vmx.c 210 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include "trace.h"
  43. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  44. #define __ex_clear(x, reg) \
  45. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. static const struct x86_cpu_id vmx_cpu_id[] = {
  49. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  50. {}
  51. };
  52. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  53. static bool __read_mostly enable_vpid = 1;
  54. module_param_named(vpid, enable_vpid, bool, 0444);
  55. static bool __read_mostly flexpriority_enabled = 1;
  56. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  57. static bool __read_mostly enable_ept = 1;
  58. module_param_named(ept, enable_ept, bool, S_IRUGO);
  59. static bool __read_mostly enable_unrestricted_guest = 1;
  60. module_param_named(unrestricted_guest,
  61. enable_unrestricted_guest, bool, S_IRUGO);
  62. static bool __read_mostly enable_ept_ad_bits = 1;
  63. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  64. static bool __read_mostly emulate_invalid_guest_state = true;
  65. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  66. static bool __read_mostly vmm_exclusive = 1;
  67. module_param(vmm_exclusive, bool, S_IRUGO);
  68. static bool __read_mostly fasteoi = 1;
  69. module_param(fasteoi, bool, S_IRUGO);
  70. /*
  71. * If nested=1, nested virtualization is supported, i.e., guests may use
  72. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  73. * use VMX instructions.
  74. */
  75. static bool __read_mostly nested = 0;
  76. module_param(nested, bool, S_IRUGO);
  77. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  78. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  79. #define KVM_GUEST_CR0_MASK \
  80. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  81. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  82. (X86_CR0_WP | X86_CR0_NE)
  83. #define KVM_VM_CR0_ALWAYS_ON \
  84. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  85. #define KVM_CR4_GUEST_OWNED_BITS \
  86. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  87. | X86_CR4_OSXMMEXCPT)
  88. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  89. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  90. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  91. /*
  92. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  93. * ple_gap: upper bound on the amount of time between two successive
  94. * executions of PAUSE in a loop. Also indicate if ple enabled.
  95. * According to test, this time is usually smaller than 128 cycles.
  96. * ple_window: upper bound on the amount of time a guest is allowed to execute
  97. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  98. * less than 2^12 cycles
  99. * Time is measured based on a counter that runs at the same rate as the TSC,
  100. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  101. */
  102. #define KVM_VMX_DEFAULT_PLE_GAP 128
  103. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  104. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  105. module_param(ple_gap, int, S_IRUGO);
  106. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  107. module_param(ple_window, int, S_IRUGO);
  108. #define NR_AUTOLOAD_MSRS 8
  109. #define VMCS02_POOL_SIZE 1
  110. struct vmcs {
  111. u32 revision_id;
  112. u32 abort;
  113. char data[0];
  114. };
  115. /*
  116. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  117. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  118. * loaded on this CPU (so we can clear them if the CPU goes down).
  119. */
  120. struct loaded_vmcs {
  121. struct vmcs *vmcs;
  122. int cpu;
  123. int launched;
  124. struct list_head loaded_vmcss_on_cpu_link;
  125. };
  126. struct shared_msr_entry {
  127. unsigned index;
  128. u64 data;
  129. u64 mask;
  130. };
  131. /*
  132. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  133. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  134. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  135. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  136. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  137. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  138. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  139. * underlying hardware which will be used to run L2.
  140. * This structure is packed to ensure that its layout is identical across
  141. * machines (necessary for live migration).
  142. * If there are changes in this struct, VMCS12_REVISION must be changed.
  143. */
  144. typedef u64 natural_width;
  145. struct __packed vmcs12 {
  146. /* According to the Intel spec, a VMCS region must start with the
  147. * following two fields. Then follow implementation-specific data.
  148. */
  149. u32 revision_id;
  150. u32 abort;
  151. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  152. u32 padding[7]; /* room for future expansion */
  153. u64 io_bitmap_a;
  154. u64 io_bitmap_b;
  155. u64 msr_bitmap;
  156. u64 vm_exit_msr_store_addr;
  157. u64 vm_exit_msr_load_addr;
  158. u64 vm_entry_msr_load_addr;
  159. u64 tsc_offset;
  160. u64 virtual_apic_page_addr;
  161. u64 apic_access_addr;
  162. u64 ept_pointer;
  163. u64 guest_physical_address;
  164. u64 vmcs_link_pointer;
  165. u64 guest_ia32_debugctl;
  166. u64 guest_ia32_pat;
  167. u64 guest_ia32_efer;
  168. u64 guest_ia32_perf_global_ctrl;
  169. u64 guest_pdptr0;
  170. u64 guest_pdptr1;
  171. u64 guest_pdptr2;
  172. u64 guest_pdptr3;
  173. u64 host_ia32_pat;
  174. u64 host_ia32_efer;
  175. u64 host_ia32_perf_global_ctrl;
  176. u64 padding64[8]; /* room for future expansion */
  177. /*
  178. * To allow migration of L1 (complete with its L2 guests) between
  179. * machines of different natural widths (32 or 64 bit), we cannot have
  180. * unsigned long fields with no explict size. We use u64 (aliased
  181. * natural_width) instead. Luckily, x86 is little-endian.
  182. */
  183. natural_width cr0_guest_host_mask;
  184. natural_width cr4_guest_host_mask;
  185. natural_width cr0_read_shadow;
  186. natural_width cr4_read_shadow;
  187. natural_width cr3_target_value0;
  188. natural_width cr3_target_value1;
  189. natural_width cr3_target_value2;
  190. natural_width cr3_target_value3;
  191. natural_width exit_qualification;
  192. natural_width guest_linear_address;
  193. natural_width guest_cr0;
  194. natural_width guest_cr3;
  195. natural_width guest_cr4;
  196. natural_width guest_es_base;
  197. natural_width guest_cs_base;
  198. natural_width guest_ss_base;
  199. natural_width guest_ds_base;
  200. natural_width guest_fs_base;
  201. natural_width guest_gs_base;
  202. natural_width guest_ldtr_base;
  203. natural_width guest_tr_base;
  204. natural_width guest_gdtr_base;
  205. natural_width guest_idtr_base;
  206. natural_width guest_dr7;
  207. natural_width guest_rsp;
  208. natural_width guest_rip;
  209. natural_width guest_rflags;
  210. natural_width guest_pending_dbg_exceptions;
  211. natural_width guest_sysenter_esp;
  212. natural_width guest_sysenter_eip;
  213. natural_width host_cr0;
  214. natural_width host_cr3;
  215. natural_width host_cr4;
  216. natural_width host_fs_base;
  217. natural_width host_gs_base;
  218. natural_width host_tr_base;
  219. natural_width host_gdtr_base;
  220. natural_width host_idtr_base;
  221. natural_width host_ia32_sysenter_esp;
  222. natural_width host_ia32_sysenter_eip;
  223. natural_width host_rsp;
  224. natural_width host_rip;
  225. natural_width paddingl[8]; /* room for future expansion */
  226. u32 pin_based_vm_exec_control;
  227. u32 cpu_based_vm_exec_control;
  228. u32 exception_bitmap;
  229. u32 page_fault_error_code_mask;
  230. u32 page_fault_error_code_match;
  231. u32 cr3_target_count;
  232. u32 vm_exit_controls;
  233. u32 vm_exit_msr_store_count;
  234. u32 vm_exit_msr_load_count;
  235. u32 vm_entry_controls;
  236. u32 vm_entry_msr_load_count;
  237. u32 vm_entry_intr_info_field;
  238. u32 vm_entry_exception_error_code;
  239. u32 vm_entry_instruction_len;
  240. u32 tpr_threshold;
  241. u32 secondary_vm_exec_control;
  242. u32 vm_instruction_error;
  243. u32 vm_exit_reason;
  244. u32 vm_exit_intr_info;
  245. u32 vm_exit_intr_error_code;
  246. u32 idt_vectoring_info_field;
  247. u32 idt_vectoring_error_code;
  248. u32 vm_exit_instruction_len;
  249. u32 vmx_instruction_info;
  250. u32 guest_es_limit;
  251. u32 guest_cs_limit;
  252. u32 guest_ss_limit;
  253. u32 guest_ds_limit;
  254. u32 guest_fs_limit;
  255. u32 guest_gs_limit;
  256. u32 guest_ldtr_limit;
  257. u32 guest_tr_limit;
  258. u32 guest_gdtr_limit;
  259. u32 guest_idtr_limit;
  260. u32 guest_es_ar_bytes;
  261. u32 guest_cs_ar_bytes;
  262. u32 guest_ss_ar_bytes;
  263. u32 guest_ds_ar_bytes;
  264. u32 guest_fs_ar_bytes;
  265. u32 guest_gs_ar_bytes;
  266. u32 guest_ldtr_ar_bytes;
  267. u32 guest_tr_ar_bytes;
  268. u32 guest_interruptibility_info;
  269. u32 guest_activity_state;
  270. u32 guest_sysenter_cs;
  271. u32 host_ia32_sysenter_cs;
  272. u32 padding32[8]; /* room for future expansion */
  273. u16 virtual_processor_id;
  274. u16 guest_es_selector;
  275. u16 guest_cs_selector;
  276. u16 guest_ss_selector;
  277. u16 guest_ds_selector;
  278. u16 guest_fs_selector;
  279. u16 guest_gs_selector;
  280. u16 guest_ldtr_selector;
  281. u16 guest_tr_selector;
  282. u16 host_es_selector;
  283. u16 host_cs_selector;
  284. u16 host_ss_selector;
  285. u16 host_ds_selector;
  286. u16 host_fs_selector;
  287. u16 host_gs_selector;
  288. u16 host_tr_selector;
  289. };
  290. /*
  291. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  292. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  293. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  294. */
  295. #define VMCS12_REVISION 0x11e57ed0
  296. /*
  297. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  298. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  299. * current implementation, 4K are reserved to avoid future complications.
  300. */
  301. #define VMCS12_SIZE 0x1000
  302. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  303. struct vmcs02_list {
  304. struct list_head list;
  305. gpa_t vmptr;
  306. struct loaded_vmcs vmcs02;
  307. };
  308. /*
  309. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  310. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  311. */
  312. struct nested_vmx {
  313. /* Has the level1 guest done vmxon? */
  314. bool vmxon;
  315. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  316. gpa_t current_vmptr;
  317. /* The host-usable pointer to the above */
  318. struct page *current_vmcs12_page;
  319. struct vmcs12 *current_vmcs12;
  320. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  321. struct list_head vmcs02_pool;
  322. int vmcs02_num;
  323. u64 vmcs01_tsc_offset;
  324. /* L2 must run next, and mustn't decide to exit to L1. */
  325. bool nested_run_pending;
  326. /*
  327. * Guest pages referred to in vmcs02 with host-physical pointers, so
  328. * we must keep them pinned while L2 runs.
  329. */
  330. struct page *apic_access_page;
  331. };
  332. struct vcpu_vmx {
  333. struct kvm_vcpu vcpu;
  334. unsigned long host_rsp;
  335. u8 fail;
  336. u8 cpl;
  337. bool nmi_known_unmasked;
  338. u32 exit_intr_info;
  339. u32 idt_vectoring_info;
  340. ulong rflags;
  341. struct shared_msr_entry *guest_msrs;
  342. int nmsrs;
  343. int save_nmsrs;
  344. #ifdef CONFIG_X86_64
  345. u64 msr_host_kernel_gs_base;
  346. u64 msr_guest_kernel_gs_base;
  347. #endif
  348. /*
  349. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  350. * non-nested (L1) guest, it always points to vmcs01. For a nested
  351. * guest (L2), it points to a different VMCS.
  352. */
  353. struct loaded_vmcs vmcs01;
  354. struct loaded_vmcs *loaded_vmcs;
  355. bool __launched; /* temporary, used in vmx_vcpu_run */
  356. struct msr_autoload {
  357. unsigned nr;
  358. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  359. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  360. } msr_autoload;
  361. struct {
  362. int loaded;
  363. u16 fs_sel, gs_sel, ldt_sel;
  364. #ifdef CONFIG_X86_64
  365. u16 ds_sel, es_sel;
  366. #endif
  367. int gs_ldt_reload_needed;
  368. int fs_reload_needed;
  369. } host_state;
  370. struct {
  371. int vm86_active;
  372. ulong save_rflags;
  373. struct kvm_save_segment {
  374. u16 selector;
  375. unsigned long base;
  376. u32 limit;
  377. u32 ar;
  378. } tr, es, ds, fs, gs;
  379. } rmode;
  380. struct {
  381. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  382. struct kvm_save_segment seg[8];
  383. } segment_cache;
  384. int vpid;
  385. bool emulation_required;
  386. /* Support for vnmi-less CPUs */
  387. int soft_vnmi_blocked;
  388. ktime_t entry_time;
  389. s64 vnmi_blocked_time;
  390. u32 exit_reason;
  391. bool rdtscp_enabled;
  392. /* Support for a guest hypervisor (nested VMX) */
  393. struct nested_vmx nested;
  394. };
  395. enum segment_cache_field {
  396. SEG_FIELD_SEL = 0,
  397. SEG_FIELD_BASE = 1,
  398. SEG_FIELD_LIMIT = 2,
  399. SEG_FIELD_AR = 3,
  400. SEG_FIELD_NR = 4
  401. };
  402. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  403. {
  404. return container_of(vcpu, struct vcpu_vmx, vcpu);
  405. }
  406. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  407. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  408. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  409. [number##_HIGH] = VMCS12_OFFSET(name)+4
  410. static unsigned short vmcs_field_to_offset_table[] = {
  411. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  412. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  413. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  414. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  415. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  416. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  417. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  418. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  419. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  420. FIELD(HOST_ES_SELECTOR, host_es_selector),
  421. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  422. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  423. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  424. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  425. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  426. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  427. FIELD64(IO_BITMAP_A, io_bitmap_a),
  428. FIELD64(IO_BITMAP_B, io_bitmap_b),
  429. FIELD64(MSR_BITMAP, msr_bitmap),
  430. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  431. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  432. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  433. FIELD64(TSC_OFFSET, tsc_offset),
  434. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  435. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  436. FIELD64(EPT_POINTER, ept_pointer),
  437. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  438. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  439. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  440. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  441. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  442. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  443. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  444. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  445. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  446. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  447. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  448. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  449. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  450. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  451. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  452. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  453. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  454. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  455. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  456. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  457. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  458. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  459. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  460. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  461. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  462. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  463. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  464. FIELD(TPR_THRESHOLD, tpr_threshold),
  465. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  466. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  467. FIELD(VM_EXIT_REASON, vm_exit_reason),
  468. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  469. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  470. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  471. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  472. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  473. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  474. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  475. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  476. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  477. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  478. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  479. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  480. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  481. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  482. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  483. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  484. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  485. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  486. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  487. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  488. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  489. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  490. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  491. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  492. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  493. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  494. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  495. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  496. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  497. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  498. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  499. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  500. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  501. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  502. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  503. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  504. FIELD(EXIT_QUALIFICATION, exit_qualification),
  505. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  506. FIELD(GUEST_CR0, guest_cr0),
  507. FIELD(GUEST_CR3, guest_cr3),
  508. FIELD(GUEST_CR4, guest_cr4),
  509. FIELD(GUEST_ES_BASE, guest_es_base),
  510. FIELD(GUEST_CS_BASE, guest_cs_base),
  511. FIELD(GUEST_SS_BASE, guest_ss_base),
  512. FIELD(GUEST_DS_BASE, guest_ds_base),
  513. FIELD(GUEST_FS_BASE, guest_fs_base),
  514. FIELD(GUEST_GS_BASE, guest_gs_base),
  515. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  516. FIELD(GUEST_TR_BASE, guest_tr_base),
  517. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  518. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  519. FIELD(GUEST_DR7, guest_dr7),
  520. FIELD(GUEST_RSP, guest_rsp),
  521. FIELD(GUEST_RIP, guest_rip),
  522. FIELD(GUEST_RFLAGS, guest_rflags),
  523. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  524. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  525. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  526. FIELD(HOST_CR0, host_cr0),
  527. FIELD(HOST_CR3, host_cr3),
  528. FIELD(HOST_CR4, host_cr4),
  529. FIELD(HOST_FS_BASE, host_fs_base),
  530. FIELD(HOST_GS_BASE, host_gs_base),
  531. FIELD(HOST_TR_BASE, host_tr_base),
  532. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  533. FIELD(HOST_IDTR_BASE, host_idtr_base),
  534. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  535. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  536. FIELD(HOST_RSP, host_rsp),
  537. FIELD(HOST_RIP, host_rip),
  538. };
  539. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  540. static inline short vmcs_field_to_offset(unsigned long field)
  541. {
  542. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  543. return -1;
  544. return vmcs_field_to_offset_table[field];
  545. }
  546. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  547. {
  548. return to_vmx(vcpu)->nested.current_vmcs12;
  549. }
  550. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  551. {
  552. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  553. if (is_error_page(page)) {
  554. kvm_release_page_clean(page);
  555. return NULL;
  556. }
  557. return page;
  558. }
  559. static void nested_release_page(struct page *page)
  560. {
  561. kvm_release_page_dirty(page);
  562. }
  563. static void nested_release_page_clean(struct page *page)
  564. {
  565. kvm_release_page_clean(page);
  566. }
  567. static u64 construct_eptp(unsigned long root_hpa);
  568. static void kvm_cpu_vmxon(u64 addr);
  569. static void kvm_cpu_vmxoff(void);
  570. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  571. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  572. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  573. struct kvm_segment *var, int seg);
  574. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  575. struct kvm_segment *var, int seg);
  576. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  577. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  578. /*
  579. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  580. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  581. */
  582. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  583. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  584. static unsigned long *vmx_io_bitmap_a;
  585. static unsigned long *vmx_io_bitmap_b;
  586. static unsigned long *vmx_msr_bitmap_legacy;
  587. static unsigned long *vmx_msr_bitmap_longmode;
  588. static bool cpu_has_load_ia32_efer;
  589. static bool cpu_has_load_perf_global_ctrl;
  590. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  591. static DEFINE_SPINLOCK(vmx_vpid_lock);
  592. static struct vmcs_config {
  593. int size;
  594. int order;
  595. u32 revision_id;
  596. u32 pin_based_exec_ctrl;
  597. u32 cpu_based_exec_ctrl;
  598. u32 cpu_based_2nd_exec_ctrl;
  599. u32 vmexit_ctrl;
  600. u32 vmentry_ctrl;
  601. } vmcs_config;
  602. static struct vmx_capability {
  603. u32 ept;
  604. u32 vpid;
  605. } vmx_capability;
  606. #define VMX_SEGMENT_FIELD(seg) \
  607. [VCPU_SREG_##seg] = { \
  608. .selector = GUEST_##seg##_SELECTOR, \
  609. .base = GUEST_##seg##_BASE, \
  610. .limit = GUEST_##seg##_LIMIT, \
  611. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  612. }
  613. static struct kvm_vmx_segment_field {
  614. unsigned selector;
  615. unsigned base;
  616. unsigned limit;
  617. unsigned ar_bytes;
  618. } kvm_vmx_segment_fields[] = {
  619. VMX_SEGMENT_FIELD(CS),
  620. VMX_SEGMENT_FIELD(DS),
  621. VMX_SEGMENT_FIELD(ES),
  622. VMX_SEGMENT_FIELD(FS),
  623. VMX_SEGMENT_FIELD(GS),
  624. VMX_SEGMENT_FIELD(SS),
  625. VMX_SEGMENT_FIELD(TR),
  626. VMX_SEGMENT_FIELD(LDTR),
  627. };
  628. static u64 host_efer;
  629. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  630. /*
  631. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  632. * away by decrementing the array size.
