memory-failure.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * There are several operations here with exponential complexity because
  25. * of unsuitable VM data structures. For example the operation to map back
  26. * from RMAP chains to processes has to walk the complete process list and
  27. * has non linear complexity with the number. But since memory corruptions
  28. * are rare we hope to get away with this. This avoids impacting the core
  29. * VM.
  30. */
  31. /*
  32. * Notebook:
  33. * - hugetlb needs more code
  34. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  35. * - pass bad pages to kdump next kernel
  36. */
  37. #include <linux/kernel.h>
  38. #include <linux/mm.h>
  39. #include <linux/page-flags.h>
  40. #include <linux/kernel-page-flags.h>
  41. #include <linux/sched.h>
  42. #include <linux/ksm.h>
  43. #include <linux/rmap.h>
  44. #include <linux/export.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/migrate.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/suspend.h>
  51. #include <linux/slab.h>
  52. #include <linux/swapops.h>
  53. #include <linux/hugetlb.h>
  54. #include <linux/memory_hotplug.h>
  55. #include <linux/mm_inline.h>
  56. #include <linux/kfifo.h>
  57. #include "internal.h"
  58. int sysctl_memory_failure_early_kill __read_mostly = 0;
  59. int sysctl_memory_failure_recovery __read_mostly = 1;
  60. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  61. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  62. u32 hwpoison_filter_enable = 0;
  63. u32 hwpoison_filter_dev_major = ~0U;
  64. u32 hwpoison_filter_dev_minor = ~0U;
  65. u64 hwpoison_filter_flags_mask;
  66. u64 hwpoison_filter_flags_value;
  67. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  68. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  69. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  70. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  72. static int hwpoison_filter_dev(struct page *p)
  73. {
  74. struct address_space *mapping;
  75. dev_t dev;
  76. if (hwpoison_filter_dev_major == ~0U &&
  77. hwpoison_filter_dev_minor == ~0U)
  78. return 0;
  79. /*
  80. * page_mapping() does not accept slab pages.
  81. */
  82. if (PageSlab(p))
  83. return -EINVAL;
  84. mapping = page_mapping(p);
  85. if (mapping == NULL || mapping->host == NULL)
  86. return -EINVAL;
  87. dev = mapping->host->i_sb->s_dev;
  88. if (hwpoison_filter_dev_major != ~0U &&
  89. hwpoison_filter_dev_major != MAJOR(dev))
  90. return -EINVAL;
  91. if (hwpoison_filter_dev_minor != ~0U &&
  92. hwpoison_filter_dev_minor != MINOR(dev))
  93. return -EINVAL;
  94. return 0;
  95. }
  96. static int hwpoison_filter_flags(struct page *p)
  97. {
  98. if (!hwpoison_filter_flags_mask)
  99. return 0;
  100. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  101. hwpoison_filter_flags_value)
  102. return 0;
  103. else
  104. return -EINVAL;
  105. }
  106. /*
  107. * This allows stress tests to limit test scope to a collection of tasks
  108. * by putting them under some memcg. This prevents killing unrelated/important
  109. * processes such as /sbin/init. Note that the target task may share clean
  110. * pages with init (eg. libc text), which is harmless. If the target task
  111. * share _dirty_ pages with another task B, the test scheme must make sure B
  112. * is also included in the memcg. At last, due to race conditions this filter
  113. * can only guarantee that the page either belongs to the memcg tasks, or is
  114. * a freed page.
  115. */
  116. #ifdef CONFIG_MEMCG_SWAP
  117. u64 hwpoison_filter_memcg;
  118. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  119. static int hwpoison_filter_task(struct page *p)
  120. {
  121. struct mem_cgroup *mem;
  122. struct cgroup_subsys_state *css;
  123. unsigned long ino;
  124. if (!hwpoison_filter_memcg)
  125. return 0;
  126. mem = try_get_mem_cgroup_from_page(p);
  127. if (!mem)
  128. return -EINVAL;
  129. css = mem_cgroup_css(mem);
  130. /* root_mem_cgroup has NULL dentries */
  131. if (!css->cgroup->dentry)
  132. return -EINVAL;
  133. ino = css->cgroup->dentry->d_inode->i_ino;
  134. css_put(css);
  135. if (ino != hwpoison_filter_memcg)
  136. return -EINVAL;
  137. return 0;
  138. }
  139. #else
  140. static int hwpoison_filter_task(struct page *p) { return 0; }
  141. #endif
  142. int hwpoison_filter(struct page *p)
  143. {
  144. if (!hwpoison_filter_enable)
  145. return 0;
  146. if (hwpoison_filter_dev(p))
  147. return -EINVAL;
  148. if (hwpoison_filter_flags(p))
  149. return -EINVAL;
  150. if (hwpoison_filter_task(p))
  151. return -EINVAL;
  152. return 0;
  153. }
  154. #else
  155. int hwpoison_filter(struct page *p)
  156. {
  157. return 0;
  158. }
  159. #endif
  160. EXPORT_SYMBOL_GPL(hwpoison_filter);
  161. /*
  162. * Send all the processes who have the page mapped a signal.
  163. * ``action optional'' if they are not immediately affected by the error
  164. * ``action required'' if error happened in current execution context
  165. */
  166. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  167. unsigned long pfn, struct page *page, int flags)
  168. {
  169. struct siginfo si;
  170. int ret;
  171. printk(KERN_ERR
  172. "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
  173. pfn, t->comm, t->pid);
  174. si.si_signo = SIGBUS;
  175. si.si_errno = 0;
  176. si.si_addr = (void *)addr;
  177. #ifdef __ARCH_SI_TRAPNO
  178. si.si_trapno = trapno;
  179. #endif
  180. si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
  181. if ((flags & MF_ACTION_REQUIRED) && t == current) {
  182. si.si_code = BUS_MCEERR_AR;
  183. ret = force_sig_info(SIGBUS, &si, t);
  184. } else {
  185. /*
  186. * Don't use force here, it's convenient if the signal
  187. * can be temporarily blocked.
  188. * This could cause a loop when the user sets SIGBUS
  189. * to SIG_IGN, but hopefully no one will do that?
