core.c 205 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <asm/switch_to.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include <asm/mutex.h>
  78. #ifdef CONFIG_PARAVIRT
  79. #include <asm/paravirt.h>
  80. #endif
  81. #include "sched.h"
  82. #include "../workqueue_sched.h"
  83. #include "../smpboot.h"
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/sched.h>
  86. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  87. {
  88. unsigned long delta;
  89. ktime_t soft, hard, now;
  90. for (;;) {
  91. if (hrtimer_active(period_timer))
  92. break;
  93. now = hrtimer_cb_get_time(period_timer);
  94. hrtimer_forward(period_timer, now, period);
  95. soft = hrtimer_get_softexpires(period_timer);
  96. hard = hrtimer_get_expires(period_timer);
  97. delta = ktime_to_ns(ktime_sub(hard, soft));
  98. __hrtimer_start_range_ns(period_timer, soft, delta,
  99. HRTIMER_MODE_ABS_PINNED, 0);
  100. }
  101. }
  102. DEFINE_MUTEX(sched_domains_mutex);
  103. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  104. static void update_rq_clock_task(struct rq *rq, s64 delta);
  105. void update_rq_clock(struct rq *rq)
  106. {
  107. s64 delta;
  108. if (rq->skip_clock_update > 0)
  109. return;
  110. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  111. rq->clock += delta;
  112. update_rq_clock_task(rq, delta);
  113. }
  114. /*
  115. * Debugging: various feature bits
  116. */
  117. #define SCHED_FEAT(name, enabled) \
  118. (1UL << __SCHED_FEAT_##name) * enabled |
  119. const_debug unsigned int sysctl_sched_features =
  120. #include "features.h"
  121. 0;
  122. #undef SCHED_FEAT
  123. #ifdef CONFIG_SCHED_DEBUG
  124. #define SCHED_FEAT(name, enabled) \
  125. #name ,
  126. static const char * const sched_feat_names[] = {
  127. #include "features.h"
  128. };
  129. #undef SCHED_FEAT
  130. static int sched_feat_show(struct seq_file *m, void *v)
  131. {
  132. int i;
  133. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  134. if (!(sysctl_sched_features & (1UL << i)))
  135. seq_puts(m, "NO_");
  136. seq_printf(m, "%s ", sched_feat_names[i]);
  137. }
  138. seq_puts(m, "\n");
  139. return 0;
  140. }
  141. #ifdef HAVE_JUMP_LABEL
  142. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  143. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  144. #define SCHED_FEAT(name, enabled) \
  145. jump_label_key__##enabled ,
  146. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  147. #include "features.h"
  148. };
  149. #undef SCHED_FEAT
  150. static void sched_feat_disable(int i)
  151. {
  152. if (static_key_enabled(&sched_feat_keys[i]))
  153. static_key_slow_dec(&sched_feat_keys[i]);
  154. }
  155. static void sched_feat_enable(int i)
  156. {
  157. if (!static_key_enabled(&sched_feat_keys[i]))
  158. static_key_slow_inc(&sched_feat_keys[i]);
  159. }
  160. #else
  161. static void sched_feat_disable(int i) { };
  162. static void sched_feat_enable(int i) { };
  163. #endif /* HAVE_JUMP_LABEL */
  164. static ssize_t
  165. sched_feat_write(struct file *filp, const char __user *ubuf,
  166. size_t cnt, loff_t *ppos)
  167. {
  168. char buf[64];
  169. char *cmp;
  170. int neg = 0;
  171. int i;
  172. if (cnt > 63)
  173. cnt = 63;
  174. if (copy_from_user(&buf, ubuf, cnt))
  175. return -EFAULT;
  176. buf[cnt] = 0;
  177. cmp = strstrip(buf);
  178. if (strncmp(cmp, "NO_", 3) == 0) {
  179. neg = 1;
  180. cmp += 3;
  181. }
  182. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  183. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  184. if (neg) {
  185. sysctl_sched_features &= ~(1UL << i);
  186. sched_feat_disable(i);
  187. } else {
  188. sysctl_sched_features |= (1UL << i);
  189. sched_feat_enable(i);
  190. }
  191. break;
  192. }
  193. }
  194. if (i == __SCHED_FEAT_NR)
  195. return -EINVAL;
  196. *ppos += cnt;
  197. return cnt;
  198. }
  199. static int sched_feat_open(struct inode *inode, struct file *filp)
  200. {
  201. return single_open(filp, sched_feat_show, NULL);
  202. }
  203. static const struct file_operations sched_feat_fops = {
  204. .open = sched_feat_open,
  205. .write = sched_feat_write,
  206. .read = seq_read,
  207. .llseek = seq_lseek,
  208. .release = single_release,
  209. };
  210. static __init int sched_init_debug(void)
  211. {
  212. debugfs_create_file("sched_features", 0644, NULL, NULL,
  213. &sched_feat_fops);
  214. return 0;
  215. }
  216. late_initcall(sched_init_debug);
  217. #endif /* CONFIG_SCHED_DEBUG */
  218. /*
  219. * Number of tasks to iterate in a single balance run.
  220. * Limited because this is done with IRQs disabled.
  221. */
  222. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  223. /*
  224. * period over which we average the RT time consumption, measured
  225. * in ms.
  226. *
  227. * default: 1s
  228. */
  229. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  230. /*
  231. * period over which we measure -rt task cpu usage in us.
  232. * default: 1s
  233. */
  234. unsigned int sysctl_sched_rt_period = 1000000;
  235. __read_mostly int scheduler_running;
  236. /*
  237. * part of the period that we allow rt tasks to run in us.
  238. * default: 0.95s
  239. */
  240. int sysctl_sched_rt_runtime = 950000;
  241. /*
  242. * __task_rq_lock - lock the rq @p resides on.
  243. */
  244. static inline struct rq *__task_rq_lock(struct task_struct *p)
  245. __acquires(rq->lock)
  246. {
  247. struct rq *rq;
  248. lockdep_assert_held(&p->pi_lock);
  249. for (;;) {
  250. rq = task_rq(p);
  251. raw_spin_lock(&rq->lock);
  252. if (likely(rq == task_rq(p)))
  253. return rq;
  254. raw_spin_unlock(&rq->lock);
  255. }
  256. }
  257. /*
  258. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  259. */
  260. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  261. __acquires(p->pi_lock)
  262. __acquires(rq->lock)
  263. {
  264. struct rq *rq;
  265. for (;;) {
  266. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  267. rq = task_rq(p);
  268. raw_spin_lock(&rq->lock);
  269. if (likely(rq == task_rq(p)))
  270. return rq;
  271. raw_spin_unlock(&rq->lock);
  272. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  273. }
  274. }
  275. static void __task_rq_unlock(struct rq *rq)
  276. __releases(rq->lock)
  277. {
  278. raw_spin_unlock(&rq->lock);
  279. }
  280. static inline void
  281. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  282. __releases(rq->lock)
  283. __releases(p->pi_lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  287. }
  288. /*
  289. * this_rq_lock - lock this runqueue and disable interrupts.
  290. */
  291. static struct rq *this_rq_lock(void)
  292. __acquires(rq->lock)
  293. {
  294. struct rq *rq;
  295. local_irq_disable();
  296. rq = this_rq();
  297. raw_spin_lock(&rq->lock);
  298. return rq;
  299. }
  300. #ifdef CONFIG_SCHED_HRTICK
  301. /*
  302. * Use HR-timers to deliver accurate preemption points.
  303. *
  304. * Its all a bit involved since we cannot program an hrt while holding the
  305. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  306. * reschedule event.
  307. *
  308. * When we get rescheduled we reprogram the hrtick_timer outside of the
  309. * rq->lock.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. /*
  332. * called from hardirq (IPI) context
  333. */
  334. static void __hrtick_start(void *arg)
  335. {
  336. struct rq *rq = arg;
  337. raw_spin_lock(&rq->lock);
  338. hrtimer_restart(&rq->hrtick_timer);
  339. rq->hrtick_csd_pending = 0;
  340. raw_spin_unlock(&rq->lock);
  341. }
  342. /*
  343. * Called to set the hrtick timer state.
  344. *
  345. * called with rq->lock held and irqs disabled
  346. */
  347. void hrtick_start(struct rq *rq, u64 delay)
  348. {
  349. struct hrtimer *timer = &rq->hrtick_timer;
  350. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  351. hrtimer_set_expires(timer, time);
  352. if (rq == this_rq()) {
  353. hrtimer_restart(timer);
  354. } else if (!rq->hrtick_csd_pending) {
  355. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  356. rq->hrtick_csd_pending = 1;
  357. }
  358. }
  359. static int
  360. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  361. {
  362. int cpu = (int)(long)hcpu;
  363. switch (action) {
  364. case CPU_UP_CANCELED:
  365. case CPU_UP_CANCELED_FROZEN:
  366. case CPU_DOWN_PREPARE:
  367. case CPU_DOWN_PREPARE_FROZEN:
  368. case CPU_DEAD:
  369. case CPU_DEAD_FROZEN:
  370. hrtick_clear(cpu_rq(cpu));
  371. return NOTIFY_OK;
  372. }
  373. return NOTIFY_DONE;
  374. }
  375. static __init void init_hrtick(void)
  376. {
  377. hotcpu_notifier(hotplug_hrtick, 0);
  378. }
  379. #else
  380. /*
  381. * Called to set the hrtick timer state.
  382. *
  383. * called with rq->lock held and irqs disabled
  384. */
  385. void hrtick_start(struct rq *rq, u64 delay)
  386. {
  387. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  388. HRTIMER_MODE_REL_PINNED, 0);
  389. }
  390. static inline void init_hrtick(void)
  391. {
  392. }
  393. #endif /* CONFIG_SMP */
  394. static void init_rq_hrtick(struct rq *rq)
  395. {
  396. #ifdef CONFIG_SMP
  397. rq->hrtick_csd_pending = 0;
  398. rq->hrtick_csd.flags = 0;
  399. rq->hrtick_csd.func = __hrtick_start;
  400. rq->hrtick_csd.info = rq;
  401. #endif
  402. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  403. rq->hrtick_timer.function = hrtick;
  404. }
  405. #else /* CONFIG_SCHED_HRTICK */
  406. static inline void hrtick_clear(struct rq *rq)
  407. {
  408. }
  409. static inline void init_rq_hrtick(struct rq *rq)
  410. {
  411. }
  412. static inline void init_hrtick(void)
  413. {
  414. }
  415. #endif /* CONFIG_SCHED_HRTICK */
  416. /*
  417. * resched_task - mark a task 'to be rescheduled now'.
  418. *
  419. * On UP this means the setting of the need_resched flag, on SMP it
  420. * might also involve a cross-CPU call to trigger the scheduler on
  421. * the target CPU.
  422. */
  423. #ifdef CONFIG_SMP
  424. #ifndef tsk_is_polling
  425. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  426. #endif
  427. void resched_task(struct task_struct *p)
  428. {
  429. int cpu;
  430. assert_raw_spin_locked(&task_rq(p)->lock);
  431. if (test_tsk_need_resched(p))
  432. return;
  433. set_tsk_need_resched(p);
  434. cpu = task_cpu(p);
  435. if (cpu == smp_processor_id())
  436. return;
  437. /* NEED_RESCHED must be visible before we test polling */
  438. smp_mb();
  439. if (!tsk_is_polling(p))
  440. smp_send_reschedule(cpu);
  441. }
  442. void resched_cpu(int cpu)
  443. {
  444. struct rq *rq = cpu_rq(cpu);
  445. unsigned long flags;
  446. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  447. return;
  448. resched_task(cpu_curr(cpu));
  449. raw_spin_unlock_irqrestore(&rq->lock, flags);
  450. }
  451. #ifdef CONFIG_NO_HZ
  452. /*
  453. * In the semi idle case, use the nearest busy cpu for migrating timers
  454. * from an idle cpu. This is good for power-savings.
  455. *
  456. * We don't do similar optimization for completely idle system, as
  457. * selecting an idle cpu will add more delays to the timers than intended
  458. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  459. */
  460. int get_nohz_timer_target(void)
  461. {
  462. int cpu = smp_processor_id();
  463. int i;
  464. struct sched_domain *sd;
  465. rcu_read_lock();
  466. for_each_domain(cpu, sd) {
  467. for_each_cpu(i, sched_domain_span(sd)) {
  468. if (!idle_cpu(i)) {
  469. cpu = i;
  470. goto unlock;
  471. }
  472. }
  473. }
  474. unlock:
  475. rcu_read_unlock();
  476. return cpu;
  477. }
  478. /*
  479. * When add_timer_on() enqueues a timer into the timer wheel of an
  480. * idle CPU then this timer might expire before the next timer event
  481. * which is scheduled to wake up that CPU. In case of a completely
  482. * idle system the next event might even be infinite time into the
  483. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  484. * leaves the inner idle loop so the newly added timer is taken into
  485. * account when the CPU goes back to idle and evaluates the timer
  486. * wheel for the next timer event.
  487. */
  488. void wake_up_idle_cpu(int cpu)
  489. {
  490. struct rq *rq = cpu_rq(cpu);
  491. if (cpu == smp_processor_id())
  492. return;
  493. /*
  494. * This is safe, as this function is called with the timer
  495. * wheel base lock of (cpu) held. When the CPU is on the way
  496. * to idle and has not yet set rq->curr to idle then it will
  497. * be serialized on the timer wheel base lock and take the new
  498. * timer into account automatically.
  499. */
  500. if (rq->curr != rq->idle)
  501. return;
  502. /*
  503. * We can set TIF_RESCHED on the idle task of the other CPU
  504. * lockless. The worst case is that the other CPU runs the
  505. * idle task through an additional NOOP schedule()
  506. */
  507. set_tsk_need_resched(rq->idle);
  508. /* NEED_RESCHED must be visible before we test polling */
  509. smp_mb();
  510. if (!tsk_is_polling(rq->idle))
  511. smp_send_reschedule(cpu);
  512. }
  513. static inline bool got_nohz_idle_kick(void)
  514. {
  515. int cpu = smp_processor_id();
  516. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  517. }
  518. #else /* CONFIG_NO_HZ */
  519. static inline bool got_nohz_idle_kick(void)
  520. {
  521. return false;
  522. }
  523. #endif /* CONFIG_NO_HZ */
  524. void sched_avg_update(struct rq *rq)
  525. {
  526. s64 period = sched_avg_period();
  527. while ((s64)(rq->clock - rq->age_stamp) > period) {
  528. /*
  529. * Inline assembly required to prevent the compiler
  530. * optimising this loop into a divmod call.
  531. * See __iter_div_u64_rem() for another example of this.
  532. */
  533. asm("" : "+rm" (rq->age_stamp));
  534. rq->age_stamp += period;
  535. rq->rt_avg /= 2;
  536. }
  537. }
  538. #else /* !CONFIG_SMP */
  539. void resched_task(struct task_struct *p)
  540. {
  541. assert_raw_spin_locked(&task_rq(p)->lock);
  542. set_tsk_need_resched(p);
  543. }
  544. #endif /* CONFIG_SMP */
  545. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  546. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  547. /*
  548. * Iterate task_group tree rooted at *from, calling @down when first entering a
  549. * node and @up when leaving it for the final time.
  550. *
  551. * Caller must hold rcu_lock or sufficient equivalent.
  552. */
  553. int walk_tg_tree_from(struct task_group *from,
  554. tg_visitor down, tg_visitor up, void *data)
  555. {
  556. struct task_group *parent, *child;
  557. int ret;
  558. parent = from;
  559. down:
  560. ret = (*down)(parent, data);
  561. if (ret)
  562. goto out;
  563. list_for_each_entry_rcu(child, &parent->children, siblings) {
  564. parent = child;
  565. goto down;
  566. up:
  567. continue;
  568. }
  569. ret = (*up)(parent, data);
  570. if (ret || parent == from)
  571. goto out;
  572. child = parent;
  573. parent = parent->parent;
  574. if (parent)
  575. goto up;
  576. out:
  577. return ret;
  578. }
  579. int tg_nop(struct task_group *tg, void *data)
  580. {
  581. return 0;
  582. }
  583. #endif
  584. static void set_load_weight(struct task_struct *p)
  585. {
  586. int prio = p->static_prio - MAX_RT_PRIO;
  587. struct load_weight *load = &p->se.load;
  588. /*
  589. * SCHED_IDLE tasks get minimal weight:
  590. */
  591. if (p->policy == SCHED_IDLE) {
  592. load->weight = scale_load(WEIGHT_IDLEPRIO);
  593. load->inv_weight = WMULT_IDLEPRIO;
  594. return;
  595. }
  596. load->weight = scale_load(prio_to_weight[prio]);
  597. load->inv_weight = prio_to_wmult[prio];
  598. }
  599. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  600. {
  601. update_rq_clock(rq);
  602. sched_info_queued(p);
  603. p->sched_class->enqueue_task(rq, p, flags);
  604. }
  605. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  606. {
  607. update_rq_clock(rq);
  608. sched_info_dequeued(p);
  609. p->sched_class->dequeue_task(rq, p, flags);
  610. }
  611. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  612. {
  613. if (task_contributes_to_load(p))
  614. rq->nr_uninterruptible--;
  615. enqueue_task(rq, p, flags);
  616. }
  617. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  618. {
  619. if (task_contributes_to_load(p))
  620. rq->nr_uninterruptible++;
  621. dequeue_task(rq, p, flags);
  622. }
  623. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  624. /*
  625. * There are no locks covering percpu hardirq/softirq time.
  626. * They are only modified in account_system_vtime, on corresponding CPU
  627. * with interrupts disabled. So, writes are safe.
  628. * They are read and saved off onto struct rq in update_rq_clock().
  629. * This may result in other CPU reading this CPU's irq time and can
  630. * race with irq/account_system_vtime on this CPU. We would either get old
  631. * or new value with a side effect of accounting a slice of irq time to wrong
  632. * task when irq is in progress while we read rq->clock. That is a worthy
  633. * compromise in place of having locks on each irq in account_system_time.
  634. */
  635. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  636. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  637. static DEFINE_PER_CPU(u64, irq_start_time);
  638. static int sched_clock_irqtime;
  639. void enable_sched_clock_irqtime(void)
  640. {
  641. sched_clock_irqtime = 1;
  642. }
  643. void disable_sched_clock_irqtime(void)
  644. {
  645. sched_clock_irqtime = 0;
  646. }
  647. #ifndef CONFIG_64BIT
  648. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  649. static inline void irq_time_write_begin(void)
  650. {
  651. __this_cpu_inc(irq_time_seq.sequence);
  652. smp_wmb();
  653. }
  654. static inline void irq_time_write_end(void)
  655. {
  656. smp_wmb();
  657. __this_cpu_inc(irq_time_seq.sequence);
  658. }
  659. static inline u64 irq_time_read(int cpu)
  660. {
  661. u64 irq_time;
  662. unsigned seq;
  663. do {
  664. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  665. irq_time = per_cpu(cpu_softirq_time, cpu) +
  666. per_cpu(cpu_hardirq_time, cpu);
  667. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  668. return irq_time;
  669. }
  670. #else /* CONFIG_64BIT */
  671. static inline void irq_time_write_begin(void)
  672. {
  673. }
  674. static inline void irq_time_write_end(void)
  675. {
  676. }
  677. static inline u64 irq_time_read(int cpu)
  678. {
  679. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  680. }
  681. #endif /* CONFIG_64BIT */
  682. /*
  683. * Called before incrementing preempt_count on {soft,}irq_enter
  684. * and before decrementing preempt_count on {soft,}irq_exit.
  685. */
  686. void account_system_vtime(struct task_struct *curr)
  687. {
  688. unsigned long flags;
  689. s64 delta;
  690. int cpu;
  691. if (!sched_clock_irqtime)
  692. return;
  693. local_irq_save(flags);
  694. cpu = smp_processor_id();
  695. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  696. __this_cpu_add(irq_start_time, delta);
  697. irq_time_write_begin();
  698. /*
  699. * We do not account for softirq time from ksoftirqd here.
  700. * We want to continue accounting softirq time to ksoftirqd thread
  701. * in that case, so as not to confuse scheduler with a special task
  702. * that do not consume any time, but still wants to run.
  703. */
  704. if (hardirq_count())
  705. __this_cpu_add(cpu_hardirq_time, delta);
  706. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  707. __this_cpu_add(cpu_softirq_time, delta);
  708. irq_time_write_end();
  709. local_irq_restore(flags);
  710. }
  711. EXPORT_SYMBOL_GPL(account_system_vtime);
  712. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  713. #ifdef CONFIG_PARAVIRT
  714. static inline u64 steal_ticks(u64 steal)
  715. {
  716. if (unlikely(steal > NSEC_PER_SEC))
  717. return div_u64(steal, TICK_NSEC);
  718. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  719. }
  720. #endif
  721. static void update_rq_clock_task(struct rq *rq, s64 delta)
  722. {
  723. /*
  724. * In theory, the compile should just see 0 here, and optimize out the call
  725. * to sched_rt_avg_update. But I don't trust it...
  726. */
  727. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  728. s64 steal = 0, irq_delta = 0;
  729. #endif
  730. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  731. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  732. /*
  733. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  734. * this case when a previous update_rq_clock() happened inside a
  735. * {soft,}irq region.
  736. *
  737. * When this happens, we stop ->clock_task and only update the
  738. * prev_irq_time stamp to account for the part that fit, so that a next
  739. * update will consume the rest. This ensures ->clock_task is
  740. * monotonic.
  741. *
  742. * It does however cause some slight miss-attribution of {soft,}irq
  743. * time, a more accurate solution would be to update the irq_time using
  744. * the current rq->clock timestamp, except that would require using
  745. * atomic ops.
  746. */
  747. if (irq_delta > delta)
  748. irq_delta = delta;
  749. rq->prev_irq_time += irq_delta;
  750. delta -= irq_delta;
  751. #endif
  752. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  753. if (static_key_false((&paravirt_steal_rq_enabled))) {
  754. u64 st;
  755. steal = paravirt_steal_clock(cpu_of(rq));
  756. steal -= rq->prev_steal_time_rq;
  757. if (unlikely(steal > delta))
  758. steal = delta;
  759. st = steal_ticks(steal);
  760. steal = st * TICK_NSEC;
  761. rq->prev_steal_time_rq += steal;
  762. delta -= steal;
  763. }
  764. #endif
  765. rq->clock_task += delta;
  766. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  767. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  768. sched_rt_avg_update(rq, irq_delta + steal);
  769. #endif
  770. }
  771. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  772. static int irqtime_account_hi_update(void)
  773. {
  774. u64 *cpustat = kcpustat_this_cpu->cpustat;
  775. unsigned long flags;
  776. u64 latest_ns;
  777. int ret = 0;
  778. local_irq_save(flags);
  779. latest_ns = this_cpu_read(cpu_hardirq_time);
  780. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  781. ret = 1;
  782. local_irq_restore(flags);
  783. return ret;
  784. }
  785. static int irqtime_account_si_update(void)
  786. {
  787. u64 *cpustat = kcpustat_this_cpu->cpustat;
  788. unsigned long flags;
  789. u64 latest_ns;
  790. int ret = 0;
  791. local_irq_save(flags);
  792. latest_ns = this_cpu_read(cpu_softirq_time);
  793. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  794. ret = 1;
  795. local_irq_restore(flags);
  796. return ret;
  797. }
  798. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  799. #define sched_clock_irqtime (0)
  800. #endif
  801. void sched_set_stop_task(int cpu, struct task_struct *stop)
  802. {
  803. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  804. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  805. if (stop) {
  806. /*
  807. * Make it appear like a SCHED_FIFO task, its something
  808. * userspace knows about and won't get confused about.
  809. *
  810. * Also, it will make PI more or less work without too
  811. * much confusion -- but then, stop work should not
  812. * rely on PI working anyway.
  813. */
  814. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  815. stop->sched_class = &stop_sched_class;
  816. }
  817. cpu_rq(cpu)->stop = stop;
  818. if (old_stop) {
  819. /*
  820. * Reset it back to a normal scheduling class so that
  821. * it can die in pieces.
  822. */
  823. old_stop->sched_class = &rt_sched_class;
  824. }
  825. }
  826. /*
  827. * __normal_prio - return the priority that is based on the static prio
  828. */
  829. static inline int __normal_prio(struct task_struct *p)
  830. {
  831. return p->static_prio;
  832. }
  833. /*
  834. * Calculate the expected normal priority: i.e. priority
  835. * without taking RT-inheritance into account. Might be
  836. * boosted by interactivity modifiers. Changes upon fork,
  837. * setprio syscalls, and whenever the interactivity
  838. * estimator recalculates.
  839. */
  840. static inline int normal_prio(struct task_struct *p)
  841. {
  842. int prio;
  843. if (task_has_rt_policy(p))
  844. prio = MAX_RT_PRIO-1 - p->rt_priority;
  845. else
  846. prio = __normal_prio(p);
  847. return prio;
  848. }
  849. /*
  850. * Calculate the current priority, i.e. the priority
  851. * taken into account by the scheduler. This value might
  852. * be boosted by RT tasks, or might be boosted by
  853. * interactivity modifiers. Will be RT if the task got
  854. * RT-boosted. If not then it returns p->normal_prio.
  855. */
  856. static int effective_prio(struct task_struct *p)
  857. {
  858. p->normal_prio = normal_prio(p);
  859. /*
  860. * If we are RT tasks or we were boosted to RT priority,
  861. * keep the priority unchanged. Otherwise, update priority
  862. * to the normal priority:
  863. */
  864. if (!rt_prio(p->prio))
  865. return p->normal_prio;
  866. return p->prio;
  867. }
  868. /**
  869. * task_curr - is this task currently executing on a CPU?
  870. * @p: the task in question.
  871. */
  872. inline int task_curr(const struct task_struct *p)
  873. {
  874. return cpu_curr(task_cpu(p)) == p;
  875. }
  876. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  877. const struct sched_class *prev_class,
  878. int oldprio)
  879. {
  880. if (prev_class != p->sched_class) {
  881. if (prev_class->switched_from)
  882. prev_class->switched_from(rq, p);
  883. p->sched_class->switched_to(rq, p);
  884. } else if (oldprio != p->prio)
  885. p->sched_class->prio_changed(rq, p, oldprio);
  886. }
  887. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  888. {
  889. const struct sched_class *class;
  890. if (p->sched_class == rq->curr->sched_class) {
  891. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  892. } else {
  893. for_each_class(class) {
  894. if (class == rq->curr->sched_class)
  895. break;
  896. if (class == p->sched_class) {
  897. resched_task(rq->curr);
  898. break;
  899. }
  900. }
  901. }
  902. /*
  903. * A queue event has occurred, and we're going to schedule. In
  904. * this case, we can save a useless back to back clock update.
  905. */
  906. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  907. rq->skip_clock_update = 1;
  908. }
  909. #ifdef CONFIG_SMP
  910. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  911. {
  912. #ifdef CONFIG_SCHED_DEBUG
  913. /*
  914. * We should never call set_task_cpu() on a blocked task,
  915. * ttwu() will sort out the placement.
  916. */
  917. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  918. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  919. #ifdef CONFIG_LOCKDEP
  920. /*
  921. * The caller should hold either p->pi_lock or rq->lock, when changing
  922. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  923. *
  924. * sched_move_task() holds both and thus holding either pins the cgroup,
  925. * see task_group().
  926. *
  927. * Furthermore, all task_rq users should acquire both locks, see
  928. * task_rq_lock().
  929. */
  930. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  931. lockdep_is_held(&task_rq(p)->lock)));
  932. #endif
  933. #endif
  934. trace_sched_migrate_task(p, new_cpu);
  935. if (task_cpu(p) != new_cpu) {
  936. p->se.nr_migrations++;
  937. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  938. }
  939. __set_task_cpu(p, new_cpu);
  940. }
  941. struct migration_arg {
  942. struct task_struct *task;
  943. int dest_cpu;
  944. };
  945. static int migration_cpu_stop(void *data);
  946. /*
  947. * wait_task_inactive - wait for a thread to unschedule.
  948. *
  949. * If @match_state is nonzero, it's the @p->state value just checked and
  950. * not expected to change. If it changes, i.e. @p might have woken up,
  951. * then return zero. When we succeed in waiting for @p to be off its CPU,
  952. * we return a positive number (its total switch count). If a second call
  953. * a short while later returns the same number, the caller can be sure that
  954. * @p has remained unscheduled the whole time.
  955. *
  956. * The caller must ensure that the task *will* unschedule sometime soon,
  957. * else this function might spin for a *long* time. This function can't
  958. * be called with interrupts off, or it may introduce deadlock with
  959. * smp_call_function() if an IPI is sent by the same process we are
  960. * waiting to become inactive.
  961. */
  962. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  963. {
  964. unsigned long flags;
  965. int running, on_rq;
  966. unsigned long ncsw;
  967. struct rq *rq;
  968. for (;;) {
  969. /*
  970. * We do the initial early heuristics without holding
  971. * any task-queue locks at all. We'll only try to get
  972. * the runqueue lock when things look like they will
  973. * work out!
  974. */
  975. rq = task_rq(p);
  976. /*
  977. * If the task is actively running on another CPU
  978. * still, just relax and busy-wait without holding
  979. * any locks.
  980. *
  981. * NOTE! Since we don't hold any locks, it's not
  982. * even sure that "rq" stays as the right runqueue!
  983. * But we don't care, since "task_running()" will
  984. * return false if the runqueue has changed and p
  985. * is actually now running somewhere else!
  986. */
  987. while (task_running(rq, p)) {
  988. if (match_state && unlikely(p->state != match_state))
  989. return 0;
  990. cpu_relax();
  991. }
  992. /*
  993. * Ok, time to look more closely! We need the rq
  994. * lock now, to be *sure*. If we're wrong, we'll
  995. * just go back and repeat.
  996. */
  997. rq = task_rq_lock(p, &flags);
  998. trace_sched_wait_task(p);
  999. running = task_running(rq, p);
  1000. on_rq = p->on_rq;
  1001. ncsw = 0;
  1002. if (!match_state || p->state == match_state)
  1003. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1004. task_rq_unlock(rq, p, &flags);
  1005. /*
  1006. * If it changed from the expected state, bail out now.
