms', it also forces the domains to be rebuilt.
  6625. *
  6626. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6627. * ndoms_new == 0 is a special case for destroying existing domains,
  6628. * and it will not create the default domain.
  6629. *
  6630. * Call with hotplug lock held
  6631. */
  6632. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6633. struct sched_domain_attr *dattr_new)
  6634. {
  6635. int i, j, n;
  6636. int new_topology;
  6637. mutex_lock(&sched_domains_mutex);
  6638. /* always unregister in case we don't destroy any domains */
  6639. unregister_sched_domain_sysctl();
  6640. /* Let architecture update cpu core mappings. */
  6641. new_topology = arch_update_cpu_topology();
  6642. n = doms_new ? ndoms_new : 0;
  6643. /* Destroy deleted domains */
  6644. for (i = 0; i < ndoms_cur; i++) {
  6645. for (j = 0; j < n && !new_topology; j++) {
  6646. if (cpumask_equal(doms_cur[i], doms_new[j])
  6647. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6648. goto match1;
  6649. }
  6650. /* no match - a current sched domain not in new doms_new[] */
  6651. detach_destroy_domains(doms_cur[i]);
  6652. match1:
  6653. ;
  6654. }
  6655. if (doms_new == NULL) {
  6656. ndoms_cur = 0;
  6657. doms_new = &fallback_doms;
  6658. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6659. WARN_ON_ONCE(dattr_new);
  6660. }
  6661. /* Build new domains */
  6662. for (i = 0; i < ndoms_new; i++) {
  6663. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6664. if (cpumask_equal(doms_new[i], doms_cur[j])
  6665. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6666. goto match2;
  6667. }
  6668. /* no match - add a new doms_new */
  6669. __build_sched_domains(doms_new[i],
  6670. dattr_new ? dattr_new + i : NULL);
  6671. match2:
  6672. ;
  6673. }
  6674. /* Remember the new sched domains */
  6675. if (doms_cur != &fallback_doms)
  6676. free_sched_domains(doms_cur, ndoms_cur);
  6677. kfree(dattr_cur); /* kfree(NULL) is safe */
  6678. doms_cur = doms_new;
  6679. dattr_cur = dattr_new;
  6680. ndoms_cur = ndoms_new;
  6681. register_sched_domain_sysctl();
  6682. mutex_unlock(&sched_domains_mutex);
  6683. }
  6684. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6685. static void arch_reinit_sched_domains(void)
  6686. {
  6687. get_online_cpus();
  6688. /* Destroy domains first to force the rebuild */
  6689. partition_sched_domains(0, NULL, NULL);
  6690. rebuild_sched_domains();
  6691. put_online_cpus();
  6692. }
  6693. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6694. {
  6695. unsigned int level = 0;
  6696. if (sscanf(buf, "%u", &level) != 1)
  6697. return -EINVAL;
  6698. /*
  6699. * level is always be positive so don't check for
  6700. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6701. * What happens on 0 or 1 byte write,
  6702. * need to check for count as well?
  6703. */
  6704. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6705. return -EINVAL;
  6706. if (smt)
  6707. sched_smt_power_savings = level;
  6708. else
  6709. sched_mc_power_savings = level;
  6710. arch_reinit_sched_domains();
  6711. return count;
  6712. }
  6713. #ifdef CONFIG_SCHED_MC
  6714. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6715. struct sysdev_class_attribute *attr,
  6716. char *page)
  6717. {
  6718. return sprintf(page, "%u\n", sched_mc_power_savings);
  6719. }
  6720. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6721. struct sysdev_class_attribute *attr,
  6722. const char *buf, size_t count)
  6723. {
  6724. return sched_power_savings_store(buf, count, 0);
  6725. }
  6726. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6727. sched_mc_power_savings_show,
  6728. sched_mc_power_savings_store);
  6729. #endif
  6730. #ifdef CONFIG_SCHED_SMT
  6731. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6732. struct sysdev_class_attribute *attr,
  6733. char *page)
  6734. {
  6735. return sprintf(page, "%u\n", sched_smt_power_savings);
  6736. }
  6737. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6738. struct sysdev_class_attribute *attr,
  6739. const char *buf, size_t count)
  6740. {
  6741. return sched_power_savings_store(buf, count, 1);
  6742. }
  6743. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6744. sched_smt_power_savings_show,
  6745. sched_smt_power_savings_store);
  6746. #endif
  6747. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6748. {
  6749. int err = 0;
  6750. #ifdef CONFIG_SCHED_SMT
  6751. if (smt_capable())
  6752. err = sysfs_create_file(&cls->kset.kobj,
  6753. &attr_sched_smt_power_savings.attr);
  6754. #endif
  6755. #ifdef CONFIG_SCHED_MC
  6756. if (!err && mc_capable())
  6757. err = sysfs_create_file(&cls->kset.kobj,
  6758. &attr_sched_mc_power_savings.attr);
  6759. #endif
  6760. return err;
  6761. }
  6762. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6763. /*
  6764. * Update cpusets according to cpu_active mask. If cpusets are
  6765. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6766. * around partition_sched_domains().