  190. */
  191. si.si_code = BUS_MCEERR_AO;
  192. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  193. }
  194. if (ret < 0)
  195. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  196. t->comm, t->pid, ret);
  197. return ret;
  198. }
  199. /*
  200. * When a unknown page type is encountered drain as many buffers as possible
  201. * in the hope to turn the page into a LRU or free page, which we can handle.
  202. */
  203. void shake_page(struct page *p, int access)
  204. {
  205. if (!PageSlab(p)) {
  206. lru_add_drain_all();
  207. if (PageLRU(p))
  208. return;
  209. drain_all_pages();
  210. if (PageLRU(p) || is_free_buddy_page(p))
  211. return;
  212. }
  213. /*
  214. * Only call shrink_slab here (which would also shrink other caches) if
  215. * access is not potentially fatal.
  216. */
  217. if (access) {
  218. int nr;
  219. do {
  220. struct shrink_control shrink = {
  221. .gfp_mask = GFP_KERNEL,
  222. };
  223. nr = shrink_slab(&shrink, 1000, 1000);
  224. if (page_count(p) == 1)
  225. break;
  226. } while (nr > 10);
  227. }
  228. }
  229. EXPORT_SYMBOL_GPL(shake_page);
  230. /*
  231. * Kill all processes that have a poisoned page mapped and then isolate
  232. * the page.
  233. *
  234. * General strategy:
  235. * Find all processes having the page mapped and kill them.
  236. * But we keep a page reference around so that the page is not
  237. * actually freed yet.
  238. * Then stash the page away
  239. *
  240. * There's no convenient way to get back to mapped processes
  241. * from the VMAs. So do a brute-force search over all
  242. * running processes.
  243. *
  244. * Remember that machine checks are not common (or rather
  245. * if they are common you have other problems), so this shouldn't
  246. * be a performance issue.
  247. *
  248. * Also there are some races possible while we get from the
  249. * error detection to actually handle it.
  250. */
  251. struct to_kill {
  252. struct list_head nd;
  253. struct task_struct *tsk;
  254. unsigned long addr;
  255. char addr_valid;
  256. };
  257. /*
  258. * Failure handling: if we can't find or can't kill a process there's
  259. * not much we can do. We just print a message and ignore otherwise.
  260. */
  261. /*
  262. * Schedule a process for later kill.
  263. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  264. * TBD would GFP_NOIO be enough?
  265. */
  266. static void add_to_kill(struct task_struct *tsk, struct page *p,
  267. struct vm_area_struct *vma,
  268. struct list_head *to_kill,
  269. struct to_kill **tkc)
  270. {
  271. struct to_kill *tk;
  272. if (*tkc) {
  273. tk = *tkc;
  274. *tkc = NULL;
  275. } else {
  276. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  277. if (!tk) {
  278. printk(KERN_ERR
  279. "MCE: Out of memory while machine check handling\n");
  280. return;
  281. }
  282. }
  283. tk->addr = page_address_in_vma(p, vma);
  284. tk->addr_valid = 1;
  285. /*
  286. * In theory we don't have to kill when the page was
  287. * munmaped. But it could be also a mremap. Since that's
  288. * likely very rare kill anyways just out of paranoia, but use
  289. * a SIGKILL because the error is not contained anymore.
  290. */
  291. if (tk->addr == -EFAULT) {
  292. pr_info("MCE: Unable to find user space address %lx in %s\n",
  293. page_to_pfn(p), tsk->comm);
  294. tk->addr_valid = 0;
  295. }
  296. get_task_struct(tsk);
  297. tk->tsk = tsk;
  298. list_add_tail(&tk->nd, to_kill);
  299. }
  300. /*
  301. * Kill the processes that have been collected earlier.
  302. *
  303. * Only do anything when DOIT is set, otherwise just free the list
  304. * (this is used for clean pages which do not need killing)
  305. * Also when FAIL is set do a force kill because something went
  306. * wrong earlier.
  307. */
  308. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  309. int fail, struct page *page, unsigned long pfn,
  310. int flags)
  311. {
  312. struct to_kill *tk, *next;
  313. list_for_each_entry_safe (tk, next, to_kill, nd) {
  314. if (forcekill) {
  315. /*
  316. * In case something went wrong with munmapping
  317. * make sure the process doesn't catch the
  318. * signal and then access the memory. Just kill it.
  319. */
  320. if (fail || tk->addr_valid == 0) {
  321. printk(KERN_ERR
  322. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  323. pfn, tk->tsk->comm, tk->tsk->pid);
  324. force_sig(SIGKILL, tk->tsk);
  325. }
  326. /*
  327. * In theory the process could have mapped
  328. * something else on the address in-between. We could
  329. * check for that, but we need to tell the
  330. * process anyways.
  331. */
  332. else if (kill_proc(tk->tsk, tk->addr, trapno,
  333. pfn, page, flags) < 0)
  334. printk(KERN_ERR
  335. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  336. pfn, tk->tsk->comm, tk->tsk->pid);
  337. }
  338. put_task_struct(tk->tsk);
  339. kfree(tk);
  340. }
  341. }
  342. static int task_early_kill(struct task_struct *tsk)
  343. {
  344. if (!tsk->mm)
  345. return 0;
  346. if (tsk->flags & PF_MCE_PROCESS)
  347. return !!(tsk->flags & PF_MCE_EARLY);
  348. return sysctl_memory_failure_early_kill;
  349. }
  350. /*
  351. * Collect processes when the error hit an anonymous page.
  352. */
  353. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  354. struct to_kill **tkc)
  355. {
  356. struct vm_area_struct *vma;
  357. struct task_struct *tsk;
  358. struct anon_vma *av;
  359. av = page_lock_anon_vma(page);
  360. if (av == NULL) /* Not actually mapped anymore */
  361. return;
  362. read_lock(&tasklist_lock);
  363. for_each_process (tsk) {
  364. struct anon_vma_chain *vmac;
  365. if (!task_early_kill(tsk))
  366. continue;
  367. list_for_each_entry(vmac, &av->head, same_anon_vma) {
  368. vma = vmac->vma;
  369. if (!page_mapped_in_vma(page, vma))
  370. continue;
  371. if (vma->vm_mm == tsk->mm)
  372. add_to_kill(tsk, page, vma, to_kill, tkc);
  373. }
  374. }
  375. read_unlock(&tasklist_lock);
  376. page_unlock_anon_vma(av);
  377. }
  378. /*
  379. * Collect processes when the error hit a file mapped page.