  1007. */
  1008. if (unlikely(!ncsw))
  1009. break;
  1010. /*
  1011. * Was it really running after all now that we
  1012. * checked with the proper locks actually held?
  1013. *
  1014. * Oops. Go back and try again..
  1015. */
  1016. if (unlikely(running)) {
  1017. cpu_relax();
  1018. continue;
  1019. }
  1020. /*
  1021. * It's not enough that it's not actively running,
  1022. * it must be off the runqueue _entirely_, and not
  1023. * preempted!
  1024. *
  1025. * So if it was still runnable (but just not actively
  1026. * running right now), it's preempted, and we should
  1027. * yield - it could be a while.
  1028. */
  1029. if (unlikely(on_rq)) {
  1030. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1031. set_current_state(TASK_UNINTERRUPTIBLE);
  1032. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1033. continue;
  1034. }
  1035. /*
  1036. * Ahh, all good. It wasn't running, and it wasn't
  1037. * runnable, which means that it will never become
  1038. * running in the future either. We're all done!
  1039. */
  1040. break;
  1041. }
  1042. return ncsw;
  1043. }
  1044. /***
  1045. * kick_process - kick a running thread to enter/exit the kernel
  1046. * @p: the to-be-kicked thread
  1047. *
  1048. * Cause a process which is running on another CPU to enter
  1049. * kernel-mode, without any delay. (to get signals handled.)
  1050. *
  1051. * NOTE: this function doesn't have to take the runqueue lock,
  1052. * because all it wants to ensure is that the remote task enters
  1053. * the kernel. If the IPI races and the task has been migrated
  1054. * to another CPU then no harm is done and the purpose has been
  1055. * achieved as well.
  1056. */
  1057. void kick_process(struct task_struct *p)
  1058. {
  1059. int cpu;
  1060. preempt_disable();
  1061. cpu = task_cpu(p);
  1062. if ((cpu != smp_processor_id()) && task_curr(p))
  1063. smp_send_reschedule(cpu);
  1064. preempt_enable();
  1065. }
  1066. EXPORT_SYMBOL_GPL(kick_process);
  1067. #endif /* CONFIG_SMP */
  1068. #ifdef CONFIG_SMP
  1069. /*
  1070. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1071. */
  1072. static int select_fallback_rq(int cpu, struct task_struct *p)
  1073. {
  1074. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1075. enum { cpuset, possible, fail } state = cpuset;
  1076. int dest_cpu;
  1077. /* Look for allowed, online CPU in same node. */
  1078. for_each_cpu(dest_cpu, nodemask) {
  1079. if (!cpu_online(dest_cpu))
  1080. continue;
  1081. if (!cpu_active(dest_cpu))
  1082. continue;
  1083. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1084. return dest_cpu;
  1085. }
  1086. for (;;) {
  1087. /* Any allowed, online CPU? */
  1088. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1089. if (!cpu_online(dest_cpu))
  1090. continue;
  1091. if (!cpu_active(dest_cpu))
  1092. continue;
  1093. goto out;
  1094. }
  1095. switch (state) {
  1096. case cpuset:
  1097. /* No more Mr. Nice Guy. */
  1098. cpuset_cpus_allowed_fallback(p);
  1099. state = possible;
  1100. break;
  1101. case possible:
  1102. do_set_cpus_allowed(p, cpu_possible_mask);
  1103. state = fail;
  1104. break;
  1105. case fail:
  1106. BUG();
  1107. break;
  1108. }
  1109. }
  1110. out:
  1111. if (state != cpuset) {
  1112. /*
  1113. * Don't tell them about moving exiting tasks or
  1114. * kernel threads (both mm NULL), since they never
  1115. * leave kernel.
  1116. */
  1117. if (p->mm && printk_ratelimit()) {
  1118. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1119. task_pid_nr(p), p->comm, cpu);
  1120. }
  1121. }
  1122. return dest_cpu;
  1123. }
  1124. /*
  1125. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1126. */
  1127. static inline
  1128. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1129. {
  1130. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1131. /*
  1132. * In order not to call set_task_cpu() on a blocking task we need
  1133. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1134. * cpu.
  1135. *
  1136. * Since this is common to all placement strategies, this lives here.
  1137. *
  1138. * [ this allows ->select_task() to simply return task_cpu(p) and
  1139. * not worry about this generic constraint ]
  1140. */
  1141. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1142. !cpu_online(cpu)))
  1143. cpu = select_fallback_rq(task_cpu(p), p);
  1144. return cpu;
  1145. }
  1146. static void update_avg(u64 *avg, u64 sample)
  1147. {
  1148. s64 diff = sample - *avg;
  1149. *avg += diff >> 3;
  1150. }
  1151. #endif
  1152. static void
  1153. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1154. {
  1155. #ifdef CONFIG_SCHEDSTATS
  1156. struct rq *rq = this_rq();
  1157. #ifdef CONFIG_SMP
  1158. int this_cpu = smp_processor_id();
  1159. if (cpu == this_cpu) {
  1160. schedstat_inc(rq, ttwu_local);
  1161. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1162. } else {
  1163. struct sched_domain *sd;
  1164. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1165. rcu_read_lock();
  1166. for_each_domain(this_cpu, sd) {
  1167. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1168. schedstat_inc(sd, ttwu_wake_remote);
  1169. break;
  1170. }
  1171. }
  1172. rcu_read_unlock();
  1173. }
  1174. if (wake_flags & WF_MIGRATED)
  1175. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1176. #endif /* CONFIG_SMP */
  1177. schedstat_inc(rq, ttwu_count);
  1178. schedstat_inc(p, se.statistics.nr_wakeups);
  1179. if (wake_flags & WF_SYNC)
  1180. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1181. #endif /* CONFIG_SCHEDSTATS */
  1182. }
  1183. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1184. {
  1185. activate_task(rq, p, en_flags);
  1186. p->on_rq = 1;
  1187. /* if a worker is waking up, notify workqueue */
  1188. if (p->flags & PF_WQ_WORKER)
  1189. wq_worker_waking_up(p, cpu_of(rq));
  1190. }
  1191. /*
  1192. * Mark the task runnable and perform wakeup-preemption.
  1193. */
  1194. static void
  1195. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1196. {
  1197. trace_sched_wakeup(p, true);
  1198. check_preempt_curr(rq, p, wake_flags);
  1199. p->state = TASK_RUNNING;
  1200. #ifdef CONFIG_SMP
  1201. if (p->sched_class->task_woken)
  1202. p->sched_class->task_woken(rq, p);
  1203. if (rq->idle_stamp) {
  1204. u64 delta = rq->clock - rq->idle_stamp;
  1205. u64 max = 2*sysctl_sched_migration_cost;
  1206. if (delta > max)
  1207. rq->avg_idle = max;
  1208. else
  1209. update_avg(&rq->avg_idle, delta);
  1210. rq->idle_stamp = 0;
  1211. }
  1212. #endif
  1213. }
  1214. static void
  1215. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1216. {
  1217. #ifdef CONFIG_SMP
  1218. if (p->sched_contributes_to_load)
  1219. rq->nr_uninterruptible--;
  1220. #endif
  1221. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1222. ttwu_do_wakeup(rq, p, wake_flags);
  1223. }
  1224. /*
  1225. * Called in case the task @p isn't fully descheduled from its runqueue,
  1226. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1227. * since all we need to do is flip p->state to TASK_RUNNING, since
  1228. * the task is still ->on_rq.
  1229. */
  1230. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1231. {
  1232. struct rq *rq;
  1233. int ret = 0;
  1234. rq = __task_rq_lock(p);
  1235. if (p->on_rq) {
  1236. ttwu_do_wakeup(rq, p, wake_flags);
  1237. ret = 1;
  1238. }
  1239. __task_rq_unlock(rq);
  1240. return ret;
  1241. }
  1242. #ifdef CONFIG_SMP
  1243. static void sched_ttwu_pending(void)
  1244. {
  1245. struct rq *rq = this_rq();
  1246. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1247. struct task_struct *p;
  1248. raw_spin_lock(&rq->lock);
  1249. while (llist) {
  1250. p = llist_entry(llist, struct task_struct, wake_entry);
  1251. llist = llist_next(llist);
  1252. ttwu_do_activate(rq, p, 0);
  1253. }
  1254. raw_spin_unlock(&rq->lock);
  1255. }
  1256. void scheduler_ipi(void)
  1257. {
  1258. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1259. return;
  1260. /*
  1261. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1262. * traditionally all their work was done from the interrupt return
  1263. * path. Now that we actually do some work, we need to make sure
  1264. * we do call them.
  1265. *
  1266. * Some archs already do call them, luckily irq_enter/exit nest
  1267. * properly.
  1268. *
  1269. * Arguably we should visit all archs and update all handlers,
  1270. * however a fair share of IPIs are still resched only so this would
  1271. * somewhat pessimize the simple resched case.
  1272. */
  1273. irq_enter();
  1274. sched_ttwu_pending();
  1275. /*
  1276. * Check if someone kicked us for doing the nohz idle load balance.
  1277. */
  1278. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1279. this_rq()->idle_balance = 1;
  1280. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1281. }
  1282. irq_exit();
  1283. }
  1284. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1285. {
  1286. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1287. smp_send_reschedule(cpu);
  1288. }
  1289. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1290. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1291. {
  1292. struct rq *rq;
  1293. int ret = 0;
  1294. rq = __task_rq_lock(p);
  1295. if (p->on_cpu) {
  1296. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1297. ttwu_do_wakeup(rq, p, wake_flags);
  1298. ret = 1;
  1299. }
  1300. __task_rq_unlock(rq);
  1301. return ret;
  1302. }
  1303. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1304. bool cpus_share_cache(int this_cpu, int that_cpu)
  1305. {
  1306. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1307. }
  1308. #endif /* CONFIG_SMP */
  1309. static void ttwu_queue(struct task_struct *p, int cpu)
  1310. {
  1311. struct rq *rq = cpu_rq(cpu);
  1312. #if defined(CONFIG_SMP)
  1313. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1314. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1315. ttwu_queue_remote(p, cpu);
  1316. return;
  1317. }
  1318. #endif
  1319. raw_spin_lock(&rq->lock);
  1320. ttwu_do_activate(rq, p, 0);
  1321. raw_spin_unlock(&rq->lock);
  1322. }
  1323. /**
  1324. * try_to_wake_up - wake up a thread
  1325. * @p: the thread to be awakened
  1326. * @state: the mask of task states that can be woken
  1327. * @wake_flags: wake modifier flags (WF_*)
  1328. *
  1329. * Put it on the run-queue if it's not already there. The "current"
  1330. * thread is always on the run-queue (except when the actual
  1331. * re-schedule is in progress), and as such you're allowed to do
  1332. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1333. * runnable without the overhead of this.
  1334. *
  1335. * Returns %true if @p was woken up, %false if it was already running
  1336. * or @state didn't match @p's state.
  1337. */
  1338. static int
  1339. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1340. {
  1341. unsigned long flags;
  1342. int cpu, success = 0;
  1343. smp_wmb();
  1344. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1345. if (!(p->state & state))
  1346. goto out;
  1347. success = 1; /* we're going to change ->state */
  1348. cpu = task_cpu(p);
  1349. if (p->on_rq && ttwu_remote(p, wake_flags))
  1350. goto stat;
  1351. #ifdef CONFIG_SMP
  1352. /*
  1353. * If the owning (remote) cpu is still in the middle of schedule() with
  1354. * this task as prev, wait until its done referencing the task.
  1355. */
  1356. while (p->on_cpu) {
  1357. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1358. /*
  1359. * In case the architecture enables interrupts in
  1360. * context_switch(), we cannot busy wait, since that
  1361. * would lead to deadlocks when an interrupt hits and
  1362. * tries to wake up @prev. So bail and do a complete
  1363. * remote wakeup.
  1364. */
  1365. if (ttwu_activate_remote(p, wake_flags))
  1366. goto stat;
  1367. #else
  1368. cpu_relax();
  1369. #endif
  1370. }
  1371. /*
  1372. * Pairs with the smp_wmb() in finish_lock_switch().
  1373. */
  1374. smp_rmb();
  1375. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1376. p->state = TASK_WAKING;
  1377. if (p->sched_class->task_waking)
  1378. p->sched_class->task_waking(p);
  1379. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1380. if (task_cpu(p) != cpu) {
  1381. wake_flags |= WF_MIGRATED;
  1382. set_task_cpu(p, cpu);
  1383. }
  1384. #endif /* CONFIG_SMP */
  1385. ttwu_queue(p, cpu);
  1386. stat:
  1387. ttwu_stat(p, cpu, wake_flags);
  1388. out:
  1389. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1390. return success;
  1391. }
  1392. /**
  1393. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1394. * @p: the thread to be awakened
  1395. *
  1396. * Put @p on the run-queue if it's not already there. The caller must
  1397. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1398. * the current task.
  1399. */
  1400. static void try_to_wake_up_local(struct task_struct *p)
  1401. {
  1402. struct rq *rq = task_rq(p);
  1403. BUG_ON(rq != this_rq());
  1404. BUG_ON(p == current);
  1405. lockdep_assert_held(&rq->lock);
  1406. if (!raw_spin_trylock(&p->pi_lock)) {
  1407. raw_spin_unlock(&rq->lock);
  1408. raw_spin_lock(&p->pi_lock);
  1409. raw_spin_lock(&rq->lock);
  1410. }
  1411. if (!(p->state & TASK_NORMAL))
  1412. goto out;
  1413. if (!p->on_rq)
  1414. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1415. ttwu_do_wakeup(rq, p, 0);
  1416. ttwu_stat(p, smp_processor_id(), 0);
  1417. out:
  1418. raw_spin_unlock(&p->pi_lock);
  1419. }
  1420. /**
  1421. * wake_up_process - Wake up a specific process
  1422. * @p: The process to be woken up.
  1423. *
  1424. * Attempt to wake up the nominated process and move it to the set of runnable
  1425. * processes. Returns 1 if the process was woken up, 0 if it was already
  1426. * running.
  1427. *
  1428. * It may be assumed that this function implies a write memory barrier before
  1429. * changing the task state if and only if any tasks are woken up.
  1430. */
  1431. int wake_up_process(struct task_struct *p)
  1432. {
  1433. return try_to_wake_up(p, TASK_ALL, 0);
  1434. }
  1435. EXPORT_SYMBOL(wake_up_process);
  1436. int wake_up_state(struct task_struct *p, unsigned int state)
  1437. {
  1438. return try_to_wake_up(p, state, 0);
  1439. }
  1440. /*
  1441. * Perform scheduler related setup for a newly forked process p.
  1442. * p is forked by current.
  1443. *
  1444. * __sched_fork() is basic setup used by init_idle() too:
  1445. */
  1446. static void __sched_fork(struct task_struct *p)
  1447. {
  1448. p->on_rq = 0;
  1449. p->se.on_rq = 0;
  1450. p->se.exec_start = 0;
  1451. p->se.sum_exec_runtime = 0;
  1452. p->se.prev_sum_exec_runtime = 0;
  1453. p->se.nr_migrations = 0;
  1454. p->se.vruntime = 0;
  1455. INIT_LIST_HEAD(&p->se.group_node);
  1456. #ifdef CONFIG_SCHEDSTATS
  1457. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1458. #endif
  1459. INIT_LIST_HEAD(&p->rt.run_list);
  1460. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1461. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1462. #endif
  1463. }
  1464. /*
  1465. * fork()/clone()-time setup:
  1466. */
  1467. void sched_fork(struct task_struct *p)
  1468. {
  1469. unsigned long flags;
  1470. int cpu = get_cpu();
  1471. __sched_fork(p);
  1472. /*
  1473. * We mark the process as running here. This guarantees that
  1474. * nobody will actually run it, and a signal or other external
  1475. * event cannot wake it up and insert it on the runqueue either.
  1476. */
  1477. p->state = TASK_RUNNING;
  1478. /*
  1479. * Make sure we do not leak PI boosting priority to the child.
  1480. */
  1481. p->prio = current->normal_prio;
  1482. /*
  1483. * Revert to default priority/policy on fork if requested.
  1484. */
  1485. if (unlikely(p->sched_reset_on_fork)) {
  1486. if (task_has_rt_policy(p)) {
  1487. p->policy = SCHED_NORMAL;
  1488. p->static_prio = NICE_TO_PRIO(0);
  1489. p->rt_priority = 0;
  1490. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1491. p->static_prio = NICE_TO_PRIO(0);
  1492. p->prio = p->normal_prio = __normal_prio(p);
  1493. set_load_weight(p);
  1494. /*
  1495. * We don't need the reset flag anymore after the fork. It has
  1496. * fulfilled its duty:
  1497. */
  1498. p->sched_reset_on_fork = 0;
  1499. }
  1500. if (!rt_prio(p->prio))
  1501. p->sched_class = &fair_sched_class;
  1502. if (p->sched_class->task_fork)
  1503. p->sched_class->task_fork(p);
  1504. /*
  1505. * The child is not yet in the pid-hash so no cgroup attach races,
  1506. * and the cgroup is pinned to this child due to cgroup_fork()
  1507. * is ran before sched_fork().
  1508. *
  1509. * Silence PROVE_RCU.
  1510. */
  1511. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1512. set_task_cpu(p, cpu);
  1513. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1514. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1515. if (likely(sched_info_on()))
  1516. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1517. #endif
  1518. #if defined(CONFIG_SMP)
  1519. p->on_cpu = 0;
  1520. #endif
  1521. #ifdef CONFIG_PREEMPT_COUNT
  1522. /* Want to start with kernel preemption disabled. */
  1523. task_thread_info(p)->preempt_count = 1;
  1524. #endif
  1525. #ifdef CONFIG_SMP
  1526. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1527. #endif
  1528. put_cpu();
  1529. }
  1530. /*
  1531. * wake_up_new_task - wake up a newly created task for the first time.
  1532. *
  1533. * This function will do some initial scheduler statistics housekeeping
  1534. * that must be done for every newly created context, then puts the task
  1535. * on the runqueue and wakes it.
  1536. */
  1537. void wake_up_new_task(struct task_struct *p)
  1538. {
  1539. unsigned long flags;
  1540. struct rq *rq;
  1541. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1542. #ifdef CONFIG_SMP
  1543. /*
  1544. * Fork balancing, do it here and not earlier because:
  1545. * - cpus_allowed can change in the fork path
  1546. * - any previously selected cpu might disappear through hotplug
  1547. */
  1548. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1549. #endif
  1550. rq = __task_rq_lock(p);
  1551. activate_task(rq, p, 0);
  1552. p->on_rq = 1;
  1553. trace_sched_wakeup_new(p, true);
  1554. check_preempt_curr(rq, p, WF_FORK);
  1555. #ifdef CONFIG_SMP
  1556. if (p->sched_class->task_woken)
  1557. p->sched_class->task_woken(rq, p);
  1558. #endif
  1559. task_rq_unlock(rq, p, &flags);
  1560. }
  1561. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1562. /**
  1563. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1564. * @notifier: notifier struct to register
  1565. */
  1566. void preempt_notifier_register(struct preempt_notifier *notifier)
  1567. {
  1568. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1569. }
  1570. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1571. /**
  1572. * preempt_notifier_unregister - no longer interested in preemption notifications
  1573. * @notifier: notifier struct to unregister
  1574. *
  1575. * This is safe to call from within a preemption notifier.
  1576. */
  1577. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1578. {
  1579. hlist_del(&notifier->link);
  1580. }
  1581. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1582. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1583. {
  1584. struct preempt_notifier *notifier;
  1585. struct hlist_node *node;
  1586. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1587. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1588. }
  1589. static void
  1590. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1591. struct task_struct *next)
  1592. {
  1593. struct preempt_notifier *notifier;
  1594. struct hlist_node *node;
  1595. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1596. notifier->ops->sched_out(notifier, next);
  1597. }
  1598. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1599. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1600. {
  1601. }
  1602. static void
  1603. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1604. struct task_struct *next)
  1605. {
  1606. }
  1607. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1608. /**
  1609. * prepare_task_switch - prepare to switch tasks
  1610. * @rq: the runqueue preparing to switch
  1611. * @prev: the current task that is being switched out
  1612. * @next: the task we are going to switch to.
  1613. *
  1614. * This is called with the rq lock held and interrupts off. It must
  1615. * be paired with a subsequent finish_task_switch after the context
  1616. * switch.
  1617. *
  1618. * prepare_task_switch sets up locking and calls architecture specific
  1619. * hooks.
  1620. */
  1621. static inline void
  1622. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1623. struct task_struct *next)
  1624. {
  1625. trace_sched_switch(prev, next);
  1626. sched_info_switch(prev, next);
  1627. perf_event_task_sched_out(prev, next);
  1628. fire_sched_out_preempt_notifiers(prev, next);
  1629. prepare_lock_switch(rq, next);
  1630. prepare_arch_switch(next);
  1631. }
  1632. /**
  1633. * finish_task_switch - clean up after a task-switch
  1634. * @rq: runqueue associated with task-switch
  1635. * @prev: the thread we just switched away from.
  1636. *
  1637. * finish_task_switch must be called after the context switch, paired
  1638. * with a prepare_task_switch call before the context switch.
  1639. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1640. * and do any other architecture-specific cleanup actions.
  1641. *
  1642. * Note that we may have delayed dropping an mm in context_switch(). If
  1643. * so, we finish that here outside of the runqueue lock. (Doing it
  1644. * with the lock held can cause deadlocks; see schedule() for
  1645. * details.)
  1646. */
  1647. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1648. __releases(rq->lock)
  1649. {
  1650. struct mm_struct *mm = rq->prev_mm;
  1651. long prev_state;
  1652. rq->prev_mm = NULL;
  1653. /*
  1654. * A task struct has one reference for the use as "current".
  1655. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1656. * schedule one last time. The schedule call will never return, and
  1657. * the scheduled task must drop that reference.
  1658. * The test for TASK_DEAD must occur while the runqueue locks are
  1659. * still held, otherwise prev could be scheduled on another cpu, die
  1660. * there before we look at prev->state, and then the reference would
  1661. * be dropped twice.
  1662. * Manfred Spraul <manfred@colorfullife.com>
  1663. */
  1664. prev_state = prev->state;
  1665. finish_arch_switch(prev);
  1666. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1667. local_irq_disable();
  1668. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1669. perf_event_task_sched_in(prev, current);
  1670. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1671. local_irq_enable();
  1672. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1673. finish_lock_switch(rq, prev);
  1674. finish_arch_post_lock_switch();
  1675. fire_sched_in_preempt_notifiers(current);
  1676. if (mm)
  1677. mmdrop(mm);
  1678. if (unlikely(prev_state == TASK_DEAD)) {
  1679. /*
  1680. * Remove function-return probe instances associated with this
  1681. * task and put them back on the free list.
  1682. */
  1683. kprobe_flush_task(prev);
  1684. put_task_struct(prev);
  1685. }
  1686. }
  1687. #ifdef CONFIG_SMP
  1688. /* assumes rq->lock is held */
  1689. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1690. {
  1691. if (prev->sched_class->pre_schedule)
  1692. prev->sched_class->pre_schedule(rq, prev);
  1693. }
  1694. /* rq->lock is NOT held, but preemption is disabled */
  1695. static inline void post_schedule(struct rq *rq)
  1696. {
  1697. if (rq->post_schedule) {
  1698. unsigned long flags;
  1699. raw_spin_lock_irqsave(&rq->lock, flags);
  1700. if (rq->curr->sched_class->post_schedule)
  1701. rq->curr->sched_class->post_schedule(rq);
  1702. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1703. rq->post_schedule = 0;
  1704. }
  1705. }
  1706. #else
  1707. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1708. {
  1709. }
  1710. static inline void post_schedule(struct rq *rq)
  1711. {
  1712. }
  1713. #endif
  1714. /**
  1715. * schedule_tail - first thing a freshly forked thread must call.
  1716. * @prev: the thread we just switched away from.
  1717. */
  1718. asmlinkage void schedule_tail(struct task_struct *prev)
  1719. __releases(rq->lock)
  1720. {
  1721. struct rq *rq = this_rq();
  1722. finish_task_switch(rq, prev);
  1723. /*
  1724. * FIXME: do we need to worry about rq being invalidated by the
  1725. * task_switch?
  1726. */
  1727. post_schedule(rq);
  1728. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1729. /* In this case, finish_task_switch does not reenable preemption */
  1730. preempt_enable();
  1731. #endif
  1732. if (current->set_child_tid)
  1733. put_user(task_pid_vnr(current), current->set_child_tid);
  1734. }
  1735. /*
  1736. * context_switch - switch to the new MM and the new
  1737. * thread's register state.
  1738. */
  1739. static inline void
  1740. context_switch(struct rq *rq, struct task_struct *prev,
  1741. struct task_struct *next)
  1742. {
  1743. struct mm_struct *mm, *oldmm;
  1744. prepare_task_switch(rq, prev, next);
  1745. mm = next->mm;
  1746. oldmm = prev->active_mm;
  1747. /*
  1748. * For paravirt, this is coupled with an exit in switch_to to
  1749. * combine the page table reload and the switch backend into
  1750. * one hypercall.
  1751. */
  1752. arch_start_context_switch(prev);
  1753. if (!mm) {
  1754. next->active_mm = oldmm;
  1755. atomic_inc(&oldmm->mm_count);
  1756. enter_lazy_tlb(oldmm, next);
  1757. } else
  1758. switch_mm(oldmm, mm, next);
  1759. if (!prev->mm) {
  1760. prev->active_mm = NULL;
  1761. rq->prev_mm = oldmm;
  1762. }
  1763. /*
  1764. * Since the runqueue lock will be released by the next
  1765. * task (which is an invalid locking op but in the case
  1766. * of the scheduler it's an obvious special-case), so we
  1767. * do an early lockdep release here:
  1768. */
  1769. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1770. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1771. #endif
  1772. /* Here we just switch the register state and the stack. */
  1773. switch_to(prev, next, prev);
  1774. barrier();
  1775. /*
  1776. * this_rq must be evaluated again because prev may have moved
  1777. * CPUs since it called schedule(), thus the 'rq' on its stack
  1778. * frame will be invalid.
  1779. */
  1780. finish_task_switch(this_rq(), prev);
  1781. }
  1782. /*
  1783. * nr_running, nr_uninterruptible and nr_context_switches:
  1784. *
  1785. * externally visible scheduler statistics: current number of runnable
  1786. * threads, current number of uninterruptible-sleeping threads, total
  1787. * number of context switches performed since bootup.
  1788. */
  1789. unsigned long nr_running(void)
  1790. {
  1791. unsigned long i, sum = 0;
  1792. for_each_online_cpu(i)
  1793. sum += cpu_rq(i)->nr_running;
  1794. return sum;
  1795. }
  1796. unsigned long nr_uninterruptible(void)
  1797. {
  1798. unsigned long i, sum = 0;
  1799. for_each_possible_cpu(i)
  1800. sum += cpu_rq(i)->nr_uninterruptible;
  1801. /*
  1802. * Since we read the counters lockless, it might be slightly
  1803. * inaccurate. Do not allow it to go below zero though:
  1804. */
  1805. if (unlikely((long)sum < 0))
  1806. sum = 0;
  1807. return sum;
  1808. }
  1809. unsigned long long nr_context_switches(void)
  1810. {
  1811. int i;
  1812. unsigned long long sum = 0;
  1813. for_each_possible_cpu(i)
  1814. sum += cpu_rq(i)->nr_switches;
  1815. return sum;
  1816. }
  1817. unsigned long nr_iowait(void)
  1818. {
  1819. unsigned long i, sum = 0;
  1820. for_each_possible_cpu(i)
  1821. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1822. return sum;
  1823. }
  1824. unsigned long nr_iowait_cpu(int cpu)
  1825. {
  1826. struct rq *this = cpu_rq(cpu);
  1827. return atomic_read(&this->nr_iowait);
  1828. }
  1829. unsigned long this_cpu_load(void)
  1830. {
  1831. struct rq *this = this_rq();
  1832. return this->cpu_load[0];
  1833. }
  1834. /*
  1835. * Global load-average calculations
  1836. *
  1837. * We take a distributed and async approach to calculating the global load-avg
  1838. * in order to minimize overhead.
  1839. *
  1840. * The global load average is an exponentially decaying average of nr_running +
  1841. * nr_uninterruptible.
  1842. *
  1843. * Once every LOAD_FREQ:
  1844. *
  1845. * nr_active = 0;
  1846. * for_each_possible_cpu(cpu)
  1847. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1848. *
  1849. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1850. *
  1851. * Due to a number of reasons the above turns in the mess below:
  1852. *
  1853. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1854. * serious number of cpus, therefore we need to take a distributed approach
  1855. * to calculating nr_active.
  1856. *
  1857. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1858. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1859. *
  1860. * So assuming nr_active := 0 when we start out -- true per definition, we
  1861. * can simply take per-cpu deltas and fold those into a global accumulate
  1862. * to obtain the same result. See calc_load_fold_active().
  1863. *
  1864. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1865. * across the machine, we assume 10 ticks is sufficient time for every
  1866. * cpu to have completed this task.
  1867. *
  1868. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1869. * again, being late doesn't loose the delta, just wrecks the sample.
  1870. *
  1871. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1872. * this would add another cross-cpu cacheline miss and atomic operation
  1873. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1874. * when it went into uninterruptible state and decrement on whatever cpu
  1875. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1876. * all cpus yields the correct result.
  1877. *
  1878. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1879. */
  1880. /* Variables and functions for calc_load */
  1881. static atomic_long_t calc_load_tasks;
  1882. static unsigned long calc_load_update;
  1883. unsigned long avenrun[3];
  1884. EXPORT_SYMBOL(avenrun); /* should be removed */
  1885. /**
  1886. * get_avenrun - get the load average array
  1887. * @loads: pointer to dest load array
  1888. * @offset: offset to add
  1889. * @shift: shift count to shift the result left
  1890. *
  1891. * These values are estimates at best, so no need for locking.