  6767. */
  6768. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6769. void *hcpu)
  6770. {
  6771. switch (action & ~CPU_TASKS_FROZEN) {
  6772. case CPU_ONLINE:
  6773. case CPU_DOWN_FAILED:
  6774. cpuset_update_active_cpus();
  6775. return NOTIFY_OK;
  6776. default:
  6777. return NOTIFY_DONE;
  6778. }
  6779. }
  6780. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6781. void *hcpu)
  6782. {
  6783. switch (action & ~CPU_TASKS_FROZEN) {
  6784. case CPU_DOWN_PREPARE:
  6785. cpuset_update_active_cpus();
  6786. return NOTIFY_OK;
  6787. default:
  6788. return NOTIFY_DONE;
  6789. }
  6790. }
  6791. static int update_runtime(struct notifier_block *nfb,
  6792. unsigned long action, void *hcpu)
  6793. {
  6794. int cpu = (int)(long)hcpu;
  6795. switch (action) {
  6796. case CPU_DOWN_PREPARE:
  6797. case CPU_DOWN_PREPARE_FROZEN:
  6798. disable_runtime(cpu_rq(cpu));
  6799. return NOTIFY_OK;
  6800. case CPU_DOWN_FAILED:
  6801. case CPU_DOWN_FAILED_FROZEN:
  6802. case CPU_ONLINE:
  6803. case CPU_ONLINE_FROZEN:
  6804. enable_runtime(cpu_rq(cpu));
  6805. return NOTIFY_OK;
  6806. default:
  6807. return NOTIFY_DONE;
  6808. }
  6809. }
  6810. void __init sched_init_smp(void)
  6811. {
  6812. cpumask_var_t non_isolated_cpus;
  6813. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6814. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6815. #if defined(CONFIG_NUMA)
  6816. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6817. GFP_KERNEL);
  6818. BUG_ON(sched_group_nodes_bycpu == NULL);
  6819. #endif
  6820. get_online_cpus();
  6821. mutex_lock(&sched_domains_mutex);
  6822. arch_init_sched_domains(cpu_active_mask);
  6823. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6824. if (cpumask_empty(non_isolated_cpus))
  6825. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6826. mutex_unlock(&sched_domains_mutex);
  6827. put_online_cpus();
  6828. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6829. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6830. /* RT runtime code needs to handle some hotplug events */
  6831. hotcpu_notifier(update_runtime, 0);
  6832. init_hrtick();
  6833. /* Move init over to a non-isolated CPU */
  6834. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6835. BUG();
  6836. sched_init_granularity();
  6837. free_cpumask_var(non_isolated_cpus);
  6838. init_sched_rt_class();
  6839. }
  6840. #else
  6841. void __init sched_init_smp(void)
  6842. {
  6843. sched_init_granularity();
  6844. }
  6845. #endif /* CONFIG_SMP */
  6846. const_debug unsigned int sysctl_timer_migration = 1;
  6847. int in_sched_functions(unsigned long addr)
  6848. {
  6849. return in_lock_functions(addr) ||
  6850. (addr >= (unsigned long)__sched_text_start
  6851. && addr < (unsigned long)__sched_text_end);
  6852. }
  6853. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6854. {
  6855. cfs_rq->tasks_timeline = RB_ROOT;
  6856. INIT_LIST_HEAD(&cfs_rq->tasks);
  6857. #ifdef CONFIG_FAIR_GROUP_SCHED
  6858. cfs_rq->rq = rq;
  6859. /* allow initial update_cfs_load() to truncate */
  6860. #ifdef CONFIG_SMP
  6861. cfs_rq->load_stamp = 1;
  6862. #endif
  6863. #endif
  6864. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6865. }
  6866. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6867. {
  6868. struct rt_prio_array *array;
  6869. int i;
  6870. array = &rt_rq->active;
  6871. for (i = 0; i < MAX_RT_PRIO; i++) {
  6872. INIT_LIST_HEAD(array->queue + i);
  6873. __clear_bit(i, array->bitmap);
  6874. }
  6875. /* delimiter for bitsearch: */
  6876. __set_bit(MAX_RT_PRIO, array->bitmap);
  6877. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6878. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6879. #ifdef CONFIG_SMP
  6880. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6881. #endif
  6882. #endif
  6883. #ifdef CONFIG_SMP
  6884. rt_rq->rt_nr_migratory = 0;
  6885. rt_rq->overloaded = 0;
  6886. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6887. #endif
  6888. rt_rq->rt_time = 0;
  6889. rt_rq->rt_throttled = 0;
  6890. rt_rq->rt_runtime = 0;
  6891. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6892. #ifdef CONFIG_RT_GROUP_SCHED
  6893. rt_rq->rt_nr_boosted = 0;
  6894. rt_rq->rq = rq;
  6895. #endif
  6896. }
  6897. #ifdef CONFIG_FAIR_GROUP_SCHED
  6898. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6899. struct sched_entity *se, int cpu,
  6900. struct sched_entity *parent)
  6901. {
  6902. struct rq *rq = cpu_rq(cpu);
  6903. tg->cfs_rq[cpu] = cfs_rq;
  6904. init_cfs_rq(cfs_rq, rq);
  6905. cfs_rq->tg = tg;
  6906. tg->se[cpu] = se;
  6907. /* se could be NULL for root_task_group */
  6908. if (!se)
  6909. return;
  6910. if (!parent)
  6911. se->cfs_rq = &rq->cfs;
  6912. else
  6913. se->cfs_rq = parent->my_q;
  6914. se->my_q = cfs_rq;
  6915. update_load_set(&se->load, 0);
  6916. se->parent = parent;
  6917. }
  6918. #endif
  6919. #ifdef CONFIG_RT_GROUP_SCHED
  6920. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6921. struct sched_rt_entity *rt_se, int cpu,
  6922. struct sched_rt_entity *parent)
  6923. {
  6924. struct rq *rq = cpu_rq(cpu);
  6925. tg->rt_rq[cpu] = rt_rq;
  6926. init_rt_rq(rt_rq, rq);
  6927. rt_rq->tg = tg;
  6928. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6929. tg->rt_se[cpu] = rt_se;
  6930. if (!rt_se)
  6931. return;
  6932. if (!parent)
  6933. rt_se->rt_rq = &rq->rt;
  6934. else
  6935. rt_se->rt_rq = parent->my_q;
  6936. rt_se->my_q = rt_rq;
  6937. rt_se->parent = parent;
  6938. INIT_LIST_HEAD(&rt_se->run_list);
  6939. }
  6940. #endif
  6941. void __init sched_init(void)
  6942. {
  6943. int i, j;
  6944. unsigned long alloc_size = 0, ptr;
  6945. #ifdef CONFIG_FAIR_GROUP_SCHED
  6946. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6947. #endif
  6948. #ifdef CONFIG_RT_GROUP_SCHED
  6949. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6950. #endif
  6951. #ifdef CONFIG_CPUMASK_OFFSTACK
  6952. alloc_size += num_possible_cpus() * cpumask_size();
  6953. #endif
  6954. if (alloc_size) {
  6955. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6956. #ifdef CONFIG_FAIR_GROUP_SCHED
  6957. root_task_group.se = (struct sched_entity **)ptr;
  6958. ptr += nr_cpu_ids * sizeof(void **);
  6959. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6960. ptr += nr_cpu_ids * sizeof(void **);
  6961. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6962. #ifdef CONFIG_RT_GROUP_SCHED
  6963. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6964. ptr += nr_cpu_ids * sizeof(void **);
  6965. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6966. ptr += nr_cpu_ids * sizeof(void **);
  6967. #endif /* CONFIG_RT_GROUP_SCHED */
  6968. #ifdef CONFIG_CPUMASK_OFFSTACK
  6969. for_each_possible_cpu(i) {
  6970. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6971. ptr += cpumask_size();
  6972. }
  6973. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6974. }
  6975. #ifdef CONFIG_SMP
  6976. init_defrootdomain();
  6977. #endif
  6978. init_rt_bandwidth(&def_rt_bandwidth,
  6979. global_rt_period(), global_rt_runtime());
  6980. #ifdef CONFIG_RT_GROUP_SCHED
  6981. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6982. global_rt_period(), global_rt_runtime());
  6983. #endif /* CONFIG_RT_GROUP_SCHED */
  6984. #ifdef CONFIG_CGROUP_SCHED
  6985. list_add(&root_task_group.list, &task_groups);
  6986. INIT_LIST_HEAD(&root_task_group.children);
  6987. autogroup_init(&init_task);
  6988. #endif /* CONFIG_CGROUP_SCHED */
  6989. for_each_possible_cpu(i) {
  6990. struct rq *rq;
  6991. rq = cpu_rq(i);
  6992. raw_spin_lock_init(&rq->lock);
  6993. rq->nr_running = 0;
  6994. rq->calc_load_active = 0;
  6995. rq->calc_load_update = jiffies + LOAD_FREQ;
  6996. init_cfs_rq(&rq->cfs, rq);
  6997. init_rt_rq(&rq->rt, rq);
  6998. #ifdef CONFIG_FAIR_GROUP_SCHED
  6999. root_task_group.shares = root_task_group_load;
  7000. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7001. /*
  7002. * How much cpu bandwidth does root_task_group get?