  380. */
  381. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  382. struct to_kill **tkc)
  383. {
  384. struct vm_area_struct *vma;
  385. struct task_struct *tsk;
  386. struct prio_tree_iter iter;
  387. struct address_space *mapping = page->mapping;
  388. mutex_lock(&mapping->i_mmap_mutex);
  389. read_lock(&tasklist_lock);
  390. for_each_process(tsk) {
  391. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  392. if (!task_early_kill(tsk))
  393. continue;
  394. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  395. pgoff) {
  396. /*
  397. * Send early kill signal to tasks where a vma covers
  398. * the page but the corrupted page is not necessarily
  399. * mapped it in its pte.
  400. * Assume applications who requested early kill want
  401. * to be informed of all such data corruptions.
  402. */
  403. if (vma->vm_mm == tsk->mm)
  404. add_to_kill(tsk, page, vma, to_kill, tkc);
  405. }
  406. }
  407. read_unlock(&tasklist_lock);
  408. mutex_unlock(&mapping->i_mmap_mutex);
  409. }
  410. /*
  411. * Collect the processes who have the corrupted page mapped to kill.
  412. * This is done in two steps for locking reasons.
  413. * First preallocate one tokill structure outside the spin locks,
  414. * so that we can kill at least one process reasonably reliable.
  415. */
  416. static void collect_procs(struct page *page, struct list_head *tokill)
  417. {
  418. struct to_kill *tk;
  419. if (!page->mapping)
  420. return;
  421. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  422. if (!tk)
  423. return;
  424. if (PageAnon(page))
  425. collect_procs_anon(page, tokill, &tk);
  426. else
  427. collect_procs_file(page, tokill, &tk);
  428. kfree(tk);
  429. }
  430. /*
  431. * Error handlers for various types of pages.
  432. */
  433. enum outcome {
  434. IGNORED, /* Error: cannot be handled */
  435. FAILED, /* Error: handling failed */
  436. DELAYED, /* Will be handled later */
  437. RECOVERED, /* Successfully recovered */
  438. };
  439. static const char *action_name[] = {
  440. [IGNORED] = "Ignored",
  441. [FAILED] = "Failed",
  442. [DELAYED] = "Delayed",
  443. [RECOVERED] = "Recovered",
  444. };
  445. /*
  446. * XXX: It is possible that a page is isolated from LRU cache,
  447. * and then kept in swap cache or failed to remove from page cache.
  448. * The page count will stop it from being freed by unpoison.
  449. * Stress tests should be aware of this memory leak problem.
  450. */
  451. static int delete_from_lru_cache(struct page *p)
  452. {
  453. if (!isolate_lru_page(p)) {
  454. /*
  455. * Clear sensible page flags, so that the buddy system won't
  456. * complain when the page is unpoison-and-freed.
  457. */
  458. ClearPageActive(p);
  459. ClearPageUnevictable(p);
  460. /*
  461. * drop the page count elevated by isolate_lru_page()
  462. */
  463. page_cache_release(p);
  464. return 0;
  465. }
  466. return -EIO;
  467. }
  468. /*
  469. * Error hit kernel page.
  470. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  471. * could be more sophisticated.
  472. */
  473. static int me_kernel(struct page *p, unsigned long pfn)
  474. {
  475. return IGNORED;
  476. }
  477. /*
  478. * Page in unknown state. Do nothing.
  479. */
  480. static int me_unknown(struct page *p, unsigned long pfn)
  481. {
  482. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  483. return FAILED;
  484. }
  485. /*
  486. * Clean (or cleaned) page cache page.
  487. */
  488. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  489. {
  490. int err;
  491. int ret = FAILED;
  492. struct address_space *mapping;
  493. delete_from_lru_cache(p);
  494. /*
  495. * For anonymous pages we're done the only reference left
  496. * should be the one m_f() holds.
  497. */
  498. if (PageAnon(p))
  499. return RECOVERED;
  500. /*
  501. * Now truncate the page in the page cache. This is really
  502. * more like a "temporary hole punch"
  503. * Don't do this for block devices when someone else
  504. * has a reference, because it could be file system metadata
  505. * and that's not safe to truncate.
  506. */
  507. mapping = page_mapping(p);
  508. if (!mapping) {
  509. /*
  510. * Page has been teared down in the meanwhile
  511. */
  512. return FAILED;
  513. }
  514. /*
  515. * Truncation is a bit tricky. Enable it per file system for now.
  516. *
  517. * Open: to take i_mutex or not for this? Right now we don't.
  518. */
  519. if (mapping->a_ops->error_remove_page) {
  520. err = mapping->a_ops->error_remove_page(mapping, p);
  521. if (err != 0) {
  522. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  523. pfn, err);
  524. } else if (page_has_private(p) &&
  525. !try_to_release_page(p, GFP_NOIO)) {
  526. pr_info("MCE %#lx: failed to release buffers\n", pfn);
  527. } else {
  528. ret = RECOVERED;
  529. }
  530. } else {
  531. /*
  532. * If the file system doesn't support it just invalidate
  533. * This fails on dirty or anything with private pages
  534. */
  535. if (invalidate_inode_page(p))
  536. ret = RECOVERED;
  537. else
  538. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  539. pfn);
  540. }
  541. return ret;
  542. }
  543. /*
  544. * Dirty cache page page
  545. * Issues: when the error hit a hole page the error is not properly
  546. * propagated.
  547. */
  548. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  549. {
  550. struct address_space *mapping = page_mapping(p);
  551. SetPageError(p);
  552. /* TBD: print more information about the file. */
  553. if (mapping) {
  554. /*
  555. * IO error will be reported by write(), fsync(), etc.
  556. * who check the mapping.