  633. */
  634. static const u32 vmx_msr_index[] = {
  635. #ifdef CONFIG_X86_64
  636. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  637. #endif
  638. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  639. };
  640. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  641. static inline bool is_page_fault(u32 intr_info)
  642. {
  643. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  644. INTR_INFO_VALID_MASK)) ==
  645. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  646. }
  647. static inline bool is_no_device(u32 intr_info)
  648. {
  649. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  650. INTR_INFO_VALID_MASK)) ==
  651. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  652. }
  653. static inline bool is_invalid_opcode(u32 intr_info)
  654. {
  655. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  656. INTR_INFO_VALID_MASK)) ==
  657. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  658. }
  659. static inline bool is_external_interrupt(u32 intr_info)
  660. {
  661. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  662. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  663. }
  664. static inline bool is_machine_check(u32 intr_info)
  665. {
  666. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  667. INTR_INFO_VALID_MASK)) ==
  668. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  669. }
  670. static inline bool cpu_has_vmx_msr_bitmap(void)
  671. {
  672. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  673. }
  674. static inline bool cpu_has_vmx_tpr_shadow(void)
  675. {
  676. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  677. }
  678. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  679. {
  680. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  681. }
  682. static inline bool cpu_has_secondary_exec_ctrls(void)
  683. {
  684. return vmcs_config.cpu_based_exec_ctrl &
  685. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  686. }
  687. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  688. {
  689. return vmcs_config.cpu_based_2nd_exec_ctrl &
  690. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  691. }
  692. static inline bool cpu_has_vmx_flexpriority(void)
  693. {
  694. return cpu_has_vmx_tpr_shadow() &&
  695. cpu_has_vmx_virtualize_apic_accesses();
  696. }
  697. static inline bool cpu_has_vmx_ept_execute_only(void)
  698. {
  699. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  700. }
  701. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  702. {
  703. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  704. }
  705. static inline bool cpu_has_vmx_eptp_writeback(void)
  706. {
  707. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  708. }
  709. static inline bool cpu_has_vmx_ept_2m_page(void)
  710. {
  711. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  712. }
  713. static inline bool cpu_has_vmx_ept_1g_page(void)
  714. {
  715. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  716. }
  717. static inline bool cpu_has_vmx_ept_4levels(void)
  718. {
  719. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  720. }
  721. static inline bool cpu_has_vmx_ept_ad_bits(void)
  722. {
  723. return vmx_capability.ept & VMX_EPT_AD_BIT;
  724. }
  725. static inline bool cpu_has_vmx_invept_individual_addr(void)
  726. {
  727. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  728. }
  729. static inline bool cpu_has_vmx_invept_context(void)
  730. {
  731. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  732. }
  733. static inline bool cpu_has_vmx_invept_global(void)
  734. {
  735. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  736. }
  737. static inline bool cpu_has_vmx_invvpid_single(void)
  738. {
  739. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  740. }
  741. static inline bool cpu_has_vmx_invvpid_global(void)
  742. {
  743. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  744. }
  745. static inline bool cpu_has_vmx_ept(void)
  746. {
  747. return vmcs_config.cpu_based_2nd_exec_ctrl &
  748. SECONDARY_EXEC_ENABLE_EPT;
  749. }
  750. static inline bool cpu_has_vmx_unrestricted_guest(void)
  751. {
  752. return vmcs_config.cpu_based_2nd_exec_ctrl &
  753. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  754. }
  755. static inline bool cpu_has_vmx_ple(void)
  756. {
  757. return vmcs_config.cpu_based_2nd_exec_ctrl &
  758. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  759. }
  760. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  761. {
  762. return flexpriority_enabled && irqchip_in_kernel(kvm);
  763. }
  764. static inline bool cpu_has_vmx_vpid(void)
  765. {
  766. return vmcs_config.cpu_based_2nd_exec_ctrl &
  767. SECONDARY_EXEC_ENABLE_VPID;
  768. }
  769. static inline bool cpu_has_vmx_rdtscp(void)
  770. {
  771. return vmcs_config.cpu_based_2nd_exec_ctrl &
  772. SECONDARY_EXEC_RDTSCP;
  773. }
  774. static inline bool cpu_has_vmx_invpcid(void)
  775. {
  776. return vmcs_config.cpu_based_2nd_exec_ctrl &
  777. SECONDARY_EXEC_ENABLE_INVPCID;
  778. }
  779. static inline bool cpu_has_virtual_nmis(void)
  780. {
  781. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  782. }
  783. static inline bool cpu_has_vmx_wbinvd_exit(void)
  784. {
  785. return vmcs_config.cpu_based_2nd_exec_ctrl &
  786. SECONDARY_EXEC_WBINVD_EXITING;
  787. }
  788. static inline bool report_flexpriority(void)
  789. {
  790. return flexpriority_enabled;
  791. }
  792. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  793. {
  794. return vmcs12->cpu_based_vm_exec_control & bit;
  795. }
  796. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  797. {
  798. return (vmcs12->cpu_based_vm_exec_control &
  799. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  800. (vmcs12->secondary_vm_exec_control & bit);
  801. }
  802. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  803. struct kvm_vcpu *vcpu)
  804. {
  805. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  806. }
  807. static inline bool is_exception(u32 intr_info)
  808. {
  809. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  810. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  811. }
  812. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  813. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  814. struct vmcs12 *vmcs12,
  815. u32 reason, unsigned long qualification);
  816. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  817. {
  818. int i;
  819. for (i = 0; i < vmx->nmsrs; ++i)
  820. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  821. return i;
  822. return -1;
  823. }
  824. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  825. {
  826. struct {
  827. u64 vpid : 16;
  828. u64 rsvd : 48;
  829. u64 gva;
  830. } operand = { vpid, 0, gva };
  831. asm volatile (__ex(ASM_VMX_INVVPID)
  832. /* CF==1 or ZF==1 --> rc = -1 */
  833. "; ja 1f ; ud2 ; 1:"
  834. : : "a"(&operand), "c"(ext) : "cc", "memory");
  835. }
  836. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  837. {
  838. struct {
  839. u64 eptp, gpa;
  840. } operand = {eptp, gpa};
  841. asm volatile (__ex(ASM_VMX_INVEPT)
  842. /* CF==1 or ZF==1 --> rc = -1 */
  843. "; ja 1f ; ud2 ; 1:\n"
  844. : : "a" (&operand), "c" (ext) : "cc", "memory");
  845. }
  846. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  847. {
  848. int i;
  849. i = __find_msr_index(vmx, msr);
  850. if (i >= 0)
  851. return &vmx->guest_msrs[i];
  852. return NULL;
  853. }
  854. static void vmcs_clear(struct vmcs *vmcs)
  855. {
  856. u64 phys_addr = __pa(vmcs);
  857. u8 error;
  858. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  859. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  860. : "cc", "memory");
  861. if (error)
  862. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  863. vmcs, phys_addr);
  864. }
  865. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  866. {
  867. vmcs_clear(loaded_vmcs->vmcs);
  868. loaded_vmcs->cpu = -1;
  869. loaded_vmcs->launched = 0;
  870. }
  871. static void vmcs_load(struct vmcs *vmcs)
  872. {
  873. u64 phys_addr = __pa(vmcs);
  874. u8 error;
  875. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  876. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  877. : "cc", "memory");
  878. if (error)
  879. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  880. vmcs, phys_addr);
  881. }
  882. static void __loaded_vmcs_clear(void *arg)
  883. {
  884. struct loaded_vmcs *loaded_vmcs = arg;
  885. int cpu = raw_smp_processor_id();
  886. if (loaded_vmcs->cpu != cpu)
  887. return; /* vcpu migration can race with cpu offline */
  888. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  889. per_cpu(current_vmcs, cpu) = NULL;
  890. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  891. loaded_vmcs_init(loaded_vmcs);
  892. }
  893. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  894. {
  895. if (loaded_vmcs->cpu != -1)
  896. smp_call_function_single(
  897. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  898. }
  899. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  900. {
  901. if (vmx->vpid == 0)
  902. return;
  903. if (cpu_has_vmx_invvpid_single())
  904. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  905. }
  906. static inline void vpid_sync_vcpu_global(void)
  907. {
  908. if (cpu_has_vmx_invvpid_global())
  909. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  910. }
  911. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  912. {
  913. if (cpu_has_vmx_invvpid_single())
  914. vpid_sync_vcpu_single(vmx);
  915. else
  916. vpid_sync_vcpu_global();
  917. }
  918. static inline void ept_sync_global(void)
  919. {
  920. if (cpu_has_vmx_invept_global())
  921. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  922. }
  923. static inline void ept_sync_context(u64 eptp)
  924. {
  925. if (enable_ept) {
  926. if (cpu_has_vmx_invept_context())
  927. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  928. else
  929. ept_sync_global();
  930. }
  931. }
  932. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  933. {
  934. if (enable_ept) {
  935. if (cpu_has_vmx_invept_individual_addr())
  936. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  937. eptp, gpa);
  938. else
  939. ept_sync_context(eptp);
  940. }
  941. }
  942. static __always_inline unsigned long vmcs_readl(unsigned long field)
  943. {
  944. unsigned long value;
  945. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  946. : "=a"(value) : "d"(field) : "cc");
  947. return value;
  948. }
  949. static __always_inline u16 vmcs_read16(unsigned long field)
  950. {
  951. return vmcs_readl(field);
  952. }
  953. static __always_inline u32 vmcs_read32(unsigned long field)
  954. {
  955. return vmcs_readl(field);
  956. }
  957. static __always_inline u64 vmcs_read64(unsigned long field)
  958. {
  959. #ifdef CONFIG_X86_64
  960. return vmcs_readl(field);
  961. #else
  962. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  963. #endif
  964. }
  965. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  966. {
  967. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  968. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  969. dump_stack();
  970. }
  971. static void vmcs_writel(unsigned long field, unsigned long value)
  972. {
  973. u8 error;
  974. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  975. : "=q"(error) : "a"(value), "d"(field) : "cc");
  976. if (unlikely(error))
  977. vmwrite_error(field, value);
  978. }
  979. static void vmcs_write16(unsigned long field, u16 value)
  980. {
  981. vmcs_writel(field, value);
  982. }
  983. static void vmcs_write32(unsigned long field, u32 value)
  984. {
  985. vmcs_writel(field, value);
  986. }
  987. static void vmcs_write64(unsigned long field, u64 value)
  988. {
  989. vmcs_writel(field, value);
  990. #ifndef CONFIG_X86_64
  991. asm volatile ("");
  992. vmcs_writel(field+1, value >> 32);
  993. #endif
  994. }
  995. static void vmcs_clear_bits(unsigned long field, u32 mask)
  996. {
  997. vmcs_writel(field, vmcs_readl(field) & ~mask);
  998. }
  999. static void vmcs_set_bits(unsigned long field, u32 mask)
  1000. {
  1001. vmcs_writel(field, vmcs_readl(field) | mask);
  1002. }
  1003. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1004. {
  1005. vmx->segment_cache.bitmask = 0;
  1006. }
  1007. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1008. unsigned field)
  1009. {
  1010. bool ret;
  1011. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1012. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1013. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1014. vmx->segment_cache.bitmask = 0;
  1015. }
  1016. ret = vmx->segment_cache.bitmask & mask;
  1017. vmx->segment_cache.bitmask |= mask;
  1018. return ret;
  1019. }
  1020. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1021. {
  1022. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1023. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1024. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1025. return *p;
  1026. }
  1027. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1028. {
  1029. ulong *p = &vmx->segment_cache.seg[seg].base;
  1030. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1031. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1032. return *p;
  1033. }
  1034. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1035. {
  1036. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1037. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1038. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1039. return *p;
  1040. }
  1041. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1042. {
  1043. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1044. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1045. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1046. return *p;
  1047. }
  1048. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1049. {
  1050. u32 eb;
  1051. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1052. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1053. if ((vcpu->guest_debug &
  1054. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1055. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1056. eb |= 1u << BP_VECTOR;
  1057. if (to_vmx(vcpu)->rmode.vm86_active)
  1058. eb = ~0;
  1059. if (enable_ept)
  1060. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1061. if (vcpu->fpu_active)
  1062. eb &= ~(1u << NM_VECTOR);
  1063. /* When we are running a nested L2 guest and L1 specified for it a
  1064. * certain exception bitmap, we must trap the same exceptions and pass
  1065. * them to L1. When running L2, we will only handle the exceptions
  1066. * specified above if L1 did not want them.
  1067. */
  1068. if (is_guest_mode(vcpu))
  1069. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1070. vmcs_write32(EXCEPTION_BITMAP, eb);
  1071. }
  1072. static void clear_atomic_switch_msr_special(unsigned long entry,
  1073. unsigned long exit)
  1074. {
  1075. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1076. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1077. }
  1078. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1079. {
  1080. unsigned i;
  1081. struct msr_autoload *m = &vmx->msr_autoload;
  1082. switch (msr) {
  1083. case MSR_EFER:
  1084. if (cpu_has_load_ia32_efer) {
  1085. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1086. VM_EXIT_LOAD_IA32_EFER);
  1087. return;
  1088. }
  1089. break;
  1090. case MSR_CORE_PERF_GLOBAL_CTRL:
  1091. if (cpu_has_load_perf_global_ctrl) {
  1092. clear_atomic_switch_msr_special(
  1093. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1094. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1095. return;
  1096. }
  1097. break;
  1098. }
  1099. for (i = 0; i < m->nr; ++i)
  1100. if (m->guest[i].index == msr)
  1101. break;
  1102. if (i == m->nr)
  1103. return;
  1104. --m->nr;
  1105. m->guest[i] = m->guest[m->nr];
  1106. m->host[i] = m->host[m->nr];
  1107. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1108. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1109. }
  1110. static void add_atomic_switch_msr_special(unsigned long entry,
  1111. unsigned long exit, unsigned long guest_val_vmcs,
  1112. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1113. {
  1114. vmcs_write64(guest_val_vmcs, guest_val);
  1115. vmcs_write64(host_val_vmcs, host_val);
  1116. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1117. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1118. }
  1119. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1120. u64 guest_val, u64 host_val)
  1121. {
  1122. unsigned i;
  1123. struct msr_autoload *m = &vmx->msr_autoload;
  1124. switch (msr) {
  1125. case MSR_EFER:
  1126. if (cpu_has_load_ia32_efer) {
  1127. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1128. VM_EXIT_LOAD_IA32_EFER,
  1129. GUEST_IA32_EFER,
  1130. HOST_IA32_EFER,
  1131. guest_val, host_val);
  1132. return;
  1133. }
  1134. break;
  1135. case MSR_CORE_PERF_GLOBAL_CTRL:
  1136. if (cpu_has_load_perf_global_ctrl) {
  1137. add_atomic_switch_msr_special(
  1138. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1139. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1140. GUEST_IA32_PERF_GLOBAL_CTRL,
  1141. HOST_IA32_PERF_GLOBAL_CTRL,
  1142. guest_val, host_val);
  1143. return;
  1144. }
  1145. break;
  1146. }
  1147. for (i = 0; i < m->nr; ++i)
  1148. if (m->guest[i].index == msr)
  1149. break;
  1150. if (i == NR_AUTOLOAD_MSRS) {
  1151. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1152. "Can't add msr %x\n", msr);
  1153. return;
  1154. } else if (i == m->nr) {
  1155. ++m->nr;
  1156. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1157. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1158. }
  1159. m->guest[i].index = msr;
  1160. m->guest[i].value = guest_val;
  1161. m->host[i].index = msr;
  1162. m->host[i].value = host_val;
  1163. }
  1164. static void reload_tss(void)
  1165. {
  1166. /*
  1167. * VT restores TR but not its size. Useless.
  1168. */
  1169. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1170. struct desc_struct *descs;
  1171. descs = (void *)gdt->address;
  1172. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1173. load_TR_desc();
  1174. }
  1175. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1176. {
  1177. u64 guest_efer;
  1178. u64 ignore_bits;
  1179. guest_efer = vmx->vcpu.arch.efer;
  1180. /*
  1181. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1182. * outside long mode
  1183. */
  1184. ignore_bits = EFER_NX | EFER_SCE;
  1185. #ifdef CONFIG_X86_64
  1186. ignore_bits |= EFER_LMA | EFER_LME;
  1187. /* SCE is meaningful only in long mode on Intel */
  1188. if (guest_efer & EFER_LMA)
  1189. ignore_bits &= ~(u64)EFER_SCE;
  1190. #endif
  1191. guest_efer &= ~ignore_bits;
  1192. guest_efer |= host_efer & ignore_bits;
  1193. vmx->guest_msrs[efer_offset].data = guest_efer;
  1194. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1195. clear_atomic_switch_msr(vmx, MSR_EFER);
  1196. /* On ept, can't emulate nx, and must switch nx atomically */
  1197. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1198. guest_efer = vmx->vcpu.arch.efer;
  1199. if (!(guest_efer & EFER_LMA))
  1200. guest_efer &= ~EFER_LME;
  1201. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1202. return false;
  1203. }
  1204. return true;
  1205. }
  1206. static unsigned long segment_base(u16 selector)
  1207. {
  1208. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1209. struct desc_struct *d;
  1210. unsigned long table_base;
  1211. unsigned long v;
  1212. if (!(selector & ~3))
  1213. return 0;
  1214. table_base = gdt->address;
  1215. if (selector & 4) { /* from ldt */
  1216. u16 ldt_selector = kvm_read_ldt();
  1217. if (!(ldt_selector & ~3))
  1218. return 0;
  1219. table_base = segment_base(ldt_selector);
  1220. }
  1221. d = (struct desc_struct *)(table_base + (selector & ~7));
  1222. v = get_desc_base(d);
  1223. #ifdef CONFIG_X86_64
  1224. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1225. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1226. #endif
  1227. return v;
  1228. }
  1229. static inline unsigned long kvm_read_tr_base(void)
  1230. {
  1231. u16 tr;
  1232. asm("str %0" : "=g"(tr));
  1233. return segment_base(tr);
  1234. }
  1235. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1236. {
  1237. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1238. int i;
  1239. if (vmx->host_state.loaded)
  1240. return;
  1241. vmx->host_state.loaded = 1;
  1242. /*
  1243. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1244. * allow segment selectors with cpl > 0 or ti == 1.