  7003. *
  7004. * In case of task-groups formed thr' the cgroup filesystem, it
  7005. * gets 100% of the cpu resources in the system. This overall
  7006. * system cpu resource is divided among the tasks of
  7007. * root_task_group and its child task-groups in a fair manner,
  7008. * based on each entity's (task or task-group's) weight
  7009. * (se->load.weight).
  7010. *
  7011. * In other words, if root_task_group has 10 tasks of weight
  7012. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7013. * then A0's share of the cpu resource is:
  7014. *
  7015. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7016. *
  7017. * We achieve this by letting root_task_group's tasks sit
  7018. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  7019. */
  7020. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  7021. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7022. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7023. #ifdef CONFIG_RT_GROUP_SCHED
  7024. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7025. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7026. #endif
  7027. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7028. rq->cpu_load[j] = 0;
  7029. rq->last_load_update_tick = jiffies;
  7030. #ifdef CONFIG_SMP
  7031. rq->sd = NULL;
  7032. rq->rd = NULL;
  7033. rq->cpu_power = SCHED_LOAD_SCALE;
  7034. rq->post_schedule = 0;
  7035. rq->active_balance = 0;
  7036. rq->next_balance = jiffies;
  7037. rq->push_cpu = 0;
  7038. rq->cpu = i;
  7039. rq->online = 0;
  7040. rq->idle_stamp = 0;
  7041. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7042. rq_attach_root(rq, &def_root_domain);
  7043. #ifdef CONFIG_NO_HZ
  7044. rq->nohz_balance_kick = 0;
  7045. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7046. #endif
  7047. #endif
  7048. init_rq_hrtick(rq);
  7049. atomic_set(&rq->nr_iowait, 0);
  7050. }
  7051. set_load_weight(&init_task);
  7052. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7053. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7054. #endif
  7055. #ifdef CONFIG_SMP
  7056. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7057. #endif
  7058. #ifdef CONFIG_RT_MUTEXES
  7059. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7060. #endif
  7061. /*
  7062. * The boot idle thread does lazy MMU switching as well:
  7063. */
  7064. atomic_inc(&init_mm.mm_count);
  7065. enter_lazy_tlb(&init_mm, current);
  7066. /*
  7067. * Make us the idle thread. Technically, schedule() should not be
  7068. * called from this thread, however somewhere below it might be,
  7069. * but because we are the idle thread, we just pick up running again
  7070. * when this runqueue becomes "idle".
  7071. */
  7072. init_idle(current, smp_processor_id());
  7073. calc_load_update = jiffies + LOAD_FREQ;
  7074. /*
  7075. * During early bootup we pretend to be a normal task:
  7076. */
  7077. current->sched_class = &fair_sched_class;
  7078. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7079. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7080. #ifdef CONFIG_SMP
  7081. #ifdef CONFIG_NO_HZ
  7082. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7083. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7084. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7085. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7086. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7087. #endif
  7088. /* May be allocated at isolcpus cmdline parse time */
  7089. if (cpu_isolated_map == NULL)
  7090. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7091. #endif /* SMP */
  7092. scheduler_running = 1;
  7093. }
  7094. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7095. static inline int preempt_count_equals(int preempt_offset)
  7096. {
  7097. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7098. return (nested == preempt_offset);
  7099. }
  7100. void __might_sleep(const char *file, int line, int preempt_offset)
  7101. {
  7102. #ifdef in_atomic
  7103. static unsigned long prev_jiffy; /* ratelimiting */
  7104. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7105. system_state != SYSTEM_RUNNING || oops_in_progress)
  7106. return;
  7107. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7108. return;
  7109. prev_jiffy = jiffies;
  7110. printk(KERN_ERR
  7111. "BUG: sleeping function called from invalid context at %s:%d\n",
  7112. file, line);
  7113. printk(KERN_ERR
  7114. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7115. in_atomic(), irqs_disabled(),
  7116. current->pid, current->comm);
  7117. debug_show_held_locks(current);
  7118. if (irqs_disabled())
  7119. print_irqtrace_events(current);
  7120. dump_stack();
  7121. #endif
  7122. }
  7123. EXPORT_SYMBOL(__might_sleep);
  7124. #endif
  7125. #ifdef CONFIG_MAGIC_SYSRQ
  7126. static void normalize_task(struct rq *rq, struct task_struct *p)
  7127. {
  7128. const struct sched_class *prev_class = p->sched_class;
  7129. int old_prio = p->prio;
  7130. int on_rq;
  7131. on_rq = p->on_rq;
  7132. if (on_rq)
  7133. deactivate_task(rq, p, 0);
  7134. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7135. if (on_rq) {
  7136. activate_task(rq, p, 0);
  7137. resched_task(rq->curr);
  7138. }
  7139. check_class_changed(rq, p, prev_class, old_prio);
  7140. }
  7141. void normalize_rt_tasks(void)
  7142. {
  7143. struct task_struct *g, *p;
  7144. unsigned long flags;
  7145. struct rq *rq;
  7146. read_lock_irqsave(&tasklist_lock, flags);
  7147. do_each_thread(g, p) {
  7148. /*
  7149. * Only normalize user tasks:
  7150. */
  7151. if (!p->mm)
  7152. continue;
  7153. p->se.exec_start = 0;
  7154. #ifdef CONFIG_SCHEDSTATS
  7155. p->se.statistics.wait_start = 0;
  7156. p->se.statistics.sleep_start = 0;
  7157. p->se.statistics.block_start = 0;
  7158. #endif
  7159. if (!rt_task(p)) {
  7160. /*
  7161. * Renice negative nice level userspace
  7162. * tasks back to 0:
  7163. */
  7164. if (TASK_NICE(p) < 0 && p->mm)
  7165. set_user_nice(p, 0);
  7166. continue;
  7167. }
  7168. raw_spin_lock(&p->pi_lock);
  7169. rq = __task_rq_lock(p);
  7170. normalize_task(rq, p);
  7171. __task_rq_unlock(rq);
  7172. raw_spin_unlock(&p->pi_lock);
  7173. } while_each_thread(g, p);
  7174. read_unlock_irqrestore(&tasklist_lock, flags);
  7175. }
  7176. #endif /* CONFIG_MAGIC_SYSRQ */
  7177. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7178. /*
  7179. * These functions are only useful for the IA64 MCA handling, or kdb.