  557. * This way the application knows that something went
  558. * wrong with its dirty file data.
  559. *
  560. * There's one open issue:
  561. *
  562. * The EIO will be only reported on the next IO
  563. * operation and then cleared through the IO map.
  564. * Normally Linux has two mechanisms to pass IO error
  565. * first through the AS_EIO flag in the address space
  566. * and then through the PageError flag in the page.
  567. * Since we drop pages on memory failure handling the
  568. * only mechanism open to use is through AS_AIO.
  569. *
  570. * This has the disadvantage that it gets cleared on
  571. * the first operation that returns an error, while
  572. * the PageError bit is more sticky and only cleared
  573. * when the page is reread or dropped. If an
  574. * application assumes it will always get error on
  575. * fsync, but does other operations on the fd before
  576. * and the page is dropped between then the error
  577. * will not be properly reported.
  578. *
  579. * This can already happen even without hwpoisoned
  580. * pages: first on metadata IO errors (which only
  581. * report through AS_EIO) or when the page is dropped
  582. * at the wrong time.
  583. *
  584. * So right now we assume that the application DTRT on
  585. * the first EIO, but we're not worse than other parts
  586. * of the kernel.
  587. */
  588. mapping_set_error(mapping, EIO);
  589. }
  590. return me_pagecache_clean(p, pfn);
  591. }
  592. /*
  593. * Clean and dirty swap cache.
  594. *
  595. * Dirty swap cache page is tricky to handle. The page could live both in page
  596. * cache and swap cache(ie. page is freshly swapped in). So it could be
  597. * referenced concurrently by 2 types of PTEs:
  598. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  599. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  600. * and then
  601. * - clear dirty bit to prevent IO
  602. * - remove from LRU
  603. * - but keep in the swap cache, so that when we return to it on
  604. * a later page fault, we know the application is accessing
  605. * corrupted data and shall be killed (we installed simple
  606. * interception code in do_swap_page to catch it).
  607. *
  608. * Clean swap cache pages can be directly isolated. A later page fault will
  609. * bring in the known good data from disk.
  610. */
  611. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  612. {
  613. ClearPageDirty(p);
  614. /* Trigger EIO in shmem: */
  615. ClearPageUptodate(p);
  616. if (!delete_from_lru_cache(p))
  617. return DELAYED;
  618. else
  619. return FAILED;
  620. }
  621. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  622. {
  623. delete_from_swap_cache(p);
  624. if (!delete_from_lru_cache(p))
  625. return RECOVERED;
  626. else
  627. return FAILED;
  628. }
  629. /*
  630. * Huge pages. Needs work.
  631. * Issues:
  632. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  633. * To narrow down kill region to one page, we need to break up pmd.
  634. */
  635. static int me_huge_page(struct page *p, unsigned long pfn)
  636. {
  637. int res = 0;
  638. struct page *hpage = compound_head(p);
  639. /*
  640. * We can safely recover from error on free or reserved (i.e.
  641. * not in-use) hugepage by dequeuing it from freelist.
  642. * To check whether a hugepage is in-use or not, we can't use
  643. * page->lru because it can be used in other hugepage operations,
  644. * such as __unmap_hugepage_range() and gather_surplus_pages().
  645. * So instead we use page_mapping() and PageAnon().
  646. * We assume that this function is called with page lock held,
  647. * so there is no race between isolation and mapping/unmapping.
  648. */
  649. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  650. res = dequeue_hwpoisoned_huge_page(hpage);
  651. if (!res)
  652. return RECOVERED;
  653. }
  654. return DELAYED;
  655. }
  656. /*
  657. * Various page states we can handle.
  658. *
  659. * A page state is defined by its current page->flags bits.
  660. * The table matches them in order and calls the right handler.
  661. *
  662. * This is quite tricky because we can access page at any time
  663. * in its live cycle, so all accesses have to be extremely careful.
  664. *
  665. * This is not complete. More states could be added.
  666. * For any missing state don't attempt recovery.
  667. */
  668. #define dirty (1UL << PG_dirty)
  669. #define sc (1UL << PG_swapcache)
  670. #define unevict (1UL << PG_unevictable)
  671. #define mlock (1UL << PG_mlocked)
  672. #define writeback (1UL << PG_writeback)
  673. #define lru (1UL << PG_lru)
  674. #define swapbacked (1UL << PG_swapbacked)
  675. #define head (1UL << PG_head)
  676. #define tail (1UL << PG_tail)
  677. #define compound (1UL << PG_compound)
  678. #define slab (1UL << PG_slab)
  679. #define reserved (1UL << PG_reserved)
  680. static struct page_state {
  681. unsigned long mask;
  682. unsigned long res;
  683. char *msg;
  684. int (*action)(struct page *p, unsigned long pfn);
  685. } error_states[] = {
  686. { reserved, reserved, "reserved kernel", me_kernel },
  687. /*
  688. * free pages are specially detected outside this table:
  689. * PG_buddy pages only make a small fraction of all free pages.
  690. */
  691. /*
  692. * Could in theory check if slab page is free or if we can drop
  693. * currently unused objects without touching them. But just
  694. * treat it as standard kernel for now.
  695. */
  696. { slab, slab, "kernel slab", me_kernel },
  697. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  698. { head, head, "huge", me_huge_page },
  699. { tail, tail, "huge", me_huge_page },
  700. #else
  701. { compound, compound, "huge", me_huge_page },
  702. #endif
  703. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  704. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  705. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  706. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  707. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  708. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  709. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  710. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  711. /*
  712. * Catchall entry: must be at end.