  1892. */
  1893. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1894. {
  1895. loads[0] = (avenrun[0] + offset) << shift;
  1896. loads[1] = (avenrun[1] + offset) << shift;
  1897. loads[2] = (avenrun[2] + offset) << shift;
  1898. }
  1899. static long calc_load_fold_active(struct rq *this_rq)
  1900. {
  1901. long nr_active, delta = 0;
  1902. nr_active = this_rq->nr_running;
  1903. nr_active += (long) this_rq->nr_uninterruptible;
  1904. if (nr_active != this_rq->calc_load_active) {
  1905. delta = nr_active - this_rq->calc_load_active;
  1906. this_rq->calc_load_active = nr_active;
  1907. }
  1908. return delta;
  1909. }
  1910. /*
  1911. * a1 = a0 * e + a * (1 - e)
  1912. */
  1913. static unsigned long
  1914. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1915. {
  1916. load *= exp;
  1917. load += active * (FIXED_1 - exp);
  1918. load += 1UL << (FSHIFT - 1);
  1919. return load >> FSHIFT;
  1920. }
  1921. #ifdef CONFIG_NO_HZ
  1922. /*
  1923. * Handle NO_HZ for the global load-average.
  1924. *
  1925. * Since the above described distributed algorithm to compute the global
  1926. * load-average relies on per-cpu sampling from the tick, it is affected by
  1927. * NO_HZ.
  1928. *
  1929. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1930. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1931. * when we read the global state.
  1932. *
  1933. * Obviously reality has to ruin such a delightfully simple scheme:
  1934. *
  1935. * - When we go NO_HZ idle during the window, we can negate our sample
  1936. * contribution, causing under-accounting.
  1937. *
  1938. * We avoid this by keeping two idle-delta counters and flipping them
  1939. * when the window starts, thus separating old and new NO_HZ load.
  1940. *
  1941. * The only trick is the slight shift in index flip for read vs write.
  1942. *
  1943. * 0s 5s 10s 15s
  1944. * +10 +10 +10 +10
  1945. * |-|-----------|-|-----------|-|-----------|-|
  1946. * r:0 0 1 1 0 0 1 1 0
  1947. * w:0 1 1 0 0 1 1 0 0
  1948. *
  1949. * This ensures we'll fold the old idle contribution in this window while
  1950. * accumlating the new one.
  1951. *
  1952. * - When we wake up from NO_HZ idle during the window, we push up our
  1953. * contribution, since we effectively move our sample point to a known
  1954. * busy state.
  1955. *
  1956. * This is solved by pushing the window forward, and thus skipping the
  1957. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1958. * was in effect at the time the window opened). This also solves the issue
  1959. * of having to deal with a cpu having been in NOHZ idle for multiple
  1960. * LOAD_FREQ intervals.
  1961. *
  1962. * When making the ILB scale, we should try to pull this in as well.
  1963. */
  1964. static atomic_long_t calc_load_idle[2];
  1965. static int calc_load_idx;
  1966. static inline int calc_load_write_idx(void)
  1967. {
  1968. int idx = calc_load_idx;
  1969. /*
  1970. * See calc_global_nohz(), if we observe the new index, we also
  1971. * need to observe the new update time.
  1972. */
  1973. smp_rmb();
  1974. /*
  1975. * If the folding window started, make sure we start writing in the
  1976. * next idle-delta.
  1977. */
  1978. if (!time_before(jiffies, calc_load_update))
  1979. idx++;
  1980. return idx & 1;
  1981. }
  1982. static inline int calc_load_read_idx(void)
  1983. {
  1984. return calc_load_idx & 1;
  1985. }
  1986. void calc_load_enter_idle(void)
  1987. {
  1988. struct rq *this_rq = this_rq();
  1989. long delta;
  1990. /*
  1991. * We're going into NOHZ mode, if there's any pending delta, fold it
  1992. * into the pending idle delta.
  1993. */
  1994. delta = calc_load_fold_active(this_rq);
  1995. if (delta) {
  1996. int idx = calc_load_write_idx();
  1997. atomic_long_add(delta, &calc_load_idle[idx]);
  1998. }
  1999. }
  2000. void calc_load_exit_idle(void)
  2001. {
  2002. struct rq *this_rq = this_rq();
  2003. /*
  2004. * If we're still before the sample window, we're done.
  2005. */
  2006. if (time_before(jiffies, this_rq->calc_load_update))
  2007. return;
  2008. /*
  2009. * We woke inside or after the sample window, this means we're already
  2010. * accounted through the nohz accounting, so skip the entire deal and
  2011. * sync up for the next window.
  2012. */
  2013. this_rq->calc_load_update = calc_load_update;
  2014. if (time_before(jiffies, this_rq->calc_load_update + 10))
  2015. this_rq->calc_load_update += LOAD_FREQ;
  2016. }
  2017. static long calc_load_fold_idle(void)
  2018. {
  2019. int idx = calc_load_read_idx();
  2020. long delta = 0;
  2021. if (atomic_long_read(&calc_load_idle[idx]))
  2022. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  2023. return delta;
  2024. }
  2025. /**
  2026. * fixed_power_int - compute: x^n, in O(log n) time
  2027. *
  2028. * @x: base of the power
  2029. * @frac_bits: fractional bits of @x
  2030. * @n: power to raise @x to.
  2031. *
  2032. * By exploiting the relation between the definition of the natural power
  2033. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2034. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2035. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2036. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2037. * of course trivially computable in O(log_2 n), the length of our binary
  2038. * vector.
  2039. */
  2040. static unsigned long
  2041. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2042. {
  2043. unsigned long result = 1UL << frac_bits;
  2044. if (n) for (;;) {
  2045. if (n & 1) {
  2046. result *= x;
  2047. result += 1UL << (frac_bits - 1);
  2048. result >>= frac_bits;
  2049. }
  2050. n >>= 1;
  2051. if (!n)
  2052. break;
  2053. x *= x;
  2054. x += 1UL << (frac_bits - 1);
  2055. x >>= frac_bits;
  2056. }
  2057. return result;
  2058. }
  2059. /*
  2060. * a1 = a0 * e + a * (1 - e)
  2061. *
  2062. * a2 = a1 * e + a * (1 - e)
  2063. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2064. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2065. *
  2066. * a3 = a2 * e + a * (1 - e)
  2067. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2068. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2069. *
  2070. * ...
  2071. *
  2072. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2073. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2074. * = a0 * e^n + a * (1 - e^n)
  2075. *
  2076. * [1] application of the geometric series:
  2077. *
  2078. * n 1 - x^(n+1)
  2079. * S_n := \Sum x^i = -------------
  2080. * i=0 1 - x
  2081. */
  2082. static unsigned long
  2083. calc_load_n(unsigned long load, unsigned long exp,
  2084. unsigned long active, unsigned int n)
  2085. {
  2086. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2087. }
  2088. /*
  2089. * NO_HZ can leave us missing all per-cpu ticks calling
  2090. * calc_load_account_active(), but since an idle CPU folds its delta into
  2091. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2092. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2093. *
  2094. * Once we've updated the global active value, we need to apply the exponential
  2095. * weights adjusted to the number of cycles missed.
  2096. */
  2097. static void calc_global_nohz(void)
  2098. {
  2099. long delta, active, n;
  2100. if (!time_before(jiffies, calc_load_update + 10)) {
  2101. /*
  2102. * Catch-up, fold however many we are behind still
  2103. */
  2104. delta = jiffies - calc_load_update - 10;
  2105. n = 1 + (delta / LOAD_FREQ);
  2106. active = atomic_long_read(&calc_load_tasks);
  2107. active = active > 0 ? active * FIXED_1 : 0;
  2108. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2109. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2110. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2111. calc_load_update += n * LOAD_FREQ;
  2112. }
  2113. /*
  2114. * Flip the idle index...
  2115. *
  2116. * Make sure we first write the new time then flip the index, so that
  2117. * calc_load_write_idx() will see the new time when it reads the new
  2118. * index, this avoids a double flip messing things up.
  2119. */
  2120. smp_wmb();
  2121. calc_load_idx++;
  2122. }
  2123. #else /* !CONFIG_NO_HZ */
  2124. static inline long calc_load_fold_idle(void) { return 0; }
  2125. static inline void calc_global_nohz(void) { }
  2126. #endif /* CONFIG_NO_HZ */
  2127. /*
  2128. * calc_load - update the avenrun load estimates 10 ticks after the
  2129. * CPUs have updated calc_load_tasks.
  2130. */
  2131. void calc_global_load(unsigned long ticks)
  2132. {
  2133. long active, delta;
  2134. if (time_before(jiffies, calc_load_update + 10))
  2135. return;
  2136. /*
  2137. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  2138. */
  2139. delta = calc_load_fold_idle();
  2140. if (delta)
  2141. atomic_long_add(delta, &calc_load_tasks);
  2142. active = atomic_long_read(&calc_load_tasks);
  2143. active = active > 0 ? active * FIXED_1 : 0;
  2144. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2145. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2146. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2147. calc_load_update += LOAD_FREQ;
  2148. /*
  2149. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2150. */
  2151. calc_global_nohz();
  2152. }
  2153. /*
  2154. * Called from update_cpu_load() to periodically update this CPU's
  2155. * active count.
  2156. */
  2157. static void calc_load_account_active(struct rq *this_rq)
  2158. {
  2159. long delta;
  2160. if (time_before(jiffies, this_rq->calc_load_update))
  2161. return;
  2162. delta = calc_load_fold_active(this_rq);
  2163. if (delta)
  2164. atomic_long_add(delta, &calc_load_tasks);
  2165. this_rq->calc_load_update += LOAD_FREQ;
  2166. }
  2167. /*
  2168. * End of global load-average stuff
  2169. */
  2170. /*
  2171. * The exact cpuload at various idx values, calculated at every tick would be
  2172. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2173. *
  2174. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2175. * on nth tick when cpu may be busy, then we have:
  2176. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2177. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2178. *
  2179. * decay_load_missed() below does efficient calculation of
  2180. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2181. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2182. *
  2183. * The calculation is approximated on a 128 point scale.
  2184. * degrade_zero_ticks is the number of ticks after which load at any
  2185. * particular idx is approximated to be zero.
  2186. * degrade_factor is a precomputed table, a row for each load idx.
  2187. * Each column corresponds to degradation factor for a power of two ticks,
  2188. * based on 128 point scale.
  2189. * Example:
  2190. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2191. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2192. *
  2193. * With this power of 2 load factors, we can degrade the load n times
  2194. * by looking at 1 bits in n and doing as many mult/shift instead of
  2195. * n mult/shifts needed by the exact degradation.
  2196. */
  2197. #define DEGRADE_SHIFT 7
  2198. static const unsigned char
  2199. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2200. static const unsigned char
  2201. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2202. {0, 0, 0, 0, 0, 0, 0, 0},
  2203. {64, 32, 8, 0, 0, 0, 0, 0},
  2204. {96, 72, 40, 12, 1, 0, 0},
  2205. {112, 98, 75, 43, 15, 1, 0},
  2206. {120, 112, 98, 76, 45, 16, 2} };
  2207. /*
  2208. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2209. * would be when CPU is idle and so we just decay the old load without
  2210. * adding any new load.
  2211. */
  2212. static unsigned long
  2213. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2214. {
  2215. int j = 0;
  2216. if (!missed_updates)
  2217. return load;
  2218. if (missed_updates >= degrade_zero_ticks[idx])
  2219. return 0;
  2220. if (idx == 1)
  2221. return load >> missed_updates;
  2222. while (missed_updates) {
  2223. if (missed_updates % 2)
  2224. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2225. missed_updates >>= 1;
  2226. j++;
  2227. }
  2228. return load;
  2229. }
  2230. /*
  2231. * Update rq->cpu_load[] statistics. This function is usually called every
  2232. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2233. * every tick. We fix it up based on jiffies.
  2234. */
  2235. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2236. unsigned long pending_updates)
  2237. {
  2238. int i, scale;
  2239. this_rq->nr_load_updates++;
  2240. /* Update our load: */
  2241. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2242. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2243. unsigned long old_load, new_load;
  2244. /* scale is effectively 1 << i now, and >> i divides by scale */
  2245. old_load = this_rq->cpu_load[i];
  2246. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2247. new_load = this_load;
  2248. /*
  2249. * Round up the averaging division if load is increasing. This
  2250. * prevents us from getting stuck on 9 if the load is 10, for
  2251. * example.
  2252. */
  2253. if (new_load > old_load)
  2254. new_load += scale - 1;
  2255. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2256. }
  2257. sched_avg_update(this_rq);
  2258. }
  2259. #ifdef CONFIG_NO_HZ
  2260. /*
  2261. * There is no sane way to deal with nohz on smp when using jiffies because the
  2262. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2263. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2264. *
  2265. * Therefore we cannot use the delta approach from the regular tick since that
  2266. * would seriously skew the load calculation. However we'll make do for those
  2267. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2268. * (tick_nohz_idle_exit).
  2269. *
  2270. * This means we might still be one tick off for nohz periods.
  2271. */
  2272. /*
  2273. * Called from nohz_idle_balance() to update the load ratings before doing the
  2274. * idle balance.
  2275. */
  2276. void update_idle_cpu_load(struct rq *this_rq)
  2277. {
  2278. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2279. unsigned long load = this_rq->load.weight;
  2280. unsigned long pending_updates;
  2281. /*
  2282. * bail if there's load or we're actually up-to-date.
  2283. */
  2284. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2285. return;
  2286. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2287. this_rq->last_load_update_tick = curr_jiffies;
  2288. __update_cpu_load(this_rq, load, pending_updates);
  2289. }
  2290. /*
  2291. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2292. */
  2293. void update_cpu_load_nohz(void)
  2294. {
  2295. struct rq *this_rq = this_rq();
  2296. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2297. unsigned long pending_updates;
  2298. if (curr_jiffies == this_rq->last_load_update_tick)
  2299. return;
  2300. raw_spin_lock(&this_rq->lock);
  2301. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2302. if (pending_updates) {
  2303. this_rq->last_load_update_tick = curr_jiffies;
  2304. /*
  2305. * We were idle, this means load 0, the current load might be
  2306. * !0 due to remote wakeups and the sort.
  2307. */
  2308. __update_cpu_load(this_rq, 0, pending_updates);
  2309. }
  2310. raw_spin_unlock(&this_rq->lock);
  2311. }
  2312. #endif /* CONFIG_NO_HZ */
  2313. /*
  2314. * Called from scheduler_tick()
  2315. */
  2316. static void update_cpu_load_active(struct rq *this_rq)
  2317. {
  2318. /*
  2319. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2320. */
  2321. this_rq->last_load_update_tick = jiffies;
  2322. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2323. calc_load_account_active(this_rq);
  2324. }
  2325. #ifdef CONFIG_SMP
  2326. /*
  2327. * sched_exec - execve() is a valuable balancing opportunity, because at
  2328. * this point the task has the smallest effective memory and cache footprint.
  2329. */
  2330. void sched_exec(void)
  2331. {
  2332. struct task_struct *p = current;
  2333. unsigned long flags;
  2334. int dest_cpu;
  2335. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2336. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2337. if (dest_cpu == smp_processor_id())
  2338. goto unlock;
  2339. if (likely(cpu_active(dest_cpu))) {
  2340. struct migration_arg arg = { p, dest_cpu };
  2341. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2342. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2343. return;
  2344. }
  2345. unlock:
  2346. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2347. }
  2348. #endif
  2349. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2350. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2351. EXPORT_PER_CPU_SYMBOL(kstat);
  2352. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2353. /*
  2354. * Return any ns on the sched_clock that have not yet been accounted in
  2355. * @p in case that task is currently running.
  2356. *
  2357. * Called with task_rq_lock() held on @rq.
  2358. */
  2359. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2360. {
  2361. u64 ns = 0;
  2362. if (task_current(rq, p)) {
  2363. update_rq_clock(rq);
  2364. ns = rq->clock_task - p->se.exec_start;
  2365. if ((s64)ns < 0)
  2366. ns = 0;
  2367. }
  2368. return ns;
  2369. }
  2370. unsigned long long task_delta_exec(struct task_struct *p)
  2371. {
  2372. unsigned long flags;
  2373. struct rq *rq;
  2374. u64 ns = 0;
  2375. rq = task_rq_lock(p, &flags);
  2376. ns = do_task_delta_exec(p, rq);
  2377. task_rq_unlock(rq, p, &flags);
  2378. return ns;
  2379. }
  2380. /*
  2381. * Return accounted runtime for the task.
  2382. * In case the task is currently running, return the runtime plus current's
  2383. * pending runtime that have not been accounted yet.
  2384. */
  2385. unsigned long long task_sched_runtime(struct task_struct *p)
  2386. {
  2387. unsigned long flags;
  2388. struct rq *rq;
  2389. u64 ns = 0;
  2390. rq = task_rq_lock(p, &flags);
  2391. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2392. task_rq_unlock(rq, p, &flags);
  2393. return ns;
  2394. }
  2395. #ifdef CONFIG_CGROUP_CPUACCT
  2396. struct cgroup_subsys cpuacct_subsys;
  2397. struct cpuacct root_cpuacct;
  2398. #endif
  2399. static inline void task_group_account_field(struct task_struct *p, int index,
  2400. u64 tmp)
  2401. {
  2402. #ifdef CONFIG_CGROUP_CPUACCT
  2403. struct kernel_cpustat *kcpustat;
  2404. struct cpuacct *ca;
  2405. #endif
  2406. /*
  2407. * Since all updates are sure to touch the root cgroup, we
  2408. * get ourselves ahead and touch it first. If the root cgroup
  2409. * is the only cgroup, then nothing else should be necessary.
  2410. *
  2411. */
  2412. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2413. #ifdef CONFIG_CGROUP_CPUACCT
  2414. if (unlikely(!cpuacct_subsys.active))
  2415. return;
  2416. rcu_read_lock();
  2417. ca = task_ca(p);
  2418. while (ca && (ca != &root_cpuacct)) {
  2419. kcpustat = this_cpu_ptr(ca->cpustat);
  2420. kcpustat->cpustat[index] += tmp;
  2421. ca = parent_ca(ca);
  2422. }
  2423. rcu_read_unlock();
  2424. #endif
  2425. }
  2426. /*
  2427. * Account user cpu time to a process.
  2428. * @p: the process that the cpu time gets accounted to
  2429. * @cputime: the cpu time spent in user space since the last update
  2430. * @cputime_scaled: cputime scaled by cpu frequency
  2431. */
  2432. void account_user_time(struct task_struct *p, cputime_t cputime,
  2433. cputime_t cputime_scaled)
  2434. {
  2435. int index;
  2436. /* Add user time to process. */
  2437. p->utime += cputime;
  2438. p->utimescaled += cputime_scaled;
  2439. account_group_user_time(p, cputime);
  2440. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2441. /* Add user time to cpustat. */
  2442. task_group_account_field(p, index, (__force u64) cputime);
  2443. /* Account for user time used */
  2444. acct_update_integrals(p);
  2445. }
  2446. /*
  2447. * Account guest cpu time to a process.
  2448. * @p: the process that the cpu time gets accounted to
  2449. * @cputime: the cpu time spent in virtual machine since the last update
  2450. * @cputime_scaled: cputime scaled by cpu frequency
  2451. */
  2452. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2453. cputime_t cputime_scaled)
  2454. {
  2455. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2456. /* Add guest time to process. */
  2457. p->utime += cputime;
  2458. p->utimescaled += cputime_scaled;
  2459. account_group_user_time(p, cputime);
  2460. p->gtime += cputime;
  2461. /* Add guest time to cpustat. */
  2462. if (TASK_NICE(p) > 0) {
  2463. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2464. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2465. } else {
  2466. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2467. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2468. }
  2469. }
  2470. /*
  2471. * Account system cpu time to a process and desired cpustat field
  2472. * @p: the process that the cpu time gets accounted to
  2473. * @cputime: the cpu time spent in kernel space since the last update
  2474. * @cputime_scaled: cputime scaled by cpu frequency
  2475. * @target_cputime64: pointer to cpustat field that has to be updated
  2476. */
  2477. static inline
  2478. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2479. cputime_t cputime_scaled, int index)
  2480. {
  2481. /* Add system time to process. */
  2482. p->stime += cputime;
  2483. p->stimescaled += cputime_scaled;
  2484. account_group_system_time(p, cputime);
  2485. /* Add system time to cpustat. */
  2486. task_group_account_field(p, index, (__force u64) cputime);
  2487. /* Account for system time used */
  2488. acct_update_integrals(p);
  2489. }
  2490. /*
  2491. * Account system cpu time to a process.
  2492. * @p: the process that the cpu time gets accounted to
  2493. * @hardirq_offset: the offset to subtract from hardirq_count()
  2494. * @cputime: the cpu time spent in kernel space since the last update
  2495. * @cputime_scaled: cputime scaled by cpu frequency
  2496. */
  2497. void account_system_time(struct task_struct *p, int hardirq_offset,
  2498. cputime_t cputime, cputime_t cputime_scaled)
  2499. {
  2500. int index;
  2501. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2502. account_guest_time(p, cputime, cputime_scaled);
  2503. return;
  2504. }
  2505. if (hardirq_count() - hardirq_offset)
  2506. index = CPUTIME_IRQ;
  2507. else if (in_serving_softirq())
  2508. index = CPUTIME_SOFTIRQ;
  2509. else
  2510. index = CPUTIME_SYSTEM;
  2511. __account_system_time(p, cputime, cputime_scaled, index);
  2512. }
  2513. /*
  2514. * Account for involuntary wait time.
  2515. * @cputime: the cpu time spent in involuntary wait
  2516. */
  2517. void account_steal_time(cputime_t cputime)
  2518. {
  2519. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2520. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2521. }
  2522. /*
  2523. * Account for idle time.
  2524. * @cputime: the cpu time spent in idle wait
  2525. */
  2526. void account_idle_time(cputime_t cputime)
  2527. {
  2528. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2529. struct rq *rq = this_rq();
  2530. if (atomic_read(&rq->nr_iowait) > 0)
  2531. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2532. else
  2533. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2534. }
  2535. static __always_inline bool steal_account_process_tick(void)
  2536. {
  2537. #ifdef CONFIG_PARAVIRT
  2538. if (static_key_false(&paravirt_steal_enabled)) {
  2539. u64 steal, st = 0;
  2540. steal = paravirt_steal_clock(smp_processor_id());
  2541. steal -= this_rq()->prev_steal_time;
  2542. st = steal_ticks(steal);
  2543. this_rq()->prev_steal_time += st * TICK_NSEC;
  2544. account_steal_time(st);
  2545. return st;
  2546. }
  2547. #endif
  2548. return false;
  2549. }
  2550. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2551. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2552. /*
  2553. * Account a tick to a process and cpustat
  2554. * @p: the process that the cpu time gets accounted to
  2555. * @user_tick: is the tick from userspace
  2556. * @rq: the pointer to rq
  2557. *
  2558. * Tick demultiplexing follows the order
  2559. * - pending hardirq update
  2560. * - pending softirq update
  2561. * - user_time
  2562. * - idle_time
  2563. * - system time
  2564. * - check for guest_time
  2565. * - else account as system_time
  2566. *
  2567. * Check for hardirq is done both for system and user time as there is
  2568. * no timer going off while we are on hardirq and hence we may never get an
  2569. * opportunity to update it solely in system time.
  2570. * p->stime and friends are only updated on system time and not on irq
  2571. * softirq as those do not count in task exec_runtime any more.
  2572. */
  2573. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2574. struct rq *rq)
  2575. {
  2576. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2577. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2578. if (steal_account_process_tick())
  2579. return;
  2580. if (irqtime_account_hi_update()) {
  2581. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2582. } else if (irqtime_account_si_update()) {
  2583. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2584. } else if (this_cpu_ksoftirqd() == p) {
  2585. /*
  2586. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2587. * So, we have to handle it separately here.
  2588. * Also, p->stime needs to be updated for ksoftirqd.
  2589. */
  2590. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2591. CPUTIME_SOFTIRQ);
  2592. } else if (user_tick) {
  2593. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2594. } else if (p == rq->idle) {
  2595. account_idle_time(cputime_one_jiffy);
  2596. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2597. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2598. } else {
  2599. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2600. CPUTIME_SYSTEM);
  2601. }
  2602. }
  2603. static void irqtime_account_idle_ticks(int ticks)
  2604. {
  2605. int i;
  2606. struct rq *rq = this_rq();
  2607. for (i = 0; i < ticks; i++)
  2608. irqtime_account_process_tick(current, 0, rq);
  2609. }
  2610. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2611. static void irqtime_account_idle_ticks(int ticks) {}
  2612. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2613. struct rq *rq) {}
  2614. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2615. /*
  2616. * Account a single tick of cpu time.
  2617. * @p: the process that the cpu time gets accounted to
  2618. * @user_tick: indicates if the tick is a user or a system tick
  2619. */
  2620. void account_process_tick(struct task_struct *p, int user_tick)
  2621. {
  2622. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2623. struct rq *rq = this_rq();
  2624. if (sched_clock_irqtime) {
  2625. irqtime_account_process_tick(p, user_tick, rq);
  2626. return;
  2627. }
  2628. if (steal_account_process_tick())
  2629. return;
  2630. if (user_tick)
  2631. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2632. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2633. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2634. one_jiffy_scaled);
  2635. else
  2636. account_idle_time(cputime_one_jiffy);
  2637. }
  2638. /*
  2639. * Account multiple ticks of steal time.
  2640. * @p: the process from which the cpu time has been stolen
  2641. * @ticks: number of stolen ticks
  2642. */
  2643. void account_steal_ticks(unsigned long ticks)
  2644. {
  2645. account_steal_time(jiffies_to_cputime(ticks));
  2646. }
  2647. /*
  2648. * Account multiple ticks of idle time.
  2649. * @ticks: number of stolen ticks
  2650. */
  2651. void account_idle_ticks(unsigned long ticks)
  2652. {
  2653. if (sched_clock_irqtime) {
  2654. irqtime_account_idle_ticks(ticks);
  2655. return;
  2656. }
  2657. account_idle_time(jiffies_to_cputime(ticks));
  2658. }
  2659. #endif
  2660. /*
  2661. * Use precise platform statistics if available:
  2662. */
  2663. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2664. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2665. {
  2666. *ut = p->utime;
  2667. *st = p->stime;
  2668. }
  2669. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2670. {
  2671. struct task_cputime cputime;
  2672. thread_group_cputime(p, &cputime);
  2673. *ut = cputime.utime;
  2674. *st = cputime.stime;
  2675. }
  2676. #else
  2677. #ifndef nsecs_to_cputime
  2678. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2679. #endif
  2680. static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
  2681. {
  2682. u64 temp = (__force u64) rtime;
  2683. temp *= (__force u64) utime;
  2684. if (sizeof(cputime_t) == 4)
  2685. temp = div_u64(temp, (__force u32) total);
  2686. else
  2687. temp = div64_u64(temp, (__force u64) total);
  2688. return (__force cputime_t) temp;
  2689. }
  2690. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2691. {
  2692. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2693. /*
  2694. * Use CFS's precise accounting:
  2695. */
  2696. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2697. if (total)
  2698. utime = scale_utime(utime, rtime, total);
  2699. else
  2700. utime = rtime;
  2701. /*
  2702. * Compare with previous values, to keep monotonicity:
  2703. */
  2704. p->prev_utime = max(p->prev_utime, utime);
  2705. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2706. *ut = p->prev_utime;
  2707. *st = p->prev_stime;
  2708. }
  2709. /*
  2710. * Must be called with siglock held.
  2711. */
  2712. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2713. {
  2714. struct signal_struct *sig = p->signal;
  2715. struct task_cputime cputime;
  2716. cputime_t rtime, utime, total;
  2717. thread_group_cputime(p, &cputime);
  2718. total = cputime.utime + cputime.stime;
  2719. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2720. if (total)
  2721. utime = scale_utime(cputime.utime, rtime, total);
  2722. else
  2723. utime = rtime;
  2724. sig->prev_utime = max(sig->prev_utime, utime);
  2725. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2726. *ut = sig->prev_utime;
  2727. *st = sig->prev_stime;
  2728. }
  2729. #endif
  2730. /*
  2731. * This function gets called by the timer code, with HZ frequency.
  2732. * We call it with interrupts disabled.
  2733. */
  2734. void scheduler_tick(void)
  2735. {
  2736. int cpu = smp_processor_id();
  2737. struct rq *rq = cpu_rq(cpu);
  2738. struct task_struct *curr = rq->curr;
  2739. sched_clock_tick();
  2740. raw_spin_lock(&rq->lock);
  2741. update_rq_clock(rq);
  2742. update_cpu_load_active(rq);
  2743. curr->sched_class->task_tick(rq, curr, 0);
  2744. raw_spin_unlock(&rq->lock);
  2745. perf_event_task_tick();
  2746. #ifdef CONFIG_SMP
  2747. rq->idle_balance = idle_cpu(cpu);
  2748. trigger_load_balance(rq, cpu);
  2749. #endif
  2750. }
  2751. notrace unsigned long get_parent_ip(unsigned long addr)
  2752. {
  2753. if (in_lock_functions(addr)) {
  2754. addr = CALLER_ADDR2;
  2755. if (in_lock_functions(addr))
  2756. addr = CALLER_ADDR3;
  2757. }
  2758. return addr;
  2759. }
  2760. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2761. defined(CONFIG_PREEMPT_TRACER))
  2762. void __kprobes add_preempt_count(int val)
  2763. {
  2764. #ifdef CONFIG_DEBUG_PREEMPT
  2765. /*
  2766. * Underflow?
  2767. */
  2768. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2769. return;
  2770. #endif
  2771. preempt_count() += val;
  2772. #ifdef CONFIG_DEBUG_PREEMPT
  2773. /*
  2774. * Spinlock count overflowing soon?
  2775. */
  2776. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2777. PREEMPT_MASK - 10);
  2778. #endif
  2779. if (preempt_count() == val)
  2780. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2781. }
  2782. EXPORT_SYMBOL(add_preempt_count);
  2783. void __kprobes sub_preempt_count(int val)
  2784. {
  2785. #ifdef CONFIG_DEBUG_PREEMPT
  2786. /*
  2787. * Underflow?
  2788. */
  2789. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2790. return;
  2791. /*
  2792. * Is the spinlock portion underflowing?