  7180. *
  7181. * They can only be called when the whole system has been
  7182. * stopped - every CPU needs to be quiescent, and no scheduling
  7183. * activity can take place. Using them for anything else would
  7184. * be a serious bug, and as a result, they aren't even visible
  7185. * under any other configuration.
  7186. */
  7187. /**
  7188. * curr_task - return the current task for a given cpu.
  7189. * @cpu: the processor in question.
  7190. *
  7191. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7192. */
  7193. struct task_struct *curr_task(int cpu)
  7194. {
  7195. return cpu_curr(cpu);
  7196. }
  7197. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7198. #ifdef CONFIG_IA64
  7199. /**
  7200. * set_curr_task - set the current task for a given cpu.
  7201. * @cpu: the processor in question.
  7202. * @p: the task pointer to set.
  7203. *
  7204. * Description: This function must only be used when non-maskable interrupts
  7205. * are serviced on a separate stack. It allows the architecture to switch the
  7206. * notion of the current task on a cpu in a non-blocking manner. This function
  7207. * must be called with all CPU's synchronized, and interrupts disabled, the
  7208. * and caller must save the original value of the current task (see
  7209. * curr_task() above) and restore that value before reenabling interrupts and
  7210. * re-starting the system.
  7211. *
  7212. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7213. */
  7214. void set_curr_task(int cpu, struct task_struct *p)
  7215. {
  7216. cpu_curr(cpu) = p;
  7217. }
  7218. #endif
  7219. #ifdef CONFIG_FAIR_GROUP_SCHED
  7220. static void free_fair_sched_group(struct task_group *tg)
  7221. {
  7222. int i;
  7223. for_each_possible_cpu(i) {
  7224. if (tg->cfs_rq)
  7225. kfree(tg->cfs_rq[i]);
  7226. if (tg->se)
  7227. kfree(tg->se[i]);
  7228. }
  7229. kfree(tg->cfs_rq);
  7230. kfree(tg->se);
  7231. }
  7232. static
  7233. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7234. {
  7235. struct cfs_rq *cfs_rq;
  7236. struct sched_entity *se;
  7237. int i;
  7238. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7239. if (!tg->cfs_rq)
  7240. goto err;
  7241. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7242. if (!tg->se)
  7243. goto err;
  7244. tg->shares = NICE_0_LOAD;
  7245. for_each_possible_cpu(i) {
  7246. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7247. GFP_KERNEL, cpu_to_node(i));
  7248. if (!cfs_rq)
  7249. goto err;
  7250. se = kzalloc_node(sizeof(struct sched_entity),
  7251. GFP_KERNEL, cpu_to_node(i));
  7252. if (!se)
  7253. goto err_free_rq;
  7254. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7255. }
  7256. return 1;
  7257. err_free_rq:
  7258. kfree(cfs_rq);
  7259. err:
  7260. return 0;
  7261. }
  7262. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7263. {
  7264. struct rq *rq = cpu_rq(cpu);
  7265. unsigned long flags;
  7266. /*
  7267. * Only empty task groups can be destroyed; so we can speculatively
  7268. * check on_list without danger of it being re-added.