  713. */
  714. { 0, 0, "unknown page state", me_unknown },
  715. };
  716. #undef dirty
  717. #undef sc
  718. #undef unevict
  719. #undef mlock
  720. #undef writeback
  721. #undef lru
  722. #undef swapbacked
  723. #undef head
  724. #undef tail
  725. #undef compound
  726. #undef slab
  727. #undef reserved
  728. static void action_result(unsigned long pfn, char *msg, int result)
  729. {
  730. struct page *page = pfn_to_page(pfn);
  731. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  732. pfn,
  733. PageDirty(page) ? "dirty " : "",
  734. msg, action_name[result]);
  735. }
  736. static int page_action(struct page_state *ps, struct page *p,
  737. unsigned long pfn)
  738. {
  739. int result;
  740. int count;
  741. result = ps->action(p, pfn);
  742. action_result(pfn, ps->msg, result);
  743. count = page_count(p) - 1;
  744. if (ps->action == me_swapcache_dirty && result == DELAYED)
  745. count--;
  746. if (count != 0) {
  747. printk(KERN_ERR
  748. "MCE %#lx: %s page still referenced by %d users\n",
  749. pfn, ps->msg, count);
  750. result = FAILED;
  751. }
  752. /* Could do more checks here if page looks ok */
  753. /*
  754. * Could adjust zone counters here to correct for the missing page.
  755. */
  756. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  757. }
  758. /*
  759. * Do all that is necessary to remove user space mappings. Unmap
  760. * the pages and send SIGBUS to the processes if the data was dirty.
  761. */
  762. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  763. int trapno, int flags)
  764. {
  765. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  766. struct address_space *mapping;
  767. LIST_HEAD(tokill);
  768. int ret;
  769. int kill = 1, forcekill;
  770. struct page *hpage = compound_head(p);
  771. struct page *ppage;
  772. if (PageReserved(p) || PageSlab(p))
  773. return SWAP_SUCCESS;
  774. /*
  775. * This check implies we don't kill processes if their pages
  776. * are in the swap cache early. Those are always late kills.
  777. */
  778. if (!page_mapped(hpage))
  779. return SWAP_SUCCESS;
  780. if (PageKsm(p))
  781. return SWAP_FAIL;
  782. if (PageSwapCache(p)) {
  783. printk(KERN_ERR
  784. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  785. ttu |= TTU_IGNORE_HWPOISON;
  786. }
  787. /*
  788. * Propagate the dirty bit from PTEs to struct page first, because we
  789. * need this to decide if we should kill or just drop the page.
  790. * XXX: the dirty test could be racy: set_page_dirty() may not always
  791. * be called inside page lock (it's recommended but not enforced).
  792. */
  793. mapping = page_mapping(hpage);
  794. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  795. mapping_cap_writeback_dirty(mapping)) {
  796. if (page_mkclean(hpage)) {
  797. SetPageDirty(hpage);
  798. } else {
  799. kill = 0;
  800. ttu |= TTU_IGNORE_HWPOISON;
  801. printk(KERN_INFO
  802. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  803. pfn);
  804. }
  805. }
  806. /*
  807. * ppage: poisoned page
  808. * if p is regular page(4k page)
  809. * ppage == real poisoned page;
  810. * else p is hugetlb or THP, ppage == head page.
  811. */
  812. ppage = hpage;
  813. if (PageTransHuge(hpage)) {
  814. /*
  815. * Verify that this isn't a hugetlbfs head page, the check for
  816. * PageAnon is just for avoid tripping a split_huge_page
  817. * internal debug check, as split_huge_page refuses to deal with
  818. * anything that isn't an anon page. PageAnon can't go away fro
  819. * under us because we hold a refcount on the hpage, without a
  820. * refcount on the hpage. split_huge_page can't be safely called
  821. * in the first place, having a refcount on the tail isn't
  822. * enough * to be safe.
  823. */
  824. if (!PageHuge(hpage) && PageAnon(hpage)) {
  825. if (unlikely(split_huge_page(hpage))) {
  826. /*
  827. * FIXME: if splitting THP is failed, it is
  828. * better to stop the following operation rather
  829. * than causing panic by unmapping. System might
  830. * survive if the page is freed later.
  831. */
  832. printk(KERN_INFO
  833. "MCE %#lx: failed to split THP\n", pfn);
  834. BUG_ON(!PageHWPoison(p));
  835. return SWAP_FAIL;
  836. }
  837. /* THP is split, so ppage should be the real poisoned page. */
  838. ppage = p;
  839. }
  840. }
  841. /*
  842. * First collect all the processes that have the page
  843. * mapped in dirty form. This has to be done before try_to_unmap,
  844. * because ttu takes the rmap data structures down.
  845. *
  846. * Error handling: We ignore errors here because
  847. * there's nothing that can be done.
  848. */
  849. if (kill)
  850. collect_procs(ppage, &tokill);
  851. if (hpage != ppage)
  852. lock_page(ppage);
  853. ret = try_to_unmap(ppage, ttu);
  854. if (ret != SWAP_SUCCESS)
  855. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  856. pfn, page_mapcount(ppage));
  857. if (hpage != ppage)
  858. unlock_page(ppage);
  859. /*
  860. * Now that the dirty bit has been propagated to the
  861. * struct page and all unmaps done we can decide if
  862. * killing is needed or not. Only kill when the page
  863. * was dirty or the process is not restartable,
  864. * otherwise the tokill list is merely
  865. * freed. When there was a problem unmapping earlier
  866. * use a more force-full uncatchable kill to prevent
  867. * any accesses to the poisoned memory.
  868. */
  869. forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
  870. kill_procs(&tokill, forcekill, trapno,
  871. ret != SWAP_SUCCESS, p, pfn, flags);
  872. return ret;
  873. }
  874. static void set_page_hwpoison_huge_page(struct page *hpage)
  875. {
  876. int i;
  877. int nr_pages = 1 << compound_trans_order(hpage);
  878. for (i = 0; i < nr_pages; i++)
  879. SetPageHWPoison(hpage + i);
  880. }
  881. static void clear_page_hwpoison_huge_page(struct page *hpage)
  882. {
  883. int i;
  884. int nr_pages = 1 << compound_trans_order(hpage);
  885. for (i = 0; i < nr_pages; i++)
  886. ClearPageHWPoison(hpage + i);
  887. }
  888. /**
  889. * memory_failure - Handle memory failure of a page.
  890. * @pfn: Page Number of the corrupted page
  891. * @trapno: Trap number reported in the signal to user space.
  892. * @flags: fine tune action taken
  893. *
  894. * This function is called by the low level machine check code
  895. * of an architecture when it detects hardware memory corruption
  896. * of a page. It tries its best to recover, which includes
  897. * dropping pages, killing processes etc.