  2793. */
  2794. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2795. !(preempt_count() & PREEMPT_MASK)))
  2796. return;
  2797. #endif
  2798. if (preempt_count() == val)
  2799. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2800. preempt_count() -= val;
  2801. }
  2802. EXPORT_SYMBOL(sub_preempt_count);
  2803. #endif
  2804. /*
  2805. * Print scheduling while atomic bug:
  2806. */
  2807. static noinline void __schedule_bug(struct task_struct *prev)
  2808. {
  2809. if (oops_in_progress)
  2810. return;
  2811. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2812. prev->comm, prev->pid, preempt_count());
  2813. debug_show_held_locks(prev);
  2814. print_modules();
  2815. if (irqs_disabled())
  2816. print_irqtrace_events(prev);
  2817. dump_stack();
  2818. add_taint(TAINT_WARN);
  2819. }
  2820. /*
  2821. * Various schedule()-time debugging checks and statistics:
  2822. */
  2823. static inline void schedule_debug(struct task_struct *prev)
  2824. {
  2825. /*
  2826. * Test if we are atomic. Since do_exit() needs to call into
  2827. * schedule() atomically, we ignore that path for now.
  2828. * Otherwise, whine if we are scheduling when we should not be.
  2829. */
  2830. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2831. __schedule_bug(prev);
  2832. rcu_sleep_check();
  2833. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2834. schedstat_inc(this_rq(), sched_count);
  2835. }
  2836. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2837. {
  2838. if (prev->on_rq || rq->skip_clock_update < 0)
  2839. update_rq_clock(rq);
  2840. prev->sched_class->put_prev_task(rq, prev);
  2841. }
  2842. /*
  2843. * Pick up the highest-prio task:
  2844. */
  2845. static inline struct task_struct *
  2846. pick_next_task(struct rq *rq)
  2847. {
  2848. const struct sched_class *class;
  2849. struct task_struct *p;
  2850. /*
  2851. * Optimization: we know that if all tasks are in
  2852. * the fair class we can call that function directly:
  2853. */
  2854. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2855. p = fair_sched_class.pick_next_task(rq);
  2856. if (likely(p))
  2857. return p;
  2858. }
  2859. for_each_class(class) {
  2860. p = class->pick_next_task(rq);
  2861. if (p)
  2862. return p;
  2863. }
  2864. BUG(); /* the idle class will always have a runnable task */
  2865. }
  2866. /*
  2867. * __schedule() is the main scheduler function.
  2868. */
  2869. static void __sched __schedule(void)
  2870. {
  2871. struct task_struct *prev, *next;
  2872. unsigned long *switch_count;
  2873. struct rq *rq;
  2874. int cpu;
  2875. need_resched:
  2876. preempt_disable();
  2877. cpu = smp_processor_id();
  2878. rq = cpu_rq(cpu);
  2879. rcu_note_context_switch(cpu);
  2880. prev = rq->curr;
  2881. schedule_debug(prev);
  2882. if (sched_feat(HRTICK))
  2883. hrtick_clear(rq);
  2884. raw_spin_lock_irq(&rq->lock);
  2885. switch_count = &prev->nivcsw;
  2886. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2887. if (unlikely(signal_pending_state(prev->state, prev))) {
  2888. prev->state = TASK_RUNNING;
  2889. } else {
  2890. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2891. prev->on_rq = 0;
  2892. /*
  2893. * If a worker went to sleep, notify and ask workqueue
  2894. * whether it wants to wake up a task to maintain
  2895. * concurrency.
  2896. */
  2897. if (prev->flags & PF_WQ_WORKER) {
  2898. struct task_struct *to_wakeup;
  2899. to_wakeup = wq_worker_sleeping(prev, cpu);
  2900. if (to_wakeup)
  2901. try_to_wake_up_local(to_wakeup);
  2902. }
  2903. }
  2904. switch_count = &prev->nvcsw;
  2905. }
  2906. pre_schedule(rq, prev);
  2907. if (unlikely(!rq->nr_running))
  2908. idle_balance(cpu, rq);
  2909. put_prev_task(rq, prev);
  2910. next = pick_next_task(rq);
  2911. clear_tsk_need_resched(prev);
  2912. rq->skip_clock_update = 0;
  2913. if (likely(prev != next)) {
  2914. rq->nr_switches++;
  2915. rq->curr = next;
  2916. ++*switch_count;
  2917. context_switch(rq, prev, next); /* unlocks the rq */
  2918. /*
  2919. * The context switch have flipped the stack from under us
  2920. * and restored the local variables which were saved when
  2921. * this task called schedule() in the past. prev == current
  2922. * is still correct, but it can be moved to another cpu/rq.
  2923. */
  2924. cpu = smp_processor_id();
  2925. rq = cpu_rq(cpu);
  2926. } else
  2927. raw_spin_unlock_irq(&rq->lock);
  2928. post_schedule(rq);
  2929. sched_preempt_enable_no_resched();
  2930. if (need_resched())
  2931. goto need_resched;
  2932. }
  2933. static inline void sched_submit_work(struct task_struct *tsk)
  2934. {
  2935. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2936. return;
  2937. /*
  2938. * If we are going to sleep and we have plugged IO queued,
  2939. * make sure to submit it to avoid deadlocks.
  2940. */
  2941. if (blk_needs_flush_plug(tsk))
  2942. blk_schedule_flush_plug(tsk);
  2943. }
  2944. asmlinkage void __sched schedule(void)
  2945. {
  2946. struct task_struct *tsk = current;
  2947. sched_submit_work(tsk);
  2948. __schedule();
  2949. }
  2950. EXPORT_SYMBOL(schedule);
  2951. /**
  2952. * schedule_preempt_disabled - called with preemption disabled
  2953. *
  2954. * Returns with preemption disabled. Note: preempt_count must be 1
  2955. */
  2956. void __sched schedule_preempt_disabled(void)
  2957. {
  2958. sched_preempt_enable_no_resched();
  2959. schedule();
  2960. preempt_disable();
  2961. }
  2962. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2963. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2964. {
  2965. if (lock->owner != owner)
  2966. return false;
  2967. /*
  2968. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2969. * lock->owner still matches owner, if that fails, owner might
  2970. * point to free()d memory, if it still matches, the rcu_read_lock()
  2971. * ensures the memory stays valid.
  2972. */
  2973. barrier();
  2974. return owner->on_cpu;
  2975. }
  2976. /*
  2977. * Look out! "owner" is an entirely speculative pointer
  2978. * access and not reliable.
  2979. */
  2980. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2981. {
  2982. if (!sched_feat(OWNER_SPIN))
  2983. return 0;
  2984. rcu_read_lock();
  2985. while (owner_running(lock, owner)) {
  2986. if (need_resched())
  2987. break;
  2988. arch_mutex_cpu_relax();
  2989. }
  2990. rcu_read_unlock();
  2991. /*
  2992. * We break out the loop above on need_resched() and when the
  2993. * owner changed, which is a sign for heavy contention. Return
  2994. * success only when lock->owner is NULL.
  2995. */
  2996. return lock->owner == NULL;
  2997. }
  2998. #endif
  2999. #ifdef CONFIG_PREEMPT
  3000. /*
  3001. * this is the entry point to schedule() from in-kernel preemption
  3002. * off of preempt_enable. Kernel preemptions off return from interrupt
  3003. * occur there and call schedule directly.
  3004. */
  3005. asmlinkage void __sched notrace preempt_schedule(void)
  3006. {
  3007. struct thread_info *ti = current_thread_info();
  3008. /*
  3009. * If there is a non-zero preempt_count or interrupts are disabled,
  3010. * we do not want to preempt the current task. Just return..
  3011. */
  3012. if (likely(ti->preempt_count || irqs_disabled()))
  3013. return;
  3014. do {
  3015. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3016. __schedule();
  3017. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3018. /*
  3019. * Check again in case we missed a preemption opportunity
  3020. * between schedule and now.
  3021. */
  3022. barrier();
  3023. } while (need_resched());
  3024. }
  3025. EXPORT_SYMBOL(preempt_schedule);
  3026. /*
  3027. * this is the entry point to schedule() from kernel preemption
  3028. * off of irq context.
  3029. * Note, that this is called and return with irqs disabled. This will
  3030. * protect us against recursive calling from irq.
  3031. */
  3032. asmlinkage void __sched preempt_schedule_irq(void)
  3033. {
  3034. struct thread_info *ti = current_thread_info();
  3035. /* Catch callers which need to be fixed */
  3036. BUG_ON(ti->preempt_count || !irqs_disabled());
  3037. do {
  3038. add_preempt_count(PREEMPT_ACTIVE);
  3039. local_irq_enable();
  3040. __schedule();
  3041. local_irq_disable();
  3042. sub_preempt_count(PREEMPT_ACTIVE);
  3043. /*
  3044. * Check again in case we missed a preemption opportunity
  3045. * between schedule and now.
  3046. */
  3047. barrier();
  3048. } while (need_resched());
  3049. }
  3050. #endif /* CONFIG_PREEMPT */
  3051. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3052. void *key)
  3053. {
  3054. return try_to_wake_up(curr->private, mode, wake_flags);
  3055. }
  3056. EXPORT_SYMBOL(default_wake_function);
  3057. /*
  3058. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3059. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3060. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3061. *
  3062. * There are circumstances in which we can try to wake a task which has already
  3063. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3064. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3065. */
  3066. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3067. int nr_exclusive, int wake_flags, void *key)
  3068. {
  3069. wait_queue_t *curr, *next;
  3070. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3071. unsigned flags = curr->flags;
  3072. if (curr->func(curr, mode, wake_flags, key) &&
  3073. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3074. break;
  3075. }
  3076. }
  3077. /**
  3078. * __wake_up - wake up threads blocked on a waitqueue.
  3079. * @q: the waitqueue
  3080. * @mode: which threads
  3081. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3082. * @key: is directly passed to the wakeup function
  3083. *
  3084. * It may be assumed that this function implies a write memory barrier before
  3085. * changing the task state if and only if any tasks are woken up.
  3086. */
  3087. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3088. int nr_exclusive, void *key)
  3089. {
  3090. unsigned long flags;
  3091. spin_lock_irqsave(&q->lock, flags);
  3092. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3093. spin_unlock_irqrestore(&q->lock, flags);
  3094. }
  3095. EXPORT_SYMBOL(__wake_up);
  3096. /*
  3097. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3098. */
  3099. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  3100. {
  3101. __wake_up_common(q, mode, nr, 0, NULL);
  3102. }
  3103. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3104. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3105. {
  3106. __wake_up_common(q, mode, 1, 0, key);
  3107. }
  3108. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3109. /**
  3110. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3111. * @q: the waitqueue
  3112. * @mode: which threads
  3113. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3114. * @key: opaque value to be passed to wakeup targets
  3115. *
  3116. * The sync wakeup differs that the waker knows that it will schedule
  3117. * away soon, so while the target thread will be woken up, it will not
  3118. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3119. * with each other. This can prevent needless bouncing between CPUs.
  3120. *
  3121. * On UP it can prevent extra preemption.
  3122. *
  3123. * It may be assumed that this function implies a write memory barrier before
  3124. * changing the task state if and only if any tasks are woken up.
  3125. */
  3126. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3127. int nr_exclusive, void *key)
  3128. {
  3129. unsigned long flags;
  3130. int wake_flags = WF_SYNC;
  3131. if (unlikely(!q))
  3132. return;
  3133. if (unlikely(!nr_exclusive))
  3134. wake_flags = 0;
  3135. spin_lock_irqsave(&q->lock, flags);
  3136. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3137. spin_unlock_irqrestore(&q->lock, flags);
  3138. }
  3139. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3140. /*
  3141. * __wake_up_sync - see __wake_up_sync_key()
  3142. */
  3143. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3144. {
  3145. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3146. }
  3147. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3148. /**
  3149. * complete: - signals a single thread waiting on this completion
  3150. * @x: holds the state of this particular completion
  3151. *
  3152. * This will wake up a single thread waiting on this completion. Threads will be
  3153. * awakened in the same order in which they were queued.
  3154. *
  3155. * See also complete_all(), wait_for_completion() and related routines.
  3156. *
  3157. * It may be assumed that this function implies a write memory barrier before
  3158. * changing the task state if and only if any tasks are woken up.
  3159. */
  3160. void complete(struct completion *x)
  3161. {
  3162. unsigned long flags;
  3163. spin_lock_irqsave(&x->wait.lock, flags);
  3164. x->done++;
  3165. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3166. spin_unlock_irqrestore(&x->wait.lock, flags);
  3167. }
  3168. EXPORT_SYMBOL(complete);
  3169. /**
  3170. * complete_all: - signals all threads waiting on this completion
  3171. * @x: holds the state of this particular completion
  3172. *
  3173. * This will wake up all threads waiting on this particular completion event.
  3174. *
  3175. * It may be assumed that this function implies a write memory barrier before
  3176. * changing the task state if and only if any tasks are woken up.
  3177. */
  3178. void complete_all(struct completion *x)
  3179. {
  3180. unsigned long flags;
  3181. spin_lock_irqsave(&x->wait.lock, flags);
  3182. x->done += UINT_MAX/2;
  3183. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3184. spin_unlock_irqrestore(&x->wait.lock, flags);
  3185. }
  3186. EXPORT_SYMBOL(complete_all);
  3187. static inline long __sched
  3188. do_wait_for_common(struct completion *x, long timeout, int state)
  3189. {
  3190. if (!x->done) {
  3191. DECLARE_WAITQUEUE(wait, current);
  3192. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3193. do {
  3194. if (signal_pending_state(state, current)) {
  3195. timeout = -ERESTARTSYS;
  3196. break;
  3197. }
  3198. __set_current_state(state);
  3199. spin_unlock_irq(&x->wait.lock);
  3200. timeout = schedule_timeout(timeout);
  3201. spin_lock_irq(&x->wait.lock);
  3202. } while (!x->done && timeout);
  3203. __remove_wait_queue(&x->wait, &wait);
  3204. if (!x->done)
  3205. return timeout;
  3206. }
  3207. x->done--;
  3208. return timeout ?: 1;
  3209. }
  3210. static long __sched
  3211. wait_for_common(struct completion *x, long timeout, int state)
  3212. {
  3213. might_sleep();
  3214. spin_lock_irq(&x->wait.lock);
  3215. timeout = do_wait_for_common(x, timeout, state);
  3216. spin_unlock_irq(&x->wait.lock);
  3217. return timeout;
  3218. }
  3219. /**
  3220. * wait_for_completion: - waits for completion of a task
  3221. * @x: holds the state of this particular completion
  3222. *
  3223. * This waits to be signaled for completion of a specific task. It is NOT
  3224. * interruptible and there is no timeout.
  3225. *
  3226. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3227. * and interrupt capability. Also see complete().
  3228. */
  3229. void __sched wait_for_completion(struct completion *x)
  3230. {
  3231. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3232. }
  3233. EXPORT_SYMBOL(wait_for_completion);
  3234. /**
  3235. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3236. * @x: holds the state of this particular completion
  3237. * @timeout: timeout value in jiffies
  3238. *
  3239. * This waits for either a completion of a specific task to be signaled or for a
  3240. * specified timeout to expire. The timeout is in jiffies. It is not
  3241. * interruptible.
  3242. *
  3243. * The return value is 0 if timed out, and positive (at least 1, or number of
  3244. * jiffies left till timeout) if completed.
  3245. */
  3246. unsigned long __sched
  3247. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3248. {
  3249. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3250. }
  3251. EXPORT_SYMBOL(wait_for_completion_timeout);
  3252. /**
  3253. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3254. * @x: holds the state of this particular completion
  3255. *
  3256. * This waits for completion of a specific task to be signaled. It is
  3257. * interruptible.
  3258. *
  3259. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3260. */
  3261. int __sched wait_for_completion_interruptible(struct completion *x)
  3262. {
  3263. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3264. if (t == -ERESTARTSYS)
  3265. return t;
  3266. return 0;
  3267. }
  3268. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3269. /**
  3270. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3271. * @x: holds the state of this particular completion
  3272. * @timeout: timeout value in jiffies
  3273. *
  3274. * This waits for either a completion of a specific task to be signaled or for a
  3275. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3276. *
  3277. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3278. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3279. */
  3280. long __sched
  3281. wait_for_completion_interruptible_timeout(struct completion *x,
  3282. unsigned long timeout)
  3283. {
  3284. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3285. }
  3286. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3287. /**
  3288. * wait_for_completion_killable: - waits for completion of a task (killable)
  3289. * @x: holds the state of this particular completion
  3290. *
  3291. * This waits to be signaled for completion of a specific task. It can be
  3292. * interrupted by a kill signal.
  3293. *
  3294. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3295. */
  3296. int __sched wait_for_completion_killable(struct completion *x)
  3297. {
  3298. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3299. if (t == -ERESTARTSYS)
  3300. return t;
  3301. return 0;
  3302. }
  3303. EXPORT_SYMBOL(wait_for_completion_killable);
  3304. /**
  3305. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3306. * @x: holds the state of this particular completion
  3307. * @timeout: timeout value in jiffies
  3308. *
  3309. * This waits for either a completion of a specific task to be
  3310. * signaled or for a specified timeout to expire. It can be
  3311. * interrupted by a kill signal. The timeout is in jiffies.
  3312. *
  3313. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3314. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3315. */
  3316. long __sched
  3317. wait_for_completion_killable_timeout(struct completion *x,
  3318. unsigned long timeout)
  3319. {
  3320. return wait_for_common(x, timeout, TASK_KILLABLE);
  3321. }
  3322. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3323. /**
  3324. * try_wait_for_completion - try to decrement a completion without blocking
  3325. * @x: completion structure
  3326. *
  3327. * Returns: 0 if a decrement cannot be done without blocking
  3328. * 1 if a decrement succeeded.
  3329. *
  3330. * If a completion is being used as a counting completion,
  3331. * attempt to decrement the counter without blocking. This
  3332. * enables us to avoid waiting if the resource the completion
  3333. * is protecting is not available.
  3334. */
  3335. bool try_wait_for_completion(struct completion *x)
  3336. {
  3337. unsigned long flags;
  3338. int ret = 1;
  3339. spin_lock_irqsave(&x->wait.lock, flags);
  3340. if (!x->done)
  3341. ret = 0;
  3342. else
  3343. x->done--;
  3344. spin_unlock_irqrestore(&x->wait.lock, flags);
  3345. return ret;
  3346. }
  3347. EXPORT_SYMBOL(try_wait_for_completion);
  3348. /**
  3349. * completion_done - Test to see if a completion has any waiters
  3350. * @x: completion structure
  3351. *
  3352. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3353. * 1 if there are no waiters.
  3354. *
  3355. */
  3356. bool completion_done(struct completion *x)
  3357. {
  3358. unsigned long flags;
  3359. int ret = 1;
  3360. spin_lock_irqsave(&x->wait.lock, flags);
  3361. if (!x->done)
  3362. ret = 0;
  3363. spin_unlock_irqrestore(&x->wait.lock, flags);
  3364. return ret;
  3365. }
  3366. EXPORT_SYMBOL(completion_done);
  3367. static long __sched
  3368. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3369. {
  3370. unsigned long flags;
  3371. wait_queue_t wait;
  3372. init_waitqueue_entry(&wait, current);
  3373. __set_current_state(state);
  3374. spin_lock_irqsave(&q->lock, flags);
  3375. __add_wait_queue(q, &wait);
  3376. spin_unlock(&q->lock);
  3377. timeout = schedule_timeout(timeout);
  3378. spin_lock_irq(&q->lock);
  3379. __remove_wait_queue(q, &wait);
  3380. spin_unlock_irqrestore(&q->lock, flags);
  3381. return timeout;
  3382. }
  3383. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3384. {
  3385. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3386. }
  3387. EXPORT_SYMBOL(interruptible_sleep_on);
  3388. long __sched
  3389. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3390. {
  3391. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3392. }
  3393. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3394. void __sched sleep_on(wait_queue_head_t *q)
  3395. {
  3396. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3397. }
  3398. EXPORT_SYMBOL(sleep_on);
  3399. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3400. {
  3401. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3402. }
  3403. EXPORT_SYMBOL(sleep_on_timeout);
  3404. #ifdef CONFIG_RT_MUTEXES
  3405. /*
  3406. * rt_mutex_setprio - set the current priority of a task
  3407. * @p: task
  3408. * @prio: prio value (kernel-internal form)
  3409. *
  3410. * This function changes the 'effective' priority of a task. It does
  3411. * not touch ->normal_prio like __setscheduler().
  3412. *
  3413. * Used by the rt_mutex code to implement priority inheritance logic.
  3414. */
  3415. void rt_mutex_setprio(struct task_struct *p, int prio)
  3416. {
  3417. int oldprio, on_rq, running;
  3418. struct rq *rq;
  3419. const struct sched_class *prev_class;
  3420. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3421. rq = __task_rq_lock(p);
  3422. /*
  3423. * Idle task boosting is a nono in general. There is one
  3424. * exception, when PREEMPT_RT and NOHZ is active:
  3425. *
  3426. * The idle task calls get_next_timer_interrupt() and holds
  3427. * the timer wheel base->lock on the CPU and another CPU wants
  3428. * to access the timer (probably to cancel it). We can safely
  3429. * ignore the boosting request, as the idle CPU runs this code
  3430. * with interrupts disabled and will complete the lock
  3431. * protected section without being interrupted. So there is no
  3432. * real need to boost.
  3433. */
  3434. if (unlikely(p == rq->idle)) {
  3435. WARN_ON(p != rq->curr);
  3436. WARN_ON(p->pi_blocked_on);
  3437. goto out_unlock;
  3438. }
  3439. trace_sched_pi_setprio(p, prio);
  3440. oldprio = p->prio;
  3441. prev_class = p->sched_class;
  3442. on_rq = p->on_rq;
  3443. running = task_current(rq, p);
  3444. if (on_rq)
  3445. dequeue_task(rq, p, 0);
  3446. if (running)
  3447. p->sched_class->put_prev_task(rq, p);
  3448. if (rt_prio(prio))
  3449. p->sched_class = &rt_sched_class;
  3450. else
  3451. p->sched_class = &fair_sched_class;
  3452. p->prio = prio;
  3453. if (running)
  3454. p->sched_class->set_curr_task(rq);
  3455. if (on_rq)
  3456. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3457. check_class_changed(rq, p, prev_class, oldprio);
  3458. out_unlock:
  3459. __task_rq_unlock(rq);
  3460. }
  3461. #endif
  3462. void set_user_nice(struct task_struct *p, long nice)
  3463. {
  3464. int old_prio, delta, on_rq;
  3465. unsigned long flags;
  3466. struct rq *rq;
  3467. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3468. return;
  3469. /*
  3470. * We have to be careful, if called from sys_setpriority(),
  3471. * the task might be in the middle of scheduling on another CPU.
  3472. */
  3473. rq = task_rq_lock(p, &flags);
  3474. /*
  3475. * The RT priorities are set via sched_setscheduler(), but we still
  3476. * allow the 'normal' nice value to be set - but as expected
  3477. * it wont have any effect on scheduling until the task is
  3478. * SCHED_FIFO/SCHED_RR:
  3479. */
  3480. if (task_has_rt_policy(p)) {
  3481. p->static_prio = NICE_TO_PRIO(nice);
  3482. goto out_unlock;
  3483. }
  3484. on_rq = p->on_rq;
  3485. if (on_rq)
  3486. dequeue_task(rq, p, 0);
  3487. p->static_prio = NICE_TO_PRIO(nice);
  3488. set_load_weight(p);
  3489. old_prio = p->prio;
  3490. p->prio = effective_prio(p);
  3491. delta = p->prio - old_prio;
  3492. if (on_rq) {
  3493. enqueue_task(rq, p, 0);
  3494. /*
  3495. * If the task increased its priority or is running and
  3496. * lowered its priority, then reschedule its CPU:
  3497. */
  3498. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3499. resched_task(rq->curr);
  3500. }
  3501. out_unlock:
  3502. task_rq_unlock(rq, p, &flags);
  3503. }
  3504. EXPORT_SYMBOL(set_user_nice);
  3505. /*
  3506. * can_nice - check if a task can reduce its nice value
  3507. * @p: task
  3508. * @nice: nice value
  3509. */
  3510. int can_nice(const struct task_struct *p, const int nice)
  3511. {
  3512. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3513. int nice_rlim = 20 - nice;
  3514. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3515. capable(CAP_SYS_NICE));
  3516. }
  3517. #ifdef __ARCH_WANT_SYS_NICE
  3518. /*
  3519. * sys_nice - change the priority of the current process.
  3520. * @increment: priority increment
  3521. *
  3522. * sys_setpriority is a more generic, but much slower function that
  3523. * does similar things.
  3524. */
  3525. SYSCALL_DEFINE1(nice, int, increment)
  3526. {
  3527. long nice, retval;
  3528. /*
  3529. * Setpriority might change our priority at the same moment.
  3530. * We don't have to worry. Conceptually one call occurs first
  3531. * and we have a single winner.
  3532. */
  3533. if (increment < -40)
  3534. increment = -40;
  3535. if (increment > 40)
  3536. increment = 40;
  3537. nice = TASK_NICE(current) + increment;
  3538. if (nice < -20)
  3539. nice = -20;
  3540. if (nice > 19)
  3541. nice = 19;
  3542. if (increment < 0 && !can_nice(current, nice))
  3543. return -EPERM;
  3544. retval = security_task_setnice(current, nice);
  3545. if (retval)
  3546. return retval;
  3547. set_user_nice(current, nice);
  3548. return 0;
  3549. }
  3550. #endif
  3551. /**
  3552. * task_prio - return the priority value of a given task.
  3553. * @p: the task in question.
  3554. *
  3555. * This is the priority value as seen by users in /proc.
  3556. * RT tasks are offset by -200. Normal tasks are centered
  3557. * around 0, value goes from -16 to +15.
  3558. */
  3559. int task_prio(const struct task_struct *p)
  3560. {
  3561. return p->prio - MAX_RT_PRIO;
  3562. }
  3563. /**
  3564. * task_nice - return the nice value of a given task.
  3565. * @p: the task in question.
  3566. */
  3567. int task_nice(const struct task_struct *p)
  3568. {
  3569. return TASK_NICE(p);
  3570. }
  3571. EXPORT_SYMBOL(task_nice);
  3572. /**
  3573. * idle_cpu - is a given cpu idle currently?
  3574. * @cpu: the processor in question.
  3575. */
  3576. int idle_cpu(int cpu)
  3577. {
  3578. struct rq *rq = cpu_rq(cpu);
  3579. if (rq->curr != rq->idle)
  3580. return 0;
  3581. if (rq->nr_running)
  3582. return 0;
  3583. #ifdef CONFIG_SMP
  3584. if (!llist_empty(&rq->wake_list))
  3585. return 0;
  3586. #endif
  3587. return 1;
  3588. }
  3589. /**
  3590. * idle_task - return the idle task for a given cpu.
  3591. * @cpu: the processor in question.
  3592. */
  3593. struct task_struct *idle_task(int cpu)
  3594. {
  3595. return cpu_rq(cpu)->idle;
  3596. }
  3597. /**
  3598. * find_process_by_pid - find a process with a matching PID value.
  3599. * @pid: the pid in question.
  3600. */
  3601. static struct task_struct *find_process_by_pid(pid_t pid)
  3602. {
  3603. return pid ? find_task_by_vpid(pid) : current;
  3604. }
  3605. /* Actually do priority change: must hold rq lock. */
  3606. static void
  3607. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3608. {
  3609. p->policy = policy;
  3610. p->rt_priority = prio;
  3611. p->normal_prio = normal_prio(p);
  3612. /* we are holding p->pi_lock already */
  3613. p->prio = rt_mutex_getprio(p);
  3614. if (rt_prio(p->prio))
  3615. p->sched_class = &rt_sched_class;
  3616. else
  3617. p->sched_class = &fair_sched_class;
  3618. set_load_weight(p);
  3619. }
  3620. /*
  3621. * check the target process has a UID that matches the current process's
  3622. */
  3623. static bool check_same_owner(struct task_struct *p)
  3624. {
  3625. const struct cred *cred = current_cred(), *pcred;
  3626. bool match;
  3627. rcu_read_lock();
  3628. pcred = __task_cred(p);
  3629. match = (uid_eq(cred->euid, pcred->euid) ||
  3630. uid_eq(cred->euid, pcred->uid));
  3631. rcu_read_unlock();
  3632. return match;
  3633. }
  3634. static int __sched_setscheduler(struct task_struct *p, int policy,
  3635. const struct sched_param *param, bool user)
  3636. {
  3637. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3638. unsigned long flags;
  3639. const struct sched_class *prev_class;
  3640. struct rq *rq;
  3641. int reset_on_fork;
  3642. /* may grab non-irq protected spin_locks */
  3643. BUG_ON(in_interrupt());
  3644. recheck:
  3645. /* double check policy once rq lock held */
  3646. if (policy < 0) {
  3647. reset_on_fork = p->sched_reset_on_fork;
  3648. policy = oldpolicy = p->policy;
  3649. } else {
  3650. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3651. policy &= ~SCHED_RESET_ON_FORK;
  3652. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3653. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3654. policy != SCHED_IDLE)
  3655. return -EINVAL;
  3656. }
  3657. /*
  3658. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3659. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3660. * SCHED_BATCH and SCHED_IDLE is 0.
  3661. */
  3662. if (param->sched_priority < 0 ||
  3663. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3664. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3665. return -EINVAL;
  3666. if (rt_policy(policy) != (param->sched_priority != 0))
  3667. return -EINVAL;
  3668. /*
  3669. * Allow unprivileged RT tasks to decrease priority:
  3670. */
  3671. if (user && !capable(CAP_SYS_NICE)) {
  3672. if (rt_policy(policy)) {
  3673. unsigned long rlim_rtprio =
  3674. task_rlimit(p, RLIMIT_RTPRIO);
  3675. /* can't set/change the rt policy */
  3676. if (policy != p->policy && !rlim_rtprio)
  3677. return -EPERM;
  3678. /* can't increase priority */
  3679. if (param->sched_priority > p->rt_priority &&
  3680. param->sched_priority > rlim_rtprio)
  3681. return -EPERM;
  3682. }
  3683. /*
  3684. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3685. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3686. */
  3687. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3688. if (!can_nice(p, TASK_NICE(p)))
  3689. return -EPERM;
  3690. }
  3691. /* can't change other user's priorities */
  3692. if (!check_same_owner(p))
  3693. return -EPERM;
  3694. /* Normal users shall not reset the sched_reset_on_fork flag */
  3695. if (p->sched_reset_on_fork && !reset_on_fork)
  3696. return -EPERM;
  3697. }
  3698. if (user) {
  3699. retval = security_task_setscheduler(p);
  3700. if (retval)
  3701. return retval;
  3702. }
  3703. /*
  3704. * make sure no PI-waiters arrive (or leave) while we are
  3705. * changing the priority of the task:
  3706. *
  3707. * To be able to change p->policy safely, the appropriate
  3708. * runqueue lock must be held.