  7269. */
  7270. if (!tg->cfs_rq[cpu]->on_list)
  7271. return;
  7272. raw_spin_lock_irqsave(&rq->lock, flags);
  7273. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7274. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7275. }
  7276. #else /* !CONFG_FAIR_GROUP_SCHED */
  7277. static inline void free_fair_sched_group(struct task_group *tg)
  7278. {
  7279. }
  7280. static inline
  7281. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7282. {
  7283. return 1;
  7284. }
  7285. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7286. {
  7287. }
  7288. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7289. #ifdef CONFIG_RT_GROUP_SCHED
  7290. static void free_rt_sched_group(struct task_group *tg)
  7291. {
  7292. int i;
  7293. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7294. for_each_possible_cpu(i) {
  7295. if (tg->rt_rq)
  7296. kfree(tg->rt_rq[i]);
  7297. if (tg->rt_se)
  7298. kfree(tg->rt_se[i]);
  7299. }
  7300. kfree(tg->rt_rq);
  7301. kfree(tg->rt_se);
  7302. }
  7303. static
  7304. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7305. {
  7306. struct rt_rq *rt_rq;
  7307. struct sched_rt_entity *rt_se;
  7308. struct rq *rq;
  7309. int i;
  7310. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7311. if (!tg->rt_rq)
  7312. goto err;
  7313. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7314. if (!tg->rt_se)
  7315. goto err;
  7316. init_rt_bandwidth(&tg->rt_bandwidth,
  7317. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7318. for_each_possible_cpu(i) {
  7319. rq = cpu_rq(i);
  7320. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7321. GFP_KERNEL, cpu_to_node(i));
  7322. if (!rt_rq)
  7323. goto err;
  7324. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7325. GFP_KERNEL, cpu_to_node(i));
  7326. if (!rt_se)
  7327. goto err_free_rq;
  7328. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7329. }
  7330. return 1;
  7331. err_free_rq:
  7332. kfree(rt_rq);
  7333. err:
  7334. return 0;
  7335. }
  7336. #else /* !CONFIG_RT_GROUP_SCHED */
  7337. static inline void free_rt_sched_group(struct task_group *tg)
  7338. {
  7339. }
  7340. static inline
  7341. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7342. {
  7343. return 1;
  7344. }
  7345. #endif /* CONFIG_RT_GROUP_SCHED */
  7346. #ifdef CONFIG_CGROUP_SCHED
  7347. static void free_sched_group(struct task_group *tg)
  7348. {
  7349. free_fair_sched_group(tg);
  7350. free_rt_sched_group(tg);
  7351. autogroup_free(tg);
  7352. kfree(tg);
  7353. }
  7354. /* allocate runqueue etc for a new task group */
  7355. struct task_group *sched_create_group(struct task_group *parent)
  7356. {
  7357. struct task_group *tg;
  7358. unsigned long flags;
  7359. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7360. if (!tg)
  7361. return ERR_PTR(-ENOMEM);
  7362. if (!alloc_fair_sched_group(tg, parent))
  7363. goto err;
  7364. if (!alloc_rt_sched_group(tg, parent))
  7365. goto err;
  7366. spin_lock_irqsave(&task_group_lock, flags);
  7367. list_add_rcu(&tg->list, &task_groups);
  7368. WARN_ON(!parent); /* root should already exist */
  7369. tg->parent = parent;
  7370. INIT_LIST_HEAD(&tg->children);
  7371. list_add_rcu(&tg->siblings, &parent->children);
  7372. spin_unlock_irqrestore(&task_group_lock, flags);
  7373. return tg;
  7374. err:
  7375. free_sched_group(tg);
  7376. return ERR_PTR(-ENOMEM);
  7377. }
  7378. /* rcu callback to free various structures associated with a task group */
  7379. static void free_sched_group_rcu(struct rcu_head *rhp)
  7380. {
  7381. /* now it should be safe to free those cfs_rqs */
  7382. free_sched_group(container_of(rhp, struct task_group, rcu));
  7383. }
  7384. /* Destroy runqueue etc associated with a task group */
  7385. void sched_destroy_group(struct task_group *tg)
  7386. {
  7387. unsigned long flags;
  7388. int i;
  7389. /* end participation in shares distribution */
  7390. for_each_possible_cpu(i)
  7391. unregister_fair_sched_group(tg, i);
  7392. spin_lock_irqsave(&task_group_lock, flags);
  7393. list_del_rcu(&tg->list);
  7394. list_del_rcu(&tg->siblings);
  7395. spin_unlock_irqrestore(&task_group_lock, flags);
  7396. /* wait for possible concurrent references to cfs_rqs complete */
  7397. call_rcu(&tg->rcu, free_sched_group_rcu);
  7398. }
  7399. /* change task's runqueue when it moves between groups.
  7400. * The caller of this function should have put the task in its new group
  7401. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7402. * reflect its new group.
  7403. */
  7404. void sched_move_task(struct task_struct *tsk)
  7405. {
  7406. int on_rq, running;
  7407. unsigned long flags;
  7408. struct rq *rq;
  7409. rq = task_rq_lock(tsk, &flags);
  7410. running = task_current(rq, tsk);
  7411. on_rq = tsk->on_rq;
  7412. if (on_rq)
  7413. dequeue_task(rq, tsk, 0);
  7414. if (unlikely(running))
  7415. tsk->sched_class->put_prev_task(rq, tsk);
  7416. #ifdef CONFIG_FAIR_GROUP_SCHED
  7417. if (tsk->sched_class->task_move_group)
  7418. tsk->sched_class->task_move_group(tsk, on_rq);
  7419. else
  7420. #endif
  7421. set_task_rq(tsk, task_cpu(tsk));
  7422. if (unlikely(running))
  7423. tsk->sched_class->set_curr_task(rq);
  7424. if (on_rq)
  7425. enqueue_task(rq, tsk, 0);
  7426. task_rq_unlock(rq, tsk, &flags);
  7427. }
  7428. #endif /* CONFIG_CGROUP_SCHED */
  7429. #ifdef CONFIG_FAIR_GROUP_SCHED
  7430. static DEFINE_MUTEX(shares_mutex);
  7431. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7432. {
  7433. int i;
  7434. unsigned long flags;
  7435. /*
  7436. * We can't change the weight of the root cgroup.
  7437. */
  7438. if (!tg->se[0])
  7439. return -EINVAL;
  7440. if (shares < MIN_SHARES)
  7441. shares = MIN_SHARES;
  7442. else if (shares > MAX_SHARES)
  7443. shares = MAX_SHARES;
  7444. mutex_lock(&shares_mutex);
  7445. if (tg->shares == shares)
  7446. goto done;
  7447. tg->shares = shares;
  7448. for_each_possible_cpu(i) {
  7449. struct rq *rq = cpu_rq(i);
  7450. struct sched_entity *se;
  7451. se = tg->se[i];
  7452. /* Propagate contribution to hierarchy */
  7453. raw_spin_lock_irqsave(&rq->lock, flags);
  7454. for_each_sched_entity(se)
  7455. update_cfs_shares(group_cfs_rq(se));
  7456. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7457. }
  7458. done:
  7459. mutex_unlock(&shares_mutex);
  7460. return 0;
  7461. }
  7462. unsigned long sched_group_shares(struct task_group *tg)
  7463. {
  7464. return tg->shares;
  7465. }
  7466. #endif
  7467. #ifdef CONFIG_RT_GROUP_SCHED
  7468. /*
  7469. * Ensure that the real time constraints are schedulable.