  898. *
  899. * The function is primarily of use for corruptions that
  900. * happen outside the current execution context (e.g. when
  901. * detected by a background scrubber)
  902. *
  903. * Must run in process context (e.g. a work queue) with interrupts
  904. * enabled and no spinlocks hold.
  905. */
  906. int memory_failure(unsigned long pfn, int trapno, int flags)
  907. {
  908. struct page_state *ps;
  909. struct page *p;
  910. struct page *hpage;
  911. int res;
  912. unsigned int nr_pages;
  913. if (!sysctl_memory_failure_recovery)
  914. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  915. if (!pfn_valid(pfn)) {
  916. printk(KERN_ERR
  917. "MCE %#lx: memory outside kernel control\n",
  918. pfn);
  919. return -ENXIO;
  920. }
  921. p = pfn_to_page(pfn);
  922. hpage = compound_head(p);
  923. if (TestSetPageHWPoison(p)) {
  924. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  925. return 0;
  926. }
  927. nr_pages = 1 << compound_trans_order(hpage);
  928. atomic_long_add(nr_pages, &mce_bad_pages);
  929. /*
  930. * We need/can do nothing about count=0 pages.
  931. * 1) it's a free page, and therefore in safe hand:
  932. * prep_new_page() will be the gate keeper.
  933. * 2) it's a free hugepage, which is also safe:
  934. * an affected hugepage will be dequeued from hugepage freelist,
  935. * so there's no concern about reusing it ever after.
  936. * 3) it's part of a non-compound high order page.
  937. * Implies some kernel user: cannot stop them from
  938. * R/W the page; let's pray that the page has been
  939. * used and will be freed some time later.
  940. * In fact it's dangerous to directly bump up page count from 0,
  941. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  942. */
  943. if (!(flags & MF_COUNT_INCREASED) &&
  944. !get_page_unless_zero(hpage)) {
  945. if (is_free_buddy_page(p)) {
  946. action_result(pfn, "free buddy", DELAYED);
  947. return 0;
  948. } else if (PageHuge(hpage)) {
  949. /*
  950. * Check "just unpoisoned", "filter hit", and
  951. * "race with other subpage."
  952. */
  953. lock_page(hpage);
  954. if (!PageHWPoison(hpage)
  955. || (hwpoison_filter(p) && TestClearPageHWPoison(p))
  956. || (p != hpage && TestSetPageHWPoison(hpage))) {
  957. atomic_long_sub(nr_pages, &mce_bad_pages);
  958. return 0;
  959. }
  960. set_page_hwpoison_huge_page(hpage);
  961. res = dequeue_hwpoisoned_huge_page(hpage);
  962. action_result(pfn, "free huge",
  963. res ? IGNORED : DELAYED);
  964. unlock_page(hpage);
  965. return res;
  966. } else {
  967. action_result(pfn, "high order kernel", IGNORED);
  968. return -EBUSY;
  969. }
  970. }
  971. /*
  972. * We ignore non-LRU pages for good reasons.
  973. * - PG_locked is only well defined for LRU pages and a few others
  974. * - to avoid races with __set_page_locked()
  975. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  976. * The check (unnecessarily) ignores LRU pages being isolated and
  977. * walked by the page reclaim code, however that's not a big loss.
  978. */
  979. if (!PageHuge(p) && !PageTransTail(p)) {
  980. if (!PageLRU(p))
  981. shake_page(p, 0);
  982. if (!PageLRU(p)) {
  983. /*
  984. * shake_page could have turned it free.
  985. */
  986. if (is_free_buddy_page(p)) {
  987. action_result(pfn, "free buddy, 2nd try",
  988. DELAYED);
  989. return 0;
  990. }
  991. action_result(pfn, "non LRU", IGNORED);
  992. put_page(p);
  993. return -EBUSY;
  994. }
  995. }
  996. /*
  997. * Lock the page and wait for writeback to finish.
  998. * It's very difficult to mess with pages currently under IO
  999. * and in many cases impossible, so we just avoid it here.
  1000. */
  1001. lock_page(hpage);
  1002. /*
  1003. * unpoison always clear PG_hwpoison inside page lock
  1004. */
  1005. if (!PageHWPoison(p)) {
  1006. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  1007. res = 0;
  1008. goto out;
  1009. }
  1010. if (hwpoison_filter(p)) {
  1011. if (TestClearPageHWPoison(p))
  1012. atomic_long_sub(nr_pages, &mce_bad_pages);
  1013. unlock_page(hpage);
  1014. put_page(hpage);
  1015. return 0;
  1016. }
  1017. /*
  1018. * For error on the tail page, we should set PG_hwpoison
  1019. * on the head page to show that the hugepage is hwpoisoned
  1020. */
  1021. if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
  1022. action_result(pfn, "hugepage already hardware poisoned",
  1023. IGNORED);
  1024. unlock_page(hpage);
  1025. put_page(hpage);
  1026. return 0;
  1027. }
  1028. /*
  1029. * Set PG_hwpoison on all pages in an error hugepage,
  1030. * because containment is done in hugepage unit for now.
  1031. * Since we have done TestSetPageHWPoison() for the head page with
  1032. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  1033. */
  1034. if (PageHuge(p))
  1035. set_page_hwpoison_huge_page(hpage);
  1036. wait_on_page_writeback(p);
  1037. /*
  1038. * Now take care of user space mappings.
  1039. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1040. */
  1041. if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
  1042. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  1043. res = -EBUSY;
  1044. goto out;
  1045. }
  1046. /*
  1047. * Torn down by someone else?