  1245. */
  1246. vmx->host_state.ldt_sel = kvm_read_ldt();
  1247. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1248. savesegment(fs, vmx->host_state.fs_sel);
  1249. if (!(vmx->host_state.fs_sel & 7)) {
  1250. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1251. vmx->host_state.fs_reload_needed = 0;
  1252. } else {
  1253. vmcs_write16(HOST_FS_SELECTOR, 0);
  1254. vmx->host_state.fs_reload_needed = 1;
  1255. }
  1256. savesegment(gs, vmx->host_state.gs_sel);
  1257. if (!(vmx->host_state.gs_sel & 7))
  1258. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1259. else {
  1260. vmcs_write16(HOST_GS_SELECTOR, 0);
  1261. vmx->host_state.gs_ldt_reload_needed = 1;
  1262. }
  1263. #ifdef CONFIG_X86_64
  1264. savesegment(ds, vmx->host_state.ds_sel);
  1265. savesegment(es, vmx->host_state.es_sel);
  1266. #endif
  1267. #ifdef CONFIG_X86_64
  1268. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1269. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1270. #else
  1271. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1272. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1273. #endif
  1274. #ifdef CONFIG_X86_64
  1275. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1276. if (is_long_mode(&vmx->vcpu))
  1277. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1278. #endif
  1279. for (i = 0; i < vmx->save_nmsrs; ++i)
  1280. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1281. vmx->guest_msrs[i].data,
  1282. vmx->guest_msrs[i].mask);
  1283. }
  1284. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1285. {
  1286. if (!vmx->host_state.loaded)
  1287. return;
  1288. ++vmx->vcpu.stat.host_state_reload;
  1289. vmx->host_state.loaded = 0;
  1290. #ifdef CONFIG_X86_64
  1291. if (is_long_mode(&vmx->vcpu))
  1292. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1293. #endif
  1294. if (vmx->host_state.gs_ldt_reload_needed) {
  1295. kvm_load_ldt(vmx->host_state.ldt_sel);
  1296. #ifdef CONFIG_X86_64
  1297. load_gs_index(vmx->host_state.gs_sel);
  1298. #else
  1299. loadsegment(gs, vmx->host_state.gs_sel);
  1300. #endif
  1301. }
  1302. if (vmx->host_state.fs_reload_needed)
  1303. loadsegment(fs, vmx->host_state.fs_sel);
  1304. #ifdef CONFIG_X86_64
  1305. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1306. loadsegment(ds, vmx->host_state.ds_sel);
  1307. loadsegment(es, vmx->host_state.es_sel);
  1308. }
  1309. #endif
  1310. reload_tss();
  1311. #ifdef CONFIG_X86_64
  1312. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1313. #endif
  1314. if (user_has_fpu())
  1315. clts();
  1316. load_gdt(&__get_cpu_var(host_gdt));
  1317. }
  1318. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1319. {
  1320. preempt_disable();
  1321. __vmx_load_host_state(vmx);
  1322. preempt_enable();
  1323. }
  1324. /*
  1325. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1326. * vcpu mutex is already taken.
  1327. */
  1328. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1329. {
  1330. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1331. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1332. if (!vmm_exclusive)
  1333. kvm_cpu_vmxon(phys_addr);
  1334. else if (vmx->loaded_vmcs->cpu != cpu)
  1335. loaded_vmcs_clear(vmx->loaded_vmcs);
  1336. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1337. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1338. vmcs_load(vmx->loaded_vmcs->vmcs);
  1339. }
  1340. if (vmx->loaded_vmcs->cpu != cpu) {
  1341. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1342. unsigned long sysenter_esp;
  1343. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1344. local_irq_disable();
  1345. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1346. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1347. local_irq_enable();
  1348. /*
  1349. * Linux uses per-cpu TSS and GDT, so set these when switching
  1350. * processors.
  1351. */
  1352. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1353. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1354. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1355. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1356. vmx->loaded_vmcs->cpu = cpu;
  1357. }
  1358. }
  1359. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1360. {
  1361. __vmx_load_host_state(to_vmx(vcpu));
  1362. if (!vmm_exclusive) {
  1363. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1364. vcpu->cpu = -1;
  1365. kvm_cpu_vmxoff();
  1366. }
  1367. }
  1368. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1369. {
  1370. ulong cr0;
  1371. if (vcpu->fpu_active)
  1372. return;
  1373. vcpu->fpu_active = 1;
  1374. cr0 = vmcs_readl(GUEST_CR0);
  1375. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1376. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1377. vmcs_writel(GUEST_CR0, cr0);
  1378. update_exception_bitmap(vcpu);
  1379. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1380. if (is_guest_mode(vcpu))
  1381. vcpu->arch.cr0_guest_owned_bits &=
  1382. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1383. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1384. }
  1385. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1386. /*
  1387. * Return the cr0 value that a nested guest would read. This is a combination
  1388. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1389. * its hypervisor (cr0_read_shadow).
  1390. */
  1391. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1392. {
  1393. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1394. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1395. }
  1396. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1397. {
  1398. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1399. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1400. }
  1401. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1402. {
  1403. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1404. * set this *before* calling this function.
  1405. */
  1406. vmx_decache_cr0_guest_bits(vcpu);
  1407. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1408. update_exception_bitmap(vcpu);
  1409. vcpu->arch.cr0_guest_owned_bits = 0;
  1410. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1411. if (is_guest_mode(vcpu)) {
  1412. /*
  1413. * L1's specified read shadow might not contain the TS bit,
  1414. * so now that we turned on shadowing of this bit, we need to
  1415. * set this bit of the shadow. Like in nested_vmx_run we need
  1416. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1417. * up-to-date here because we just decached cr0.TS (and we'll
  1418. * only update vmcs12->guest_cr0 on nested exit).
  1419. */
  1420. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1421. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1422. (vcpu->arch.cr0 & X86_CR0_TS);
  1423. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1424. } else
  1425. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1426. }
  1427. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1428. {
  1429. unsigned long rflags, save_rflags;
  1430. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1431. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1432. rflags = vmcs_readl(GUEST_RFLAGS);
  1433. if (to_vmx(vcpu)->rmode.vm86_active) {
  1434. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1435. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1436. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1437. }
  1438. to_vmx(vcpu)->rflags = rflags;
  1439. }
  1440. return to_vmx(vcpu)->rflags;
  1441. }
  1442. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1443. {
  1444. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1445. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1446. to_vmx(vcpu)->rflags = rflags;
  1447. if (to_vmx(vcpu)->rmode.vm86_active) {
  1448. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1449. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1450. }
  1451. vmcs_writel(GUEST_RFLAGS, rflags);
  1452. }
  1453. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1454. {
  1455. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1456. int ret = 0;
  1457. if (interruptibility & GUEST_INTR_STATE_STI)
  1458. ret |= KVM_X86_SHADOW_INT_STI;
  1459. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1460. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1461. return ret & mask;
  1462. }
  1463. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1464. {
  1465. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1466. u32 interruptibility = interruptibility_old;
  1467. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1468. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1469. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1470. else if (mask & KVM_X86_SHADOW_INT_STI)
  1471. interruptibility |= GUEST_INTR_STATE_STI;
  1472. if ((interruptibility != interruptibility_old))
  1473. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1474. }
  1475. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1476. {
  1477. unsigned long rip;
  1478. rip = kvm_rip_read(vcpu);
  1479. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1480. kvm_rip_write(vcpu, rip);
  1481. /* skipping an emulated instruction also counts */
  1482. vmx_set_interrupt_shadow(vcpu, 0);
  1483. }
  1484. /*
  1485. * KVM wants to inject page-faults which it got to the guest. This function
  1486. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1487. * This function assumes it is called with the exit reason in vmcs02 being
  1488. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1489. * is running).
  1490. */
  1491. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1492. {
  1493. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1494. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1495. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1496. return 0;
  1497. nested_vmx_vmexit(vcpu);
  1498. return 1;
  1499. }
  1500. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1501. bool has_error_code, u32 error_code,
  1502. bool reinject)
  1503. {
  1504. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1505. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1506. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1507. nested_pf_handled(vcpu))
  1508. return;
  1509. if (has_error_code) {
  1510. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1511. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1512. }
  1513. if (vmx->rmode.vm86_active) {
  1514. int inc_eip = 0;
  1515. if (kvm_exception_is_soft(nr))
  1516. inc_eip = vcpu->arch.event_exit_inst_len;
  1517. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1518. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1519. return;
  1520. }
  1521. if (kvm_exception_is_soft(nr)) {
  1522. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1523. vmx->vcpu.arch.event_exit_inst_len);
  1524. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1525. } else
  1526. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1527. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1528. }
  1529. static bool vmx_rdtscp_supported(void)
  1530. {
  1531. return cpu_has_vmx_rdtscp();
  1532. }
  1533. static bool vmx_invpcid_supported(void)
  1534. {
  1535. return cpu_has_vmx_invpcid() && enable_ept;
  1536. }
  1537. /*
  1538. * Swap MSR entry in host/guest MSR entry array.
  1539. */
  1540. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1541. {
  1542. struct shared_msr_entry tmp;
  1543. tmp = vmx->guest_msrs[to];
  1544. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1545. vmx->guest_msrs[from] = tmp;
  1546. }
  1547. /*
  1548. * Set up the vmcs to automatically save and restore system
  1549. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1550. * mode, as fiddling with msrs is very expensive.
  1551. */
  1552. static void setup_msrs(struct vcpu_vmx *vmx)
  1553. {
  1554. int save_nmsrs, index;
  1555. unsigned long *msr_bitmap;
  1556. save_nmsrs = 0;
  1557. #ifdef CONFIG_X86_64
  1558. if (is_long_mode(&vmx->vcpu)) {
  1559. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1560. if (index >= 0)
  1561. move_msr_up(vmx, index, save_nmsrs++);
  1562. index = __find_msr_index(vmx, MSR_LSTAR);
  1563. if (index >= 0)
  1564. move_msr_up(vmx, index, save_nmsrs++);
  1565. index = __find_msr_index(vmx, MSR_CSTAR);
  1566. if (index >= 0)
  1567. move_msr_up(vmx, index, save_nmsrs++);
  1568. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1569. if (index >= 0 && vmx->rdtscp_enabled)
  1570. move_msr_up(vmx, index, save_nmsrs++);
  1571. /*
  1572. * MSR_STAR is only needed on long mode guests, and only
  1573. * if efer.sce is enabled.
  1574. */
  1575. index = __find_msr_index(vmx, MSR_STAR);
  1576. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1577. move_msr_up(vmx, index, save_nmsrs++);
  1578. }
  1579. #endif
  1580. index = __find_msr_index(vmx, MSR_EFER);
  1581. if (index >= 0 && update_transition_efer(vmx, index))
  1582. move_msr_up(vmx, index, save_nmsrs++);
  1583. vmx->save_nmsrs = save_nmsrs;
  1584. if (cpu_has_vmx_msr_bitmap()) {
  1585. if (is_long_mode(&vmx->vcpu))
  1586. msr_bitmap = vmx_msr_bitmap_longmode;
  1587. else
  1588. msr_bitmap = vmx_msr_bitmap_legacy;
  1589. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1590. }
  1591. }
  1592. /*
  1593. * reads and returns guest's timestamp counter "register"
  1594. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1595. */
  1596. static u64 guest_read_tsc(void)
  1597. {
  1598. u64 host_tsc, tsc_offset;
  1599. rdtscll(host_tsc);
  1600. tsc_offset = vmcs_read64(TSC_OFFSET);
  1601. return host_tsc + tsc_offset;
  1602. }
  1603. /*
  1604. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1605. * counter, even if a nested guest (L2) is currently running.
  1606. */
  1607. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
  1608. {
  1609. u64 host_tsc, tsc_offset;
  1610. rdtscll(host_tsc);
  1611. tsc_offset = is_guest_mode(vcpu) ?
  1612. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1613. vmcs_read64(TSC_OFFSET);
  1614. return host_tsc + tsc_offset;
  1615. }
  1616. /*
  1617. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1618. * software catchup for faster rates on slower CPUs.
  1619. */
  1620. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1621. {
  1622. if (!scale)
  1623. return;
  1624. if (user_tsc_khz > tsc_khz) {
  1625. vcpu->arch.tsc_catchup = 1;
  1626. vcpu->arch.tsc_always_catchup = 1;
  1627. } else
  1628. WARN(1, "user requested TSC rate below hardware speed\n");
  1629. }
  1630. /*
  1631. * writes 'offset' into guest's timestamp counter offset register
  1632. */
  1633. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1634. {
  1635. if (is_guest_mode(vcpu)) {
  1636. /*
  1637. * We're here if L1 chose not to trap WRMSR to TSC. According
  1638. * to the spec, this should set L1's TSC; The offset that L1
  1639. * set for L2 remains unchanged, and still needs to be added
  1640. * to the newly set TSC to get L2's TSC.
  1641. */
  1642. struct vmcs12 *vmcs12;
  1643. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1644. /* recalculate vmcs02.TSC_OFFSET: */
  1645. vmcs12 = get_vmcs12(vcpu);
  1646. vmcs_write64(TSC_OFFSET, offset +
  1647. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1648. vmcs12->tsc_offset : 0));
  1649. } else {
  1650. vmcs_write64(TSC_OFFSET, offset);
  1651. }
  1652. }
  1653. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1654. {
  1655. u64 offset = vmcs_read64(TSC_OFFSET);
  1656. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1657. if (is_guest_mode(vcpu)) {
  1658. /* Even when running L2, the adjustment needs to apply to L1 */
  1659. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1660. }
  1661. }
  1662. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1663. {
  1664. return target_tsc - native_read_tsc();
  1665. }
  1666. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1667. {
  1668. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1669. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1670. }
  1671. /*
  1672. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1673. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1674. * all guests if the "nested" module option is off, and can also be disabled
  1675. * for a single guest by disabling its VMX cpuid bit.
  1676. */
  1677. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1678. {
  1679. return nested && guest_cpuid_has_vmx(vcpu);
  1680. }
  1681. /*
  1682. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1683. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1684. * The same values should also be used to verify that vmcs12 control fields are
  1685. * valid during nested entry from L1 to L2.
  1686. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1687. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1688. * bit in the high half is on if the corresponding bit in the control field
  1689. * may be on. See also vmx_control_verify().
  1690. * TODO: allow these variables to be modified (downgraded) by module options
  1691. * or other means.
  1692. */
  1693. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1694. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1695. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1696. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1697. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1698. static __init void nested_vmx_setup_ctls_msrs(void)
  1699. {
  1700. /*
  1701. * Note that as a general rule, the high half of the MSRs (bits in
  1702. * the control fields which may be 1) should be initialized by the
  1703. * intersection of the underlying hardware's MSR (i.e., features which
  1704. * can be supported) and the list of features we want to expose -
  1705. * because they are known to be properly supported in our code.
  1706. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1707. * be set to 0, meaning that L1 may turn off any of these bits. The
  1708. * reason is that if one of these bits is necessary, it will appear
  1709. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1710. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1711. * nested_vmx_exit_handled() will not pass related exits to L1.
  1712. * These rules have exceptions below.
  1713. */
  1714. /* pin-based controls */
  1715. /*
  1716. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1717. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1718. */
  1719. nested_vmx_pinbased_ctls_low = 0x16 ;
  1720. nested_vmx_pinbased_ctls_high = 0x16 |
  1721. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1722. PIN_BASED_VIRTUAL_NMIS;
  1723. /* exit controls */
  1724. nested_vmx_exit_ctls_low = 0;
  1725. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1726. #ifdef CONFIG_X86_64
  1727. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1728. #else
  1729. nested_vmx_exit_ctls_high = 0;
  1730. #endif
  1731. /* entry controls */
  1732. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1733. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1734. nested_vmx_entry_ctls_low = 0;
  1735. nested_vmx_entry_ctls_high &=
  1736. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1737. /* cpu-based controls */
  1738. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1739. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1740. nested_vmx_procbased_ctls_low = 0;
  1741. nested_vmx_procbased_ctls_high &=
  1742. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1743. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1744. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1745. CPU_BASED_CR3_STORE_EXITING |
  1746. #ifdef CONFIG_X86_64
  1747. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1748. #endif
  1749. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1750. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1751. CPU_BASED_RDPMC_EXITING |
  1752. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1753. /*
  1754. * We can allow some features even when not supported by the
  1755. * hardware. For example, L1 can specify an MSR bitmap - and we
  1756. * can use it to avoid exits to L1 - even when L0 runs L2
  1757. * without MSR bitmaps.
  1758. */
  1759. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1760. /* secondary cpu-based controls */
  1761. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1762. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1763. nested_vmx_secondary_ctls_low = 0;
  1764. nested_vmx_secondary_ctls_high &=
  1765. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1766. }
  1767. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1768. {
  1769. /*
  1770. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1771. */
  1772. return ((control & high) | low) == control;
  1773. }
  1774. static inline u64 vmx_control_msr(u32 low, u32 high)
  1775. {
  1776. return low | ((u64)high << 32);
  1777. }
  1778. /*
  1779. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1780. * also let it use VMX-specific MSRs.
  1781. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1782. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1783. * like all other MSRs).
  1784. */
  1785. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1786. {
  1787. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1788. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1789. /*
  1790. * According to the spec, processors which do not support VMX
  1791. * should throw a #GP(0) when VMX capability MSRs are read.
  1792. */
  1793. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1794. return 1;
  1795. }
  1796. switch (msr_index) {
  1797. case MSR_IA32_FEATURE_CONTROL:
  1798. *pdata = 0;
  1799. break;
  1800. case MSR_IA32_VMX_BASIC:
  1801. /*
  1802. * This MSR reports some information about VMX support. We
  1803. * should return information about the VMX we emulate for the
  1804. * guest, and the VMCS structure we give it - not about the
  1805. * VMX support of the underlying hardware.
  1806. */
  1807. *pdata = VMCS12_REVISION |
  1808. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1809. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1810. break;
  1811. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1812. case MSR_IA32_VMX_PINBASED_CTLS:
  1813. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1814. nested_vmx_pinbased_ctls_high);
  1815. break;
  1816. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1817. case MSR_IA32_VMX_PROCBASED_CTLS:
  1818. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1819. nested_vmx_procbased_ctls_high);
  1820. break;
  1821. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1822. case MSR_IA32_VMX_EXIT_CTLS:
  1823. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1824. nested_vmx_exit_ctls_high);
  1825. break;
  1826. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1827. case MSR_IA32_VMX_ENTRY_CTLS:
  1828. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1829. nested_vmx_entry_ctls_high);
  1830. break;
  1831. case MSR_IA32_VMX_MISC:
  1832. *pdata = 0;
  1833. break;
  1834. /*
  1835. * These MSRs specify bits which the guest must keep fixed (on or off)
  1836. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1837. * We picked the standard core2 setting.
  1838. */
  1839. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1840. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1841. case MSR_IA32_VMX_CR0_FIXED0:
  1842. *pdata = VMXON_CR0_ALWAYSON;
  1843. break;
  1844. case MSR_IA32_VMX_CR0_FIXED1:
  1845. *pdata = -1ULL;
  1846. break;
  1847. case MSR_IA32_VMX_CR4_FIXED0:
  1848. *pdata = VMXON_CR4_ALWAYSON;
  1849. break;
  1850. case MSR_IA32_VMX_CR4_FIXED1:
  1851. *pdata = -1ULL;
  1852. break;
  1853. case MSR_IA32_VMX_VMCS_ENUM:
  1854. *pdata = 0x1f;
  1855. break;
  1856. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1857. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1858. nested_vmx_secondary_ctls_high);
  1859. break;
  1860. case MSR_IA32_VMX_EPT_VPID_CAP:
  1861. /* Currently, no nested ept or nested vpid */
  1862. *pdata = 0;
  1863. break;
  1864. default:
  1865. return 0;
  1866. }
  1867. return 1;
  1868. }
  1869. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1870. {
  1871. if (!nested_vmx_allowed(vcpu))
  1872. return 0;
  1873. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1874. /* TODO: the right thing. */
  1875. return 1;
  1876. /*
  1877. * No need to treat VMX capability MSRs specially: If we don't handle
  1878. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1879. */
  1880. return 0;
  1881. }
  1882. /*
  1883. * Reads an msr value (of 'msr_index') into 'pdata'.