  7470. */
  7471. static DEFINE_MUTEX(rt_constraints_mutex);
  7472. static unsigned long to_ratio(u64 period, u64 runtime)
  7473. {
  7474. if (runtime == RUNTIME_INF)
  7475. return 1ULL << 20;
  7476. return div64_u64(runtime << 20, period);
  7477. }
  7478. /* Must be called with tasklist_lock held */
  7479. static inline int tg_has_rt_tasks(struct task_group *tg)
  7480. {
  7481. struct task_struct *g, *p;
  7482. do_each_thread(g, p) {
  7483. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7484. return 1;
  7485. } while_each_thread(g, p);
  7486. return 0;
  7487. }
  7488. struct rt_schedulable_data {
  7489. struct task_group *tg;
  7490. u64 rt_period;
  7491. u64 rt_runtime;
  7492. };
  7493. static int tg_schedulable(struct task_group *tg, void *data)
  7494. {
  7495. struct rt_schedulable_data *d = data;
  7496. struct task_group *child;
  7497. unsigned long total, sum = 0;
  7498. u64 period, runtime;
  7499. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7500. runtime = tg->rt_bandwidth.rt_runtime;
  7501. if (tg == d->tg) {
  7502. period = d->rt_period;
  7503. runtime = d->rt_runtime;
  7504. }
  7505. /*
  7506. * Cannot have more runtime than the period.
  7507. */
  7508. if (runtime > period && runtime != RUNTIME_INF)
  7509. return -EINVAL;
  7510. /*
  7511. * Ensure we don't starve existing RT tasks.
  7512. */
  7513. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7514. return -EBUSY;
  7515. total = to_ratio(period, runtime);
  7516. /*
  7517. * Nobody can have more than the global setting allows.
  7518. */
  7519. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7520. return -EINVAL;
  7521. /*
  7522. * The sum of our children's runtime should not exceed our own.
  7523. */
  7524. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7525. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7526. runtime = child->rt_bandwidth.rt_runtime;
  7527. if (child == d->tg) {
  7528. period = d->rt_period;
  7529. runtime = d->rt_runtime;
  7530. }
  7531. sum += to_ratio(period, runtime);
  7532. }
  7533. if (sum > total)
  7534. return -EINVAL;
  7535. return 0;
  7536. }
  7537. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7538. {
  7539. struct rt_schedulable_data data = {
  7540. .tg = tg,
  7541. .rt_period = period,
  7542. .rt_runtime = runtime,
  7543. };
  7544. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7545. }
  7546. static int tg_set_bandwidth(struct task_group *tg,
  7547. u64 rt_period, u64 rt_runtime)
  7548. {
  7549. int i, err = 0;
  7550. mutex_lock(&rt_constraints_mutex);
  7551. read_lock(&tasklist_lock);
  7552. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7553. if (err)
  7554. goto unlock;
  7555. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7556. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7557. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7558. for_each_possible_cpu(i) {
  7559. struct rt_rq *rt_rq = tg->rt_rq[i];
  7560. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7561. rt_rq->rt_runtime = rt_runtime;
  7562. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7563. }
  7564. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7565. unlock:
  7566. read_unlock(&tasklist_lock);
  7567. mutex_unlock(&rt_constraints_mutex);
  7568. return err;
  7569. }
  7570. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7571. {
  7572. u64 rt_runtime, rt_period;
  7573. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7574. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7575. if (rt_runtime_us < 0)
  7576. rt_runtime = RUNTIME_INF;
  7577. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7578. }
  7579. long sched_group_rt_runtime(struct task_group *tg)
  7580. {
  7581. u64 rt_runtime_us;
  7582. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7583. return -1;
  7584. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7585. do_div(rt_runtime_us, NSEC_PER_USEC);
  7586. return rt_runtime_us;
  7587. }
  7588. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7589. {
  7590. u64 rt_runtime, rt_period;
  7591. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7592. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7593. if (rt_period == 0)
  7594. return -EINVAL;
  7595. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7596. }
  7597. long sched_group_rt_period(struct task_group *tg)
  7598. {
  7599. u64 rt_period_us;
  7600. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7601. do_div(rt_period_us, NSEC_PER_USEC);
  7602. return rt_period_us;
  7603. }
  7604. static int sched_rt_global_constraints(void)
  7605. {
  7606. u64 runtime, period;
  7607. int ret = 0;
  7608. if (sysctl_sched_rt_period <= 0)
  7609. return -EINVAL;
  7610. runtime = global_rt_runtime();
  7611. period = global_rt_period();
  7612. /*
  7613. * Sanity check on the sysctl variables.
  7614. */
  7615. if (runtime > period && runtime != RUNTIME_INF)
  7616. return -EINVAL;
  7617. mutex_lock(&rt_constraints_mutex);
  7618. read_lock(&tasklist_lock);
  7619. ret = __rt_schedulable(NULL, 0, 0);
  7620. read_unlock(&tasklist_lock);
  7621. mutex_unlock(&rt_constraints_mutex);
  7622. return ret;
  7623. }
  7624. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7625. {
  7626. /* Don't accept realtime tasks when there is no way for them to run */
  7627. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7628. return 0;
  7629. return 1;
  7630. }
  7631. #else /* !CONFIG_RT_GROUP_SCHED */
  7632. static int sched_rt_global_constraints(void)
  7633. {
  7634. unsigned long flags;
  7635. int i;
  7636. if (sysctl_sched_rt_period <= 0)
  7637. return -EINVAL;
  7638. /*
  7639. * There's always some RT tasks in the root group
  7640. * -- migration, kstopmachine etc..