  3709. */
  3710. rq = task_rq_lock(p, &flags);
  3711. /*
  3712. * Changing the policy of the stop threads its a very bad idea
  3713. */
  3714. if (p == rq->stop) {
  3715. task_rq_unlock(rq, p, &flags);
  3716. return -EINVAL;
  3717. }
  3718. /*
  3719. * If not changing anything there's no need to proceed further:
  3720. */
  3721. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3722. param->sched_priority == p->rt_priority))) {
  3723. task_rq_unlock(rq, p, &flags);
  3724. return 0;
  3725. }
  3726. #ifdef CONFIG_RT_GROUP_SCHED
  3727. if (user) {
  3728. /*
  3729. * Do not allow realtime tasks into groups that have no runtime
  3730. * assigned.
  3731. */
  3732. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3733. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3734. !task_group_is_autogroup(task_group(p))) {
  3735. task_rq_unlock(rq, p, &flags);
  3736. return -EPERM;
  3737. }
  3738. }
  3739. #endif
  3740. /* recheck policy now with rq lock held */
  3741. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3742. policy = oldpolicy = -1;
  3743. task_rq_unlock(rq, p, &flags);
  3744. goto recheck;
  3745. }
  3746. on_rq = p->on_rq;
  3747. running = task_current(rq, p);
  3748. if (on_rq)
  3749. dequeue_task(rq, p, 0);
  3750. if (running)
  3751. p->sched_class->put_prev_task(rq, p);
  3752. p->sched_reset_on_fork = reset_on_fork;
  3753. oldprio = p->prio;
  3754. prev_class = p->sched_class;
  3755. __setscheduler(rq, p, policy, param->sched_priority);
  3756. if (running)
  3757. p->sched_class->set_curr_task(rq);
  3758. if (on_rq)
  3759. enqueue_task(rq, p, 0);
  3760. check_class_changed(rq, p, prev_class, oldprio);
  3761. task_rq_unlock(rq, p, &flags);
  3762. rt_mutex_adjust_pi(p);
  3763. return 0;
  3764. }
  3765. /**
  3766. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3767. * @p: the task in question.
  3768. * @policy: new policy.
  3769. * @param: structure containing the new RT priority.
  3770. *
  3771. * NOTE that the task may be already dead.
  3772. */
  3773. int sched_setscheduler(struct task_struct *p, int policy,
  3774. const struct sched_param *param)
  3775. {
  3776. return __sched_setscheduler(p, policy, param, true);
  3777. }
  3778. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3779. /**
  3780. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3781. * @p: the task in question.
  3782. * @policy: new policy.
  3783. * @param: structure containing the new RT priority.
  3784. *
  3785. * Just like sched_setscheduler, only don't bother checking if the
  3786. * current context has permission. For example, this is needed in
  3787. * stop_machine(): we create temporary high priority worker threads,
  3788. * but our caller might not have that capability.
  3789. */
  3790. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3791. const struct sched_param *param)
  3792. {
  3793. return __sched_setscheduler(p, policy, param, false);
  3794. }
  3795. static int
  3796. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3797. {
  3798. struct sched_param lparam;
  3799. struct task_struct *p;
  3800. int retval;
  3801. if (!param || pid < 0)
  3802. return -EINVAL;
  3803. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3804. return -EFAULT;
  3805. rcu_read_lock();
  3806. retval = -ESRCH;
  3807. p = find_process_by_pid(pid);
  3808. if (p != NULL)
  3809. retval = sched_setscheduler(p, policy, &lparam);
  3810. rcu_read_unlock();
  3811. return retval;
  3812. }
  3813. /**
  3814. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3815. * @pid: the pid in question.
  3816. * @policy: new policy.
  3817. * @param: structure containing the new RT priority.
  3818. */
  3819. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3820. struct sched_param __user *, param)
  3821. {
  3822. /* negative values for policy are not valid */
  3823. if (policy < 0)
  3824. return -EINVAL;
  3825. return do_sched_setscheduler(pid, policy, param);
  3826. }
  3827. /**
  3828. * sys_sched_setparam - set/change the RT priority of a thread
  3829. * @pid: the pid in question.
  3830. * @param: structure containing the new RT priority.
  3831. */
  3832. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3833. {
  3834. return do_sched_setscheduler(pid, -1, param);
  3835. }
  3836. /**
  3837. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3838. * @pid: the pid in question.
  3839. */
  3840. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3841. {
  3842. struct task_struct *p;
  3843. int retval;
  3844. if (pid < 0)
  3845. return -EINVAL;
  3846. retval = -ESRCH;
  3847. rcu_read_lock();
  3848. p = find_process_by_pid(pid);
  3849. if (p) {
  3850. retval = security_task_getscheduler(p);
  3851. if (!retval)
  3852. retval = p->policy
  3853. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3854. }
  3855. rcu_read_unlock();
  3856. return retval;
  3857. }
  3858. /**
  3859. * sys_sched_getparam - get the RT priority of a thread
  3860. * @pid: the pid in question.
  3861. * @param: structure containing the RT priority.
  3862. */
  3863. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3864. {
  3865. struct sched_param lp;
  3866. struct task_struct *p;
  3867. int retval;
  3868. if (!param || pid < 0)
  3869. return -EINVAL;
  3870. rcu_read_lock();
  3871. p = find_process_by_pid(pid);
  3872. retval = -ESRCH;
  3873. if (!p)
  3874. goto out_unlock;
  3875. retval = security_task_getscheduler(p);
  3876. if (retval)
  3877. goto out_unlock;
  3878. lp.sched_priority = p->rt_priority;
  3879. rcu_read_unlock();
  3880. /*
  3881. * This one might sleep, we cannot do it with a spinlock held ...
  3882. */
  3883. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3884. return retval;
  3885. out_unlock:
  3886. rcu_read_unlock();
  3887. return retval;
  3888. }
  3889. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3890. {
  3891. cpumask_var_t cpus_allowed, new_mask;
  3892. struct task_struct *p;
  3893. int retval;
  3894. get_online_cpus();
  3895. rcu_read_lock();
  3896. p = find_process_by_pid(pid);
  3897. if (!p) {
  3898. rcu_read_unlock();
  3899. put_online_cpus();
  3900. return -ESRCH;
  3901. }
  3902. /* Prevent p going away */
  3903. get_task_struct(p);
  3904. rcu_read_unlock();
  3905. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3906. retval = -ENOMEM;
  3907. goto out_put_task;
  3908. }
  3909. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3910. retval = -ENOMEM;
  3911. goto out_free_cpus_allowed;
  3912. }
  3913. retval = -EPERM;
  3914. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3915. goto out_unlock;
  3916. retval = security_task_setscheduler(p);
  3917. if (retval)
  3918. goto out_unlock;
  3919. cpuset_cpus_allowed(p, cpus_allowed);
  3920. cpumask_and(new_mask, in_mask, cpus_allowed);
  3921. again:
  3922. retval = set_cpus_allowed_ptr(p, new_mask);
  3923. if (!retval) {
  3924. cpuset_cpus_allowed(p, cpus_allowed);
  3925. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3926. /*
  3927. * We must have raced with a concurrent cpuset
  3928. * update. Just reset the cpus_allowed to the
  3929. * cpuset's cpus_allowed
  3930. */
  3931. cpumask_copy(new_mask, cpus_allowed);
  3932. goto again;
  3933. }
  3934. }
  3935. out_unlock:
  3936. free_cpumask_var(new_mask);
  3937. out_free_cpus_allowed:
  3938. free_cpumask_var(cpus_allowed);
  3939. out_put_task:
  3940. put_task_struct(p);
  3941. put_online_cpus();
  3942. return retval;
  3943. }
  3944. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3945. struct cpumask *new_mask)
  3946. {
  3947. if (len < cpumask_size())
  3948. cpumask_clear(new_mask);
  3949. else if (len > cpumask_size())
  3950. len = cpumask_size();
  3951. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3952. }
  3953. /**
  3954. * sys_sched_setaffinity - set the cpu affinity of a process
  3955. * @pid: pid of the process
  3956. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3957. * @user_mask_ptr: user-space pointer to the new cpu mask
  3958. */
  3959. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3960. unsigned long __user *, user_mask_ptr)
  3961. {
  3962. cpumask_var_t new_mask;
  3963. int retval;
  3964. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3965. return -ENOMEM;
  3966. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3967. if (retval == 0)
  3968. retval = sched_setaffinity(pid, new_mask);
  3969. free_cpumask_var(new_mask);
  3970. return retval;
  3971. }
  3972. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3973. {
  3974. struct task_struct *p;
  3975. unsigned long flags;
  3976. int retval;
  3977. get_online_cpus();
  3978. rcu_read_lock();
  3979. retval = -ESRCH;
  3980. p = find_process_by_pid(pid);
  3981. if (!p)
  3982. goto out_unlock;
  3983. retval = security_task_getscheduler(p);
  3984. if (retval)
  3985. goto out_unlock;
  3986. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3987. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3988. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3989. out_unlock:
  3990. rcu_read_unlock();
  3991. put_online_cpus();
  3992. return retval;
  3993. }
  3994. /**
  3995. * sys_sched_getaffinity - get the cpu affinity of a process
  3996. * @pid: pid of the process
  3997. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3998. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3999. */
  4000. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4001. unsigned long __user *, user_mask_ptr)
  4002. {
  4003. int ret;
  4004. cpumask_var_t mask;
  4005. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4006. return -EINVAL;
  4007. if (len & (sizeof(unsigned long)-1))
  4008. return -EINVAL;
  4009. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4010. return -ENOMEM;
  4011. ret = sched_getaffinity(pid, mask);
  4012. if (ret == 0) {
  4013. size_t retlen = min_t(size_t, len, cpumask_size());
  4014. if (copy_to_user(user_mask_ptr, mask, retlen))
  4015. ret = -EFAULT;
  4016. else
  4017. ret = retlen;
  4018. }
  4019. free_cpumask_var(mask);
  4020. return ret;
  4021. }
  4022. /**
  4023. * sys_sched_yield - yield the current processor to other threads.
  4024. *
  4025. * This function yields the current CPU to other tasks. If there are no
  4026. * other threads running on this CPU then this function will return.
  4027. */
  4028. SYSCALL_DEFINE0(sched_yield)
  4029. {
  4030. struct rq *rq = this_rq_lock();
  4031. schedstat_inc(rq, yld_count);
  4032. current->sched_class->yield_task(rq);
  4033. /*
  4034. * Since we are going to call schedule() anyway, there's
  4035. * no need to preempt or enable interrupts:
  4036. */
  4037. __release(rq->lock);
  4038. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4039. do_raw_spin_unlock(&rq->lock);
  4040. sched_preempt_enable_no_resched();
  4041. schedule();
  4042. return 0;
  4043. }
  4044. static inline int should_resched(void)
  4045. {
  4046. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4047. }
  4048. static void __cond_resched(void)
  4049. {
  4050. add_preempt_count(PREEMPT_ACTIVE);
  4051. __schedule();
  4052. sub_preempt_count(PREEMPT_ACTIVE);
  4053. }
  4054. int __sched _cond_resched(void)
  4055. {
  4056. if (should_resched()) {
  4057. __cond_resched();
  4058. return 1;
  4059. }
  4060. return 0;
  4061. }
  4062. EXPORT_SYMBOL(_cond_resched);
  4063. /*
  4064. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4065. * call schedule, and on return reacquire the lock.
  4066. *
  4067. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4068. * operations here to prevent schedule() from being called twice (once via
  4069. * spin_unlock(), once by hand).
  4070. */
  4071. int __cond_resched_lock(spinlock_t *lock)
  4072. {
  4073. int resched = should_resched();
  4074. int ret = 0;
  4075. lockdep_assert_held(lock);
  4076. if (spin_needbreak(lock) || resched) {
  4077. spin_unlock(lock);
  4078. if (resched)
  4079. __cond_resched();
  4080. else
  4081. cpu_relax();
  4082. ret = 1;
  4083. spin_lock(lock);
  4084. }
  4085. return ret;
  4086. }
  4087. EXPORT_SYMBOL(__cond_resched_lock);
  4088. int __sched __cond_resched_softirq(void)
  4089. {
  4090. BUG_ON(!in_softirq());
  4091. if (should_resched()) {
  4092. local_bh_enable();
  4093. __cond_resched();
  4094. local_bh_disable();
  4095. return 1;
  4096. }
  4097. return 0;
  4098. }
  4099. EXPORT_SYMBOL(__cond_resched_softirq);
  4100. /**
  4101. * yield - yield the current processor to other threads.
  4102. *
  4103. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  4104. *
  4105. * The scheduler is at all times free to pick the calling task as the most
  4106. * eligible task to run, if removing the yield() call from your code breaks
  4107. * it, its already broken.
  4108. *
  4109. * Typical broken usage is:
  4110. *
  4111. * while (!event)
  4112. * yield();
  4113. *
  4114. * where one assumes that yield() will let 'the other' process run that will
  4115. * make event true. If the current task is a SCHED_FIFO task that will never
  4116. * happen. Never use yield() as a progress guarantee!!
  4117. *
  4118. * If you want to use yield() to wait for something, use wait_event().
  4119. * If you want to use yield() to be 'nice' for others, use cond_resched().
  4120. * If you still want to use yield(), do not!
  4121. */
  4122. void __sched yield(void)
  4123. {
  4124. set_current_state(TASK_RUNNING);
  4125. sys_sched_yield();
  4126. }
  4127. EXPORT_SYMBOL(yield);
  4128. /**
  4129. * yield_to - yield the current processor to another thread in
  4130. * your thread group, or accelerate that thread toward the
  4131. * processor it's on.
  4132. * @p: target task
  4133. * @preempt: whether task preemption is allowed or not
  4134. *
  4135. * It's the caller's job to ensure that the target task struct
  4136. * can't go away on us before we can do any checks.
  4137. *
  4138. * Returns true if we indeed boosted the target task.
  4139. */
  4140. bool __sched yield_to(struct task_struct *p, bool preempt)
  4141. {
  4142. struct task_struct *curr = current;
  4143. struct rq *rq, *p_rq;
  4144. unsigned long flags;
  4145. bool yielded = 0;
  4146. local_irq_save(flags);
  4147. rq = this_rq();
  4148. again:
  4149. p_rq = task_rq(p);
  4150. double_rq_lock(rq, p_rq);
  4151. while (task_rq(p) != p_rq) {
  4152. double_rq_unlock(rq, p_rq);
  4153. goto again;
  4154. }
  4155. if (!curr->sched_class->yield_to_task)
  4156. goto out;
  4157. if (curr->sched_class != p->sched_class)
  4158. goto out;
  4159. if (task_running(p_rq, p) || p->state)
  4160. goto out;
  4161. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4162. if (yielded) {
  4163. schedstat_inc(rq, yld_count);
  4164. /*
  4165. * Make p's CPU reschedule; pick_next_entity takes care of
  4166. * fairness.
  4167. */
  4168. if (preempt && rq != p_rq)
  4169. resched_task(p_rq->curr);
  4170. } else {
  4171. /*
  4172. * We might have set it in task_yield_fair(), but are
  4173. * not going to schedule(), so don't want to skip
  4174. * the next update.
  4175. */
  4176. rq->skip_clock_update = 0;
  4177. }
  4178. out:
  4179. double_rq_unlock(rq, p_rq);
  4180. local_irq_restore(flags);
  4181. if (yielded)
  4182. schedule();
  4183. return yielded;
  4184. }
  4185. EXPORT_SYMBOL_GPL(yield_to);
  4186. /*
  4187. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4188. * that process accounting knows that this is a task in IO wait state.
  4189. */
  4190. void __sched io_schedule(void)
  4191. {
  4192. struct rq *rq = raw_rq();
  4193. delayacct_blkio_start();
  4194. atomic_inc(&rq->nr_iowait);
  4195. blk_flush_plug(current);
  4196. current->in_iowait = 1;
  4197. schedule();
  4198. current->in_iowait = 0;
  4199. atomic_dec(&rq->nr_iowait);
  4200. delayacct_blkio_end();
  4201. }
  4202. EXPORT_SYMBOL(io_schedule);
  4203. long __sched io_schedule_timeout(long timeout)
  4204. {
  4205. struct rq *rq = raw_rq();
  4206. long ret;
  4207. delayacct_blkio_start();
  4208. atomic_inc(&rq->nr_iowait);
  4209. blk_flush_plug(current);
  4210. current->in_iowait = 1;
  4211. ret = schedule_timeout(timeout);
  4212. current->in_iowait = 0;
  4213. atomic_dec(&rq->nr_iowait);
  4214. delayacct_blkio_end();
  4215. return ret;
  4216. }
  4217. /**
  4218. * sys_sched_get_priority_max - return maximum RT priority.
  4219. * @policy: scheduling class.
  4220. *
  4221. * this syscall returns the maximum rt_priority that can be used
  4222. * by a given scheduling class.
  4223. */
  4224. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4225. {
  4226. int ret = -EINVAL;
  4227. switch (policy) {
  4228. case SCHED_FIFO:
  4229. case SCHED_RR:
  4230. ret = MAX_USER_RT_PRIO-1;
  4231. break;
  4232. case SCHED_NORMAL:
  4233. case SCHED_BATCH:
  4234. case SCHED_IDLE:
  4235. ret = 0;
  4236. break;
  4237. }
  4238. return ret;
  4239. }
  4240. /**
  4241. * sys_sched_get_priority_min - return minimum RT priority.
  4242. * @policy: scheduling class.
  4243. *
  4244. * this syscall returns the minimum rt_priority that can be used
  4245. * by a given scheduling class.
  4246. */
  4247. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4248. {
  4249. int ret = -EINVAL;
  4250. switch (policy) {
  4251. case SCHED_FIFO:
  4252. case SCHED_RR:
  4253. ret = 1;
  4254. break;
  4255. case SCHED_NORMAL:
  4256. case SCHED_BATCH:
  4257. case SCHED_IDLE:
  4258. ret = 0;
  4259. }
  4260. return ret;
  4261. }
  4262. /**
  4263. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4264. * @pid: pid of the process.
  4265. * @interval: userspace pointer to the timeslice value.
  4266. *
  4267. * this syscall writes the default timeslice value of a given process
  4268. * into the user-space timespec buffer. A value of '0' means infinity.
  4269. */
  4270. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4271. struct timespec __user *, interval)
  4272. {
  4273. struct task_struct *p;
  4274. unsigned int time_slice;
  4275. unsigned long flags;
  4276. struct rq *rq;
  4277. int retval;
  4278. struct timespec t;
  4279. if (pid < 0)
  4280. return -EINVAL;
  4281. retval = -ESRCH;
  4282. rcu_read_lock();
  4283. p = find_process_by_pid(pid);
  4284. if (!p)
  4285. goto out_unlock;
  4286. retval = security_task_getscheduler(p);
  4287. if (retval)
  4288. goto out_unlock;
  4289. rq = task_rq_lock(p, &flags);
  4290. time_slice = p->sched_class->get_rr_interval(rq, p);
  4291. task_rq_unlock(rq, p, &flags);
  4292. rcu_read_unlock();
  4293. jiffies_to_timespec(time_slice, &t);
  4294. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4295. return retval;
  4296. out_unlock:
  4297. rcu_read_unlock();
  4298. return retval;
  4299. }
  4300. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4301. void sched_show_task(struct task_struct *p)
  4302. {
  4303. unsigned long free = 0;
  4304. unsigned state;
  4305. state = p->state ? __ffs(p->state) + 1 : 0;
  4306. printk(KERN_INFO "%-15.15s %c", p->comm,
  4307. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4308. #if BITS_PER_LONG == 32
  4309. if (state == TASK_RUNNING)
  4310. printk(KERN_CONT " running ");
  4311. else
  4312. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4313. #else
  4314. if (state == TASK_RUNNING)
  4315. printk(KERN_CONT " running task ");
  4316. else
  4317. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4318. #endif
  4319. #ifdef CONFIG_DEBUG_STACK_USAGE
  4320. free = stack_not_used(p);
  4321. #endif
  4322. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4323. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4324. (unsigned long)task_thread_info(p)->flags);
  4325. show_stack(p, NULL);
  4326. }
  4327. void show_state_filter(unsigned long state_filter)
  4328. {
  4329. struct task_struct *g, *p;
  4330. #if BITS_PER_LONG == 32
  4331. printk(KERN_INFO
  4332. " task PC stack pid father\n");
  4333. #else
  4334. printk(KERN_INFO
  4335. " task PC stack pid father\n");
  4336. #endif
  4337. rcu_read_lock();
  4338. do_each_thread(g, p) {
  4339. /*
  4340. * reset the NMI-timeout, listing all files on a slow
  4341. * console might take a lot of time:
  4342. */
  4343. touch_nmi_watchdog();
  4344. if (!state_filter || (p->state & state_filter))
  4345. sched_show_task(p);
  4346. } while_each_thread(g, p);
  4347. touch_all_softlockup_watchdogs();
  4348. #ifdef CONFIG_SCHED_DEBUG
  4349. sysrq_sched_debug_show();
  4350. #endif
  4351. rcu_read_unlock();
  4352. /*
  4353. * Only show locks if all tasks are dumped:
  4354. */
  4355. if (!state_filter)
  4356. debug_show_all_locks();
  4357. }
  4358. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4359. {
  4360. idle->sched_class = &idle_sched_class;
  4361. }
  4362. /**
  4363. * init_idle - set up an idle thread for a given CPU
  4364. * @idle: task in question
  4365. * @cpu: cpu the idle task belongs to
  4366. *
  4367. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4368. * flag, to make booting more robust.
  4369. */
  4370. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4371. {
  4372. struct rq *rq = cpu_rq(cpu);
  4373. unsigned long flags;
  4374. raw_spin_lock_irqsave(&rq->lock, flags);
  4375. __sched_fork(idle);
  4376. idle->state = TASK_RUNNING;
  4377. idle->se.exec_start = sched_clock();
  4378. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4379. /*
  4380. * We're having a chicken and egg problem, even though we are
  4381. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4382. * lockdep check in task_group() will fail.
  4383. *
  4384. * Similar case to sched_fork(). / Alternatively we could
  4385. * use task_rq_lock() here and obtain the other rq->lock.
  4386. *
  4387. * Silence PROVE_RCU
  4388. */
  4389. rcu_read_lock();
  4390. __set_task_cpu(idle, cpu);
  4391. rcu_read_unlock();
  4392. rq->curr = rq->idle = idle;
  4393. #if defined(CONFIG_SMP)
  4394. idle->on_cpu = 1;
  4395. #endif
  4396. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4397. /* Set the preempt count _outside_ the spinlocks! */
  4398. task_thread_info(idle)->preempt_count = 0;
  4399. /*
  4400. * The idle tasks have their own, simple scheduling class:
  4401. */
  4402. idle->sched_class = &idle_sched_class;
  4403. ftrace_graph_init_idle_task(idle, cpu);
  4404. #if defined(CONFIG_SMP)
  4405. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4406. #endif
  4407. }
  4408. #ifdef CONFIG_SMP
  4409. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4410. {
  4411. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4412. p->sched_class->set_cpus_allowed(p, new_mask);
  4413. cpumask_copy(&p->cpus_allowed, new_mask);
  4414. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4415. }
  4416. /*
  4417. * This is how migration works:
  4418. *
  4419. * 1) we invoke migration_cpu_stop() on the target CPU using
  4420. * stop_one_cpu().
  4421. * 2) stopper starts to run (implicitly forcing the migrated thread
  4422. * off the CPU)
  4423. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4424. * 4) if it's in the wrong runqueue then the migration thread removes
  4425. * it and puts it into the right queue.
  4426. * 5) stopper completes and stop_one_cpu() returns and the migration
  4427. * is done.
  4428. */
  4429. /*
  4430. * Change a given task's CPU affinity. Migrate the thread to a
  4431. * proper CPU and schedule it away if the CPU it's executing on
  4432. * is removed from the allowed bitmask.
  4433. *
  4434. * NOTE: the caller must have a valid reference to the task, the
  4435. * task must not exit() & deallocate itself prematurely. The
  4436. * call is not atomic; no spinlocks may be held.
  4437. */
  4438. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4439. {
  4440. unsigned long flags;
  4441. struct rq *rq;
  4442. unsigned int dest_cpu;
  4443. int ret = 0;
  4444. rq = task_rq_lock(p, &flags);
  4445. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4446. goto out;
  4447. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4448. ret = -EINVAL;
  4449. goto out;
  4450. }
  4451. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4452. ret = -EINVAL;
  4453. goto out;
  4454. }
  4455. do_set_cpus_allowed(p, new_mask);
  4456. /* Can the task run on the task's current CPU? If so, we're done */
  4457. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4458. goto out;
  4459. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4460. if (p->on_rq) {
  4461. struct migration_arg arg = { p, dest_cpu };
  4462. /* Need help from migration thread: drop lock and wait. */
  4463. task_rq_unlock(rq, p, &flags);
  4464. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4465. tlb_migrate_finish(p->mm);
  4466. return 0;
  4467. }
  4468. out:
  4469. task_rq_unlock(rq, p, &flags);
  4470. return ret;
  4471. }
  4472. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4473. /*
  4474. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4475. * this because either it can't run here any more (set_cpus_allowed()
  4476. * away from this CPU, or CPU going down), or because we're
  4477. * attempting to rebalance this task on exec (sched_exec).
  4478. *
  4479. * So we race with normal scheduler movements, but that's OK, as long
  4480. * as the task is no longer on this CPU.
  4481. *
  4482. * Returns non-zero if task was successfully migrated.
  4483. */
  4484. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4485. {
  4486. struct rq *rq_dest, *rq_src;
  4487. int ret = 0;
  4488. if (unlikely(!cpu_active(dest_cpu)))
  4489. return ret;
  4490. rq_src = cpu_rq(src_cpu);
  4491. rq_dest = cpu_rq(dest_cpu);
  4492. raw_spin_lock(&p->pi_lock);
  4493. double_rq_lock(rq_src, rq_dest);
  4494. /* Already moved. */
  4495. if (task_cpu(p) != src_cpu)
  4496. goto done;
  4497. /* Affinity changed (again). */
  4498. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4499. goto fail;
  4500. /*
  4501. * If we're not on a rq, the next wake-up will ensure we're
  4502. * placed properly.
  4503. */
  4504. if (p->on_rq) {
  4505. dequeue_task(rq_src, p, 0);
  4506. set_task_cpu(p, dest_cpu);
  4507. enqueue_task(rq_dest, p, 0);
  4508. check_preempt_curr(rq_dest, p, 0);
  4509. }
  4510. done:
  4511. ret = 1;
  4512. fail:
  4513. double_rq_unlock(rq_src, rq_dest);
  4514. raw_spin_unlock(&p->pi_lock);
  4515. return ret;
  4516. }
  4517. /*
  4518. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4519. * and performs thread migration by bumping thread off CPU then
  4520. * 'pushing' onto another runqueue.
  4521. */
  4522. static int migration_cpu_stop(void *data)
  4523. {
  4524. struct migration_arg *arg = data;
  4525. /*
  4526. * The original target cpu might have gone down and we might
  4527. * be on another cpu but it doesn't matter.
  4528. */
  4529. local_irq_disable();
  4530. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4531. local_irq_enable();
  4532. return 0;
  4533. }
  4534. #ifdef CONFIG_HOTPLUG_CPU
  4535. /*
  4536. * Ensures that the idle task is using init_mm right before its cpu goes
  4537. * offline.
  4538. */
  4539. void idle_task_exit(void)
  4540. {
  4541. struct mm_struct *mm = current->active_mm;
  4542. BUG_ON(cpu_online(smp_processor_id()));
  4543. if (mm != &init_mm)
  4544. switch_mm(mm, &init_mm, current);
  4545. mmdrop(mm);
  4546. }
  4547. /*
  4548. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4549. * we might have. Assumes we're called after migrate_tasks() so that the
  4550. * nr_active count is stable.
  4551. *
  4552. * Also see the comment "Global load-average calculations".
  4553. */
  4554. static void calc_load_migrate(struct rq *rq)
  4555. {
  4556. long delta = calc_load_fold_active(rq);
  4557. if (delta)
  4558. atomic_long_add(delta, &calc_load_tasks);
  4559. }
  4560. /*
  4561. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4562. * try_to_wake_up()->select_task_rq().
  4563. *
  4564. * Called with rq->lock held even though we'er in stop_machine() and
  4565. * there's no concurrency possible, we hold the required locks anyway
  4566. * because of lock validation efforts.
  4567. */
  4568. static void migrate_tasks(unsigned int dead_cpu)
  4569. {
  4570. struct rq *rq = cpu_rq(dead_cpu);
  4571. struct task_struct *next, *stop = rq->stop;
  4572. int dest_cpu;
  4573. /*
  4574. * Fudge the rq selection such that the below task selection loop
  4575. * doesn't get stuck on the currently eligible stop task.
  4576. *
  4577. * We're currently inside stop_machine() and the rq is either stuck
  4578. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4579. * either way we should never end up calling schedule() until we're
  4580. * done here.
  4581. */
  4582. rq->stop = NULL;
  4583. for ( ; ; ) {
  4584. /*
  4585. * There's this thread running, bail when that's the only
  4586. * remaining thread.