  1884. * Returns 0 on success, non-0 otherwise.
  1885. * Assumes vcpu_load() was already called.
  1886. */
  1887. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1888. {
  1889. u64 data;
  1890. struct shared_msr_entry *msr;
  1891. if (!pdata) {
  1892. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1893. return -EINVAL;
  1894. }
  1895. switch (msr_index) {
  1896. #ifdef CONFIG_X86_64
  1897. case MSR_FS_BASE:
  1898. data = vmcs_readl(GUEST_FS_BASE);
  1899. break;
  1900. case MSR_GS_BASE:
  1901. data = vmcs_readl(GUEST_GS_BASE);
  1902. break;
  1903. case MSR_KERNEL_GS_BASE:
  1904. vmx_load_host_state(to_vmx(vcpu));
  1905. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1906. break;
  1907. #endif
  1908. case MSR_EFER:
  1909. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1910. case MSR_IA32_TSC:
  1911. data = guest_read_tsc();
  1912. break;
  1913. case MSR_IA32_SYSENTER_CS:
  1914. data = vmcs_read32(GUEST_SYSENTER_CS);
  1915. break;
  1916. case MSR_IA32_SYSENTER_EIP:
  1917. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1918. break;
  1919. case MSR_IA32_SYSENTER_ESP:
  1920. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1921. break;
  1922. case MSR_TSC_AUX:
  1923. if (!to_vmx(vcpu)->rdtscp_enabled)
  1924. return 1;
  1925. /* Otherwise falls through */
  1926. default:
  1927. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1928. return 0;
  1929. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1930. if (msr) {
  1931. data = msr->data;
  1932. break;
  1933. }
  1934. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1935. }
  1936. *pdata = data;
  1937. return 0;
  1938. }
  1939. /*
  1940. * Writes msr value into into the appropriate "register".
  1941. * Returns 0 on success, non-0 otherwise.
  1942. * Assumes vcpu_load() was already called.
  1943. */
  1944. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1945. {
  1946. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1947. struct shared_msr_entry *msr;
  1948. int ret = 0;
  1949. switch (msr_index) {
  1950. case MSR_EFER:
  1951. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1952. break;
  1953. #ifdef CONFIG_X86_64
  1954. case MSR_FS_BASE:
  1955. vmx_segment_cache_clear(vmx);
  1956. vmcs_writel(GUEST_FS_BASE, data);
  1957. break;
  1958. case MSR_GS_BASE:
  1959. vmx_segment_cache_clear(vmx);
  1960. vmcs_writel(GUEST_GS_BASE, data);
  1961. break;
  1962. case MSR_KERNEL_GS_BASE:
  1963. vmx_load_host_state(vmx);
  1964. vmx->msr_guest_kernel_gs_base = data;
  1965. break;
  1966. #endif
  1967. case MSR_IA32_SYSENTER_CS:
  1968. vmcs_write32(GUEST_SYSENTER_CS, data);
  1969. break;
  1970. case MSR_IA32_SYSENTER_EIP:
  1971. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1972. break;
  1973. case MSR_IA32_SYSENTER_ESP:
  1974. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1975. break;
  1976. case MSR_IA32_TSC:
  1977. kvm_write_tsc(vcpu, data);
  1978. break;
  1979. case MSR_IA32_CR_PAT:
  1980. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1981. vmcs_write64(GUEST_IA32_PAT, data);
  1982. vcpu->arch.pat = data;
  1983. break;
  1984. }
  1985. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1986. break;
  1987. case MSR_TSC_AUX:
  1988. if (!vmx->rdtscp_enabled)
  1989. return 1;
  1990. /* Check reserved bit, higher 32 bits should be zero */
  1991. if ((data >> 32) != 0)
  1992. return 1;
  1993. /* Otherwise falls through */
  1994. default:
  1995. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1996. break;
  1997. msr = find_msr_entry(vmx, msr_index);
  1998. if (msr) {
  1999. msr->data = data;
  2000. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2001. preempt_disable();
  2002. kvm_set_shared_msr(msr->index, msr->data,
  2003. msr->mask);
  2004. preempt_enable();
  2005. }
  2006. break;
  2007. }
  2008. ret = kvm_set_msr_common(vcpu, msr_index, data);
  2009. }
  2010. return ret;
  2011. }
  2012. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2013. {
  2014. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2015. switch (reg) {
  2016. case VCPU_REGS_RSP:
  2017. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2018. break;
  2019. case VCPU_REGS_RIP:
  2020. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2021. break;
  2022. case VCPU_EXREG_PDPTR:
  2023. if (enable_ept)
  2024. ept_save_pdptrs(vcpu);
  2025. break;
  2026. default:
  2027. break;
  2028. }
  2029. }
  2030. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  2031. {
  2032. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  2033. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  2034. else
  2035. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2036. update_exception_bitmap(vcpu);
  2037. }
  2038. static __init int cpu_has_kvm_support(void)
  2039. {
  2040. return cpu_has_vmx();
  2041. }
  2042. static __init int vmx_disabled_by_bios(void)
  2043. {
  2044. u64 msr;
  2045. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2046. if (msr & FEATURE_CONTROL_LOCKED) {
  2047. /* launched w/ TXT and VMX disabled */
  2048. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2049. && tboot_enabled())
  2050. return 1;
  2051. /* launched w/o TXT and VMX only enabled w/ TXT */
  2052. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2053. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2054. && !tboot_enabled()) {
  2055. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2056. "activate TXT before enabling KVM\n");
  2057. return 1;
  2058. }
  2059. /* launched w/o TXT and VMX disabled */
  2060. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2061. && !tboot_enabled())
  2062. return 1;
  2063. }
  2064. return 0;
  2065. }
  2066. static void kvm_cpu_vmxon(u64 addr)
  2067. {
  2068. asm volatile (ASM_VMX_VMXON_RAX
  2069. : : "a"(&addr), "m"(addr)
  2070. : "memory", "cc");
  2071. }
  2072. static int hardware_enable(void *garbage)
  2073. {
  2074. int cpu = raw_smp_processor_id();
  2075. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2076. u64 old, test_bits;
  2077. if (read_cr4() & X86_CR4_VMXE)
  2078. return -EBUSY;
  2079. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2080. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2081. test_bits = FEATURE_CONTROL_LOCKED;
  2082. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2083. if (tboot_enabled())
  2084. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2085. if ((old & test_bits) != test_bits) {
  2086. /* enable and lock */
  2087. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2088. }
  2089. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2090. if (vmm_exclusive) {
  2091. kvm_cpu_vmxon(phys_addr);
  2092. ept_sync_global();
  2093. }
  2094. store_gdt(&__get_cpu_var(host_gdt));
  2095. return 0;
  2096. }
  2097. static void vmclear_local_loaded_vmcss(void)
  2098. {
  2099. int cpu = raw_smp_processor_id();
  2100. struct loaded_vmcs *v, *n;
  2101. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2102. loaded_vmcss_on_cpu_link)
  2103. __loaded_vmcs_clear(v);
  2104. }
  2105. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2106. * tricks.
  2107. */
  2108. static void kvm_cpu_vmxoff(void)
  2109. {
  2110. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2111. }
  2112. static void hardware_disable(void *garbage)
  2113. {
  2114. if (vmm_exclusive) {
  2115. vmclear_local_loaded_vmcss();
  2116. kvm_cpu_vmxoff();
  2117. }
  2118. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2119. }
  2120. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2121. u32 msr, u32 *result)
  2122. {
  2123. u32 vmx_msr_low, vmx_msr_high;
  2124. u32 ctl = ctl_min | ctl_opt;
  2125. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2126. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2127. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2128. /* Ensure minimum (required) set of control bits are supported. */
  2129. if (ctl_min & ~ctl)
  2130. return -EIO;
  2131. *result = ctl;
  2132. return 0;
  2133. }
  2134. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2135. {
  2136. u32 vmx_msr_low, vmx_msr_high;
  2137. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2138. return vmx_msr_high & ctl;
  2139. }
  2140. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2141. {
  2142. u32 vmx_msr_low, vmx_msr_high;
  2143. u32 min, opt, min2, opt2;
  2144. u32 _pin_based_exec_control = 0;
  2145. u32 _cpu_based_exec_control = 0;
  2146. u32 _cpu_based_2nd_exec_control = 0;
  2147. u32 _vmexit_control = 0;
  2148. u32 _vmentry_control = 0;
  2149. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2150. opt = PIN_BASED_VIRTUAL_NMIS;
  2151. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2152. &_pin_based_exec_control) < 0)
  2153. return -EIO;
  2154. min = CPU_BASED_HLT_EXITING |
  2155. #ifdef CONFIG_X86_64
  2156. CPU_BASED_CR8_LOAD_EXITING |
  2157. CPU_BASED_CR8_STORE_EXITING |
  2158. #endif
  2159. CPU_BASED_CR3_LOAD_EXITING |
  2160. CPU_BASED_CR3_STORE_EXITING |
  2161. CPU_BASED_USE_IO_BITMAPS |
  2162. CPU_BASED_MOV_DR_EXITING |
  2163. CPU_BASED_USE_TSC_OFFSETING |
  2164. CPU_BASED_MWAIT_EXITING |
  2165. CPU_BASED_MONITOR_EXITING |
  2166. CPU_BASED_INVLPG_EXITING |
  2167. CPU_BASED_RDPMC_EXITING;
  2168. opt = CPU_BASED_TPR_SHADOW |
  2169. CPU_BASED_USE_MSR_BITMAPS |
  2170. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2171. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2172. &_cpu_based_exec_control) < 0)
  2173. return -EIO;
  2174. #ifdef CONFIG_X86_64
  2175. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2176. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2177. ~CPU_BASED_CR8_STORE_EXITING;
  2178. #endif
  2179. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2180. min2 = 0;
  2181. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2182. SECONDARY_EXEC_WBINVD_EXITING |
  2183. SECONDARY_EXEC_ENABLE_VPID |
  2184. SECONDARY_EXEC_ENABLE_EPT |
  2185. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2186. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2187. SECONDARY_EXEC_RDTSCP |
  2188. SECONDARY_EXEC_ENABLE_INVPCID;
  2189. if (adjust_vmx_controls(min2, opt2,
  2190. MSR_IA32_VMX_PROCBASED_CTLS2,
  2191. &_cpu_based_2nd_exec_control) < 0)
  2192. return -EIO;
  2193. }
  2194. #ifndef CONFIG_X86_64
  2195. if (!(_cpu_based_2nd_exec_control &
  2196. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2197. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2198. #endif
  2199. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2200. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2201. enabled */
  2202. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2203. CPU_BASED_CR3_STORE_EXITING |
  2204. CPU_BASED_INVLPG_EXITING);
  2205. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2206. vmx_capability.ept, vmx_capability.vpid);
  2207. }
  2208. min = 0;
  2209. #ifdef CONFIG_X86_64
  2210. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2211. #endif
  2212. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2213. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2214. &_vmexit_control) < 0)
  2215. return -EIO;
  2216. min = 0;
  2217. opt = VM_ENTRY_LOAD_IA32_PAT;
  2218. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2219. &_vmentry_control) < 0)
  2220. return -EIO;
  2221. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2222. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2223. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2224. return -EIO;
  2225. #ifdef CONFIG_X86_64
  2226. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2227. if (vmx_msr_high & (1u<<16))
  2228. return -EIO;
  2229. #endif
  2230. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2231. if (((vmx_msr_high >> 18) & 15) != 6)
  2232. return -EIO;
  2233. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2234. vmcs_conf->order = get_order(vmcs_config.size);
  2235. vmcs_conf->revision_id = vmx_msr_low;
  2236. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2237. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2238. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2239. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2240. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2241. cpu_has_load_ia32_efer =
  2242. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2243. VM_ENTRY_LOAD_IA32_EFER)
  2244. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2245. VM_EXIT_LOAD_IA32_EFER);
  2246. cpu_has_load_perf_global_ctrl =
  2247. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2248. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2249. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2250. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2251. /*
  2252. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2253. * but due to arrata below it can't be used. Workaround is to use
  2254. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2255. *
  2256. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2257. *
  2258. * AAK155 (model 26)
  2259. * AAP115 (model 30)
  2260. * AAT100 (model 37)
  2261. * BC86,AAY89,BD102 (model 44)
  2262. * BA97 (model 46)
  2263. *
  2264. */
  2265. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2266. switch (boot_cpu_data.x86_model) {
  2267. case 26:
  2268. case 30:
  2269. case 37:
  2270. case 44:
  2271. case 46:
  2272. cpu_has_load_perf_global_ctrl = false;
  2273. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2274. "does not work properly. Using workaround\n");
  2275. break;
  2276. default:
  2277. break;
  2278. }
  2279. }
  2280. return 0;
  2281. }
  2282. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2283. {
  2284. int node = cpu_to_node(cpu);
  2285. struct page *pages;
  2286. struct vmcs *vmcs;
  2287. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2288. if (!pages)
  2289. return NULL;
  2290. vmcs = page_address(pages);
  2291. memset(vmcs, 0, vmcs_config.size);
  2292. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2293. return vmcs;
  2294. }
  2295. static struct vmcs *alloc_vmcs(void)
  2296. {
  2297. return alloc_vmcs_cpu(raw_smp_processor_id());
  2298. }
  2299. static void free_vmcs(struct vmcs *vmcs)
  2300. {
  2301. free_pages((unsigned long)vmcs, vmcs_config.order);
  2302. }
  2303. /*
  2304. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2305. */
  2306. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2307. {
  2308. if (!loaded_vmcs->vmcs)
  2309. return;
  2310. loaded_vmcs_clear(loaded_vmcs);
  2311. free_vmcs(loaded_vmcs->vmcs);
  2312. loaded_vmcs->vmcs = NULL;
  2313. }
  2314. static void free_kvm_area(void)
  2315. {
  2316. int cpu;
  2317. for_each_possible_cpu(cpu) {
  2318. free_vmcs(per_cpu(vmxarea, cpu));
  2319. per_cpu(vmxarea, cpu) = NULL;
  2320. }
  2321. }
  2322. static __init int alloc_kvm_area(void)
  2323. {
  2324. int cpu;
  2325. for_each_possible_cpu(cpu) {
  2326. struct vmcs *vmcs;
  2327. vmcs = alloc_vmcs_cpu(cpu);
  2328. if (!vmcs) {
  2329. free_kvm_area();
  2330. return -ENOMEM;
  2331. }
  2332. per_cpu(vmxarea, cpu) = vmcs;
  2333. }
  2334. return 0;
  2335. }
  2336. static __init int hardware_setup(void)
  2337. {
  2338. if (setup_vmcs_config(&vmcs_config) < 0)
  2339. return -EIO;
  2340. if (boot_cpu_has(X86_FEATURE_NX))
  2341. kvm_enable_efer_bits(EFER_NX);
  2342. if (!cpu_has_vmx_vpid())
  2343. enable_vpid = 0;
  2344. if (!cpu_has_vmx_ept() ||
  2345. !cpu_has_vmx_ept_4levels()) {
  2346. enable_ept = 0;
  2347. enable_unrestricted_guest = 0;
  2348. enable_ept_ad_bits = 0;
  2349. }
  2350. if (!cpu_has_vmx_ept_ad_bits())
  2351. enable_ept_ad_bits = 0;
  2352. if (!cpu_has_vmx_unrestricted_guest())
  2353. enable_unrestricted_guest = 0;
  2354. if (!cpu_has_vmx_flexpriority())
  2355. flexpriority_enabled = 0;
  2356. if (!cpu_has_vmx_tpr_shadow())
  2357. kvm_x86_ops->update_cr8_intercept = NULL;
  2358. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2359. kvm_disable_largepages();
  2360. if (!cpu_has_vmx_ple())
  2361. ple_gap = 0;
  2362. if (nested)
  2363. nested_vmx_setup_ctls_msrs();
  2364. return alloc_kvm_area();
  2365. }
  2366. static __exit void hardware_unsetup(void)
  2367. {
  2368. free_kvm_area();
  2369. }
  2370. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2371. {
  2372. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2373. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2374. vmcs_write16(sf->selector, save->selector);
  2375. vmcs_writel(sf->base, save->base);
  2376. vmcs_write32(sf->limit, save->limit);
  2377. vmcs_write32(sf->ar_bytes, save->ar);
  2378. } else {
  2379. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2380. << AR_DPL_SHIFT;
  2381. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2382. }
  2383. }
  2384. static void enter_pmode(struct kvm_vcpu *vcpu)
  2385. {
  2386. unsigned long flags;
  2387. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2388. vmx->emulation_required = 1;
  2389. vmx->rmode.vm86_active = 0;
  2390. vmx_segment_cache_clear(vmx);
  2391. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2392. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2393. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2394. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2395. flags = vmcs_readl(GUEST_RFLAGS);
  2396. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2397. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2398. vmcs_writel(GUEST_RFLAGS, flags);
  2399. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2400. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2401. update_exception_bitmap(vcpu);
  2402. if (emulate_invalid_guest_state)
  2403. return;
  2404. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2405. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2406. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2407. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2408. vmx_segment_cache_clear(vmx);
  2409. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2410. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2411. vmcs_write16(GUEST_CS_SELECTOR,
  2412. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2413. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2414. }
  2415. static gva_t rmode_tss_base(struct kvm *kvm)
  2416. {
  2417. if (!kvm->arch.tss_addr) {
  2418. struct kvm_memslots *slots;
  2419. struct kvm_memory_slot *slot;
  2420. gfn_t base_gfn;
  2421. slots = kvm_memslots(kvm);
  2422. slot = id_to_memslot(slots, 0);
  2423. base_gfn = slot->base_gfn + slot->npages - 3;
  2424. return base_gfn << PAGE_SHIFT;
  2425. }
  2426. return kvm->arch.tss_addr;
  2427. }
  2428. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2429. {
  2430. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2431. save->selector = vmcs_read16(sf->selector);
  2432. save->base = vmcs_readl(sf->base);
  2433. save->limit = vmcs_read32(sf->limit);
  2434. save->ar = vmcs_read32(sf->ar_bytes);
  2435. vmcs_write16(sf->selector, save->base >> 4);
  2436. vmcs_write32(sf->base, save->base & 0xffff0);
  2437. vmcs_write32(sf->limit, 0xffff);
  2438. vmcs_write32(sf->ar_bytes, 0xf3);
  2439. if (save->base & 0xf)
  2440. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2441. " aligned when entering protected mode (seg=%d)",
  2442. seg);
  2443. }
  2444. static void enter_rmode(struct kvm_vcpu *vcpu)
  2445. {
  2446. unsigned long flags;
  2447. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2448. struct kvm_segment var;
  2449. if (enable_unrestricted_guest)
  2450. return;
  2451. vmx->emulation_required = 1;
  2452. vmx->rmode.vm86_active = 1;
  2453. /*
  2454. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2455. * vcpu. Call it here with phys address pointing 16M below 4G.