  7641. */
  7642. if (sysctl_sched_rt_runtime == 0)
  7643. return -EBUSY;
  7644. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7645. for_each_possible_cpu(i) {
  7646. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7647. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7648. rt_rq->rt_runtime = global_rt_runtime();
  7649. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7650. }
  7651. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7652. return 0;
  7653. }
  7654. #endif /* CONFIG_RT_GROUP_SCHED */
  7655. int sched_rt_handler(struct ctl_table *table, int write,
  7656. void __user *buffer, size_t *lenp,
  7657. loff_t *ppos)
  7658. {
  7659. int ret;
  7660. int old_period, old_runtime;
  7661. static DEFINE_MUTEX(mutex);
  7662. mutex_lock(&mutex);
  7663. old_period = sysctl_sched_rt_period;
  7664. old_runtime = sysctl_sched_rt_runtime;
  7665. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7666. if (!ret && write) {
  7667. ret = sched_rt_global_constraints();
  7668. if (ret) {
  7669. sysctl_sched_rt_period = old_period;
  7670. sysctl_sched_rt_runtime = old_runtime;
  7671. } else {
  7672. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7673. def_rt_bandwidth.rt_period =
  7674. ns_to_ktime(global_rt_period());
  7675. }
  7676. }
  7677. mutex_unlock(&mutex);
  7678. return ret;
  7679. }
  7680. #ifdef CONFIG_CGROUP_SCHED
  7681. /* return corresponding task_group object of a cgroup */
  7682. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7683. {
  7684. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7685. struct task_group, css);
  7686. }
  7687. static struct cgroup_subsys_state *
  7688. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7689. {
  7690. struct task_group *tg, *parent;
  7691. if (!cgrp->parent) {
  7692. /* This is early initialization for the top cgroup */
  7693. return &root_task_group.css;
  7694. }
  7695. parent = cgroup_tg(cgrp->parent);
  7696. tg = sched_create_group(parent);
  7697. if (IS_ERR(tg))
  7698. return ERR_PTR(-ENOMEM);
  7699. return &tg->css;
  7700. }
  7701. static void
  7702. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7703. {
  7704. struct task_group *tg = cgroup_tg(cgrp);
  7705. sched_destroy_group(tg);
  7706. }
  7707. static int
  7708. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7709. {
  7710. #ifdef CONFIG_RT_GROUP_SCHED
  7711. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7712. return -EINVAL;
  7713. #else
  7714. /* We don't support RT-tasks being in separate groups */
  7715. if (tsk->sched_class != &fair_sched_class)
  7716. return -EINVAL;
  7717. #endif
  7718. return 0;
  7719. }
  7720. static int
  7721. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7722. struct task_struct *tsk, bool threadgroup)
  7723. {
  7724. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7725. if (retval)
  7726. return retval;
  7727. if (threadgroup) {
  7728. struct task_struct *c;
  7729. rcu_read_lock();
  7730. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7731. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7732. if (retval) {
  7733. rcu_read_unlock();
  7734. return retval;
  7735. }
  7736. }
  7737. rcu_read_unlock();
  7738. }
  7739. return 0;
  7740. }
  7741. static void
  7742. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7743. struct cgroup *old_cont, struct task_struct *tsk,
  7744. bool threadgroup)
  7745. {
  7746. sched_move_task(tsk);
  7747. if (threadgroup) {
  7748. struct task_struct *c;
  7749. rcu_read_lock();
  7750. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7751. sched_move_task(c);
  7752. }
  7753. rcu_read_unlock();
  7754. }
  7755. }
  7756. static void
  7757. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7758. struct cgroup *old_cgrp, struct task_struct *task)
  7759. {
  7760. /*
  7761. * cgroup_exit() is called in the copy_process() failure path.
  7762. * Ignore this case since the task hasn't ran yet, this avoids
  7763. * trying to poke a half freed task state from generic code.
  7764. */
  7765. if (!(task->flags & PF_EXITING))
  7766. return;
  7767. sched_move_task(task);
  7768. }
  7769. #ifdef CONFIG_FAIR_GROUP_SCHED
  7770. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7771. u64 shareval)
  7772. {
  7773. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7774. }
  7775. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7776. {
  7777. struct task_group *tg = cgroup_tg(cgrp);
  7778. return (u64) tg->shares;
  7779. }
  7780. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7781. #ifdef CONFIG_RT_GROUP_SCHED
  7782. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7783. s64 val)
  7784. {
  7785. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7786. }
  7787. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7788. {
  7789. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7790. }
  7791. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7792. u64 rt_period_us)
  7793. {
  7794. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7795. }
  7796. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7797. {
  7798. return sched_group_rt_period(cgroup_tg(cgrp));
  7799. }
  7800. #endif /* CONFIG_RT_GROUP_SCHED */
  7801. static struct cftype cpu_files[] = {
  7802. #ifdef CONFIG_FAIR_GROUP_SCHED
  7803. {
  7804. .name = "shares",
  7805. .read_u64 = cpu_shares_read_u64,
  7806. .write_u64 = cpu_shares_write_u64,
  7807. },
  7808. #endif
  7809. #ifdef CONFIG_RT_GROUP_SCHED
  7810. {
  7811. .name = "rt_runtime_us",
  7812. .read_s64 = cpu_rt_runtime_read,
  7813. .write_s64 = cpu_rt_runtime_write,
  7814. },
  7815. {
  7816. .name = "rt_period_us",
  7817. .read_u64 = cpu_rt_period_read_uint,
  7818. .write_u64 = cpu_rt_period_write_uint,
  7819. },
  7820. #endif
  7821. };
  7822. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7823. {
  7824. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7825. }
  7826. struct cgroup_subsys cpu_cgroup_subsys = {
  7827. .name = "cpu",
  7828. .create = cpu_cgroup_create,
  7829. .destroy = cpu_cgroup_destroy,
  7830. .can_attach = cpu_cgroup_can_attach,
  7831. .attach = cpu_cgroup_attach,
  7832. .exit = cpu_cgroup_exit,
  7833. .populate = cpu_cgroup_populate,
  7834. .subsys_id = cpu_cgroup_subsys_id,
  7835. .early_init = 1,
  7836. };
  7837. #endif /* CONFIG_CGROUP_SCHED */
  7838. #ifdef CONFIG_CGROUP_CPUACCT
  7839. /*
  7840. * CPU accounting code for task groups.
  7841. *
  7842. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7843. * (balbir@in.ibm.com).