  4587. */
  4588. if (rq->nr_running == 1)
  4589. break;
  4590. next = pick_next_task(rq);
  4591. BUG_ON(!next);
  4592. next->sched_class->put_prev_task(rq, next);
  4593. /* Find suitable destination for @next, with force if needed. */
  4594. dest_cpu = select_fallback_rq(dead_cpu, next);
  4595. raw_spin_unlock(&rq->lock);
  4596. __migrate_task(next, dead_cpu, dest_cpu);
  4597. raw_spin_lock(&rq->lock);
  4598. }
  4599. rq->stop = stop;
  4600. }
  4601. #endif /* CONFIG_HOTPLUG_CPU */
  4602. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4603. static struct ctl_table sd_ctl_dir[] = {
  4604. {
  4605. .procname = "sched_domain",
  4606. .mode = 0555,
  4607. },
  4608. {}
  4609. };
  4610. static struct ctl_table sd_ctl_root[] = {
  4611. {
  4612. .procname = "kernel",
  4613. .mode = 0555,
  4614. .child = sd_ctl_dir,
  4615. },
  4616. {}
  4617. };
  4618. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4619. {
  4620. struct ctl_table *entry =
  4621. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4622. return entry;
  4623. }
  4624. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4625. {
  4626. struct ctl_table *entry;
  4627. /*
  4628. * In the intermediate directories, both the child directory and
  4629. * procname are dynamically allocated and could fail but the mode
  4630. * will always be set. In the lowest directory the names are
  4631. * static strings and all have proc handlers.
  4632. */
  4633. for (entry = *tablep; entry->mode; entry++) {
  4634. if (entry->child)
  4635. sd_free_ctl_entry(&entry->child);
  4636. if (entry->proc_handler == NULL)
  4637. kfree(entry->procname);
  4638. }
  4639. kfree(*tablep);
  4640. *tablep = NULL;
  4641. }
  4642. static void
  4643. set_table_entry(struct ctl_table *entry,
  4644. const char *procname, void *data, int maxlen,
  4645. umode_t mode, proc_handler *proc_handler)
  4646. {
  4647. entry->procname = procname;
  4648. entry->data = data;
  4649. entry->maxlen = maxlen;
  4650. entry->mode = mode;
  4651. entry->proc_handler = proc_handler;
  4652. }
  4653. static struct ctl_table *
  4654. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4655. {
  4656. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4657. if (table == NULL)
  4658. return NULL;
  4659. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4660. sizeof(long), 0644, proc_doulongvec_minmax);
  4661. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4662. sizeof(long), 0644, proc_doulongvec_minmax);
  4663. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4664. sizeof(int), 0644, proc_dointvec_minmax);
  4665. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4666. sizeof(int), 0644, proc_dointvec_minmax);
  4667. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4668. sizeof(int), 0644, proc_dointvec_minmax);
  4669. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4670. sizeof(int), 0644, proc_dointvec_minmax);
  4671. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4672. sizeof(int), 0644, proc_dointvec_minmax);
  4673. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4674. sizeof(int), 0644, proc_dointvec_minmax);
  4675. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4676. sizeof(int), 0644, proc_dointvec_minmax);
  4677. set_table_entry(&table[9], "cache_nice_tries",
  4678. &sd->cache_nice_tries,
  4679. sizeof(int), 0644, proc_dointvec_minmax);
  4680. set_table_entry(&table[10], "flags", &sd->flags,
  4681. sizeof(int), 0644, proc_dointvec_minmax);
  4682. set_table_entry(&table[11], "name", sd->name,
  4683. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4684. /* &table[12] is terminator */
  4685. return table;
  4686. }
  4687. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4688. {
  4689. struct ctl_table *entry, *table;
  4690. struct sched_domain *sd;
  4691. int domain_num = 0, i;
  4692. char buf[32];
  4693. for_each_domain(cpu, sd)
  4694. domain_num++;
  4695. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4696. if (table == NULL)
  4697. return NULL;
  4698. i = 0;
  4699. for_each_domain(cpu, sd) {
  4700. snprintf(buf, 32, "domain%d", i);
  4701. entry->procname = kstrdup(buf, GFP_KERNEL);
  4702. entry->mode = 0555;
  4703. entry->child = sd_alloc_ctl_domain_table(sd);
  4704. entry++;
  4705. i++;
  4706. }
  4707. return table;
  4708. }
  4709. static struct ctl_table_header *sd_sysctl_header;
  4710. static void register_sched_domain_sysctl(void)
  4711. {
  4712. int i, cpu_num = num_possible_cpus();
  4713. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4714. char buf[32];
  4715. WARN_ON(sd_ctl_dir[0].child);
  4716. sd_ctl_dir[0].child = entry;
  4717. if (entry == NULL)
  4718. return;
  4719. for_each_possible_cpu(i) {
  4720. snprintf(buf, 32, "cpu%d", i);
  4721. entry->procname = kstrdup(buf, GFP_KERNEL);
  4722. entry->mode = 0555;
  4723. entry->child = sd_alloc_ctl_cpu_table(i);
  4724. entry++;
  4725. }
  4726. WARN_ON(sd_sysctl_header);
  4727. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4728. }
  4729. /* may be called multiple times per register */
  4730. static void unregister_sched_domain_sysctl(void)
  4731. {
  4732. if (sd_sysctl_header)
  4733. unregister_sysctl_table(sd_sysctl_header);
  4734. sd_sysctl_header = NULL;
  4735. if (sd_ctl_dir[0].child)
  4736. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4737. }
  4738. #else
  4739. static void register_sched_domain_sysctl(void)
  4740. {
  4741. }
  4742. static void unregister_sched_domain_sysctl(void)
  4743. {
  4744. }
  4745. #endif
  4746. static void set_rq_online(struct rq *rq)
  4747. {
  4748. if (!rq->online) {
  4749. const struct sched_class *class;
  4750. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4751. rq->online = 1;
  4752. for_each_class(class) {
  4753. if (class->rq_online)
  4754. class->rq_online(rq);
  4755. }
  4756. }
  4757. }
  4758. static void set_rq_offline(struct rq *rq)
  4759. {
  4760. if (rq->online) {
  4761. const struct sched_class *class;
  4762. for_each_class(class) {
  4763. if (class->rq_offline)
  4764. class->rq_offline(rq);
  4765. }
  4766. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4767. rq->online = 0;
  4768. }
  4769. }
  4770. /*
  4771. * migration_call - callback that gets triggered when a CPU is added.
  4772. * Here we can start up the necessary migration thread for the new CPU.
  4773. */
  4774. static int __cpuinit
  4775. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4776. {
  4777. int cpu = (long)hcpu;
  4778. unsigned long flags;
  4779. struct rq *rq = cpu_rq(cpu);
  4780. switch (action & ~CPU_TASKS_FROZEN) {
  4781. case CPU_UP_PREPARE:
  4782. rq->calc_load_update = calc_load_update;
  4783. break;
  4784. case CPU_ONLINE:
  4785. /* Update our root-domain */
  4786. raw_spin_lock_irqsave(&rq->lock, flags);
  4787. if (rq->rd) {
  4788. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4789. set_rq_online(rq);
  4790. }
  4791. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4792. break;
  4793. #ifdef CONFIG_HOTPLUG_CPU
  4794. case CPU_DYING:
  4795. sched_ttwu_pending();
  4796. /* Update our root-domain */
  4797. raw_spin_lock_irqsave(&rq->lock, flags);
  4798. if (rq->rd) {
  4799. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4800. set_rq_offline(rq);
  4801. }
  4802. migrate_tasks(cpu);
  4803. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4804. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4805. calc_load_migrate(rq);
  4806. break;
  4807. #endif
  4808. }
  4809. update_max_interval();
  4810. return NOTIFY_OK;
  4811. }
  4812. /*
  4813. * Register at high priority so that task migration (migrate_all_tasks)
  4814. * happens before everything else. This has to be lower priority than
  4815. * the notifier in the perf_event subsystem, though.
  4816. */
  4817. static struct notifier_block __cpuinitdata migration_notifier = {
  4818. .notifier_call = migration_call,
  4819. .priority = CPU_PRI_MIGRATION,
  4820. };
  4821. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4822. unsigned long action, void *hcpu)
  4823. {
  4824. switch (action & ~CPU_TASKS_FROZEN) {
  4825. case CPU_STARTING:
  4826. case CPU_DOWN_FAILED:
  4827. set_cpu_active((long)hcpu, true);
  4828. return NOTIFY_OK;
  4829. default:
  4830. return NOTIFY_DONE;
  4831. }
  4832. }
  4833. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4834. unsigned long action, void *hcpu)
  4835. {
  4836. switch (action & ~CPU_TASKS_FROZEN) {
  4837. case CPU_DOWN_PREPARE:
  4838. set_cpu_active((long)hcpu, false);
  4839. return NOTIFY_OK;
  4840. default:
  4841. return NOTIFY_DONE;
  4842. }
  4843. }
  4844. static int __init migration_init(void)
  4845. {
  4846. void *cpu = (void *)(long)smp_processor_id();
  4847. int err;
  4848. /* Initialize migration for the boot CPU */
  4849. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4850. BUG_ON(err == NOTIFY_BAD);
  4851. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4852. register_cpu_notifier(&migration_notifier);
  4853. /* Register cpu active notifiers */
  4854. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4855. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4856. return 0;
  4857. }
  4858. early_initcall(migration_init);
  4859. #endif
  4860. #ifdef CONFIG_SMP
  4861. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4862. #ifdef CONFIG_SCHED_DEBUG
  4863. static __read_mostly int sched_debug_enabled;
  4864. static int __init sched_debug_setup(char *str)
  4865. {
  4866. sched_debug_enabled = 1;
  4867. return 0;
  4868. }
  4869. early_param("sched_debug", sched_debug_setup);
  4870. static inline bool sched_debug(void)
  4871. {
  4872. return sched_debug_enabled;
  4873. }
  4874. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4875. struct cpumask *groupmask)
  4876. {
  4877. struct sched_group *group = sd->groups;
  4878. char str[256];
  4879. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4880. cpumask_clear(groupmask);
  4881. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4882. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4883. printk("does not load-balance\n");
  4884. if (sd->parent)
  4885. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4886. " has parent");
  4887. return -1;
  4888. }
  4889. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4890. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4891. printk(KERN_ERR "ERROR: domain->span does not contain "
  4892. "CPU%d\n", cpu);
  4893. }
  4894. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4895. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4896. " CPU%d\n", cpu);
  4897. }
  4898. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4899. do {
  4900. if (!group) {
  4901. printk("\n");
  4902. printk(KERN_ERR "ERROR: group is NULL\n");
  4903. break;
  4904. }
  4905. /*
  4906. * Even though we initialize ->power to something semi-sane,
  4907. * we leave power_orig unset. This allows us to detect if
  4908. * domain iteration is still funny without causing /0 traps.
  4909. */
  4910. if (!group->sgp->power_orig) {
  4911. printk(KERN_CONT "\n");
  4912. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4913. "set\n");
  4914. break;
  4915. }
  4916. if (!cpumask_weight(sched_group_cpus(group))) {
  4917. printk(KERN_CONT "\n");
  4918. printk(KERN_ERR "ERROR: empty group\n");
  4919. break;
  4920. }
  4921. if (!(sd->flags & SD_OVERLAP) &&
  4922. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4923. printk(KERN_CONT "\n");
  4924. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4925. break;
  4926. }
  4927. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4928. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4929. printk(KERN_CONT " %s", str);
  4930. if (group->sgp->power != SCHED_POWER_SCALE) {
  4931. printk(KERN_CONT " (cpu_power = %d)",
  4932. group->sgp->power);
  4933. }
  4934. group = group->next;
  4935. } while (group != sd->groups);
  4936. printk(KERN_CONT "\n");
  4937. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4938. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4939. if (sd->parent &&
  4940. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4941. printk(KERN_ERR "ERROR: parent span is not a superset "
  4942. "of domain->span\n");
  4943. return 0;
  4944. }
  4945. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4946. {
  4947. int level = 0;
  4948. if (!sched_debug_enabled)
  4949. return;
  4950. if (!sd) {
  4951. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4952. return;
  4953. }
  4954. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4955. for (;;) {
  4956. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4957. break;
  4958. level++;
  4959. sd = sd->parent;
  4960. if (!sd)
  4961. break;
  4962. }
  4963. }
  4964. #else /* !CONFIG_SCHED_DEBUG */
  4965. # define sched_domain_debug(sd, cpu) do { } while (0)
  4966. static inline bool sched_debug(void)
  4967. {
  4968. return false;
  4969. }
  4970. #endif /* CONFIG_SCHED_DEBUG */
  4971. static int sd_degenerate(struct sched_domain *sd)
  4972. {
  4973. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4974. return 1;
  4975. /* Following flags need at least 2 groups */
  4976. if (sd->flags & (SD_LOAD_BALANCE |
  4977. SD_BALANCE_NEWIDLE |
  4978. SD_BALANCE_FORK |
  4979. SD_BALANCE_EXEC |
  4980. SD_SHARE_CPUPOWER |
  4981. SD_SHARE_PKG_RESOURCES)) {
  4982. if (sd->groups != sd->groups->next)
  4983. return 0;
  4984. }
  4985. /* Following flags don't use groups */
  4986. if (sd->flags & (SD_WAKE_AFFINE))
  4987. return 0;
  4988. return 1;
  4989. }
  4990. static int
  4991. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4992. {
  4993. unsigned long cflags = sd->flags, pflags = parent->flags;
  4994. if (sd_degenerate(parent))
  4995. return 1;
  4996. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4997. return 0;
  4998. /* Flags needing groups don't count if only 1 group in parent */
  4999. if (parent->groups == parent->groups->next) {
  5000. pflags &= ~(SD_LOAD_BALANCE |
  5001. SD_BALANCE_NEWIDLE |
  5002. SD_BALANCE_FORK |
  5003. SD_BALANCE_EXEC |
  5004. SD_SHARE_CPUPOWER |
  5005. SD_SHARE_PKG_RESOURCES);
  5006. if (nr_node_ids == 1)
  5007. pflags &= ~SD_SERIALIZE;
  5008. }
  5009. if (~cflags & pflags)
  5010. return 0;
  5011. return 1;
  5012. }
  5013. static void free_rootdomain(struct rcu_head *rcu)
  5014. {
  5015. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5016. cpupri_cleanup(&rd->cpupri);
  5017. free_cpumask_var(rd->rto_mask);
  5018. free_cpumask_var(rd->online);
  5019. free_cpumask_var(rd->span);
  5020. kfree(rd);
  5021. }
  5022. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5023. {
  5024. struct root_domain *old_rd = NULL;
  5025. unsigned long flags;
  5026. raw_spin_lock_irqsave(&rq->lock, flags);
  5027. if (rq->rd) {
  5028. old_rd = rq->rd;
  5029. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5030. set_rq_offline(rq);
  5031. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5032. /*
  5033. * If we dont want to free the old_rt yet then
  5034. * set old_rd to NULL to skip the freeing later
  5035. * in this function:
  5036. */
  5037. if (!atomic_dec_and_test(&old_rd->refcount))
  5038. old_rd = NULL;
  5039. }
  5040. atomic_inc(&rd->refcount);
  5041. rq->rd = rd;
  5042. cpumask_set_cpu(rq->cpu, rd->span);
  5043. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5044. set_rq_online(rq);
  5045. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5046. if (old_rd)
  5047. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5048. }
  5049. static int init_rootdomain(struct root_domain *rd)
  5050. {
  5051. memset(rd, 0, sizeof(*rd));
  5052. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5053. goto out;
  5054. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5055. goto free_span;
  5056. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5057. goto free_online;
  5058. if (cpupri_init(&rd->cpupri) != 0)
  5059. goto free_rto_mask;
  5060. return 0;
  5061. free_rto_mask:
  5062. free_cpumask_var(rd->rto_mask);
  5063. free_online:
  5064. free_cpumask_var(rd->online);
  5065. free_span:
  5066. free_cpumask_var(rd->span);
  5067. out:
  5068. return -ENOMEM;
  5069. }
  5070. /*
  5071. * By default the system creates a single root-domain with all cpus as
  5072. * members (mimicking the global state we have today).
  5073. */
  5074. struct root_domain def_root_domain;
  5075. static void init_defrootdomain(void)
  5076. {
  5077. init_rootdomain(&def_root_domain);
  5078. atomic_set(&def_root_domain.refcount, 1);
  5079. }
  5080. static struct root_domain *alloc_rootdomain(void)
  5081. {
  5082. struct root_domain *rd;
  5083. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5084. if (!rd)
  5085. return NULL;
  5086. if (init_rootdomain(rd) != 0) {
  5087. kfree(rd);
  5088. return NULL;
  5089. }
  5090. return rd;
  5091. }
  5092. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5093. {
  5094. struct sched_group *tmp, *first;
  5095. if (!sg)
  5096. return;
  5097. first = sg;
  5098. do {
  5099. tmp = sg->next;
  5100. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5101. kfree(sg->sgp);
  5102. kfree(sg);
  5103. sg = tmp;
  5104. } while (sg != first);
  5105. }
  5106. static void free_sched_domain(struct rcu_head *rcu)
  5107. {
  5108. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5109. /*
  5110. * If its an overlapping domain it has private groups, iterate and
  5111. * nuke them all.
  5112. */
  5113. if (sd->flags & SD_OVERLAP) {
  5114. free_sched_groups(sd->groups, 1);
  5115. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5116. kfree(sd->groups->sgp);
  5117. kfree(sd->groups);
  5118. }
  5119. kfree(sd);
  5120. }
  5121. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5122. {
  5123. call_rcu(&sd->rcu, free_sched_domain);
  5124. }
  5125. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5126. {
  5127. for (; sd; sd = sd->parent)
  5128. destroy_sched_domain(sd, cpu);
  5129. }
  5130. /*
  5131. * Keep a special pointer to the highest sched_domain that has
  5132. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  5133. * allows us to avoid some pointer chasing select_idle_sibling().
  5134. *
  5135. * Also keep a unique ID per domain (we use the first cpu number in
  5136. * the cpumask of the domain), this allows us to quickly tell if
  5137. * two cpus are in the same cache domain, see cpus_share_cache().
  5138. */
  5139. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  5140. DEFINE_PER_CPU(int, sd_llc_id);
  5141. static void update_top_cache_domain(int cpu)
  5142. {
  5143. struct sched_domain *sd;
  5144. int id = cpu;
  5145. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  5146. if (sd)
  5147. id = cpumask_first(sched_domain_span(sd));
  5148. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  5149. per_cpu(sd_llc_id, cpu) = id;
  5150. }
  5151. /*
  5152. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5153. * hold the hotplug lock.
  5154. */
  5155. static void
  5156. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5157. {
  5158. struct rq *rq = cpu_rq(cpu);
  5159. struct sched_domain *tmp;
  5160. /* Remove the sched domains which do not contribute to scheduling. */
  5161. for (tmp = sd; tmp; ) {
  5162. struct sched_domain *parent = tmp->parent;
  5163. if (!parent)
  5164. break;
  5165. if (sd_parent_degenerate(tmp, parent)) {
  5166. tmp->parent = parent->parent;
  5167. if (parent->parent)
  5168. parent->parent->child = tmp;
  5169. destroy_sched_domain(parent, cpu);
  5170. } else
  5171. tmp = tmp->parent;
  5172. }
  5173. if (sd && sd_degenerate(sd)) {
  5174. tmp = sd;
  5175. sd = sd->parent;
  5176. destroy_sched_domain(tmp, cpu);
  5177. if (sd)
  5178. sd->child = NULL;
  5179. }
  5180. sched_domain_debug(sd, cpu);
  5181. rq_attach_root(rq, rd);
  5182. tmp = rq->sd;
  5183. rcu_assign_pointer(rq->sd, sd);
  5184. destroy_sched_domains(tmp, cpu);
  5185. update_top_cache_domain(cpu);
  5186. }
  5187. /* cpus with isolated domains */
  5188. static cpumask_var_t cpu_isolated_map;
  5189. /* Setup the mask of cpus configured for isolated domains */
  5190. static int __init isolated_cpu_setup(char *str)
  5191. {
  5192. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5193. cpulist_parse(str, cpu_isolated_map);
  5194. return 1;
  5195. }
  5196. __setup("isolcpus=", isolated_cpu_setup);
  5197. static const struct cpumask *cpu_cpu_mask(int cpu)
  5198. {
  5199. return cpumask_of_node(cpu_to_node(cpu));
  5200. }
  5201. struct sd_data {
  5202. struct sched_domain **__percpu sd;
  5203. struct sched_group **__percpu sg;
  5204. struct sched_group_power **__percpu sgp;
  5205. };
  5206. struct s_data {
  5207. struct sched_domain ** __percpu sd;
  5208. struct root_domain *rd;
  5209. };
  5210. enum s_alloc {
  5211. sa_rootdomain,
  5212. sa_sd,
  5213. sa_sd_storage,
  5214. sa_none,
  5215. };
  5216. struct sched_domain_topology_level;
  5217. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5218. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5219. #define SDTL_OVERLAP 0x01
  5220. struct sched_domain_topology_level {
  5221. sched_domain_init_f init;
  5222. sched_domain_mask_f mask;
  5223. int flags;
  5224. int numa_level;
  5225. struct sd_data data;
  5226. };
  5227. /*
  5228. * Build an iteration mask that can exclude certain CPUs from the upwards
  5229. * domain traversal.
  5230. *
  5231. * Asymmetric node setups can result in situations where the domain tree is of
  5232. * unequal depth, make sure to skip domains that already cover the entire
  5233. * range.
  5234. *
  5235. * In that case build_sched_domains() will have terminated the iteration early
  5236. * and our sibling sd spans will be empty. Domains should always include the
  5237. * cpu they're built on, so check that.
  5238. *
  5239. */
  5240. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5241. {
  5242. const struct cpumask *span = sched_domain_span(sd);
  5243. struct sd_data *sdd = sd->private;
  5244. struct sched_domain *sibling;
  5245. int i;
  5246. for_each_cpu(i, span) {
  5247. sibling = *per_cpu_ptr(sdd->sd, i);
  5248. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5249. continue;
  5250. cpumask_set_cpu(i, sched_group_mask(sg));
  5251. }
  5252. }
  5253. /*
  5254. * Return the canonical balance cpu for this group, this is the first cpu
  5255. * of this group that's also in the iteration mask.
  5256. */
  5257. int group_balance_cpu(struct sched_group *sg)
  5258. {
  5259. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5260. }
  5261. static int
  5262. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5263. {
  5264. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5265. const struct cpumask *span = sched_domain_span(sd);
  5266. struct cpumask *covered = sched_domains_tmpmask;
  5267. struct sd_data *sdd = sd->private;
  5268. struct sched_domain *child;
  5269. int i;
  5270. cpumask_clear(covered);
  5271. for_each_cpu(i, span) {
  5272. struct cpumask *sg_span;
  5273. if (cpumask_test_cpu(i, covered))
  5274. continue;
  5275. child = *per_cpu_ptr(sdd->sd, i);
  5276. /* See the comment near build_group_mask(). */
  5277. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  5278. continue;
  5279. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5280. GFP_KERNEL, cpu_to_node(cpu));
  5281. if (!sg)
  5282. goto fail;
  5283. sg_span = sched_group_cpus(sg);
  5284. if (child->child) {
  5285. child = child->child;
  5286. cpumask_copy(sg_span, sched_domain_span(child));
  5287. } else
  5288. cpumask_set_cpu(i, sg_span);
  5289. cpumask_or(covered, covered, sg_span);
  5290. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  5291. if (atomic_inc_return(&sg->sgp->ref) == 1)
  5292. build_group_mask(sd, sg);
  5293. /*
  5294. * Initialize sgp->power such that even if we mess up the
  5295. * domains and no possible iteration will get us here, we won't
  5296. * die on a /0 trap.
  5297. */
  5298. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  5299. /*
  5300. * Make sure the first group of this domain contains the
  5301. * canonical balance cpu. Otherwise the sched_domain iteration
  5302. * breaks. See update_sg_lb_stats().
  5303. */
  5304. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5305. group_balance_cpu(sg) == cpu)
  5306. groups = sg;
  5307. if (!first)
  5308. first = sg;
  5309. if (last)
  5310. last->next = sg;
  5311. last = sg;
  5312. last->next = first;
  5313. }
  5314. sd->groups = groups;
  5315. return 0;
  5316. fail:
  5317. free_sched_groups(first, 0);
  5318. return -ENOMEM;
  5319. }
  5320. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5321. {
  5322. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5323. struct sched_domain *child = sd->child;
  5324. if (child)
  5325. cpu = cpumask_first(sched_domain_span(child));
  5326. if (sg) {
  5327. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5328. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5329. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5330. }
  5331. return cpu;
  5332. }
  5333. /*
  5334. * build_sched_groups will build a circular linked list of the groups
  5335. * covered by the given span, and will set each group's ->cpumask correctly,
  5336. * and ->cpu_power to 0.
  5337. *
  5338. * Assumes the sched_domain tree is fully constructed
  5339. */
  5340. static int
  5341. build_sched_groups(struct sched_domain *sd, int cpu)
  5342. {
  5343. struct sched_group *first = NULL, *last = NULL;
  5344. struct sd_data *sdd = sd->private;
  5345. const struct cpumask *span = sched_domain_span(sd);
  5346. struct cpumask *covered;
  5347. int i;
  5348. get_group(cpu, sdd, &sd->groups);
  5349. atomic_inc(&sd->groups->ref);
  5350. if (cpu != cpumask_first(sched_domain_span(sd)))
  5351. return 0;
  5352. lockdep_assert_held(&sched_domains_mutex);
  5353. covered = sched_domains_tmpmask;
  5354. cpumask_clear(covered);
  5355. for_each_cpu(i, span) {
  5356. struct sched_group *sg;
  5357. int group = get_group(i, sdd, &sg);
  5358. int j;
  5359. if (cpumask_test_cpu(i, covered))
  5360. continue;
  5361. cpumask_clear(sched_group_cpus(sg));
  5362. sg->sgp->power = 0;
  5363. cpumask_setall(sched_group_mask(sg));
  5364. for_each_cpu(j, span) {
  5365. if (get_group(j, sdd, NULL) != group)
  5366. continue;
  5367. cpumask_set_cpu(j, covered);
  5368. cpumask_set_cpu(j, sched_group_cpus(sg));
  5369. }
  5370. if (!first)
  5371. first = sg;
  5372. if (last)
  5373. last->next = sg;
  5374. last = sg;
  5375. }
  5376. last->next = first;
  5377. return 0;
  5378. }
  5379. /*
  5380. * Initialize sched groups cpu_power.
  5381. *
  5382. * cpu_power indicates the capacity of sched group, which is used while
  5383. * distributing the load between different sched groups in a sched domain.
  5384. * Typically cpu_power for all the groups in a sched domain will be same unless
  5385. * there are asymmetries in the topology. If there are asymmetries, group
  5386. * having more cpu_power will pickup more load compared to the group having
  5387. * less cpu_power.
  5388. */
  5389. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5390. {
  5391. struct sched_group *sg = sd->groups;
  5392. WARN_ON(!sd || !sg);
  5393. do {
  5394. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5395. sg = sg->next;
  5396. } while (sg != sd->groups);
  5397. if (cpu != group_balance_cpu(sg))
  5398. return;
  5399. update_group_power(sd, cpu);
  5400. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5401. }
  5402. int __weak arch_sd_sibling_asym_packing(void)
  5403. {
  5404. return 0*SD_ASYM_PACKING;
  5405. }
  5406. /*
  5407. * Initializers for schedule domains
  5408. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5409. */
  5410. #ifdef CONFIG_SCHED_DEBUG
  5411. # define SD_INIT_NAME(sd, type) sd->name = #type
  5412. #else
  5413. # define SD_INIT_NAME(sd, type) do { } while (0)
  5414. #endif
  5415. #define SD_INIT_FUNC(type) \
  5416. static noinline struct sched_domain * \
  5417. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5418. { \
  5419. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5420. *sd = SD_##type##_INIT; \
  5421. SD_INIT_NAME(sd, type); \
  5422. sd->private = &tl->data; \
  5423. return sd; \
  5424. }
  5425. SD_INIT_FUNC(CPU)
  5426. #ifdef CONFIG_SCHED_SMT
  5427. SD_INIT_FUNC(SIBLING)
  5428. #endif
  5429. #ifdef CONFIG_SCHED_MC
  5430. SD_INIT_FUNC(MC)
  5431. #endif
  5432. #ifdef CONFIG_SCHED_BOOK
  5433. SD_INIT_FUNC(BOOK)
  5434. #endif
  5435. static int default_relax_domain_level = -1;
  5436. int sched_domain_level_max;
  5437. static int __init setup_relax_domain_level(char *str)
  5438. {
  5439. if (kstrtoint(str, 0, &default_relax_domain_level))
  5440. pr_warn("Unable to set relax_domain_level\n");
  5441. return 1;
  5442. }
  5443. __setup("relax_domain_level=", setup_relax_domain_level);
  5444. static void set_domain_attribute(struct sched_domain *sd,
  5445. struct sched_domain_attr *attr)
  5446. {
  5447. int request;
  5448. if (!attr || attr->relax_domain_level < 0) {
  5449. if (default_relax_domain_level < 0)
  5450. return;
  5451. else
  5452. request = default_relax_domain_level;
  5453. } else
  5454. request = attr->relax_domain_level;
  5455. if (request < sd->level) {
  5456. /* turn off idle balance on this domain */
  5457. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5458. } else {
  5459. /* turn on idle balance on this domain */
  5460. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5461. }
  5462. }
  5463. static void __sdt_free(const struct cpumask *cpu_map);
  5464. static int __sdt_alloc(const struct cpumask *cpu_map);
  5465. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5466. const struct cpumask *cpu_map)
  5467. {
  5468. switch (what) {
  5469. case sa_rootdomain:
  5470. if (!atomic_read(&d->rd->refcount))
  5471. free_rootdomain(&d->rd->rcu); /* fall through */
  5472. case sa_sd:
  5473. free_percpu(d->sd); /* fall through */
  5474. case sa_sd_storage:
  5475. __sdt_free(cpu_map); /* fall through */
  5476. case sa_none:
  5477. break;
  5478. }
  5479. }
  5480. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5481. const struct cpumask *cpu_map)
  5482. {
  5483. memset(d, 0, sizeof(*d));
  5484. if (__sdt_alloc(cpu_map))
  5485. return sa_sd_storage;
  5486. d->sd = alloc_percpu(struct sched_domain *);
  5487. if (!d->sd)
  5488. return sa_sd_storage;
  5489. d->rd = alloc_rootdomain();
  5490. if (!d->rd)
  5491. return sa_sd;
  5492. return sa_rootdomain;
  5493. }
  5494. /*
  5495. * NULL the sd_data elements we've used to build the sched_domain and
  5496. * sched_group structure so that the subsequent __free_domain_allocs()
  5497. * will not free the data we're using.