  2456. */
  2457. if (!vcpu->kvm->arch.tss_addr) {
  2458. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2459. "called before entering vcpu\n");
  2460. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2461. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2462. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2463. }
  2464. vmx_segment_cache_clear(vmx);
  2465. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2466. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2467. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2468. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2469. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2470. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2471. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2472. flags = vmcs_readl(GUEST_RFLAGS);
  2473. vmx->rmode.save_rflags = flags;
  2474. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2475. vmcs_writel(GUEST_RFLAGS, flags);
  2476. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2477. update_exception_bitmap(vcpu);
  2478. if (emulate_invalid_guest_state)
  2479. goto continue_rmode;
  2480. vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
  2481. vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
  2482. vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
  2483. vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
  2484. vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
  2485. vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
  2486. vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
  2487. vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
  2488. vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
  2489. vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
  2490. vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
  2491. vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
  2492. continue_rmode:
  2493. kvm_mmu_reset_context(vcpu);
  2494. }
  2495. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2496. {
  2497. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2498. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2499. if (!msr)
  2500. return;
  2501. /*
  2502. * Force kernel_gs_base reloading before EFER changes, as control
  2503. * of this msr depends on is_long_mode().
  2504. */
  2505. vmx_load_host_state(to_vmx(vcpu));
  2506. vcpu->arch.efer = efer;
  2507. if (efer & EFER_LMA) {
  2508. vmcs_write32(VM_ENTRY_CONTROLS,
  2509. vmcs_read32(VM_ENTRY_CONTROLS) |
  2510. VM_ENTRY_IA32E_MODE);
  2511. msr->data = efer;
  2512. } else {
  2513. vmcs_write32(VM_ENTRY_CONTROLS,
  2514. vmcs_read32(VM_ENTRY_CONTROLS) &
  2515. ~VM_ENTRY_IA32E_MODE);
  2516. msr->data = efer & ~EFER_LME;
  2517. }
  2518. setup_msrs(vmx);
  2519. }
  2520. #ifdef CONFIG_X86_64
  2521. static void enter_lmode(struct kvm_vcpu *vcpu)
  2522. {
  2523. u32 guest_tr_ar;
  2524. vmx_segment_cache_clear(to_vmx(vcpu));
  2525. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2526. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2527. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2528. __func__);
  2529. vmcs_write32(GUEST_TR_AR_BYTES,
  2530. (guest_tr_ar & ~AR_TYPE_MASK)
  2531. | AR_TYPE_BUSY_64_TSS);
  2532. }
  2533. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2534. }
  2535. static void exit_lmode(struct kvm_vcpu *vcpu)
  2536. {
  2537. vmcs_write32(VM_ENTRY_CONTROLS,
  2538. vmcs_read32(VM_ENTRY_CONTROLS)
  2539. & ~VM_ENTRY_IA32E_MODE);
  2540. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2541. }
  2542. #endif
  2543. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2544. {
  2545. vpid_sync_context(to_vmx(vcpu));
  2546. if (enable_ept) {
  2547. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2548. return;
  2549. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2550. }
  2551. }
  2552. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2553. {
  2554. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2555. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2556. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2557. }
  2558. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2559. {
  2560. if (enable_ept && is_paging(vcpu))
  2561. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2562. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2563. }
  2564. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2565. {
  2566. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2567. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2568. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2569. }
  2570. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2571. {
  2572. if (!test_bit(VCPU_EXREG_PDPTR,
  2573. (unsigned long *)&vcpu->arch.regs_dirty))
  2574. return;
  2575. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2576. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2577. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2578. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2579. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2580. }
  2581. }
  2582. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2583. {
  2584. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2585. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2586. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2587. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2588. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2589. }
  2590. __set_bit(VCPU_EXREG_PDPTR,
  2591. (unsigned long *)&vcpu->arch.regs_avail);
  2592. __set_bit(VCPU_EXREG_PDPTR,
  2593. (unsigned long *)&vcpu->arch.regs_dirty);
  2594. }
  2595. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2596. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2597. unsigned long cr0,
  2598. struct kvm_vcpu *vcpu)
  2599. {
  2600. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2601. vmx_decache_cr3(vcpu);
  2602. if (!(cr0 & X86_CR0_PG)) {
  2603. /* From paging/starting to nonpaging */
  2604. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2605. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2606. (CPU_BASED_CR3_LOAD_EXITING |
  2607. CPU_BASED_CR3_STORE_EXITING));
  2608. vcpu->arch.cr0 = cr0;
  2609. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2610. } else if (!is_paging(vcpu)) {
  2611. /* From nonpaging to paging */
  2612. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2613. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2614. ~(CPU_BASED_CR3_LOAD_EXITING |
  2615. CPU_BASED_CR3_STORE_EXITING));
  2616. vcpu->arch.cr0 = cr0;
  2617. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2618. }
  2619. if (!(cr0 & X86_CR0_WP))
  2620. *hw_cr0 &= ~X86_CR0_WP;
  2621. }
  2622. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2623. {
  2624. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2625. unsigned long hw_cr0;
  2626. if (enable_unrestricted_guest)
  2627. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2628. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2629. else
  2630. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2631. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2632. enter_pmode(vcpu);
  2633. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2634. enter_rmode(vcpu);
  2635. #ifdef CONFIG_X86_64
  2636. if (vcpu->arch.efer & EFER_LME) {
  2637. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2638. enter_lmode(vcpu);
  2639. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2640. exit_lmode(vcpu);
  2641. }
  2642. #endif
  2643. if (enable_ept)
  2644. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2645. if (!vcpu->fpu_active)
  2646. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2647. vmcs_writel(CR0_READ_SHADOW, cr0);
  2648. vmcs_writel(GUEST_CR0, hw_cr0);
  2649. vcpu->arch.cr0 = cr0;
  2650. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2651. }
  2652. static u64 construct_eptp(unsigned long root_hpa)
  2653. {
  2654. u64 eptp;
  2655. /* TODO write the value reading from MSR */
  2656. eptp = VMX_EPT_DEFAULT_MT |
  2657. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2658. if (enable_ept_ad_bits)
  2659. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2660. eptp |= (root_hpa & PAGE_MASK);
  2661. return eptp;
  2662. }
  2663. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2664. {
  2665. unsigned long guest_cr3;
  2666. u64 eptp;
  2667. guest_cr3 = cr3;
  2668. if (enable_ept) {
  2669. eptp = construct_eptp(cr3);
  2670. vmcs_write64(EPT_POINTER, eptp);
  2671. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2672. vcpu->kvm->arch.ept_identity_map_addr;
  2673. ept_load_pdptrs(vcpu);
  2674. }
  2675. vmx_flush_tlb(vcpu);
  2676. vmcs_writel(GUEST_CR3, guest_cr3);
  2677. }
  2678. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2679. {
  2680. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2681. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2682. if (cr4 & X86_CR4_VMXE) {
  2683. /*
  2684. * To use VMXON (and later other VMX instructions), a guest
  2685. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2686. * So basically the check on whether to allow nested VMX
  2687. * is here.
  2688. */
  2689. if (!nested_vmx_allowed(vcpu))
  2690. return 1;
  2691. } else if (to_vmx(vcpu)->nested.vmxon)
  2692. return 1;
  2693. vcpu->arch.cr4 = cr4;
  2694. if (enable_ept) {
  2695. if (!is_paging(vcpu)) {
  2696. hw_cr4 &= ~X86_CR4_PAE;
  2697. hw_cr4 |= X86_CR4_PSE;
  2698. } else if (!(cr4 & X86_CR4_PAE)) {
  2699. hw_cr4 &= ~X86_CR4_PAE;
  2700. }
  2701. }
  2702. vmcs_writel(CR4_READ_SHADOW, cr4);
  2703. vmcs_writel(GUEST_CR4, hw_cr4);
  2704. return 0;
  2705. }
  2706. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2707. struct kvm_segment *var, int seg)
  2708. {
  2709. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2710. struct kvm_save_segment *save;
  2711. u32 ar;
  2712. if (vmx->rmode.vm86_active
  2713. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2714. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2715. || seg == VCPU_SREG_GS)
  2716. && !emulate_invalid_guest_state) {
  2717. switch (seg) {
  2718. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2719. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2720. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2721. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2722. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2723. default: BUG();
  2724. }
  2725. var->selector = save->selector;
  2726. var->base = save->base;
  2727. var->limit = save->limit;
  2728. ar = save->ar;
  2729. if (seg == VCPU_SREG_TR
  2730. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2731. goto use_saved_rmode_seg;
  2732. }
  2733. var->base = vmx_read_guest_seg_base(vmx, seg);
  2734. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2735. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2736. ar = vmx_read_guest_seg_ar(vmx, seg);
  2737. use_saved_rmode_seg:
  2738. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2739. ar = 0;
  2740. var->type = ar & 15;
  2741. var->s = (ar >> 4) & 1;
  2742. var->dpl = (ar >> 5) & 3;
  2743. var->present = (ar >> 7) & 1;
  2744. var->avl = (ar >> 12) & 1;
  2745. var->l = (ar >> 13) & 1;
  2746. var->db = (ar >> 14) & 1;
  2747. var->g = (ar >> 15) & 1;
  2748. var->unusable = (ar >> 16) & 1;
  2749. }
  2750. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2751. {
  2752. struct kvm_segment s;
  2753. if (to_vmx(vcpu)->rmode.vm86_active) {
  2754. vmx_get_segment(vcpu, &s, seg);
  2755. return s.base;
  2756. }
  2757. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2758. }
  2759. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2760. {
  2761. if (!is_protmode(vcpu))
  2762. return 0;
  2763. if (!is_long_mode(vcpu)
  2764. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2765. return 3;
  2766. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2767. }
  2768. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2769. {
  2770. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2771. /*
  2772. * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
  2773. * fail; use the cache instead.
  2774. */
  2775. if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
  2776. return vmx->cpl;
  2777. }
  2778. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2779. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2780. vmx->cpl = __vmx_get_cpl(vcpu);
  2781. }
  2782. return vmx->cpl;
  2783. }
  2784. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2785. {
  2786. u32 ar;
  2787. if (var->unusable || !var->present)
  2788. ar = 1 << 16;
  2789. else {
  2790. ar = var->type & 15;
  2791. ar |= (var->s & 1) << 4;
  2792. ar |= (var->dpl & 3) << 5;
  2793. ar |= (var->present & 1) << 7;
  2794. ar |= (var->avl & 1) << 12;
  2795. ar |= (var->l & 1) << 13;
  2796. ar |= (var->db & 1) << 14;
  2797. ar |= (var->g & 1) << 15;
  2798. }
  2799. return ar;
  2800. }
  2801. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2802. struct kvm_segment *var, int seg)
  2803. {
  2804. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2805. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2806. u32 ar;
  2807. vmx_segment_cache_clear(vmx);
  2808. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2809. vmcs_write16(sf->selector, var->selector);
  2810. vmx->rmode.tr.selector = var->selector;
  2811. vmx->rmode.tr.base = var->base;
  2812. vmx->rmode.tr.limit = var->limit;
  2813. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2814. return;
  2815. }
  2816. vmcs_writel(sf->base, var->base);
  2817. vmcs_write32(sf->limit, var->limit);
  2818. vmcs_write16(sf->selector, var->selector);
  2819. if (vmx->rmode.vm86_active && var->s) {
  2820. /*
  2821. * Hack real-mode segments into vm86 compatibility.
  2822. */
  2823. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2824. vmcs_writel(sf->base, 0xf0000);
  2825. ar = 0xf3;
  2826. } else
  2827. ar = vmx_segment_access_rights(var);
  2828. /*
  2829. * Fix the "Accessed" bit in AR field of segment registers for older
  2830. * qemu binaries.
  2831. * IA32 arch specifies that at the time of processor reset the
  2832. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2833. * is setting it to 0 in the usedland code. This causes invalid guest
  2834. * state vmexit when "unrestricted guest" mode is turned on.
  2835. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2836. * tree. Newer qemu binaries with that qemu fix would not need this
  2837. * kvm hack.
  2838. */
  2839. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2840. ar |= 0x1; /* Accessed */
  2841. vmcs_write32(sf->ar_bytes, ar);
  2842. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2843. /*
  2844. * Fix segments for real mode guest in hosts that don't have
  2845. * "unrestricted_mode" or it was disabled.
  2846. * This is done to allow migration of the guests from hosts with
  2847. * unrestricted guest like Westmere to older host that don't have
  2848. * unrestricted guest like Nehelem.
  2849. */
  2850. if (!enable_unrestricted_guest && vmx->rmode.vm86_active) {
  2851. switch (seg) {
  2852. case VCPU_SREG_CS:
  2853. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2854. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2855. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2856. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2857. vmcs_write16(GUEST_CS_SELECTOR,
  2858. vmcs_readl(GUEST_CS_BASE) >> 4);
  2859. break;
  2860. case VCPU_SREG_ES:
  2861. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2862. break;
  2863. case VCPU_SREG_DS:
  2864. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2865. break;
  2866. case VCPU_SREG_GS:
  2867. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2868. break;
  2869. case VCPU_SREG_FS:
  2870. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2871. break;
  2872. case VCPU_SREG_SS:
  2873. vmcs_write16(GUEST_SS_SELECTOR,
  2874. vmcs_readl(GUEST_SS_BASE) >> 4);
  2875. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2876. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2877. break;
  2878. }
  2879. }
  2880. }
  2881. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2882. {
  2883. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2884. *db = (ar >> 14) & 1;
  2885. *l = (ar >> 13) & 1;
  2886. }
  2887. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2888. {
  2889. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2890. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2891. }
  2892. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2893. {
  2894. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2895. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2896. }
  2897. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2898. {
  2899. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2900. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2901. }
  2902. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2903. {
  2904. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2905. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2906. }
  2907. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2908. {
  2909. struct kvm_segment var;
  2910. u32 ar;
  2911. vmx_get_segment(vcpu, &var, seg);
  2912. ar = vmx_segment_access_rights(&var);
  2913. if (var.base != (var.selector << 4))
  2914. return false;
  2915. if (var.limit != 0xffff)
  2916. return false;
  2917. if (ar != 0xf3)
  2918. return false;
  2919. return true;
  2920. }
  2921. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2922. {
  2923. struct kvm_segment cs;
  2924. unsigned int cs_rpl;
  2925. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2926. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2927. if (cs.unusable)
  2928. return false;
  2929. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2930. return false;
  2931. if (!cs.s)
  2932. return false;
  2933. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2934. if (cs.dpl > cs_rpl)
  2935. return false;
  2936. } else {
  2937. if (cs.dpl != cs_rpl)
  2938. return false;
  2939. }
  2940. if (!cs.present)
  2941. return false;
  2942. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2943. return true;
  2944. }
  2945. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2946. {
  2947. struct kvm_segment ss;
  2948. unsigned int ss_rpl;
  2949. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2950. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2951. if (ss.unusable)
  2952. return true;
  2953. if (ss.type != 3 && ss.type != 7)
  2954. return false;
  2955. if (!ss.s)
  2956. return false;
  2957. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2958. return false;
  2959. if (!ss.present)
  2960. return false;
  2961. return true;
  2962. }
  2963. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2964. {
  2965. struct kvm_segment var;
  2966. unsigned int rpl;
  2967. vmx_get_segment(vcpu, &var, seg);
  2968. rpl = var.selector & SELECTOR_RPL_MASK;
  2969. if (var.unusable)
  2970. return true;
  2971. if (!var.s)
  2972. return false;
  2973. if (!var.present)
  2974. return false;
  2975. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2976. if (var.dpl < rpl) /* DPL < RPL */
  2977. return false;
  2978. }
  2979. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2980. * rights flags
  2981. */
  2982. return true;
  2983. }
  2984. static bool tr_valid(struct kvm_vcpu *vcpu)
  2985. {
  2986. struct kvm_segment tr;
  2987. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2988. if (tr.unusable)
  2989. return false;
  2990. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2991. return false;
  2992. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2993. return false;
  2994. if (!tr.present)
  2995. return false;
  2996. return true;
  2997. }
  2998. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2999. {
  3000. struct kvm_segment ldtr;
  3001. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3002. if (ldtr.unusable)
  3003. return true;
  3004. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3005. return false;
  3006. if (ldtr.type != 2)
  3007. return false;
  3008. if (!ldtr.present)
  3009. return false;
  3010. return true;
  3011. }
  3012. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3013. {
  3014. struct kvm_segment cs, ss;
  3015. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3016. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3017. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3018. (ss.selector & SELECTOR_RPL_MASK));
  3019. }
  3020. /*
  3021. * Check if guest state is valid. Returns true if valid, false if
  3022. * not.