  7844. */
  7845. /* track cpu usage of a group of tasks and its child groups */
  7846. struct cpuacct {
  7847. struct cgroup_subsys_state css;
  7848. /* cpuusage holds pointer to a u64-type object on every cpu */
  7849. u64 __percpu *cpuusage;
  7850. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7851. struct cpuacct *parent;
  7852. };
  7853. struct cgroup_subsys cpuacct_subsys;
  7854. /* return cpu accounting group corresponding to this container */
  7855. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7856. {
  7857. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7858. struct cpuacct, css);
  7859. }
  7860. /* return cpu accounting group to which this task belongs */
  7861. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7862. {
  7863. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7864. struct cpuacct, css);
  7865. }
  7866. /* create a new cpu accounting group */
  7867. static struct cgroup_subsys_state *cpuacct_create(
  7868. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7869. {
  7870. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7871. int i;
  7872. if (!ca)
  7873. goto out;
  7874. ca->cpuusage = alloc_percpu(u64);
  7875. if (!ca->cpuusage)
  7876. goto out_free_ca;
  7877. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7878. if (percpu_counter_init(&ca->cpustat[i], 0))
  7879. goto out_free_counters;
  7880. if (cgrp->parent)
  7881. ca->parent = cgroup_ca(cgrp->parent);
  7882. return &ca->css;
  7883. out_free_counters:
  7884. while (--i >= 0)
  7885. percpu_counter_destroy(&ca->cpustat[i]);
  7886. free_percpu(ca->cpuusage);
  7887. out_free_ca:
  7888. kfree(ca);
  7889. out:
  7890. return ERR_PTR(-ENOMEM);
  7891. }
  7892. /* destroy an existing cpu accounting group */
  7893. static void
  7894. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7895. {
  7896. struct cpuacct *ca = cgroup_ca(cgrp);
  7897. int i;
  7898. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7899. percpu_counter_destroy(&ca->cpustat[i]);
  7900. free_percpu(ca->cpuusage);
  7901. kfree(ca);
  7902. }
  7903. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7904. {
  7905. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7906. u64 data;
  7907. #ifndef CONFIG_64BIT
  7908. /*
  7909. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7910. */
  7911. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7912. data = *cpuusage;
  7913. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7914. #else
  7915. data = *cpuusage;
  7916. #endif
  7917. return data;
  7918. }
  7919. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7920. {
  7921. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7922. #ifndef CONFIG_64BIT
  7923. /*
  7924. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7925. */
  7926. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7927. *cpuusage = val;
  7928. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7929. #else
  7930. *cpuusage = val;
  7931. #endif
  7932. }
  7933. /* return total cpu usage (in nanoseconds) of a group */
  7934. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7935. {
  7936. struct cpuacct *ca = cgroup_ca(cgrp);
  7937. u64 totalcpuusage = 0;
  7938. int i;
  7939. for_each_present_cpu(i)
  7940. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7941. return totalcpuusage;
  7942. }
  7943. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7944. u64 reset)
  7945. {
  7946. struct cpuacct *ca = cgroup_ca(cgrp);
  7947. int err = 0;
  7948. int i;
  7949. if (reset) {
  7950. err = -EINVAL;
  7951. goto out;
  7952. }
  7953. for_each_present_cpu(i)
  7954. cpuacct_cpuusage_write(ca, i, 0);
  7955. out:
  7956. return err;
  7957. }
  7958. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7959. struct seq_file *m)
  7960. {
  7961. struct cpuacct *ca = cgroup_ca(cgroup);
  7962. u64 percpu;
  7963. int i;
  7964. for_each_present_cpu(i) {
  7965. percpu = cpuacct_cpuusage_read(ca, i);
  7966. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7967. }
  7968. seq_printf(m, "\n");
  7969. return 0;
  7970. }
  7971. static const char *cpuacct_stat_desc[] = {
  7972. [CPUACCT_STAT_USER] = "user",
  7973. [CPUACCT_STAT_SYSTEM] = "system",
  7974. };
  7975. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7976. struct cgroup_map_cb *cb)
  7977. {
  7978. struct cpuacct *ca = cgroup_ca(cgrp);
  7979. int i;
  7980. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7981. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7982. val = cputime64_to_clock_t(val);
  7983. cb->fill(cb, cpuacct_stat_desc[i], val);
  7984. }
  7985. return 0;
  7986. }
  7987. static struct cftype files[] = {
  7988. {
  7989. .name = "usage",
  7990. .read_u64 = cpuusage_read,
  7991. .write_u64 = cpuusage_write,
  7992. },
  7993. {
  7994. .name = "usage_percpu",
  7995. .read_seq_string = cpuacct_percpu_seq_read,
  7996. },
  7997. {
  7998. .name = "stat",
  7999. .read_map = cpuacct_stats_show,
  8000. },
  8001. };
  8002. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8003. {
  8004. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8005. }
  8006. /*
  8007. * charge this task's execution time to its accounting group.
  8008. *
  8009. * called with rq->lock held.
  8010. */
  8011. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8012. {
  8013. struct cpuacct *ca;
  8014. int cpu;
  8015. if (unlikely(!cpuacct_subsys.active))
  8016. return;
  8017. cpu = task_cpu(tsk);
  8018. rcu_read_lock();
  8019. ca = task_ca(tsk);
  8020. for (; ca; ca = ca->parent) {
  8021. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8022. *cpuusage += cputime;
  8023. }
  8024. rcu_read_unlock();
  8025. }
  8026. /*
  8027. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8028. * in cputime_t units. As a result, cpuacct_update_stats calls
  8029. * percpu_counter_add with values large enough to always overflow the
  8030. * per cpu batch limit causing bad SMP scalability.
  8031. *
  8032. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8033. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8034. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8035. */
  8036. #ifdef CONFIG_SMP
  8037. #define CPUACCT_BATCH \
  8038. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8039. #else
  8040. #define CPUACCT_BATCH 0
  8041. #endif
  8042. /*
  8043. * Charge the system/user time to the task's accounting group.
  8044. */
  8045. static void cpuacct_update_stats(struct task_struct *tsk,
  8046. enum cpuacct_stat_index idx, cputime_t val)
  8047. {
  8048. struct cpuacct *ca;
  8049. int batch = CPUACCT_BATCH;
  8050. if (unlikely(!cpuacct_subsys.active))
  8051. return;
  8052. rcu_read_lock();
  8053. ca = task_ca(tsk);
  8054. do {
  8055. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8056. ca = ca->parent;
  8057. } while (ca);
  8058. rcu_read_unlock();
  8059. }
  8060. struct cgroup_subsys cpuacct_subsys = {
  8061. .name = "cpuacct",
  8062. .create = cpuacct_create,
  8063. .destroy = cpuacct_destroy,
  8064. .populate = cpuacct_populate,
  8065. .subsys_id = cpuacct_subsys_id,
  8066. };
  8067. #endif /* CONFIG_CGROUP_CPUACCT */