  5498. */
  5499. static void claim_allocations(int cpu, struct sched_domain *sd)
  5500. {
  5501. struct sd_data *sdd = sd->private;
  5502. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5503. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5504. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5505. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5506. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5507. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5508. }
  5509. #ifdef CONFIG_SCHED_SMT
  5510. static const struct cpumask *cpu_smt_mask(int cpu)
  5511. {
  5512. return topology_thread_cpumask(cpu);
  5513. }
  5514. #endif
  5515. /*
  5516. * Topology list, bottom-up.
  5517. */
  5518. static struct sched_domain_topology_level default_topology[] = {
  5519. #ifdef CONFIG_SCHED_SMT
  5520. { sd_init_SIBLING, cpu_smt_mask, },
  5521. #endif
  5522. #ifdef CONFIG_SCHED_MC
  5523. { sd_init_MC, cpu_coregroup_mask, },
  5524. #endif
  5525. #ifdef CONFIG_SCHED_BOOK
  5526. { sd_init_BOOK, cpu_book_mask, },
  5527. #endif
  5528. { sd_init_CPU, cpu_cpu_mask, },
  5529. { NULL, },
  5530. };
  5531. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5532. #ifdef CONFIG_NUMA
  5533. static int sched_domains_numa_levels;
  5534. static int *sched_domains_numa_distance;
  5535. static struct cpumask ***sched_domains_numa_masks;
  5536. static int sched_domains_curr_level;
  5537. static inline int sd_local_flags(int level)
  5538. {
  5539. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5540. return 0;
  5541. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5542. }
  5543. static struct sched_domain *
  5544. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5545. {
  5546. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5547. int level = tl->numa_level;
  5548. int sd_weight = cpumask_weight(
  5549. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5550. *sd = (struct sched_domain){
  5551. .min_interval = sd_weight,
  5552. .max_interval = 2*sd_weight,
  5553. .busy_factor = 32,
  5554. .imbalance_pct = 125,
  5555. .cache_nice_tries = 2,
  5556. .busy_idx = 3,
  5557. .idle_idx = 2,
  5558. .newidle_idx = 0,
  5559. .wake_idx = 0,
  5560. .forkexec_idx = 0,
  5561. .flags = 1*SD_LOAD_BALANCE
  5562. | 1*SD_BALANCE_NEWIDLE
  5563. | 0*SD_BALANCE_EXEC
  5564. | 0*SD_BALANCE_FORK
  5565. | 0*SD_BALANCE_WAKE
  5566. | 0*SD_WAKE_AFFINE
  5567. | 0*SD_PREFER_LOCAL
  5568. | 0*SD_SHARE_CPUPOWER
  5569. | 0*SD_SHARE_PKG_RESOURCES
  5570. | 1*SD_SERIALIZE
  5571. | 0*SD_PREFER_SIBLING
  5572. | sd_local_flags(level)
  5573. ,
  5574. .last_balance = jiffies,
  5575. .balance_interval = sd_weight,
  5576. };
  5577. SD_INIT_NAME(sd, NUMA);
  5578. sd->private = &tl->data;
  5579. /*
  5580. * Ugly hack to pass state to sd_numa_mask()...
  5581. */
  5582. sched_domains_curr_level = tl->numa_level;
  5583. return sd;
  5584. }
  5585. static const struct cpumask *sd_numa_mask(int cpu)
  5586. {
  5587. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5588. }
  5589. static void sched_numa_warn(const char *str)
  5590. {
  5591. static int done = false;
  5592. int i,j;
  5593. if (done)
  5594. return;
  5595. done = true;
  5596. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5597. for (i = 0; i < nr_node_ids; i++) {
  5598. printk(KERN_WARNING " ");
  5599. for (j = 0; j < nr_node_ids; j++)
  5600. printk(KERN_CONT "%02d ", node_distance(i,j));
  5601. printk(KERN_CONT "\n");
  5602. }
  5603. printk(KERN_WARNING "\n");
  5604. }
  5605. static bool find_numa_distance(int distance)
  5606. {
  5607. int i;
  5608. if (distance == node_distance(0, 0))
  5609. return true;
  5610. for (i = 0; i < sched_domains_numa_levels; i++) {
  5611. if (sched_domains_numa_distance[i] == distance)
  5612. return true;
  5613. }
  5614. return false;
  5615. }
  5616. static void sched_init_numa(void)
  5617. {
  5618. int next_distance, curr_distance = node_distance(0, 0);
  5619. struct sched_domain_topology_level *tl;
  5620. int level = 0;
  5621. int i, j, k;
  5622. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5623. if (!sched_domains_numa_distance)
  5624. return;
  5625. /*
  5626. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5627. * unique distances in the node_distance() table.
  5628. *
  5629. * Assumes node_distance(0,j) includes all distances in
  5630. * node_distance(i,j) in order to avoid cubic time.
  5631. */
  5632. next_distance = curr_distance;
  5633. for (i = 0; i < nr_node_ids; i++) {
  5634. for (j = 0; j < nr_node_ids; j++) {
  5635. for (k = 0; k < nr_node_ids; k++) {
  5636. int distance = node_distance(i, k);
  5637. if (distance > curr_distance &&
  5638. (distance < next_distance ||
  5639. next_distance == curr_distance))
  5640. next_distance = distance;
  5641. /*
  5642. * While not a strong assumption it would be nice to know
  5643. * about cases where if node A is connected to B, B is not
  5644. * equally connected to A.
  5645. */
  5646. if (sched_debug() && node_distance(k, i) != distance)
  5647. sched_numa_warn("Node-distance not symmetric");
  5648. if (sched_debug() && i && !find_numa_distance(distance))
  5649. sched_numa_warn("Node-0 not representative");
  5650. }
  5651. if (next_distance != curr_distance) {
  5652. sched_domains_numa_distance[level++] = next_distance;
  5653. sched_domains_numa_levels = level;
  5654. curr_distance = next_distance;
  5655. } else break;
  5656. }
  5657. /*
  5658. * In case of sched_debug() we verify the above assumption.
  5659. */
  5660. if (!sched_debug())
  5661. break;
  5662. }
  5663. /*
  5664. * 'level' contains the number of unique distances, excluding the
  5665. * identity distance node_distance(i,i).
  5666. *
  5667. * The sched_domains_nume_distance[] array includes the actual distance
  5668. * numbers.
  5669. */
  5670. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5671. if (!sched_domains_numa_masks)
  5672. return;
  5673. /*
  5674. * Now for each level, construct a mask per node which contains all
  5675. * cpus of nodes that are that many hops away from us.
  5676. */
  5677. for (i = 0; i < level; i++) {
  5678. sched_domains_numa_masks[i] =
  5679. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5680. if (!sched_domains_numa_masks[i])
  5681. return;
  5682. for (j = 0; j < nr_node_ids; j++) {
  5683. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5684. if (!mask)
  5685. return;
  5686. sched_domains_numa_masks[i][j] = mask;
  5687. for (k = 0; k < nr_node_ids; k++) {
  5688. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5689. continue;
  5690. cpumask_or(mask, mask, cpumask_of_node(k));
  5691. }
  5692. }
  5693. }
  5694. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5695. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5696. if (!tl)
  5697. return;
  5698. /*
  5699. * Copy the default topology bits..
  5700. */
  5701. for (i = 0; default_topology[i].init; i++)
  5702. tl[i] = default_topology[i];
  5703. /*
  5704. * .. and append 'j' levels of NUMA goodness.
  5705. */
  5706. for (j = 0; j < level; i++, j++) {
  5707. tl[i] = (struct sched_domain_topology_level){
  5708. .init = sd_numa_init,
  5709. .mask = sd_numa_mask,
  5710. .flags = SDTL_OVERLAP,
  5711. .numa_level = j,
  5712. };
  5713. }
  5714. sched_domain_topology = tl;
  5715. }
  5716. #else
  5717. static inline void sched_init_numa(void)
  5718. {
  5719. }
  5720. #endif /* CONFIG_NUMA */
  5721. static int __sdt_alloc(const struct cpumask *cpu_map)
  5722. {
  5723. struct sched_domain_topology_level *tl;
  5724. int j;
  5725. for (tl = sched_domain_topology; tl->init; tl++) {
  5726. struct sd_data *sdd = &tl->data;
  5727. sdd->sd = alloc_percpu(struct sched_domain *);
  5728. if (!sdd->sd)
  5729. return -ENOMEM;
  5730. sdd->sg = alloc_percpu(struct sched_group *);
  5731. if (!sdd->sg)
  5732. return -ENOMEM;
  5733. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5734. if (!sdd->sgp)
  5735. return -ENOMEM;
  5736. for_each_cpu(j, cpu_map) {
  5737. struct sched_domain *sd;
  5738. struct sched_group *sg;
  5739. struct sched_group_power *sgp;
  5740. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5741. GFP_KERNEL, cpu_to_node(j));
  5742. if (!sd)
  5743. return -ENOMEM;
  5744. *per_cpu_ptr(sdd->sd, j) = sd;
  5745. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5746. GFP_KERNEL, cpu_to_node(j));
  5747. if (!sg)
  5748. return -ENOMEM;
  5749. sg->next = sg;
  5750. *per_cpu_ptr(sdd->sg, j) = sg;
  5751. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5752. GFP_KERNEL, cpu_to_node(j));
  5753. if (!sgp)
  5754. return -ENOMEM;
  5755. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5756. }
  5757. }
  5758. return 0;
  5759. }
  5760. static void __sdt_free(const struct cpumask *cpu_map)
  5761. {
  5762. struct sched_domain_topology_level *tl;
  5763. int j;
  5764. for (tl = sched_domain_topology; tl->init; tl++) {
  5765. struct sd_data *sdd = &tl->data;
  5766. for_each_cpu(j, cpu_map) {
  5767. struct sched_domain *sd;
  5768. if (sdd->sd) {
  5769. sd = *per_cpu_ptr(sdd->sd, j);
  5770. if (sd && (sd->flags & SD_OVERLAP))
  5771. free_sched_groups(sd->groups, 0);
  5772. kfree(*per_cpu_ptr(sdd->sd, j));
  5773. }
  5774. if (sdd->sg)
  5775. kfree(*per_cpu_ptr(sdd->sg, j));
  5776. if (sdd->sgp)
  5777. kfree(*per_cpu_ptr(sdd->sgp, j));
  5778. }
  5779. free_percpu(sdd->sd);
  5780. sdd->sd = NULL;
  5781. free_percpu(sdd->sg);
  5782. sdd->sg = NULL;
  5783. free_percpu(sdd->sgp);
  5784. sdd->sgp = NULL;
  5785. }
  5786. }
  5787. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5788. struct s_data *d, const struct cpumask *cpu_map,
  5789. struct sched_domain_attr *attr, struct sched_domain *child,
  5790. int cpu)
  5791. {
  5792. struct sched_domain *sd = tl->init(tl, cpu);
  5793. if (!sd)
  5794. return child;
  5795. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5796. if (child) {
  5797. sd->level = child->level + 1;
  5798. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5799. child->parent = sd;
  5800. }
  5801. sd->child = child;
  5802. set_domain_attribute(sd, attr);
  5803. return sd;
  5804. }
  5805. /*
  5806. * Build sched domains for a given set of cpus and attach the sched domains
  5807. * to the individual cpus
  5808. */
  5809. static int build_sched_domains(const struct cpumask *cpu_map,
  5810. struct sched_domain_attr *attr)
  5811. {
  5812. enum s_alloc alloc_state = sa_none;
  5813. struct sched_domain *sd;
  5814. struct s_data d;
  5815. int i, ret = -ENOMEM;
  5816. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5817. if (alloc_state != sa_rootdomain)
  5818. goto error;
  5819. /* Set up domains for cpus specified by the cpu_map. */
  5820. for_each_cpu(i, cpu_map) {
  5821. struct sched_domain_topology_level *tl;
  5822. sd = NULL;
  5823. for (tl = sched_domain_topology; tl->init; tl++) {
  5824. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5825. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5826. sd->flags |= SD_OVERLAP;
  5827. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5828. break;
  5829. }
  5830. while (sd->child)
  5831. sd = sd->child;
  5832. *per_cpu_ptr(d.sd, i) = sd;
  5833. }
  5834. /* Build the groups for the domains */
  5835. for_each_cpu(i, cpu_map) {
  5836. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5837. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5838. if (sd->flags & SD_OVERLAP) {
  5839. if (build_overlap_sched_groups(sd, i))
  5840. goto error;
  5841. } else {
  5842. if (build_sched_groups(sd, i))
  5843. goto error;
  5844. }
  5845. }
  5846. }
  5847. /* Calculate CPU power for physical packages and nodes */
  5848. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5849. if (!cpumask_test_cpu(i, cpu_map))
  5850. continue;
  5851. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5852. claim_allocations(i, sd);
  5853. init_sched_groups_power(i, sd);
  5854. }
  5855. }
  5856. /* Attach the domains */
  5857. rcu_read_lock();
  5858. for_each_cpu(i, cpu_map) {
  5859. sd = *per_cpu_ptr(d.sd, i);
  5860. cpu_attach_domain(sd, d.rd, i);
  5861. }
  5862. rcu_read_unlock();
  5863. ret = 0;
  5864. error:
  5865. __free_domain_allocs(&d, alloc_state, cpu_map);
  5866. return ret;
  5867. }
  5868. static cpumask_var_t *doms_cur; /* current sched domains */
  5869. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5870. static struct sched_domain_attr *dattr_cur;
  5871. /* attribues of custom domains in 'doms_cur' */
  5872. /*
  5873. * Special case: If a kmalloc of a doms_cur partition (array of
  5874. * cpumask) fails, then fallback to a single sched domain,
  5875. * as determined by the single cpumask fallback_doms.
  5876. */
  5877. static cpumask_var_t fallback_doms;
  5878. /*
  5879. * arch_update_cpu_topology lets virtualized architectures update the
  5880. * cpu core maps. It is supposed to return 1 if the topology changed
  5881. * or 0 if it stayed the same.
  5882. */
  5883. int __attribute__((weak)) arch_update_cpu_topology(void)
  5884. {
  5885. return 0;
  5886. }
  5887. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5888. {
  5889. int i;
  5890. cpumask_var_t *doms;
  5891. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5892. if (!doms)
  5893. return NULL;
  5894. for (i = 0; i < ndoms; i++) {
  5895. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5896. free_sched_domains(doms, i);
  5897. return NULL;
  5898. }
  5899. }
  5900. return doms;
  5901. }
  5902. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5903. {
  5904. unsigned int i;
  5905. for (i = 0; i < ndoms; i++)
  5906. free_cpumask_var(doms[i]);
  5907. kfree(doms);
  5908. }
  5909. /*
  5910. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5911. * For now this just excludes isolated cpus, but could be used to
  5912. * exclude other special cases in the future.
  5913. */
  5914. static int init_sched_domains(const struct cpumask *cpu_map)
  5915. {
  5916. int err;
  5917. arch_update_cpu_topology();
  5918. ndoms_cur = 1;
  5919. doms_cur = alloc_sched_domains(ndoms_cur);
  5920. if (!doms_cur)
  5921. doms_cur = &fallback_doms;
  5922. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5923. err = build_sched_domains(doms_cur[0], NULL);
  5924. register_sched_domain_sysctl();
  5925. return err;
  5926. }
  5927. /*
  5928. * Detach sched domains from a group of cpus specified in cpu_map
  5929. * These cpus will now be attached to the NULL domain
  5930. */
  5931. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5932. {
  5933. int i;
  5934. rcu_read_lock();
  5935. for_each_cpu(i, cpu_map)
  5936. cpu_attach_domain(NULL, &def_root_domain, i);
  5937. rcu_read_unlock();
  5938. }
  5939. /* handle null as "default" */
  5940. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5941. struct sched_domain_attr *new, int idx_new)
  5942. {
  5943. struct sched_domain_attr tmp;
  5944. /* fast path */
  5945. if (!new && !cur)
  5946. return 1;
  5947. tmp = SD_ATTR_INIT;
  5948. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5949. new ? (new + idx_new) : &tmp,
  5950. sizeof(struct sched_domain_attr));
  5951. }
  5952. /*
  5953. * Partition sched domains as specified by the 'ndoms_new'
  5954. * cpumasks in the array doms_new[] of cpumasks. This compares
  5955. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5956. * It destroys each deleted domain and builds each new domain.
  5957. *
  5958. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5959. * The masks don't intersect (don't overlap.) We should setup one
  5960. * sched domain for each mask. CPUs not in any of the cpumasks will
  5961. * not be load balanced. If the same cpumask appears both in the
  5962. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5963. * it as it is.
  5964. *
  5965. * The passed in 'doms_new' should be allocated using
  5966. * alloc_sched_domains. This routine takes ownership of it and will
  5967. * free_sched_domains it when done with it. If the caller failed the
  5968. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5969. * and partition_sched_domains() will fallback to the single partition
  5970. * 'fallback_doms', it also forces the domains to be rebuilt.
  5971. *
  5972. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5973. * ndoms_new == 0 is a special case for destroying existing domains,
  5974. * and it will not create the default domain.
  5975. *
  5976. * Call with hotplug lock held
  5977. */
  5978. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5979. struct sched_domain_attr *dattr_new)
  5980. {
  5981. int i, j, n;
  5982. int new_topology;
  5983. mutex_lock(&sched_domains_mutex);
  5984. /* always unregister in case we don't destroy any domains */
  5985. unregister_sched_domain_sysctl();
  5986. /* Let architecture update cpu core mappings. */
  5987. new_topology = arch_update_cpu_topology();
  5988. n = doms_new ? ndoms_new : 0;
  5989. /* Destroy deleted domains */
  5990. for (i = 0; i < ndoms_cur; i++) {
  5991. for (j = 0; j < n && !new_topology; j++) {
  5992. if (cpumask_equal(doms_cur[i], doms_new[j])
  5993. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5994. goto match1;
  5995. }
  5996. /* no match - a current sched domain not in new doms_new[] */
  5997. detach_destroy_domains(doms_cur[i]);
  5998. match1:
  5999. ;
  6000. }
  6001. if (doms_new == NULL) {
  6002. ndoms_cur = 0;
  6003. doms_new = &fallback_doms;
  6004. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6005. WARN_ON_ONCE(dattr_new);
  6006. }
  6007. /* Build new domains */
  6008. for (i = 0; i < ndoms_new; i++) {
  6009. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6010. if (cpumask_equal(doms_new[i], doms_cur[j])
  6011. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6012. goto match2;
  6013. }
  6014. /* no match - add a new doms_new */
  6015. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6016. match2:
  6017. ;
  6018. }
  6019. /* Remember the new sched domains */
  6020. if (doms_cur != &fallback_doms)
  6021. free_sched_domains(doms_cur, ndoms_cur);
  6022. kfree(dattr_cur); /* kfree(NULL) is safe */
  6023. doms_cur = doms_new;
  6024. dattr_cur = dattr_new;
  6025. ndoms_cur = ndoms_new;
  6026. register_sched_domain_sysctl();
  6027. mutex_unlock(&sched_domains_mutex);
  6028. }
  6029. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  6030. /*
  6031. * Update cpusets according to cpu_active mask. If cpusets are
  6032. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6033. * around partition_sched_domains().
  6034. *
  6035. * If we come here as part of a suspend/resume, don't touch cpusets because we
  6036. * want to restore it back to its original state upon resume anyway.
  6037. */
  6038. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6039. void *hcpu)
  6040. {
  6041. switch (action) {
  6042. case CPU_ONLINE_FROZEN:
  6043. case CPU_DOWN_FAILED_FROZEN:
  6044. /*
  6045. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6046. * resume sequence. As long as this is not the last online
  6047. * operation in the resume sequence, just build a single sched
  6048. * domain, ignoring cpusets.
  6049. */
  6050. num_cpus_frozen--;
  6051. if (likely(num_cpus_frozen)) {
  6052. partition_sched_domains(1, NULL, NULL);
  6053. break;
  6054. }
  6055. /*
  6056. * This is the last CPU online operation. So fall through and
  6057. * restore the original sched domains by considering the
  6058. * cpuset configurations.
  6059. */
  6060. case CPU_ONLINE:
  6061. case CPU_DOWN_FAILED:
  6062. cpuset_update_active_cpus(true);
  6063. break;
  6064. default:
  6065. return NOTIFY_DONE;
  6066. }
  6067. return NOTIFY_OK;
  6068. }
  6069. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6070. void *hcpu)
  6071. {
  6072. switch (action) {
  6073. case CPU_DOWN_PREPARE:
  6074. cpuset_update_active_cpus(false);
  6075. break;
  6076. case CPU_DOWN_PREPARE_FROZEN:
  6077. num_cpus_frozen++;
  6078. partition_sched_domains(1, NULL, NULL);
  6079. break;
  6080. default:
  6081. return NOTIFY_DONE;
  6082. }
  6083. return NOTIFY_OK;
  6084. }
  6085. void __init sched_init_smp(void)
  6086. {
  6087. cpumask_var_t non_isolated_cpus;
  6088. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6089. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6090. sched_init_numa();
  6091. get_online_cpus();
  6092. mutex_lock(&sched_domains_mutex);
  6093. init_sched_domains(cpu_active_mask);
  6094. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6095. if (cpumask_empty(non_isolated_cpus))
  6096. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6097. mutex_unlock(&sched_domains_mutex);
  6098. put_online_cpus();
  6099. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6100. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6101. /* RT runtime code needs to handle some hotplug events */
  6102. hotcpu_notifier(update_runtime, 0);
  6103. init_hrtick();
  6104. /* Move init over to a non-isolated CPU */
  6105. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6106. BUG();
  6107. sched_init_granularity();
  6108. free_cpumask_var(non_isolated_cpus);
  6109. init_sched_rt_class();
  6110. }
  6111. #else
  6112. void __init sched_init_smp(void)
  6113. {
  6114. sched_init_granularity();
  6115. }
  6116. #endif /* CONFIG_SMP */
  6117. const_debug unsigned int sysctl_timer_migration = 1;
  6118. int in_sched_functions(unsigned long addr)
  6119. {
  6120. return in_lock_functions(addr) ||
  6121. (addr >= (unsigned long)__sched_text_start
  6122. && addr < (unsigned long)__sched_text_end);
  6123. }
  6124. #ifdef CONFIG_CGROUP_SCHED
  6125. struct task_group root_task_group;
  6126. LIST_HEAD(task_groups);
  6127. #endif
  6128. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  6129. void __init sched_init(void)
  6130. {
  6131. int i, j;
  6132. unsigned long alloc_size = 0, ptr;
  6133. #ifdef CONFIG_FAIR_GROUP_SCHED
  6134. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6135. #endif
  6136. #ifdef CONFIG_RT_GROUP_SCHED
  6137. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6138. #endif
  6139. #ifdef CONFIG_CPUMASK_OFFSTACK
  6140. alloc_size += num_possible_cpus() * cpumask_size();
  6141. #endif
  6142. if (alloc_size) {
  6143. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6144. #ifdef CONFIG_FAIR_GROUP_SCHED
  6145. root_task_group.se = (struct sched_entity **)ptr;
  6146. ptr += nr_cpu_ids * sizeof(void **);
  6147. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6148. ptr += nr_cpu_ids * sizeof(void **);
  6149. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6150. #ifdef CONFIG_RT_GROUP_SCHED
  6151. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6152. ptr += nr_cpu_ids * sizeof(void **);
  6153. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6154. ptr += nr_cpu_ids * sizeof(void **);
  6155. #endif /* CONFIG_RT_GROUP_SCHED */
  6156. #ifdef CONFIG_CPUMASK_OFFSTACK
  6157. for_each_possible_cpu(i) {
  6158. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6159. ptr += cpumask_size();
  6160. }
  6161. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6162. }
  6163. #ifdef CONFIG_SMP
  6164. init_defrootdomain();
  6165. #endif
  6166. init_rt_bandwidth(&def_rt_bandwidth,
  6167. global_rt_period(), global_rt_runtime());
  6168. #ifdef CONFIG_RT_GROUP_SCHED
  6169. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6170. global_rt_period(), global_rt_runtime());
  6171. #endif /* CONFIG_RT_GROUP_SCHED */
  6172. #ifdef CONFIG_CGROUP_SCHED
  6173. list_add(&root_task_group.list, &task_groups);
  6174. INIT_LIST_HEAD(&root_task_group.children);
  6175. INIT_LIST_HEAD(&root_task_group.siblings);
  6176. autogroup_init(&init_task);
  6177. #endif /* CONFIG_CGROUP_SCHED */
  6178. #ifdef CONFIG_CGROUP_CPUACCT
  6179. root_cpuacct.cpustat = &kernel_cpustat;
  6180. root_cpuacct.cpuusage = alloc_percpu(u64);
  6181. /* Too early, not expected to fail */
  6182. BUG_ON(!root_cpuacct.cpuusage);
  6183. #endif
  6184. for_each_possible_cpu(i) {
  6185. struct rq *rq;
  6186. rq = cpu_rq(i);
  6187. raw_spin_lock_init(&rq->lock);
  6188. rq->nr_running = 0;
  6189. rq->calc_load_active = 0;
  6190. rq->calc_load_update = jiffies + LOAD_FREQ;
  6191. init_cfs_rq(&rq->cfs);
  6192. init_rt_rq(&rq->rt, rq);
  6193. #ifdef CONFIG_FAIR_GROUP_SCHED
  6194. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6195. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6196. /*
  6197. * How much cpu bandwidth does root_task_group get?
  6198. *
  6199. * In case of task-groups formed thr' the cgroup filesystem, it
  6200. * gets 100% of the cpu resources in the system. This overall
  6201. * system cpu resource is divided among the tasks of
  6202. * root_task_group and its child task-groups in a fair manner,
  6203. * based on each entity's (task or task-group's) weight
  6204. * (se->load.weight).
  6205. *
  6206. * In other words, if root_task_group has 10 tasks of weight
  6207. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6208. * then A0's share of the cpu resource is:
  6209. *
  6210. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6211. *
  6212. * We achieve this by letting root_task_group's tasks sit
  6213. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6214. */
  6215. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6216. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6217. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6218. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6219. #ifdef CONFIG_RT_GROUP_SCHED
  6220. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6221. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6222. #endif
  6223. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6224. rq->cpu_load[j] = 0;
  6225. rq->last_load_update_tick = jiffies;
  6226. #ifdef CONFIG_SMP
  6227. rq->sd = NULL;
  6228. rq->rd = NULL;
  6229. rq->cpu_power = SCHED_POWER_SCALE;
  6230. rq->post_schedule = 0;
  6231. rq->active_balance = 0;
  6232. rq->next_balance = jiffies;
  6233. rq->push_cpu = 0;
  6234. rq->cpu = i;
  6235. rq->online = 0;
  6236. rq->idle_stamp = 0;
  6237. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6238. INIT_LIST_HEAD(&rq->cfs_tasks);
  6239. rq_attach_root(rq, &def_root_domain);
  6240. #ifdef CONFIG_NO_HZ
  6241. rq->nohz_flags = 0;
  6242. #endif
  6243. #endif
  6244. init_rq_hrtick(rq);
  6245. atomic_set(&rq->nr_iowait, 0);
  6246. }
  6247. set_load_weight(&init_task);
  6248. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6249. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6250. #endif
  6251. #ifdef CONFIG_RT_MUTEXES
  6252. plist_head_init(&init_task.pi_waiters);
  6253. #endif
  6254. /*
  6255. * The boot idle thread does lazy MMU switching as well:
  6256. */
  6257. atomic_inc(&init_mm.mm_count);
  6258. enter_lazy_tlb(&init_mm, current);
  6259. /*
  6260. * Make us the idle thread. Technically, schedule() should not be
  6261. * called from this thread, however somewhere below it might be,
  6262. * but because we are the idle thread, we just pick up running again
  6263. * when this runqueue becomes "idle".
  6264. */
  6265. init_idle(current, smp_processor_id());
  6266. calc_load_update = jiffies + LOAD_FREQ;
  6267. /*
  6268. * During early bootup we pretend to be a normal task:
  6269. */
  6270. current->sched_class = &fair_sched_class;
  6271. #ifdef CONFIG_SMP
  6272. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6273. /* May be allocated at isolcpus cmdline parse time */
  6274. if (cpu_isolated_map == NULL)
  6275. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6276. idle_thread_set_boot_cpu();
  6277. #endif
  6278. init_sched_fair_class();
  6279. scheduler_running = 1;
  6280. }
  6281. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6282. static inline int preempt_count_equals(int preempt_offset)
  6283. {
  6284. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6285. return (nested == preempt_offset);
  6286. }
  6287. void __might_sleep(const char *file, int line, int preempt_offset)
  6288. {
  6289. static unsigned long prev_jiffy; /* ratelimiting */
  6290. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6291. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6292. system_state != SYSTEM_RUNNING || oops_in_progress)
  6293. return;
  6294. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6295. return;
  6296. prev_jiffy = jiffies;
  6297. printk(KERN_ERR
  6298. "BUG: sleeping function called from invalid context at %s:%d\n",
  6299. file, line);
  6300. printk(KERN_ERR
  6301. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6302. in_atomic(), irqs_disabled(),
  6303. current->pid, current->comm);
  6304. debug_show_held_locks(current);
  6305. if (irqs_disabled())
  6306. print_irqtrace_events(current);
  6307. dump_stack();
  6308. }
  6309. EXPORT_SYMBOL(__might_sleep);
  6310. #endif
  6311. #ifdef CONFIG_MAGIC_SYSRQ
  6312. static void normalize_task(struct rq *rq, struct task_struct *p)
  6313. {
  6314. const struct sched_class *prev_class = p->sched_class;
  6315. int old_prio = p->prio;
  6316. int on_rq;
  6317. on_rq = p->on_rq;
  6318. if (on_rq)
  6319. dequeue_task(rq, p, 0);
  6320. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6321. if (on_rq) {
  6322. enqueue_task(rq, p, 0);
  6323. resched_task(rq->curr);
  6324. }
  6325. check_class_changed(rq, p, prev_class, old_prio);
  6326. }
  6327. void normalize_rt_tasks(void)
  6328. {
  6329. struct task_struct *g, *p;
  6330. unsigned long flags;
  6331. struct rq *rq;
  6332. read_lock_irqsave(&tasklist_lock, flags);
  6333. do_each_thread(g, p) {
  6334. /*
  6335. * Only normalize user tasks:
  6336. */
  6337. if (!p->mm)
  6338. continue;
  6339. p->se.exec_start = 0;
  6340. #ifdef CONFIG_SCHEDSTATS
  6341. p->se.statistics.wait_start = 0;
  6342. p->se.statistics.sleep_start = 0;
  6343. p->se.statistics.block_start = 0;
  6344. #endif
  6345. if (!rt_task(p)) {
  6346. /*
  6347. * Renice negative nice level userspace
  6348. * tasks back to 0:
  6349. */
  6350. if (TASK_NICE(p) < 0 && p->mm)
  6351. set_user_nice(p, 0);
  6352. continue;
  6353. }
  6354. raw_spin_lock(&p->pi_lock);
  6355. rq = __task_rq_lock(p);
  6356. normalize_task(rq, p);
  6357. __task_rq_unlock(rq);
  6358. raw_spin_unlock(&p->pi_lock);
  6359. } while_each_thread(g, p);
  6360. read_unlock_irqrestore(&tasklist_lock, flags);
  6361. }
  6362. #endif /* CONFIG_MAGIC_SYSRQ */
  6363. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6364. /*
  6365. * These functions are only useful for the IA64 MCA handling, or kdb.