  1048. */
  1049. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1050. action_result(pfn, "already truncated LRU", IGNORED);
  1051. res = -EBUSY;
  1052. goto out;
  1053. }
  1054. res = -EBUSY;
  1055. for (ps = error_states;; ps++) {
  1056. if ((p->flags & ps->mask) == ps->res) {
  1057. res = page_action(ps, p, pfn);
  1058. break;
  1059. }
  1060. }
  1061. out:
  1062. unlock_page(hpage);
  1063. return res;
  1064. }
  1065. EXPORT_SYMBOL_GPL(memory_failure);
  1066. #define MEMORY_FAILURE_FIFO_ORDER 4
  1067. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1068. struct memory_failure_entry {
  1069. unsigned long pfn;
  1070. int trapno;
  1071. int flags;
  1072. };
  1073. struct memory_failure_cpu {
  1074. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1075. MEMORY_FAILURE_FIFO_SIZE);
  1076. spinlock_t lock;
  1077. struct work_struct work;
  1078. };
  1079. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1080. /**
  1081. * memory_failure_queue - Schedule handling memory failure of a page.
  1082. * @pfn: Page Number of the corrupted page
  1083. * @trapno: Trap number reported in the signal to user space.
  1084. * @flags: Flags for memory failure handling
  1085. *
  1086. * This function is called by the low level hardware error handler
  1087. * when it detects hardware memory corruption of a page. It schedules
  1088. * the recovering of error page, including dropping pages, killing
  1089. * processes etc.
  1090. *
  1091. * The function is primarily of use for corruptions that
  1092. * happen outside the current execution context (e.g. when
  1093. * detected by a background scrubber)
  1094. *
  1095. * Can run in IRQ context.
  1096. */
  1097. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1098. {
  1099. struct memory_failure_cpu *mf_cpu;
  1100. unsigned long proc_flags;
  1101. struct memory_failure_entry entry = {
  1102. .pfn = pfn,
  1103. .trapno = trapno,
  1104. .flags = flags,
  1105. };
  1106. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1107. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1108. if (kfifo_put(&mf_cpu->fifo, &entry))
  1109. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1110. else
  1111. pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
  1112. pfn);
  1113. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1114. put_cpu_var(memory_failure_cpu);
  1115. }
  1116. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1117. static void memory_failure_work_func(struct work_struct *work)
  1118. {
  1119. struct memory_failure_cpu *mf_cpu;
  1120. struct memory_failure_entry entry = { 0, };
  1121. unsigned long proc_flags;
  1122. int gotten;
  1123. mf_cpu = &__get_cpu_var(memory_failure_cpu);
  1124. for (;;) {
  1125. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1126. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1127. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1128. if (!gotten)
  1129. break;
  1130. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1131. }
  1132. }
  1133. static int __init memory_failure_init(void)
  1134. {
  1135. struct memory_failure_cpu *mf_cpu;
  1136. int cpu;
  1137. for_each_possible_cpu(cpu) {
  1138. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1139. spin_lock_init(&mf_cpu->lock);
  1140. INIT_KFIFO(mf_cpu->fifo);
  1141. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1142. }
  1143. return 0;
  1144. }
  1145. core_initcall(memory_failure_init);
  1146. /**
  1147. * unpoison_memory - Unpoison a previously poisoned page
  1148. * @pfn: Page number of the to be unpoisoned page
  1149. *
  1150. * Software-unpoison a page that has been poisoned by
  1151. * memory_failure() earlier.
  1152. *
  1153. * This is only done on the software-level, so it only works
  1154. * for linux injected failures, not real hardware failures
  1155. *
  1156. * Returns 0 for success, otherwise -errno.
  1157. */
  1158. int unpoison_memory(unsigned long pfn)
  1159. {
  1160. struct page *page;
  1161. struct page *p;
  1162. int freeit = 0;
  1163. unsigned int nr_pages;
  1164. if (!pfn_valid(pfn))
  1165. return -ENXIO;
  1166. p = pfn_to_page(pfn);
  1167. page = compound_head(p);
  1168. if (!PageHWPoison(p)) {
  1169. pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
  1170. return 0;
  1171. }
  1172. nr_pages = 1 << compound_trans_order(page);
  1173. if (!get_page_unless_zero(page)) {
  1174. /*
  1175. * Since HWPoisoned hugepage should have non-zero refcount,
  1176. * race between memory failure and unpoison seems to happen.
  1177. * In such case unpoison fails and memory failure runs
  1178. * to the end.
  1179. */
  1180. if (PageHuge(page)) {
  1181. pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
  1182. return 0;
  1183. }
  1184. if (TestClearPageHWPoison(p))
  1185. atomic_long_sub(nr_pages, &mce_bad_pages);
  1186. pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
  1187. return 0;
  1188. }
  1189. lock_page(page);
  1190. /*
  1191. * This test is racy because PG_hwpoison is set outside of page lock.
  1192. * That's acceptable because that won't trigger kernel panic. Instead,
  1193. * the PG_hwpoison page will be caught and isolated on the entrance to
  1194. * the free buddy page pool.
  1195. */
  1196. if (TestClearPageHWPoison(page)) {
  1197. pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
  1198. atomic_long_sub(nr_pages, &mce_bad_pages);
  1199. freeit = 1;
  1200. if (PageHuge(page))
  1201. clear_page_hwpoison_huge_page(page);
  1202. }
  1203. unlock_page(page);
  1204. put_page(page);
  1205. if (freeit)
  1206. put_page(page);
  1207. return 0;
  1208. }
  1209. EXPORT_SYMBOL(unpoison_memory);
  1210. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1211. {
  1212. int nid = page_to_nid(p);
  1213. if (PageHuge(p))
  1214. return alloc_huge_page_node(page_hstate(compound_head(p)),
  1215. nid);
  1216. else
  1217. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1218. }
  1219. /*
  1220. * Safely get reference count of an arbitrary page.
  1221. * Returns 0 for a free page, -EIO for a zero refcount page
  1222. * that is not free, and 1 for any other page type.
  1223. * For 1 the page is returned with increased page count, otherwise not.
  1224. */
  1225. static int get_any_page(struct page *p, unsigned long pfn, int flags)
  1226. {
  1227. int ret;
  1228. if (flags & MF_COUNT_INCREASED)
  1229. return 1;
  1230. /*
  1231. * The lock_memory_hotplug prevents a race with memory hotplug.
  1232. * This is a big hammer, a better would be nicer.
  1233. */
  1234. lock_memory_hotplug();
  1235. /*
  1236. * Isolate the page, so that it doesn't get reallocated if it
  1237. * was free.