  3023. * We assume that registers are always usable
  3024. */
  3025. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3026. {
  3027. /* real mode guest state checks */
  3028. if (!is_protmode(vcpu)) {
  3029. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3030. return false;
  3031. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3032. return false;
  3033. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3034. return false;
  3035. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3036. return false;
  3037. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3038. return false;
  3039. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3040. return false;
  3041. } else {
  3042. /* protected mode guest state checks */
  3043. if (!cs_ss_rpl_check(vcpu))
  3044. return false;
  3045. if (!code_segment_valid(vcpu))
  3046. return false;
  3047. if (!stack_segment_valid(vcpu))
  3048. return false;
  3049. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3050. return false;
  3051. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3052. return false;
  3053. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3054. return false;
  3055. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3056. return false;
  3057. if (!tr_valid(vcpu))
  3058. return false;
  3059. if (!ldtr_valid(vcpu))
  3060. return false;
  3061. }
  3062. /* TODO:
  3063. * - Add checks on RIP
  3064. * - Add checks on RFLAGS
  3065. */
  3066. return true;
  3067. }
  3068. static int init_rmode_tss(struct kvm *kvm)
  3069. {
  3070. gfn_t fn;
  3071. u16 data = 0;
  3072. int r, idx, ret = 0;
  3073. idx = srcu_read_lock(&kvm->srcu);
  3074. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  3075. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3076. if (r < 0)
  3077. goto out;
  3078. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3079. r = kvm_write_guest_page(kvm, fn++, &data,
  3080. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3081. if (r < 0)
  3082. goto out;
  3083. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3084. if (r < 0)
  3085. goto out;
  3086. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3087. if (r < 0)
  3088. goto out;
  3089. data = ~0;
  3090. r = kvm_write_guest_page(kvm, fn, &data,
  3091. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3092. sizeof(u8));
  3093. if (r < 0)
  3094. goto out;
  3095. ret = 1;
  3096. out:
  3097. srcu_read_unlock(&kvm->srcu, idx);
  3098. return ret;
  3099. }
  3100. static int init_rmode_identity_map(struct kvm *kvm)
  3101. {
  3102. int i, idx, r, ret;
  3103. pfn_t identity_map_pfn;
  3104. u32 tmp;
  3105. if (!enable_ept)
  3106. return 1;
  3107. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3108. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3109. "haven't been allocated!\n");
  3110. return 0;
  3111. }
  3112. if (likely(kvm->arch.ept_identity_pagetable_done))
  3113. return 1;
  3114. ret = 0;
  3115. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3116. idx = srcu_read_lock(&kvm->srcu);
  3117. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3118. if (r < 0)
  3119. goto out;
  3120. /* Set up identity-mapping pagetable for EPT in real mode */
  3121. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3122. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3123. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3124. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3125. &tmp, i * sizeof(tmp), sizeof(tmp));
  3126. if (r < 0)
  3127. goto out;
  3128. }
  3129. kvm->arch.ept_identity_pagetable_done = true;
  3130. ret = 1;
  3131. out:
  3132. srcu_read_unlock(&kvm->srcu, idx);
  3133. return ret;
  3134. }
  3135. static void seg_setup(int seg)
  3136. {
  3137. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3138. unsigned int ar;
  3139. vmcs_write16(sf->selector, 0);
  3140. vmcs_writel(sf->base, 0);
  3141. vmcs_write32(sf->limit, 0xffff);
  3142. if (enable_unrestricted_guest) {
  3143. ar = 0x93;
  3144. if (seg == VCPU_SREG_CS)
  3145. ar |= 0x08; /* code segment */
  3146. } else
  3147. ar = 0xf3;
  3148. vmcs_write32(sf->ar_bytes, ar);
  3149. }
  3150. static int alloc_apic_access_page(struct kvm *kvm)
  3151. {
  3152. struct page *page;
  3153. struct kvm_userspace_memory_region kvm_userspace_mem;
  3154. int r = 0;
  3155. mutex_lock(&kvm->slots_lock);
  3156. if (kvm->arch.apic_access_page)
  3157. goto out;
  3158. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3159. kvm_userspace_mem.flags = 0;
  3160. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3161. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3162. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3163. if (r)
  3164. goto out;
  3165. page = gfn_to_page(kvm, 0xfee00);
  3166. if (is_error_page(page)) {
  3167. r = -EFAULT;
  3168. goto out;
  3169. }
  3170. kvm->arch.apic_access_page = page;
  3171. out:
  3172. mutex_unlock(&kvm->slots_lock);
  3173. return r;
  3174. }
  3175. static int alloc_identity_pagetable(struct kvm *kvm)
  3176. {
  3177. struct page *page;
  3178. struct kvm_userspace_memory_region kvm_userspace_mem;
  3179. int r = 0;
  3180. mutex_lock(&kvm->slots_lock);
  3181. if (kvm->arch.ept_identity_pagetable)
  3182. goto out;
  3183. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3184. kvm_userspace_mem.flags = 0;
  3185. kvm_userspace_mem.guest_phys_addr =
  3186. kvm->arch.ept_identity_map_addr;
  3187. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3188. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3189. if (r)
  3190. goto out;
  3191. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3192. if (is_error_page(page)) {
  3193. r = -EFAULT;
  3194. goto out;
  3195. }
  3196. kvm->arch.ept_identity_pagetable = page;
  3197. out:
  3198. mutex_unlock(&kvm->slots_lock);
  3199. return r;
  3200. }
  3201. static void allocate_vpid(struct vcpu_vmx *vmx)
  3202. {
  3203. int vpid;
  3204. vmx->vpid = 0;
  3205. if (!enable_vpid)
  3206. return;
  3207. spin_lock(&vmx_vpid_lock);
  3208. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3209. if (vpid < VMX_NR_VPIDS) {
  3210. vmx->vpid = vpid;
  3211. __set_bit(vpid, vmx_vpid_bitmap);
  3212. }
  3213. spin_unlock(&vmx_vpid_lock);
  3214. }
  3215. static void free_vpid(struct vcpu_vmx *vmx)
  3216. {
  3217. if (!enable_vpid)
  3218. return;
  3219. spin_lock(&vmx_vpid_lock);
  3220. if (vmx->vpid != 0)
  3221. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3222. spin_unlock(&vmx_vpid_lock);
  3223. }
  3224. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3225. {
  3226. int f = sizeof(unsigned long);
  3227. if (!cpu_has_vmx_msr_bitmap())
  3228. return;
  3229. /*
  3230. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3231. * have the write-low and read-high bitmap offsets the wrong way round.
  3232. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3233. */
  3234. if (msr <= 0x1fff) {
  3235. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3236. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3237. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3238. msr &= 0x1fff;
  3239. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3240. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3241. }
  3242. }
  3243. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3244. {
  3245. if (!longmode_only)
  3246. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3247. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3248. }
  3249. /*
  3250. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3251. * will not change in the lifetime of the guest.
  3252. * Note that host-state that does change is set elsewhere. E.g., host-state
  3253. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3254. */
  3255. static void vmx_set_constant_host_state(void)
  3256. {
  3257. u32 low32, high32;
  3258. unsigned long tmpl;
  3259. struct desc_ptr dt;
  3260. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  3261. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3262. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3263. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3264. #ifdef CONFIG_X86_64
  3265. /*
  3266. * Load null selectors, so we can avoid reloading them in
  3267. * __vmx_load_host_state(), in case userspace uses the null selectors
  3268. * too (the expected case).
  3269. */
  3270. vmcs_write16(HOST_DS_SELECTOR, 0);
  3271. vmcs_write16(HOST_ES_SELECTOR, 0);
  3272. #else
  3273. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3274. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3275. #endif
  3276. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3277. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3278. native_store_idt(&dt);
  3279. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3280. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3281. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3282. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3283. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3284. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3285. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3286. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3287. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3288. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3289. }
  3290. }
  3291. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3292. {
  3293. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3294. if (enable_ept)
  3295. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3296. if (is_guest_mode(&vmx->vcpu))
  3297. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3298. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3299. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3300. }
  3301. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3302. {
  3303. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3304. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3305. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3306. #ifdef CONFIG_X86_64
  3307. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3308. CPU_BASED_CR8_LOAD_EXITING;
  3309. #endif
  3310. }
  3311. if (!enable_ept)
  3312. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3313. CPU_BASED_CR3_LOAD_EXITING |
  3314. CPU_BASED_INVLPG_EXITING;
  3315. return exec_control;
  3316. }
  3317. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3318. {
  3319. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3320. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3321. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3322. if (vmx->vpid == 0)
  3323. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3324. if (!enable_ept) {
  3325. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3326. enable_unrestricted_guest = 0;
  3327. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3328. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3329. }
  3330. if (!enable_unrestricted_guest)
  3331. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3332. if (!ple_gap)
  3333. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3334. return exec_control;
  3335. }
  3336. static void ept_set_mmio_spte_mask(void)
  3337. {
  3338. /*
  3339. * EPT Misconfigurations can be generated if the value of bits 2:0
  3340. * of an EPT paging-structure entry is 110b (write/execute).
  3341. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3342. * spte.
  3343. */
  3344. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3345. }
  3346. /*
  3347. * Sets up the vmcs for emulated real mode.
  3348. */
  3349. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3350. {
  3351. #ifdef CONFIG_X86_64
  3352. unsigned long a;
  3353. #endif
  3354. int i;
  3355. /* I/O */
  3356. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3357. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3358. if (cpu_has_vmx_msr_bitmap())
  3359. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3360. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3361. /* Control */
  3362. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3363. vmcs_config.pin_based_exec_ctrl);
  3364. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3365. if (cpu_has_secondary_exec_ctrls()) {
  3366. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3367. vmx_secondary_exec_control(vmx));
  3368. }
  3369. if (ple_gap) {
  3370. vmcs_write32(PLE_GAP, ple_gap);
  3371. vmcs_write32(PLE_WINDOW, ple_window);
  3372. }
  3373. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3374. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3375. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3376. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3377. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3378. vmx_set_constant_host_state();
  3379. #ifdef CONFIG_X86_64
  3380. rdmsrl(MSR_FS_BASE, a);
  3381. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3382. rdmsrl(MSR_GS_BASE, a);
  3383. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3384. #else
  3385. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3386. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3387. #endif
  3388. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3389. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3390. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3391. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3392. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3393. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3394. u32 msr_low, msr_high;
  3395. u64 host_pat;
  3396. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3397. host_pat = msr_low | ((u64) msr_high << 32);
  3398. /* Write the default value follow host pat */
  3399. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3400. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3401. vmx->vcpu.arch.pat = host_pat;
  3402. }
  3403. for (i = 0; i < NR_VMX_MSR; ++i) {
  3404. u32 index = vmx_msr_index[i];
  3405. u32 data_low, data_high;
  3406. int j = vmx->nmsrs;
  3407. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3408. continue;
  3409. if (wrmsr_safe(index, data_low, data_high) < 0)
  3410. continue;
  3411. vmx->guest_msrs[j].index = i;
  3412. vmx->guest_msrs[j].data = 0;
  3413. vmx->guest_msrs[j].mask = -1ull;
  3414. ++vmx->nmsrs;
  3415. }
  3416. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3417. /* 22.2.1, 20.8.1 */
  3418. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3419. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3420. set_cr4_guest_host_mask(vmx);
  3421. kvm_write_tsc(&vmx->vcpu, 0);
  3422. return 0;
  3423. }
  3424. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3425. {
  3426. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3427. u64 msr;
  3428. int ret;
  3429. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3430. vmx->rmode.vm86_active = 0;
  3431. vmx->soft_vnmi_blocked = 0;
  3432. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3433. kvm_set_cr8(&vmx->vcpu, 0);
  3434. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3435. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3436. msr |= MSR_IA32_APICBASE_BSP;
  3437. kvm_set_apic_base(&vmx->vcpu, msr);
  3438. ret = fx_init(&vmx->vcpu);
  3439. if (ret != 0)
  3440. goto out;
  3441. vmx_segment_cache_clear(vmx);
  3442. seg_setup(VCPU_SREG_CS);
  3443. /*
  3444. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3445. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3446. */
  3447. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3448. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3449. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3450. } else {
  3451. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3452. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3453. }
  3454. seg_setup(VCPU_SREG_DS);
  3455. seg_setup(VCPU_SREG_ES);
  3456. seg_setup(VCPU_SREG_FS);
  3457. seg_setup(VCPU_SREG_GS);
  3458. seg_setup(VCPU_SREG_SS);
  3459. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3460. vmcs_writel(GUEST_TR_BASE, 0);
  3461. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3462. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3463. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3464. vmcs_writel(GUEST_LDTR_BASE, 0);
  3465. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3466. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3467. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3468. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3469. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3470. vmcs_writel(GUEST_RFLAGS, 0x02);
  3471. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3472. kvm_rip_write(vcpu, 0xfff0);
  3473. else
  3474. kvm_rip_write(vcpu, 0);
  3475. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3476. vmcs_writel(GUEST_DR7, 0x400);
  3477. vmcs_writel(GUEST_GDTR_BASE, 0);
  3478. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3479. vmcs_writel(GUEST_IDTR_BASE, 0);
  3480. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3481. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3482. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3483. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3484. /* Special registers */
  3485. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3486. setup_msrs(vmx);
  3487. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3488. if (cpu_has_vmx_tpr_shadow()) {
  3489. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3490. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3491. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3492. __pa(vmx->vcpu.arch.apic->regs));
  3493. vmcs_write32(TPR_THRESHOLD, 0);
  3494. }
  3495. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3496. vmcs_write64(APIC_ACCESS_ADDR,
  3497. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3498. if (vmx->vpid != 0)
  3499. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3500. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3501. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3502. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3503. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3504. vmx_set_cr4(&vmx->vcpu, 0);
  3505. vmx_set_efer(&vmx->vcpu, 0);
  3506. vmx_fpu_activate(&vmx->vcpu);
  3507. update_exception_bitmap(&vmx->vcpu);
  3508. vpid_sync_context(vmx);
  3509. ret = 0;
  3510. /* HACK: Don't enable emulation on guest boot/reset */
  3511. vmx->emulation_required = 0;
  3512. out:
  3513. return ret;
  3514. }
  3515. /*
  3516. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3517. * For most existing hypervisors, this will always return true.
  3518. */
  3519. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3520. {
  3521. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3522. PIN_BASED_EXT_INTR_MASK;
  3523. }
  3524. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3525. {
  3526. u32 cpu_based_vm_exec_control;
  3527. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3528. /*
  3529. * We get here if vmx_interrupt_allowed() said we can't
  3530. * inject to L1 now because L2 must run. Ask L2 to exit
  3531. * right after entry, so we can inject to L1 more promptly.
  3532. */
  3533. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3534. return;
  3535. }
  3536. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3537. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3538. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3539. }
  3540. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3541. {
  3542. u32 cpu_based_vm_exec_control;
  3543. if (!cpu_has_virtual_nmis()) {
  3544. enable_irq_window(vcpu);
  3545. return;
  3546. }
  3547. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3548. enable_irq_window(vcpu);
  3549. return;
  3550. }
  3551. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3552. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3553. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3554. }
  3555. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3556. {
  3557. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3558. uint32_t intr;
  3559. int irq = vcpu->arch.interrupt.nr;
  3560. trace_kvm_inj_virq(irq);
  3561. ++vcpu->stat.irq_injections;
  3562. if (vmx->rmode.vm86_active) {
  3563. int inc_eip = 0;
  3564. if (vcpu->arch.interrupt.soft)
  3565. inc_eip = vcpu->arch.event_exit_inst_len;
  3566. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3567. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3568. return;
  3569. }
  3570. intr = irq | INTR_INFO_VALID_MASK;
  3571. if (vcpu->arch.interrupt.soft) {
  3572. intr |= INTR_TYPE_SOFT_INTR;
  3573. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3574. vmx->vcpu.arch.event_exit_inst_len);
  3575. } else
  3576. intr |= INTR_TYPE_EXT_INTR;
  3577. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3578. }
  3579. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3580. {
  3581. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3582. if (is_guest_mode(vcpu))
  3583. return;
  3584. if (!cpu_has_virtual_nmis()) {
  3585. /*
  3586. * Tracking the NMI-blocked state in software is built upon
  3587. * finding the next open IRQ window. This, in turn, depends on
  3588. * well-behaving guests: They have to keep IRQs disabled at
  3589. * least as long as the NMI handler runs. Otherwise we may
  3590. * cause NMI nesting, maybe breaking the guest. But as this is
  3591. * highly unlikely, we can live with the residual risk.
  3592. */
  3593. vmx->soft_vnmi_blocked = 1;
  3594. vmx->vnmi_blocked_time = 0;
  3595. }
  3596. ++vcpu->stat.nmi_injections;
  3597. vmx->nmi_known_unmasked = false;
  3598. if (vmx->rmode.vm86_active) {
  3599. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3600. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3601. return;
  3602. }
  3603. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3604. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3605. }
  3606. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3607. {
  3608. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3609. return 0;
  3610. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3611. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3612. | GUEST_INTR_STATE_NMI));
  3613. }
  3614. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3615. {
  3616. if (!cpu_has_virtual_nmis())
  3617. return to_vmx(vcpu)->soft_vnmi_blocked;
  3618. if (to_vmx(vcpu)->nmi_known_unmasked)
  3619. return false;
  3620. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3621. }
  3622. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3623. {
  3624. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3625. if (!cpu_has_virtual_nmis()) {
  3626. if (vmx->soft_vnmi_blocked != masked) {
  3627. vmx->soft_vnmi_blocked = masked;
  3628. vmx->vnmi_blocked_time = 0;
  3629. }
  3630. } else {
  3631. vmx->nmi_known_unmasked = !masked;
  3632. if (masked)
  3633. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3634. GUEST_INTR_STATE_NMI);
  3635. else
  3636. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3637. GUEST_INTR_STATE_NMI);
  3638. }
  3639. }
  3640. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3641. {
  3642. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3643. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3644. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3645. (vmcs12->idt_vectoring_info_field &
  3646. VECTORING_INFO_VALID_MASK))
  3647. return 0;
  3648. nested_vmx_vmexit(vcpu);
  3649. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3650. vmcs12->vm_exit_intr_info = 0;
  3651. /* fall through to normal code, but now in L1, not L2 */
  3652. }
  3653. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3654. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3655. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3656. }
  3657. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3658. {
  3659. int ret;
  3660. struct kvm_userspace_memory_region tss_mem = {
  3661. .slot = TSS_PRIVATE_MEMSLOT,
  3662. .guest_phys_addr = addr,
  3663. .memory_size = PAGE_SIZE * 3,
  3664. .flags = 0,
  3665. };
  3666. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3667. if (ret)
  3668. return ret;
  3669. kvm->arch.tss_addr = addr;
  3670. if (!init_rmode_tss(kvm))
  3671. return -ENOMEM;
  3672. return 0;
  3673. }
  3674. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3675. int vec, u32 err_code)
  3676. {
  3677. /*
  3678. * Instruction with address size override prefix opcode 0x67
  3679. * Cause the #SS fault with 0 error code in VM86 mode.
  3680. */
  3681. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3682. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3683. return 1;
  3684. /*
  3685. * Forward all other exceptions that are valid in real mode.
  3686. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3687. * the required debugging infrastructure rework.
  3688. */
  3689. switch (vec) {
  3690. case DB_VECTOR:
  3691. if (vcpu->guest_debug &
  3692. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3693. return 0;
  3694. kvm_queue_exception(vcpu, vec);
  3695. return 1;
  3696. case BP_VECTOR:
  3697. /*
  3698. * Update instruction length as we may reinject the exception
  3699. * from user space while in guest debugging mode.
  3700. */
  3701. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3702. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3703. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3704. return 0;
  3705. /* fall through */
  3706. case DE_VECTOR:
  3707. case OF_VECTOR:
  3708. case BR_VECTOR:
  3709. case UD_VECTOR:
  3710. case DF_VECTOR:
  3711. case SS_VECTOR:
  3712. case GP_VECTOR:
  3713. case MF_VECTOR:
  3714. kvm_queue_exception(vcpu, vec);
  3715. return 1;
  3716. }
  3717. return 0;
  3718. }
  3719. /*
  3720. * Trigger machine check on the host. We assume all the MSRs are already set up
  3721. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3722. * We pass a fake environment to the machine check handler because we want
  3723. * the guest to be always treated like user space, no matter what context
  3724. * it used internally.
  3725. */
  3726. static void kvm_machine_check(void)
  3727. {
  3728. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3729. struct pt_regs regs = {
  3730. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3731. .flags = X86_EFLAGS_IF,
  3732. };
  3733. do_machine_check(&regs, 0);
  3734. #endif
  3735. }
  3736. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3737. {
  3738. /* already handled by vcpu_run */
  3739. return 1;
  3740. }
  3741. static int handle_exception(struct kvm_vcpu *vcpu)
  3742. {
  3743. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3744. struct kvm_run *kvm_run = vcpu->run;
  3745. u32 intr_info, ex_no, error_code;
  3746. unsigned long cr2, rip, dr6;
  3747. u32 vect_info;
  3748. enum emulation_result er;
  3749. vect_info = vmx->idt_vectoring_info;
  3750. intr_info = vmx->exit_intr_info;
  3751. if (is_machine_check(intr_info))
  3752. return handle_machine_check(vcpu);
  3753. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3754. !is_page_fault(intr_info)) {
  3755. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3756. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3757. vcpu->run->internal.ndata = 2;
  3758. vcpu->run->internal.data[0] = vect_info;
  3759. vcpu->run->internal.data[1] = intr_info;
  3760. return 0;
  3761. }
  3762. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3763. return 1; /* already handled by vmx_vcpu_run() */
  3764. if (is_no_device(intr_info)) {
  3765. vmx_fpu_activate(vcpu);
  3766. return 1;
  3767. }
  3768. if (is_invalid_opcode(intr_info)) {
  3769. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3770. if (er != EMULATE_DONE)
  3771. kvm_queue_exception(vcpu, UD_VECTOR);
  3772. return 1;
  3773. }
  3774. error_code = 0;
  3775. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3776. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3777. if (is_page_fault(intr_info)) {
  3778. /* EPT won't cause page fault directly */
  3779. BUG_ON(enable_ept);
  3780. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3781. trace_kvm_page_fault(cr2, error_code);
  3782. if (kvm_event_needs_reinjection(vcpu))
  3783. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3784. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3785. }
  3786. if (vmx->rmode.vm86_active &&
  3787. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3788. error_code)) {
  3789. if (vcpu->arch.halt_request) {
  3790. vcpu->arch.halt_request = 0;
  3791. return kvm_emulate_halt(vcpu);
  3792. }
  3793. return 1;
  3794. }
  3795. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3796. switch (ex_no) {
  3797. case DB_VECTOR:
  3798. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3799. if (!(vcpu->guest_debug &
  3800. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3801. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3802. kvm_queue_exception(vcpu, DB_VECTOR);
  3803. return 1;
  3804. }
  3805. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3806. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3807. /* fall through */
  3808. case BP_VECTOR:
  3809. /*
  3810. * Update instruction length as we may reinject #BP from
  3811. * user space while in guest debugging mode. Reading it for
  3812. * #DB as well causes no harm, it is not used in that case.