  6366. *
  6367. * They can only be called when the whole system has been
  6368. * stopped - every CPU needs to be quiescent, and no scheduling
  6369. * activity can take place. Using them for anything else would
  6370. * be a serious bug, and as a result, they aren't even visible
  6371. * under any other configuration.
  6372. */
  6373. /**
  6374. * curr_task - return the current task for a given cpu.
  6375. * @cpu: the processor in question.
  6376. *
  6377. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6378. */
  6379. struct task_struct *curr_task(int cpu)
  6380. {
  6381. return cpu_curr(cpu);
  6382. }
  6383. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6384. #ifdef CONFIG_IA64
  6385. /**
  6386. * set_curr_task - set the current task for a given cpu.
  6387. * @cpu: the processor in question.
  6388. * @p: the task pointer to set.
  6389. *
  6390. * Description: This function must only be used when non-maskable interrupts
  6391. * are serviced on a separate stack. It allows the architecture to switch the
  6392. * notion of the current task on a cpu in a non-blocking manner. This function
  6393. * must be called with all CPU's synchronized, and interrupts disabled, the
  6394. * and caller must save the original value of the current task (see
  6395. * curr_task() above) and restore that value before reenabling interrupts and
  6396. * re-starting the system.
  6397. *
  6398. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6399. */
  6400. void set_curr_task(int cpu, struct task_struct *p)
  6401. {
  6402. cpu_curr(cpu) = p;
  6403. }
  6404. #endif
  6405. #ifdef CONFIG_CGROUP_SCHED
  6406. /* task_group_lock serializes the addition/removal of task groups */
  6407. static DEFINE_SPINLOCK(task_group_lock);
  6408. static void free_sched_group(struct task_group *tg)
  6409. {
  6410. free_fair_sched_group(tg);
  6411. free_rt_sched_group(tg);
  6412. autogroup_free(tg);
  6413. kfree(tg);
  6414. }
  6415. /* allocate runqueue etc for a new task group */
  6416. struct task_group *sched_create_group(struct task_group *parent)
  6417. {
  6418. struct task_group *tg;
  6419. unsigned long flags;
  6420. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6421. if (!tg)
  6422. return ERR_PTR(-ENOMEM);
  6423. if (!alloc_fair_sched_group(tg, parent))
  6424. goto err;
  6425. if (!alloc_rt_sched_group(tg, parent))
  6426. goto err;
  6427. spin_lock_irqsave(&task_group_lock, flags);
  6428. list_add_rcu(&tg->list, &task_groups);
  6429. WARN_ON(!parent); /* root should already exist */
  6430. tg->parent = parent;
  6431. INIT_LIST_HEAD(&tg->children);
  6432. list_add_rcu(&tg->siblings, &parent->children);
  6433. spin_unlock_irqrestore(&task_group_lock, flags);
  6434. return tg;
  6435. err:
  6436. free_sched_group(tg);
  6437. return ERR_PTR(-ENOMEM);
  6438. }
  6439. /* rcu callback to free various structures associated with a task group */
  6440. static void free_sched_group_rcu(struct rcu_head *rhp)
  6441. {
  6442. /* now it should be safe to free those cfs_rqs */
  6443. free_sched_group(container_of(rhp, struct task_group, rcu));
  6444. }
  6445. /* Destroy runqueue etc associated with a task group */
  6446. void sched_destroy_group(struct task_group *tg)
  6447. {
  6448. unsigned long flags;
  6449. int i;
  6450. /* end participation in shares distribution */
  6451. for_each_possible_cpu(i)
  6452. unregister_fair_sched_group(tg, i);
  6453. spin_lock_irqsave(&task_group_lock, flags);
  6454. list_del_rcu(&tg->list);
  6455. list_del_rcu(&tg->siblings);
  6456. spin_unlock_irqrestore(&task_group_lock, flags);
  6457. /* wait for possible concurrent references to cfs_rqs complete */
  6458. call_rcu(&tg->rcu, free_sched_group_rcu);
  6459. }
  6460. /* change task's runqueue when it moves between groups.
  6461. * The caller of this function should have put the task in its new group
  6462. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6463. * reflect its new group.
  6464. */
  6465. void sched_move_task(struct task_struct *tsk)
  6466. {
  6467. struct task_group *tg;
  6468. int on_rq, running;
  6469. unsigned long flags;
  6470. struct rq *rq;
  6471. rq = task_rq_lock(tsk, &flags);
  6472. running = task_current(rq, tsk);
  6473. on_rq = tsk->on_rq;
  6474. if (on_rq)
  6475. dequeue_task(rq, tsk, 0);
  6476. if (unlikely(running))
  6477. tsk->sched_class->put_prev_task(rq, tsk);
  6478. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6479. lockdep_is_held(&tsk->sighand->siglock)),
  6480. struct task_group, css);
  6481. tg = autogroup_task_group(tsk, tg);
  6482. tsk->sched_task_group = tg;
  6483. #ifdef CONFIG_FAIR_GROUP_SCHED
  6484. if (tsk->sched_class->task_move_group)
  6485. tsk->sched_class->task_move_group(tsk, on_rq);
  6486. else
  6487. #endif
  6488. set_task_rq(tsk, task_cpu(tsk));
  6489. if (unlikely(running))
  6490. tsk->sched_class->set_curr_task(rq);
  6491. if (on_rq)
  6492. enqueue_task(rq, tsk, 0);
  6493. task_rq_unlock(rq, tsk, &flags);
  6494. }
  6495. #endif /* CONFIG_CGROUP_SCHED */
  6496. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6497. static unsigned long to_ratio(u64 period, u64 runtime)
  6498. {
  6499. if (runtime == RUNTIME_INF)
  6500. return 1ULL << 20;
  6501. return div64_u64(runtime << 20, period);
  6502. }
  6503. #endif
  6504. #ifdef CONFIG_RT_GROUP_SCHED
  6505. /*
  6506. * Ensure that the real time constraints are schedulable.
  6507. */
  6508. static DEFINE_MUTEX(rt_constraints_mutex);
  6509. /* Must be called with tasklist_lock held */
  6510. static inline int tg_has_rt_tasks(struct task_group *tg)
  6511. {
  6512. struct task_struct *g, *p;
  6513. do_each_thread(g, p) {
  6514. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6515. return 1;
  6516. } while_each_thread(g, p);
  6517. return 0;
  6518. }
  6519. struct rt_schedulable_data {
  6520. struct task_group *tg;
  6521. u64 rt_period;
  6522. u64 rt_runtime;
  6523. };
  6524. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6525. {
  6526. struct rt_schedulable_data *d = data;
  6527. struct task_group *child;
  6528. unsigned long total, sum = 0;
  6529. u64 period, runtime;
  6530. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6531. runtime = tg->rt_bandwidth.rt_runtime;
  6532. if (tg == d->tg) {
  6533. period = d->rt_period;
  6534. runtime = d->rt_runtime;
  6535. }
  6536. /*
  6537. * Cannot have more runtime than the period.
  6538. */
  6539. if (runtime > period && runtime != RUNTIME_INF)
  6540. return -EINVAL;
  6541. /*
  6542. * Ensure we don't starve existing RT tasks.
  6543. */
  6544. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6545. return -EBUSY;
  6546. total = to_ratio(period, runtime);
  6547. /*
  6548. * Nobody can have more than the global setting allows.
  6549. */
  6550. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6551. return -EINVAL;
  6552. /*
  6553. * The sum of our children's runtime should not exceed our own.
  6554. */
  6555. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6556. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6557. runtime = child->rt_bandwidth.rt_runtime;
  6558. if (child == d->tg) {
  6559. period = d->rt_period;
  6560. runtime = d->rt_runtime;
  6561. }
  6562. sum += to_ratio(period, runtime);
  6563. }
  6564. if (sum > total)
  6565. return -EINVAL;
  6566. return 0;
  6567. }
  6568. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6569. {
  6570. int ret;
  6571. struct rt_schedulable_data data = {
  6572. .tg = tg,
  6573. .rt_period = period,
  6574. .rt_runtime = runtime,
  6575. };
  6576. rcu_read_lock();
  6577. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6578. rcu_read_unlock();
  6579. return ret;
  6580. }
  6581. static int tg_set_rt_bandwidth(struct task_group *tg,
  6582. u64 rt_period, u64 rt_runtime)
  6583. {
  6584. int i, err = 0;
  6585. mutex_lock(&rt_constraints_mutex);
  6586. read_lock(&tasklist_lock);
  6587. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6588. if (err)
  6589. goto unlock;
  6590. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6591. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6592. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6593. for_each_possible_cpu(i) {
  6594. struct rt_rq *rt_rq = tg->rt_rq[i];
  6595. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6596. rt_rq->rt_runtime = rt_runtime;
  6597. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6598. }
  6599. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6600. unlock:
  6601. read_unlock(&tasklist_lock);
  6602. mutex_unlock(&rt_constraints_mutex);
  6603. return err;
  6604. }
  6605. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6606. {
  6607. u64 rt_runtime, rt_period;
  6608. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6609. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6610. if (rt_runtime_us < 0)
  6611. rt_runtime = RUNTIME_INF;
  6612. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6613. }
  6614. long sched_group_rt_runtime(struct task_group *tg)
  6615. {
  6616. u64 rt_runtime_us;
  6617. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6618. return -1;
  6619. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6620. do_div(rt_runtime_us, NSEC_PER_USEC);
  6621. return rt_runtime_us;
  6622. }
  6623. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6624. {
  6625. u64 rt_runtime, rt_period;
  6626. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6627. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6628. if (rt_period == 0)
  6629. return -EINVAL;
  6630. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6631. }
  6632. long sched_group_rt_period(struct task_group *tg)
  6633. {
  6634. u64 rt_period_us;
  6635. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6636. do_div(rt_period_us, NSEC_PER_USEC);
  6637. return rt_period_us;
  6638. }
  6639. static int sched_rt_global_constraints(void)
  6640. {
  6641. u64 runtime, period;
  6642. int ret = 0;
  6643. if (sysctl_sched_rt_period <= 0)
  6644. return -EINVAL;
  6645. runtime = global_rt_runtime();
  6646. period = global_rt_period();
  6647. /*
  6648. * Sanity check on the sysctl variables.
  6649. */
  6650. if (runtime > period && runtime != RUNTIME_INF)
  6651. return -EINVAL;
  6652. mutex_lock(&rt_constraints_mutex);
  6653. read_lock(&tasklist_lock);
  6654. ret = __rt_schedulable(NULL, 0, 0);
  6655. read_unlock(&tasklist_lock);
  6656. mutex_unlock(&rt_constraints_mutex);
  6657. return ret;
  6658. }
  6659. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6660. {
  6661. /* Don't accept realtime tasks when there is no way for them to run */
  6662. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6663. return 0;
  6664. return 1;
  6665. }
  6666. #else /* !CONFIG_RT_GROUP_SCHED */
  6667. static int sched_rt_global_constraints(void)
  6668. {
  6669. unsigned long flags;
  6670. int i;
  6671. if (sysctl_sched_rt_period <= 0)
  6672. return -EINVAL;
  6673. /*
  6674. * There's always some RT tasks in the root group
  6675. * -- migration, kstopmachine etc..
  6676. */
  6677. if (sysctl_sched_rt_runtime == 0)
  6678. return -EBUSY;
  6679. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6680. for_each_possible_cpu(i) {
  6681. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6682. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6683. rt_rq->rt_runtime = global_rt_runtime();
  6684. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6685. }
  6686. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6687. return 0;
  6688. }
  6689. #endif /* CONFIG_RT_GROUP_SCHED */
  6690. int sched_rt_handler(struct ctl_table *table, int write,
  6691. void __user *buffer, size_t *lenp,
  6692. loff_t *ppos)
  6693. {
  6694. int ret;
  6695. int old_period, old_runtime;
  6696. static DEFINE_MUTEX(mutex);
  6697. mutex_lock(&mutex);
  6698. old_period = sysctl_sched_rt_period;
  6699. old_runtime = sysctl_sched_rt_runtime;
  6700. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6701. if (!ret && write) {
  6702. ret = sched_rt_global_constraints();
  6703. if (ret) {
  6704. sysctl_sched_rt_period = old_period;
  6705. sysctl_sched_rt_runtime = old_runtime;
  6706. } else {
  6707. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6708. def_rt_bandwidth.rt_period =
  6709. ns_to_ktime(global_rt_period());
  6710. }
  6711. }
  6712. mutex_unlock(&mutex);
  6713. return ret;
  6714. }
  6715. #ifdef CONFIG_CGROUP_SCHED
  6716. /* return corresponding task_group object of a cgroup */
  6717. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6718. {
  6719. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6720. struct task_group, css);
  6721. }
  6722. static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
  6723. {
  6724. struct task_group *tg, *parent;
  6725. if (!cgrp->parent) {
  6726. /* This is early initialization for the top cgroup */
  6727. return &root_task_group.css;
  6728. }
  6729. parent = cgroup_tg(cgrp->parent);
  6730. tg = sched_create_group(parent);
  6731. if (IS_ERR(tg))
  6732. return ERR_PTR(-ENOMEM);
  6733. return &tg->css;
  6734. }
  6735. static void cpu_cgroup_destroy(struct cgroup *cgrp)
  6736. {
  6737. struct task_group *tg = cgroup_tg(cgrp);
  6738. sched_destroy_group(tg);
  6739. }
  6740. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6741. struct cgroup_taskset *tset)
  6742. {
  6743. struct task_struct *task;
  6744. cgroup_taskset_for_each(task, cgrp, tset) {
  6745. #ifdef CONFIG_RT_GROUP_SCHED
  6746. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6747. return -EINVAL;
  6748. #else
  6749. /* We don't support RT-tasks being in separate groups */
  6750. if (task->sched_class != &fair_sched_class)
  6751. return -EINVAL;
  6752. #endif
  6753. }
  6754. return 0;
  6755. }
  6756. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6757. struct cgroup_taskset *tset)
  6758. {
  6759. struct task_struct *task;
  6760. cgroup_taskset_for_each(task, cgrp, tset)
  6761. sched_move_task(task);
  6762. }
  6763. static void
  6764. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6765. struct task_struct *task)
  6766. {
  6767. /*
  6768. * cgroup_exit() is called in the copy_process() failure path.
  6769. * Ignore this case since the task hasn't ran yet, this avoids
  6770. * trying to poke a half freed task state from generic code.
  6771. */
  6772. if (!(task->flags & PF_EXITING))
  6773. return;
  6774. sched_move_task(task);
  6775. }
  6776. #ifdef CONFIG_FAIR_GROUP_SCHED
  6777. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6778. u64 shareval)
  6779. {
  6780. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6781. }
  6782. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6783. {
  6784. struct task_group *tg = cgroup_tg(cgrp);
  6785. return (u64) scale_load_down(tg->shares);
  6786. }
  6787. #ifdef CONFIG_CFS_BANDWIDTH
  6788. static DEFINE_MUTEX(cfs_constraints_mutex);
  6789. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6790. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6791. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6792. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6793. {
  6794. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6795. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6796. if (tg == &root_task_group)
  6797. return -EINVAL;
  6798. /*
  6799. * Ensure we have at some amount of bandwidth every period. This is
  6800. * to prevent reaching a state of large arrears when throttled via
  6801. * entity_tick() resulting in prolonged exit starvation.
  6802. */
  6803. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6804. return -EINVAL;
  6805. /*
  6806. * Likewise, bound things on the otherside by preventing insane quota
  6807. * periods. This also allows us to normalize in computing quota
  6808. * feasibility.
  6809. */
  6810. if (period > max_cfs_quota_period)
  6811. return -EINVAL;
  6812. mutex_lock(&cfs_constraints_mutex);
  6813. ret = __cfs_schedulable(tg, period, quota);
  6814. if (ret)
  6815. goto out_unlock;
  6816. runtime_enabled = quota != RUNTIME_INF;
  6817. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6818. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6819. raw_spin_lock_irq(&cfs_b->lock);
  6820. cfs_b->period = ns_to_ktime(period);
  6821. cfs_b->quota = quota;
  6822. __refill_cfs_bandwidth_runtime(cfs_b);
  6823. /* restart the period timer (if active) to handle new period expiry */
  6824. if (runtime_enabled && cfs_b->timer_active) {
  6825. /* force a reprogram */
  6826. cfs_b->timer_active = 0;
  6827. __start_cfs_bandwidth(cfs_b);
  6828. }
  6829. raw_spin_unlock_irq(&cfs_b->lock);
  6830. for_each_possible_cpu(i) {
  6831. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6832. struct rq *rq = cfs_rq->rq;
  6833. raw_spin_lock_irq(&rq->lock);
  6834. cfs_rq->runtime_enabled = runtime_enabled;
  6835. cfs_rq->runtime_remaining = 0;
  6836. if (cfs_rq->throttled)
  6837. unthrottle_cfs_rq(cfs_rq);
  6838. raw_spin_unlock_irq(&rq->lock);
  6839. }
  6840. out_unlock:
  6841. mutex_unlock(&cfs_constraints_mutex);
  6842. return ret;
  6843. }
  6844. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6845. {
  6846. u64 quota, period;
  6847. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6848. if (cfs_quota_us < 0)
  6849. quota = RUNTIME_INF;
  6850. else
  6851. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6852. return tg_set_cfs_bandwidth(tg, period, quota);
  6853. }
  6854. long tg_get_cfs_quota(struct task_group *tg)
  6855. {
  6856. u64 quota_us;
  6857. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6858. return -1;
  6859. quota_us = tg->cfs_bandwidth.quota;
  6860. do_div(quota_us, NSEC_PER_USEC);
  6861. return quota_us;
  6862. }
  6863. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6864. {
  6865. u64 quota, period;
  6866. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6867. quota = tg->cfs_bandwidth.quota;
  6868. return tg_set_cfs_bandwidth(tg, period, quota);
  6869. }
  6870. long tg_get_cfs_period(struct task_group *tg)
  6871. {
  6872. u64 cfs_period_us;
  6873. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6874. do_div(cfs_period_us, NSEC_PER_USEC);
  6875. return cfs_period_us;
  6876. }
  6877. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6878. {
  6879. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6880. }
  6881. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6882. s64 cfs_quota_us)
  6883. {
  6884. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6885. }
  6886. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6887. {
  6888. return tg_get_cfs_period(cgroup_tg(cgrp));
  6889. }
  6890. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6891. u64 cfs_period_us)
  6892. {
  6893. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6894. }
  6895. struct cfs_schedulable_data {
  6896. struct task_group *tg;
  6897. u64 period, quota;
  6898. };
  6899. /*
  6900. * normalize group quota/period to be quota/max_period
  6901. * note: units are usecs
  6902. */
  6903. static u64 normalize_cfs_quota(struct task_group *tg,
  6904. struct cfs_schedulable_data *d)
  6905. {
  6906. u64 quota, period;
  6907. if (tg == d->tg) {
  6908. period = d->period;
  6909. quota = d->quota;
  6910. } else {
  6911. period = tg_get_cfs_period(tg);
  6912. quota = tg_get_cfs_quota(tg);
  6913. }
  6914. /* note: these should typically be equivalent */
  6915. if (quota == RUNTIME_INF || quota == -1)
  6916. return RUNTIME_INF;
  6917. return to_ratio(period, quota);
  6918. }
  6919. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6920. {
  6921. struct cfs_schedulable_data *d = data;
  6922. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6923. s64 quota = 0, parent_quota = -1;
  6924. if (!tg->parent) {
  6925. quota = RUNTIME_INF;
  6926. } else {
  6927. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6928. quota = normalize_cfs_quota(tg, d);
  6929. parent_quota = parent_b->hierarchal_quota;
  6930. /*
  6931. * ensure max(child_quota) <= parent_quota, inherit when no
  6932. * limit is set
  6933. */
  6934. if (quota == RUNTIME_INF)
  6935. quota = parent_quota;
  6936. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6937. return -EINVAL;
  6938. }
  6939. cfs_b->hierarchal_quota = quota;
  6940. return 0;
  6941. }
  6942. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6943. {
  6944. int ret;
  6945. struct cfs_schedulable_data data = {
  6946. .tg = tg,
  6947. .period = period,
  6948. .quota = quota,
  6949. };
  6950. if (quota != RUNTIME_INF) {
  6951. do_div(data.period, NSEC_PER_USEC);
  6952. do_div(data.quota, NSEC_PER_USEC);
  6953. }
  6954. rcu_read_lock();
  6955. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6956. rcu_read_unlock();
  6957. return ret;
  6958. }
  6959. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6960. struct cgroup_map_cb *cb)
  6961. {
  6962. struct task_group *tg = cgroup_tg(cgrp);
  6963. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6964. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6965. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6966. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6967. return 0;
  6968. }
  6969. #endif /* CONFIG_CFS_BANDWIDTH */
  6970. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6971. #ifdef CONFIG_RT_GROUP_SCHED
  6972. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6973. s64 val)
  6974. {
  6975. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6976. }
  6977. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6978. {
  6979. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6980. }
  6981. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6982. u64 rt_period_us)
  6983. {
  6984. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6985. }
  6986. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6987. {
  6988. return sched_group_rt_period(cgroup_tg(cgrp));
  6989. }
  6990. #endif /* CONFIG_RT_GROUP_SCHED */
  6991. static struct cftype cpu_files[] = {
  6992. #ifdef CONFIG_FAIR_GROUP_SCHED
  6993. {
  6994. .name = "shares",
  6995. .read_u64 = cpu_shares_read_u64,
  6996. .write_u64 = cpu_shares_write_u64,
  6997. },
  6998. #endif
  6999. #ifdef CONFIG_CFS_BANDWIDTH
  7000. {
  7001. .name = "cfs_quota_us",
  7002. .read_s64 = cpu_cfs_quota_read_s64,
  7003. .write_s64 = cpu_cfs_quota_write_s64,
  7004. },
  7005. {
  7006. .name = "cfs_period_us",
  7007. .read_u64 = cpu_cfs_period_read_u64,
  7008. .write_u64 = cpu_cfs_period_write_u64,
  7009. },
  7010. {
  7011. .name = "stat",
  7012. .read_map = cpu_stats_show,
  7013. },
  7014. #endif
  7015. #ifdef CONFIG_RT_GROUP_SCHED
  7016. {
  7017. .name = "rt_runtime_us",
  7018. .read_s64 = cpu_rt_runtime_read,
  7019. .write_s64 = cpu_rt_runtime_write,
  7020. },
  7021. {
  7022. .name = "rt_period_us",
  7023. .read_u64 = cpu_rt_period_read_uint,
  7024. .write_u64 = cpu_rt_period_write_uint,
  7025. },
  7026. #endif
  7027. { } /* terminate */
  7028. };
  7029. struct cgroup_subsys cpu_cgroup_subsys = {
  7030. .name = "cpu",
  7031. .create = cpu_cgroup_create,
  7032. .destroy = cpu_cgroup_destroy,
  7033. .can_attach = cpu_cgroup_can_attach,
  7034. .attach = cpu_cgroup_attach,
  7035. .exit = cpu_cgroup_exit,
  7036. .subsys_id = cpu_cgroup_subsys_id,
  7037. .base_cftypes = cpu_files,
  7038. .early_init = 1,
  7039. };
  7040. #endif /* CONFIG_CGROUP_SCHED */
  7041. #ifdef CONFIG_CGROUP_CPUACCT
  7042. /*
  7043. * CPU accounting code for task groups.
  7044. *
  7045. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7046. * (balbir@in.ibm.com).
  7047. */
  7048. /* create a new cpu accounting group */
  7049. static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
  7050. {
  7051. struct cpuacct *ca;
  7052. if (!cgrp->parent)
  7053. return &root_cpuacct.css;
  7054. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7055. if (!ca)
  7056. goto out;
  7057. ca->cpuusage = alloc_percpu(u64);
  7058. if (!ca->cpuusage)
  7059. goto out_free_ca;
  7060. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  7061. if (!ca->cpustat)
  7062. goto out_free_cpuusage;
  7063. return &ca->css;
  7064. out_free_cpuusage:
  7065. free_percpu(ca->cpuusage);
  7066. out_free_ca:
  7067. kfree(ca);
  7068. out:
  7069. return ERR_PTR(-ENOMEM);
  7070. }
  7071. /* destroy an existing cpu accounting group */
  7072. static void cpuacct_destroy(struct cgroup *cgrp)
  7073. {
  7074. struct cpuacct *ca = cgroup_ca(cgrp);
  7075. free_percpu(ca->cpustat);
  7076. free_percpu(ca->cpuusage);
  7077. kfree(ca);
  7078. }
  7079. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7080. {
  7081. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7082. u64 data;
  7083. #ifndef CONFIG_64BIT
  7084. /*
  7085. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7086. */
  7087. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7088. data = *cpuusage;
  7089. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7090. #else
  7091. data = *cpuusage;
  7092. #endif
  7093. return data;
  7094. }
  7095. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7096. {
  7097. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7098. #ifndef CONFIG_64BIT
  7099. /*
  7100. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7101. */
  7102. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7103. *cpuusage = val;
  7104. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7105. #else
  7106. *cpuusage = val;
  7107. #endif
  7108. }
  7109. /* return total cpu usage (in nanoseconds) of a group */
  7110. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7111. {
  7112. struct cpuacct *ca = cgroup_ca(cgrp);
  7113. u64 totalcpuusage = 0;
  7114. int i;
  7115. for_each_present_cpu(i)
  7116. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7117. return totalcpuusage;
  7118. }
  7119. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7120. u64 reset)
  7121. {
  7122. struct cpuacct *ca = cgroup_ca(cgrp);
  7123. int err = 0;
  7124. int i;
  7125. if (reset) {
  7126. err = -EINVAL;
  7127. goto out;
  7128. }
  7129. for_each_present_cpu(i)
  7130. cpuacct_cpuusage_write(ca, i, 0);
  7131. out:
  7132. return err;
  7133. }
  7134. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7135. struct seq_file *m)
  7136. {
  7137. struct cpuacct *ca = cgroup_ca(cgroup);
  7138. u64 percpu;
  7139. int i;
  7140. for_each_present_cpu(i) {
  7141. percpu = cpuacct_cpuusage_read(ca, i);
  7142. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7143. }
  7144. seq_printf(m, "\n");
  7145. return 0;
  7146. }
  7147. static const char *cpuacct_stat_desc[] = {
  7148. [CPUACCT_STAT_USER] = "user",
  7149. [CPUACCT_STAT_SYSTEM] = "system",
  7150. };
  7151. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7152. struct cgroup_map_cb *cb)
  7153. {
  7154. struct cpuacct *ca = cgroup_ca(cgrp);
  7155. int cpu;
  7156. s64 val = 0;
  7157. for_each_online_cpu(cpu) {
  7158. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  7159. val += kcpustat->cpustat[CPUTIME_USER];
  7160. val += kcpustat->cpustat[CPUTIME_NICE];
  7161. }
  7162. val = cputime64_to_clock_t(val);
  7163. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  7164. val = 0;
  7165. for_each_online_cpu(cpu) {
  7166. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  7167. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  7168. val += kcpustat->cpustat[CPUTIME_IRQ];
  7169. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  7170. }
  7171. val = cputime64_to_clock_t(val);
  7172. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  7173. return 0;
  7174. }
  7175. static struct cftype files[] = {
  7176. {
  7177. .name = "usage",
  7178. .read_u64 = cpuusage_read,
  7179. .write_u64 = cpuusage_write,
  7180. },
  7181. {
  7182. .name = "usage_percpu",
  7183. .read_seq_string = cpuacct_percpu_seq_read,
  7184. },
  7185. {
  7186. .name = "stat",
  7187. .read_map = cpuacct_stats_show,
  7188. },
  7189. { } /* terminate */
  7190. };
  7191. /*
  7192. * charge this task's execution time to its accounting group.
  7193. *
  7194. * called with rq->lock held.
  7195. */
  7196. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7197. {
  7198. struct cpuacct *ca;
  7199. int cpu;
  7200. if (unlikely(!cpuacct_subsys.active))
  7201. return;
  7202. cpu = task_cpu(tsk);
  7203. rcu_read_lock();
  7204. ca = task_ca(tsk);
  7205. for (; ca; ca = parent_ca(ca)) {
  7206. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7207. *cpuusage += cputime;
  7208. }
  7209. rcu_read_unlock();
  7210. }
  7211. struct cgroup_subsys cpuacct_subsys = {
  7212. .name = "cpuacct",
  7213. .create = cpuacct_create,
  7214. .destroy = cpuacct_destroy,
  7215. .subsys_id = cpuacct_subsys_id,
  7216. .base_cftypes = files,
  7217. };
  7218. #endif /* CONFIG_CGROUP_CPUACCT */