  1238. */
  1239. set_migratetype_isolate(p);
  1240. /*
  1241. * When the target page is a free hugepage, just remove it
  1242. * from free hugepage list.
  1243. */
  1244. if (!get_page_unless_zero(compound_head(p))) {
  1245. if (PageHuge(p)) {
  1246. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1247. ret = dequeue_hwpoisoned_huge_page(compound_head(p));
  1248. } else if (is_free_buddy_page(p)) {
  1249. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1250. /* Set hwpoison bit while page is still isolated */
  1251. SetPageHWPoison(p);
  1252. ret = 0;
  1253. } else {
  1254. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1255. __func__, pfn, p->flags);
  1256. ret = -EIO;
  1257. }
  1258. } else {
  1259. /* Not a free page */
  1260. ret = 1;
  1261. }
  1262. unset_migratetype_isolate(p, MIGRATE_MOVABLE);
  1263. unlock_memory_hotplug();
  1264. return ret;
  1265. }
  1266. static int soft_offline_huge_page(struct page *page, int flags)
  1267. {
  1268. int ret;
  1269. unsigned long pfn = page_to_pfn(page);
  1270. struct page *hpage = compound_head(page);
  1271. ret = get_any_page(page, pfn, flags);
  1272. if (ret < 0)
  1273. return ret;
  1274. if (ret == 0)
  1275. goto done;
  1276. if (PageHWPoison(hpage)) {
  1277. put_page(hpage);
  1278. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1279. return -EBUSY;
  1280. }
  1281. /* Keep page count to indicate a given hugepage is isolated. */
  1282. ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false,
  1283. MIGRATE_SYNC);
  1284. put_page(hpage);
  1285. if (ret) {
  1286. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1287. pfn, ret, page->flags);
  1288. return ret;
  1289. }
  1290. done:
  1291. if (!PageHWPoison(hpage))
  1292. atomic_long_add(1 << compound_trans_order(hpage),
  1293. &mce_bad_pages);
  1294. set_page_hwpoison_huge_page(hpage);
  1295. dequeue_hwpoisoned_huge_page(hpage);
  1296. /* keep elevated page count for bad page */
  1297. return ret;
  1298. }
  1299. /**
  1300. * soft_offline_page - Soft offline a page.
  1301. * @page: page to offline
  1302. * @flags: flags. Same as memory_failure().
  1303. *
  1304. * Returns 0 on success, otherwise negated errno.
  1305. *
  1306. * Soft offline a page, by migration or invalidation,
  1307. * without killing anything. This is for the case when
  1308. * a page is not corrupted yet (so it's still valid to access),
  1309. * but has had a number of corrected errors and is better taken
  1310. * out.
  1311. *
  1312. * The actual policy on when to do that is maintained by
  1313. * user space.
  1314. *
  1315. * This should never impact any application or cause data loss,
  1316. * however it might take some time.
  1317. *
  1318. * This is not a 100% solution for all memory, but tries to be
  1319. * ``good enough'' for the majority of memory.
  1320. */
  1321. int soft_offline_page(struct page *page, int flags)
  1322. {
  1323. int ret;
  1324. unsigned long pfn = page_to_pfn(page);
  1325. if (PageHuge(page))
  1326. return soft_offline_huge_page(page, flags);
  1327. ret = get_any_page(page, pfn, flags);
  1328. if (ret < 0)
  1329. return ret;
  1330. if (ret == 0)
  1331. goto done;
  1332. /*
  1333. * Page cache page we can handle?
  1334. */
  1335. if (!PageLRU(page)) {
  1336. /*
  1337. * Try to free it.
  1338. */
  1339. put_page(page);
  1340. shake_page(page, 1);
  1341. /*
  1342. * Did it turn free?
  1343. */
  1344. ret = get_any_page(page, pfn, 0);
  1345. if (ret < 0)
  1346. return ret;
  1347. if (ret == 0)
  1348. goto done;
  1349. }
  1350. if (!PageLRU(page)) {
  1351. pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1352. pfn, page->flags);
  1353. return -EIO;
  1354. }
  1355. lock_page(page);
  1356. wait_on_page_writeback(page);
  1357. /*
  1358. * Synchronized using the page lock with memory_failure()
  1359. */
  1360. if (PageHWPoison(page)) {
  1361. unlock_page(page);
  1362. put_page(page);
  1363. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1364. return -EBUSY;
  1365. }
  1366. /*
  1367. * Try to invalidate first. This should work for
  1368. * non dirty unmapped page cache pages.
  1369. */
  1370. ret = invalidate_inode_page(page);
  1371. unlock_page(page);
  1372. /*
  1373. * RED-PEN would be better to keep it isolated here, but we
  1374. * would need to fix isolation locking first.
  1375. */
  1376. if (ret == 1) {
  1377. put_page(page);
  1378. ret = 0;
  1379. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1380. goto done;
  1381. }
  1382. /*
  1383. * Simple invalidation didn't work.
  1384. * Try to migrate to a new page instead. migrate.c
  1385. * handles a large number of cases for us.
  1386. */
  1387. ret = isolate_lru_page(page);
  1388. /*
  1389. * Drop page reference which is came from get_any_page()
  1390. * successful isolate_lru_page() already took another one.
  1391. */
  1392. put_page(page);
  1393. if (!ret) {
  1394. LIST_HEAD(pagelist);
  1395. inc_zone_page_state(page, NR_ISOLATED_ANON +
  1396. page_is_file_cache(page));
  1397. list_add(&page->lru, &pagelist);
  1398. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
  1399. false, MIGRATE_SYNC);
  1400. if (ret) {
  1401. putback_lru_pages(&pagelist);
  1402. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1403. pfn, ret, page->flags);
  1404. if (ret > 0)
  1405. ret = -EIO;
  1406. }
  1407. } else {
  1408. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1409. pfn, ret, page_count(page), page->flags);
  1410. }
  1411. if (ret)
  1412. return ret;
  1413. done:
  1414. atomic_long_add(1, &mce_bad_pages);
  1415. SetPageHWPoison(page);
  1416. /* keep elevated page count for bad page */
  1417. return ret;
  1418. }