  3813. */
  3814. vmx->vcpu.arch.event_exit_inst_len =
  3815. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3816. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3817. rip = kvm_rip_read(vcpu);
  3818. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3819. kvm_run->debug.arch.exception = ex_no;
  3820. break;
  3821. default:
  3822. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3823. kvm_run->ex.exception = ex_no;
  3824. kvm_run->ex.error_code = error_code;
  3825. break;
  3826. }
  3827. return 0;
  3828. }
  3829. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3830. {
  3831. ++vcpu->stat.irq_exits;
  3832. return 1;
  3833. }
  3834. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3835. {
  3836. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3837. return 0;
  3838. }
  3839. static int handle_io(struct kvm_vcpu *vcpu)
  3840. {
  3841. unsigned long exit_qualification;
  3842. int size, in, string;
  3843. unsigned port;
  3844. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3845. string = (exit_qualification & 16) != 0;
  3846. in = (exit_qualification & 8) != 0;
  3847. ++vcpu->stat.io_exits;
  3848. if (string || in)
  3849. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3850. port = exit_qualification >> 16;
  3851. size = (exit_qualification & 7) + 1;
  3852. skip_emulated_instruction(vcpu);
  3853. return kvm_fast_pio_out(vcpu, size, port);
  3854. }
  3855. static void
  3856. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3857. {
  3858. /*
  3859. * Patch in the VMCALL instruction:
  3860. */
  3861. hypercall[0] = 0x0f;
  3862. hypercall[1] = 0x01;
  3863. hypercall[2] = 0xc1;
  3864. }
  3865. /* called to set cr0 as approriate for a mov-to-cr0 exit. */
  3866. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3867. {
  3868. if (to_vmx(vcpu)->nested.vmxon &&
  3869. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3870. return 1;
  3871. if (is_guest_mode(vcpu)) {
  3872. /*
  3873. * We get here when L2 changed cr0 in a way that did not change
  3874. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3875. * but did change L0 shadowed bits. This can currently happen
  3876. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3877. * loading) while pretending to allow the guest to change it.
  3878. */
  3879. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3880. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3881. return 1;
  3882. vmcs_writel(CR0_READ_SHADOW, val);
  3883. return 0;
  3884. } else
  3885. return kvm_set_cr0(vcpu, val);
  3886. }
  3887. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3888. {
  3889. if (is_guest_mode(vcpu)) {
  3890. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3891. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3892. return 1;
  3893. vmcs_writel(CR4_READ_SHADOW, val);
  3894. return 0;
  3895. } else
  3896. return kvm_set_cr4(vcpu, val);
  3897. }
  3898. /* called to set cr0 as approriate for clts instruction exit. */
  3899. static void handle_clts(struct kvm_vcpu *vcpu)
  3900. {
  3901. if (is_guest_mode(vcpu)) {
  3902. /*
  3903. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3904. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3905. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3906. */
  3907. vmcs_writel(CR0_READ_SHADOW,
  3908. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3909. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3910. } else
  3911. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3912. }
  3913. static int handle_cr(struct kvm_vcpu *vcpu)
  3914. {
  3915. unsigned long exit_qualification, val;
  3916. int cr;
  3917. int reg;
  3918. int err;
  3919. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3920. cr = exit_qualification & 15;
  3921. reg = (exit_qualification >> 8) & 15;
  3922. switch ((exit_qualification >> 4) & 3) {
  3923. case 0: /* mov to cr */
  3924. val = kvm_register_read(vcpu, reg);
  3925. trace_kvm_cr_write(cr, val);
  3926. switch (cr) {
  3927. case 0:
  3928. err = handle_set_cr0(vcpu, val);
  3929. kvm_complete_insn_gp(vcpu, err);
  3930. return 1;
  3931. case 3:
  3932. err = kvm_set_cr3(vcpu, val);
  3933. kvm_complete_insn_gp(vcpu, err);
  3934. return 1;
  3935. case 4:
  3936. err = handle_set_cr4(vcpu, val);
  3937. kvm_complete_insn_gp(vcpu, err);
  3938. return 1;
  3939. case 8: {
  3940. u8 cr8_prev = kvm_get_cr8(vcpu);
  3941. u8 cr8 = kvm_register_read(vcpu, reg);
  3942. err = kvm_set_cr8(vcpu, cr8);
  3943. kvm_complete_insn_gp(vcpu, err);
  3944. if (irqchip_in_kernel(vcpu->kvm))
  3945. return 1;
  3946. if (cr8_prev <= cr8)
  3947. return 1;
  3948. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3949. return 0;
  3950. }
  3951. };
  3952. break;
  3953. case 2: /* clts */
  3954. handle_clts(vcpu);
  3955. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3956. skip_emulated_instruction(vcpu);
  3957. vmx_fpu_activate(vcpu);
  3958. return 1;
  3959. case 1: /*mov from cr*/
  3960. switch (cr) {
  3961. case 3:
  3962. val = kvm_read_cr3(vcpu);
  3963. kvm_register_write(vcpu, reg, val);
  3964. trace_kvm_cr_read(cr, val);
  3965. skip_emulated_instruction(vcpu);
  3966. return 1;
  3967. case 8:
  3968. val = kvm_get_cr8(vcpu);
  3969. kvm_register_write(vcpu, reg, val);
  3970. trace_kvm_cr_read(cr, val);
  3971. skip_emulated_instruction(vcpu);
  3972. return 1;
  3973. }
  3974. break;
  3975. case 3: /* lmsw */
  3976. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3977. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3978. kvm_lmsw(vcpu, val);
  3979. skip_emulated_instruction(vcpu);
  3980. return 1;
  3981. default:
  3982. break;
  3983. }
  3984. vcpu->run->exit_reason = 0;
  3985. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3986. (int)(exit_qualification >> 4) & 3, cr);
  3987. return 0;
  3988. }
  3989. static int handle_dr(struct kvm_vcpu *vcpu)
  3990. {
  3991. unsigned long exit_qualification;
  3992. int dr, reg;
  3993. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3994. if (!kvm_require_cpl(vcpu, 0))
  3995. return 1;
  3996. dr = vmcs_readl(GUEST_DR7);
  3997. if (dr & DR7_GD) {
  3998. /*
  3999. * As the vm-exit takes precedence over the debug trap, we
  4000. * need to emulate the latter, either for the host or the
  4001. * guest debugging itself.
  4002. */
  4003. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4004. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4005. vcpu->run->debug.arch.dr7 = dr;
  4006. vcpu->run->debug.arch.pc =
  4007. vmcs_readl(GUEST_CS_BASE) +
  4008. vmcs_readl(GUEST_RIP);
  4009. vcpu->run->debug.arch.exception = DB_VECTOR;
  4010. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4011. return 0;
  4012. } else {
  4013. vcpu->arch.dr7 &= ~DR7_GD;
  4014. vcpu->arch.dr6 |= DR6_BD;
  4015. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4016. kvm_queue_exception(vcpu, DB_VECTOR);
  4017. return 1;
  4018. }
  4019. }
  4020. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4021. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4022. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4023. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4024. unsigned long val;
  4025. if (!kvm_get_dr(vcpu, dr, &val))
  4026. kvm_register_write(vcpu, reg, val);
  4027. } else
  4028. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4029. skip_emulated_instruction(vcpu);
  4030. return 1;
  4031. }
  4032. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4033. {
  4034. vmcs_writel(GUEST_DR7, val);
  4035. }
  4036. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4037. {
  4038. kvm_emulate_cpuid(vcpu);
  4039. return 1;
  4040. }
  4041. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4042. {
  4043. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4044. u64 data;
  4045. if (vmx_get_msr(vcpu, ecx, &data)) {
  4046. trace_kvm_msr_read_ex(ecx);
  4047. kvm_inject_gp(vcpu, 0);
  4048. return 1;
  4049. }
  4050. trace_kvm_msr_read(ecx, data);
  4051. /* FIXME: handling of bits 32:63 of rax, rdx */
  4052. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4053. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4054. skip_emulated_instruction(vcpu);
  4055. return 1;
  4056. }
  4057. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4058. {
  4059. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4060. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4061. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4062. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  4063. trace_kvm_msr_write_ex(ecx, data);
  4064. kvm_inject_gp(vcpu, 0);
  4065. return 1;
  4066. }
  4067. trace_kvm_msr_write(ecx, data);
  4068. skip_emulated_instruction(vcpu);
  4069. return 1;
  4070. }
  4071. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4072. {
  4073. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4074. return 1;
  4075. }
  4076. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4077. {
  4078. u32 cpu_based_vm_exec_control;
  4079. /* clear pending irq */
  4080. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4081. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4082. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4083. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4084. ++vcpu->stat.irq_window_exits;
  4085. /*
  4086. * If the user space waits to inject interrupts, exit as soon as
  4087. * possible
  4088. */
  4089. if (!irqchip_in_kernel(vcpu->kvm) &&
  4090. vcpu->run->request_interrupt_window &&
  4091. !kvm_cpu_has_interrupt(vcpu)) {
  4092. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4093. return 0;
  4094. }
  4095. return 1;
  4096. }
  4097. static int handle_halt(struct kvm_vcpu *vcpu)
  4098. {
  4099. skip_emulated_instruction(vcpu);
  4100. return kvm_emulate_halt(vcpu);
  4101. }
  4102. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4103. {
  4104. skip_emulated_instruction(vcpu);
  4105. kvm_emulate_hypercall(vcpu);
  4106. return 1;
  4107. }
  4108. static int handle_invd(struct kvm_vcpu *vcpu)
  4109. {
  4110. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4111. }
  4112. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4113. {
  4114. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4115. kvm_mmu_invlpg(vcpu, exit_qualification);
  4116. skip_emulated_instruction(vcpu);
  4117. return 1;
  4118. }
  4119. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4120. {
  4121. int err;
  4122. err = kvm_rdpmc(vcpu);
  4123. kvm_complete_insn_gp(vcpu, err);
  4124. return 1;
  4125. }
  4126. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4127. {
  4128. skip_emulated_instruction(vcpu);
  4129. kvm_emulate_wbinvd(vcpu);
  4130. return 1;
  4131. }
  4132. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4133. {
  4134. u64 new_bv = kvm_read_edx_eax(vcpu);
  4135. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4136. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4137. skip_emulated_instruction(vcpu);
  4138. return 1;
  4139. }
  4140. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4141. {
  4142. if (likely(fasteoi)) {
  4143. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4144. int access_type, offset;
  4145. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4146. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4147. /*
  4148. * Sane guest uses MOV to write EOI, with written value
  4149. * not cared. So make a short-circuit here by avoiding
  4150. * heavy instruction emulation.
  4151. */
  4152. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4153. (offset == APIC_EOI)) {
  4154. kvm_lapic_set_eoi(vcpu);
  4155. skip_emulated_instruction(vcpu);
  4156. return 1;
  4157. }
  4158. }
  4159. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4160. }
  4161. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4162. {
  4163. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4164. unsigned long exit_qualification;
  4165. bool has_error_code = false;
  4166. u32 error_code = 0;
  4167. u16 tss_selector;
  4168. int reason, type, idt_v, idt_index;
  4169. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4170. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4171. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4172. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4173. reason = (u32)exit_qualification >> 30;
  4174. if (reason == TASK_SWITCH_GATE && idt_v) {
  4175. switch (type) {
  4176. case INTR_TYPE_NMI_INTR:
  4177. vcpu->arch.nmi_injected = false;
  4178. vmx_set_nmi_mask(vcpu, true);
  4179. break;
  4180. case INTR_TYPE_EXT_INTR:
  4181. case INTR_TYPE_SOFT_INTR:
  4182. kvm_clear_interrupt_queue(vcpu);
  4183. break;
  4184. case INTR_TYPE_HARD_EXCEPTION:
  4185. if (vmx->idt_vectoring_info &
  4186. VECTORING_INFO_DELIVER_CODE_MASK) {
  4187. has_error_code = true;
  4188. error_code =
  4189. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4190. }
  4191. /* fall through */
  4192. case INTR_TYPE_SOFT_EXCEPTION:
  4193. kvm_clear_exception_queue(vcpu);
  4194. break;
  4195. default:
  4196. break;
  4197. }
  4198. }
  4199. tss_selector = exit_qualification;
  4200. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4201. type != INTR_TYPE_EXT_INTR &&
  4202. type != INTR_TYPE_NMI_INTR))
  4203. skip_emulated_instruction(vcpu);
  4204. if (kvm_task_switch(vcpu, tss_selector,
  4205. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4206. has_error_code, error_code) == EMULATE_FAIL) {
  4207. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4208. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4209. vcpu->run->internal.ndata = 0;
  4210. return 0;
  4211. }
  4212. /* clear all local breakpoint enable flags */
  4213. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4214. /*
  4215. * TODO: What about debug traps on tss switch?
  4216. * Are we supposed to inject them and update dr6?
  4217. */
  4218. return 1;
  4219. }
  4220. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4221. {
  4222. unsigned long exit_qualification;
  4223. gpa_t gpa;
  4224. u32 error_code;
  4225. int gla_validity;
  4226. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4227. if (exit_qualification & (1 << 6)) {
  4228. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  4229. return -EINVAL;
  4230. }
  4231. gla_validity = (exit_qualification >> 7) & 0x3;
  4232. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4233. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4234. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4235. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4236. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4237. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4238. (long unsigned int)exit_qualification);
  4239. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4240. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4241. return 0;
  4242. }
  4243. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4244. trace_kvm_page_fault(gpa, exit_qualification);
  4245. /* It is a write fault? */
  4246. error_code = exit_qualification & (1U << 1);
  4247. /* ept page table is present? */
  4248. error_code |= (exit_qualification >> 3) & 0x1;
  4249. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4250. }
  4251. static u64 ept_rsvd_mask(u64 spte, int level)
  4252. {
  4253. int i;
  4254. u64 mask = 0;
  4255. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4256. mask |= (1ULL << i);
  4257. if (level > 2)
  4258. /* bits 7:3 reserved */
  4259. mask |= 0xf8;
  4260. else if (level == 2) {
  4261. if (spte & (1ULL << 7))
  4262. /* 2MB ref, bits 20:12 reserved */
  4263. mask |= 0x1ff000;
  4264. else
  4265. /* bits 6:3 reserved */
  4266. mask |= 0x78;
  4267. }
  4268. return mask;
  4269. }
  4270. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4271. int level)
  4272. {
  4273. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4274. /* 010b (write-only) */
  4275. WARN_ON((spte & 0x7) == 0x2);
  4276. /* 110b (write/execute) */
  4277. WARN_ON((spte & 0x7) == 0x6);
  4278. /* 100b (execute-only) and value not supported by logical processor */
  4279. if (!cpu_has_vmx_ept_execute_only())
  4280. WARN_ON((spte & 0x7) == 0x4);
  4281. /* not 000b */
  4282. if ((spte & 0x7)) {
  4283. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4284. if (rsvd_bits != 0) {
  4285. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4286. __func__, rsvd_bits);
  4287. WARN_ON(1);
  4288. }
  4289. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4290. u64 ept_mem_type = (spte & 0x38) >> 3;
  4291. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4292. ept_mem_type == 7) {
  4293. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4294. __func__, ept_mem_type);
  4295. WARN_ON(1);
  4296. }
  4297. }
  4298. }
  4299. }
  4300. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4301. {
  4302. u64 sptes[4];
  4303. int nr_sptes, i, ret;
  4304. gpa_t gpa;
  4305. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4306. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4307. if (likely(ret == 1))
  4308. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4309. EMULATE_DONE;
  4310. if (unlikely(!ret))
  4311. return 1;
  4312. /* It is the real ept misconfig */
  4313. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4314. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4315. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4316. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4317. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4318. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4319. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4320. return 0;
  4321. }
  4322. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4323. {
  4324. u32 cpu_based_vm_exec_control;
  4325. /* clear pending NMI */
  4326. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4327. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4328. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4329. ++vcpu->stat.nmi_window_exits;
  4330. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4331. return 1;
  4332. }
  4333. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4334. {
  4335. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4336. enum emulation_result err = EMULATE_DONE;
  4337. int ret = 1;
  4338. u32 cpu_exec_ctrl;
  4339. bool intr_window_requested;
  4340. unsigned count = 130;
  4341. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4342. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4343. while (!guest_state_valid(vcpu) && count-- != 0) {
  4344. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4345. return handle_interrupt_window(&vmx->vcpu);
  4346. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4347. return 1;
  4348. err = emulate_instruction(vcpu, 0);
  4349. if (err == EMULATE_DO_MMIO) {
  4350. ret = 0;
  4351. goto out;
  4352. }
  4353. if (err != EMULATE_DONE) {
  4354. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4355. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4356. vcpu->run->internal.ndata = 0;
  4357. return 0;
  4358. }
  4359. if (signal_pending(current))
  4360. goto out;
  4361. if (need_resched())
  4362. schedule();
  4363. }
  4364. vmx->emulation_required = !guest_state_valid(vcpu);
  4365. out:
  4366. return ret;
  4367. }
  4368. /*
  4369. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4370. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4371. */
  4372. static int handle_pause(struct kvm_vcpu *vcpu)
  4373. {
  4374. skip_emulated_instruction(vcpu);
  4375. kvm_vcpu_on_spin(vcpu);
  4376. return 1;
  4377. }
  4378. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4379. {
  4380. kvm_queue_exception(vcpu, UD_VECTOR);
  4381. return 1;
  4382. }
  4383. /*
  4384. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4385. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4386. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4387. * allows keeping them loaded on the processor, and in the future will allow
  4388. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4389. * every entry if they never change.
  4390. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4391. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4392. *
  4393. * The following functions allocate and free a vmcs02 in this pool.
  4394. */
  4395. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4396. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4397. {
  4398. struct vmcs02_list *item;
  4399. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4400. if (item->vmptr == vmx->nested.current_vmptr) {
  4401. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4402. return &item->vmcs02;
  4403. }
  4404. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4405. /* Recycle the least recently used VMCS. */
  4406. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4407. struct vmcs02_list, list);
  4408. item->vmptr = vmx->nested.current_vmptr;
  4409. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4410. return &item->vmcs02;
  4411. }
  4412. /* Create a new VMCS */
  4413. item = (struct vmcs02_list *)
  4414. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4415. if (!item)
  4416. return NULL;
  4417. item->vmcs02.vmcs = alloc_vmcs();
  4418. if (!item->vmcs02.vmcs) {
  4419. kfree(item);
  4420. return NULL;
  4421. }
  4422. loaded_vmcs_init(&item->vmcs02);
  4423. item->vmptr = vmx->nested.current_vmptr;
  4424. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4425. vmx->nested.vmcs02_num++;
  4426. return &item->vmcs02;
  4427. }
  4428. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4429. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4430. {
  4431. struct vmcs02_list *item;
  4432. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4433. if (item->vmptr == vmptr) {
  4434. free_loaded_vmcs(&item->vmcs02);
  4435. list_del(&item->list);
  4436. kfree(item);
  4437. vmx->nested.vmcs02_num--;
  4438. return;
  4439. }
  4440. }
  4441. /*
  4442. * Free all VMCSs saved for this vcpu, except the one pointed by
  4443. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4444. * currently used, if running L2), and vmcs01 when running L2.
  4445. */
  4446. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4447. {
  4448. struct vmcs02_list *item, *n;
  4449. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4450. if (vmx->loaded_vmcs != &item->vmcs02)
  4451. free_loaded_vmcs(&item->vmcs02);
  4452. list_del(&item->list);
  4453. kfree(item);
  4454. }
  4455. vmx->nested.vmcs02_num = 0;
  4456. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4457. free_loaded_vmcs(&vmx->vmcs01);
  4458. }
  4459. /*
  4460. * Emulate the VMXON instruction.
  4461. * Currently, we just remember that VMX is active, and do not save or even
  4462. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4463. * do not currently need to store anything in that guest-allocated memory
  4464. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4465. * argument is different from the VMXON pointer (which the spec says they do).
  4466. */
  4467. static int handle_vmon(struct kvm_vcpu *vcpu)
  4468. {
  4469. struct kvm_segment cs;
  4470. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4471. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4472. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4473. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4474. * Otherwise, we should fail with #UD. We test these now:
  4475. */
  4476. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4477. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4478. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4479. kvm_queue_exception(vcpu, UD_VECTOR);
  4480. return 1;
  4481. }
  4482. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4483. if (is_long_mode(vcpu) && !cs.l) {
  4484. kvm_queue_exception(vcpu, UD_VECTOR);
  4485. return 1;
  4486. }
  4487. if (vmx_get_cpl(vcpu)) {
  4488. kvm_inject_gp(vcpu, 0);
  4489. return 1;
  4490. }
  4491. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4492. vmx->nested.vmcs02_num = 0;
  4493. vmx->nested.vmxon = true;
  4494. skip_emulated_instruction(vcpu);
  4495. return 1;
  4496. }
  4497. /*
  4498. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4499. * for running VMX instructions (except VMXON, whose prerequisites are
  4500. * slightly different). It also specifies what exception to inject otherwise.
  4501. */
  4502. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4503. {
  4504. struct kvm_segment cs;
  4505. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4506. if (!vmx->nested.vmxon) {
  4507. kvm_queue_exception(vcpu, UD_VECTOR);
  4508. return 0;
  4509. }
  4510. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4511. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4512. (is_long_mode(vcpu) && !cs.l)) {
  4513. kvm_queue_exception(vcpu, UD_VECTOR);
  4514. return 0;
  4515. }
  4516. if (vmx_get_cpl(vcpu)) {
  4517. kvm_inject_gp(vcpu, 0);
  4518. return 0;
  4519. }
  4520. return 1;
  4521. }
  4522. /*
  4523. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4524. * just stops using VMX.
  4525. */
  4526. static void free_nested(struct vcpu_vmx *vmx)
  4527. {
  4528. if (!vmx->nested.vmxon)
  4529. return;
  4530. vmx->nested.vmxon = false;
  4531. if (vmx->nested.current_vmptr != -1ull) {
  4532. kunmap(vmx->nested.current_vmcs12_page);
  4533. nested_release_page(vmx->nested.current_vmcs12_page);
  4534. vmx->nested.current_vmptr = -1ull;
  4535. vmx->nested.current_vmcs12 = NULL;
  4536. }
  4537. /* Unpin physical memory we referred to in current vmcs02 */
  4538. if (vmx->nested.apic_access_page) {
  4539. nested_release_page(vmx->nested.apic_access_page);
  4540. vmx->nested.apic_access_page = 0;
  4541. }
  4542. nested_free_all_saved_vmcss(vmx);
  4543. }
  4544. /* Emulate the VMXOFF instruction */
  4545. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4546. {
  4547. if (!nested_vmx_check_permission(vcpu))
  4548. return 1;
  4549. free_nested(to_vmx(vcpu));
  4550. skip_emulated_instruction(vcpu);
  4551. return 1;
  4552. }
  4553. /*
  4554. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4555. * exit caused by such an instruction (run by a guest hypervisor).
  4556. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4557. * #UD or #GP.
  4558. */
  4559. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4560. unsigned long exit_qualification,
  4561. u32 vmx_instruction_info, gva_t *ret)
  4562. {
  4563. /*
  4564. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4565. * Execution", on an exit, vmx_instruction_info holds most of the
  4566. * addressing components of the operand. Only the displacement part
  4567. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4568. * For how an actual address is calculated from all these components,
  4569. * refer to Vol. 1, "Operand Addressing".
  4570. */
  4571. int scaling = vmx_instruction_info & 3;
  4572. int addr_size = (vmx_instruction_info >> 7) & 7;
  4573. bool is_reg = vmx_instruction_info & (1u << 10);
  4574. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4575. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4576. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4577. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4578. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4579. if (is_reg) {
  4580. kvm_queue_exception(vcpu, UD_VECTOR);
  4581. return 1;
  4582. }
  4583. /* Addr = segment_base + offset */
  4584. /* offset = base + [index * scale] + displacement */
  4585. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4586. if (base_is_valid)
  4587. *ret += kvm_register_read(vcpu, base_reg);
  4588. if (index_is_valid)
  4589. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4590. *ret += exit_qualification; /* holds the displacement */
  4591. if (addr_size == 1) /* 32 bit */
  4592. *ret &= 0xffffffff;
  4593. /*
  4594. * TODO: throw #GP (and return 1) in various cases that the VM*
  4595. * instructions require it - e.g., offset beyond segment limit,
  4596. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4597. * address, and so on. Currently these are not checked.
  4598. */
  4599. return 0;
  4600. }
  4601. /*
  4602. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4603. * set the success or error code of an emulated VMX instruction, as specified
  4604. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4605. */
  4606. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4607. {
  4608. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4609. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4610. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4611. }
  4612. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4613. {
  4614. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4615. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4616. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4617. | X86_EFLAGS_CF);
  4618. }
  4619. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4620. u32 vm_instruction_error)
  4621. {
  4622. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4623. /*
  4624. * failValid writes the error number to the current VMCS, which
  4625. * can't be done there isn't a current VMCS.
  4626. */
  4627. nested_vmx_failInvalid(vcpu);
  4628. return;
  4629. }
  4630. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4631. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4632. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4633. | X86_EFLAGS_ZF);
  4634. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4635. }
  4636. /* Emulate the VMCLEAR instruction */
  4637. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4638. {
  4639. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4640. gva_t gva;
  4641. gpa_t vmptr;
  4642. struct vmcs12 *vmcs12;
  4643. struct page *page;
  4644. struct x86_exception e;
  4645. if (!nested_vmx_check_permission(vcpu))
  4646. return 1;
  4647. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4648. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4649. return 1;
  4650. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4651. sizeof(vmptr), &e)) {
  4652. kvm_inject_page_fault(vcpu, &e);
  4653. return 1;
  4654. }
  4655. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4656. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4657. skip_emulated_instruction(vcpu);
  4658. return 1;
  4659. }
  4660. if (vmptr == vmx->nested.current_vmptr) {
  4661. kunmap(vmx->nested.current_vmcs12_page);
  4662. nested_release_page(vmx->nested.current_vmcs12_page);
  4663. vmx->nested.current_vmptr = -1ull;
  4664. vmx->nested.current_vmcs12 = NULL;
  4665. }
  4666. page = nested_get_page(vcpu, vmptr);
  4667. if (page == NULL) {
  4668. /*
  4669. * For accurate processor emulation, VMCLEAR beyond available
  4670. * physical memory should do nothing at all. However, it is
  4671. * possible that a nested vmx bug, not a guest hypervisor bug,
  4672. * resulted in this case, so let's shut down before doing any
  4673. * more damage:
  4674. */
  4675. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4676. return 1;
  4677. }
  4678. vmcs12 = kmap(page);
  4679. vmcs12->launch_state = 0;
  4680. kunmap(page);
  4681. nested_release_page(page);
  4682. nested_free_vmcs02(vmx, vmptr);
  4683. skip_emulated_instruction(vcpu);
  4684. nested_vmx_succeed(vcpu);
  4685. return 1;
  4686. }
  4687. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4688. /* Emulate the VMLAUNCH instruction */
  4689. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4690. {
  4691. return nested_vmx_run(vcpu, true);
  4692. }
  4693. /* Emulate the VMRESUME instruction */
  4694. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4695. {
  4696. return nested_vmx_run(vcpu, false);
  4697. }
  4698. enum vmcs_field_type {
  4699. VMCS_FIELD_TYPE_U16 = 0,
  4700. VMCS_FIELD_TYPE_U64 = 1,
  4701. VMCS_FIELD_TYPE_U32 = 2,
  4702. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4703. };
  4704. static inline int vmcs_field_type(unsigned long field)
  4705. {
  4706. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4707. return VMCS_FIELD_TYPE_U32;
  4708. return (field >> 13) & 0x3 ;
  4709. }
  4710. static inline int vmcs_field_readonly(unsigned long field)
  4711. {
  4712. return (((field >> 10) & 0x3) == 1);
  4713. }
  4714. /*
  4715. * Read a vmcs12 field. Since these can have varying lengths and we return
  4716. * one type, we chose the biggest type (u64) and zero-extend the return value
  4717. * to that size. Note that the caller, handle_vmread, might need to use only
  4718. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4719. * 64-bit fields are to be returned).
  4720. */
  4721. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4722. unsigned long field, u64 *ret)
  4723. {
  4724. short offset = vmcs_field_to_offset(field);
  4725. char *p;
  4726. if (offset < 0)
  4727. return 0;
  4728. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4729. switch (vmcs_field_type(field)) {
  4730. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4731. *ret = *((natural_width *)p);
  4732. return 1;
  4733. case VMCS_FIELD_TYPE_U16:
  4734. *ret = *((u16 *)p);
  4735. return 1;
  4736. case VMCS_FIELD_TYPE_U32:
  4737. *ret = *((u32 *)p);
  4738. return 1;
  4739. case VMCS_FIELD_TYPE_U64:
  4740. *ret = *((u64 *)p);
  4741. return 1;
  4742. default:
  4743. return 0; /* can never happen. */
  4744. }
  4745. }
  4746. /*
  4747. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4748. * used before) all generate the same failure when it is missing.
  4749. */
  4750. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4751. {
  4752. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4753. if (vmx->nested.current_vmptr == -1ull) {
  4754. nested_vmx_failInvalid(vcpu);
  4755. skip_emulated_instruction(vcpu);
  4756. return 0;
  4757. }
  4758. return 1;
  4759. }
  4760. static int handle_vmread(struct kvm_vcpu *vcpu)
  4761. {
  4762. unsigned long field;
  4763. u64 field_value;
  4764. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4765. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4766. gva_t gva = 0;
  4767. if (!nested_vmx_check_permission(vcpu) ||
  4768. !nested_vmx_check_vmcs12(vcpu))
  4769. return 1;
  4770. /* Decode instruction info and find the field to read */
  4771. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4772. /* Read the field, zero-extended to a u64 field_value */
  4773. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4774. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4775. skip_emulated_instruction(vcpu);
  4776. return 1;
  4777. }
  4778. /*
  4779. * Now copy part of this value to register or memory, as requested.
  4780. * Note that the number of bits actually copied is 32 or 64 depending
  4781. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4782. */
  4783. if (vmx_instruction_info & (1u << 10)) {
  4784. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4785. field_value);
  4786. } else {
  4787. if (get_vmx_mem_address(vcpu, exit_qualification,
  4788. vmx_instruction_info, &gva))
  4789. return 1;
  4790. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4791. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4792. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4793. }
  4794. nested_vmx_succeed(vcpu);
  4795. skip_emulated_instruction(vcpu);
  4796. return 1;
  4797. }
  4798. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4799. {
  4800. unsigned long field;
  4801. gva_t gva;
  4802. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4803. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4804. char *p;
  4805. short offset;
  4806. /* The value to write might be 32 or 64 bits, depending on L1's long
  4807. * mode, and eventually we need to write that into a field of several
  4808. * possible lengths. The code below first zero-extends the value to 64
  4809. * bit (field_value), and then copies only the approriate number of
  4810. * bits into the vmcs12 field.
  4811. */
  4812. u64 field_value = 0;
  4813. struct x86_exception e;
  4814. if (!nested_vmx_check_permission(vcpu) ||
  4815. !nested_vmx_check_vmcs12(vcpu))
  4816. return 1;
  4817. if (vmx_instruction_info & (1u << 10))
  4818. field_value = kvm_register_read(vcpu,
  4819. (((vmx_instruction_info) >> 3) & 0xf));
  4820. else {
  4821. if (get_vmx_mem_address(vcpu, exit_qualification,
  4822. vmx_instruction_info, &gva))
  4823. return 1;
  4824. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4825. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4826. kvm_inject_page_fault(vcpu, &e);
  4827. return 1;
  4828. }
  4829. }
  4830. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4831. if (vmcs_field_readonly(field)) {
  4832. nested_vmx_failValid(vcpu,
  4833. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4834. skip_emulated_instruction(vcpu);
  4835. return 1;
  4836. }
  4837. offset = vmcs_field_to_offset(field);
  4838. if (offset < 0) {
  4839. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4840. skip_emulated_instruction(vcpu);
  4841. return 1;
  4842. }
  4843. p = ((char *) get_vmcs12(vcpu)) + offset;
  4844. switch (vmcs_field_type(field)) {
  4845. case VMCS_FIELD_TYPE_U16:
  4846. *(u16 *)p = field_value;
  4847. break;
  4848. case VMCS_FIELD_TYPE_U32:
  4849. *(u32 *)p = field_value;
  4850. break;
  4851. case VMCS_FIELD_TYPE_U64:
  4852. *(u64 *)p = field_value;
  4853. break;
  4854. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4855. *(natural_width *)p = field_value;
  4856. break;
  4857. default:
  4858. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4859. skip_emulated_instruction(vcpu);
  4860. return 1;
  4861. }
  4862. nested_vmx_succeed(vcpu);
  4863. skip_emulated_instruction(vcpu);
  4864. return 1;
  4865. }
  4866. /* Emulate the VMPTRLD instruction */
  4867. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4868. {
  4869. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4870. gva_t gva;
  4871. gpa_t vmptr;
  4872. struct x86_exception e;
  4873. if (!nested_vmx_check_permission(vcpu))
  4874. return 1;
  4875. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4876. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4877. return 1;
  4878. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4879. sizeof(vmptr), &e)) {
  4880. kvm_inject_page_fault(vcpu, &e);
  4881. return 1;
  4882. }
  4883. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4884. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4885. skip_emulated_instruction(vcpu);
  4886. return 1;
  4887. }
  4888. if (vmx->nested.current_vmptr != vmptr) {
  4889. struct vmcs12 *new_vmcs12;
  4890. struct page *page;
  4891. page = nested_get_page(vcpu, vmptr);
  4892. if (page == NULL) {
  4893. nested_vmx_failInvalid(vcpu);
  4894. skip_emulated_instruction(vcpu);
  4895. return 1;
  4896. }
  4897. new_vmcs12 = kmap(page);
  4898. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4899. kunmap(page);
  4900. nested_release_page_clean(page);
  4901. nested_vmx_failValid(vcpu,
  4902. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4903. skip_emulated_instruction(vcpu);
  4904. return 1;
  4905. }
  4906. if (vmx->nested.current_vmptr != -1ull) {
  4907. kunmap(vmx->nested.current_vmcs12_page);
  4908. nested_release_page(vmx->nested.current_vmcs12_page);
  4909. }
  4910. vmx->nested.current_vmptr = vmptr;
  4911. vmx->nested.current_vmcs12 = new_vmcs12;
  4912. vmx->nested.current_vmcs12_page = page;
  4913. }
  4914. nested_vmx_succeed(vcpu);
  4915. skip_emulated_instruction(vcpu);
  4916. return 1;
  4917. }
  4918. /* Emulate the VMPTRST instruction */
  4919. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4920. {
  4921. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4922. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4923. gva_t vmcs_gva;
  4924. struct x86_exception e;
  4925. if (!nested_vmx_check_permission(vcpu))
  4926. return 1;
  4927. if (get_vmx_mem_address(vcpu, exit_qualification,
  4928. vmx_instruction_info, &vmcs_gva))
  4929. return 1;
  4930. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4931. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4932. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4933. sizeof(u64), &e)) {
  4934. kvm_inject_page_fault(vcpu, &e);
  4935. return 1;
  4936. }
  4937. nested_vmx_succeed(vcpu);
  4938. skip_emulated_instruction(vcpu);
  4939. return 1;
  4940. }
  4941. /*
  4942. * The exit handlers return 1 if the exit was handled fully and guest execution
  4943. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4944. * to be done to userspace and return 0.
  4945. */
  4946. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4947. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4948. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4949. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4950. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4951. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4952. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4953. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4954. [EXIT_REASON_CPUID] = handle_cpuid,
  4955. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4956. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4957. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4958. [EXIT_REASON_HLT] = handle_halt,
  4959. [EXIT_REASON_INVD] = handle_invd,
  4960. [EXIT_REASON_INVLPG] = handle_invlpg,
  4961. [EXIT_REASON_RDPMC] = handle_rdpmc,
  4962. [EXIT_REASON_VMCALL] = handle_vmcall,
  4963. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4964. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4965. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4966. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4967. [EXIT_REASON_VMREAD] = handle_vmread,
  4968. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4969. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4970. [EXIT_REASON_VMOFF] = handle_vmoff,
  4971. [EXIT_REASON_VMON] = handle_vmon,
  4972. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4973. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4974. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4975. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4976. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4977. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4978. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4979. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4980. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4981. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4982. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4983. };
  4984. static const int kvm_vmx_max_exit_handlers =
  4985. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4986. /*
  4987. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  4988. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  4989. * disinterest in the current event (read or write a specific MSR) by using an
  4990. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  4991. */
  4992. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  4993. struct vmcs12 *vmcs12, u32 exit_reason)
  4994. {
  4995. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  4996. gpa_t bitmap;
  4997. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  4998. return 1;
  4999. /*
  5000. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5001. * for the four combinations of read/write and low/high MSR numbers.
  5002. * First we need to figure out which of the four to use:
  5003. */
  5004. bitmap = vmcs12->msr_bitmap;
  5005. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5006. bitmap += 2048;
  5007. if (msr_index >= 0xc0000000) {
  5008. msr_index -= 0xc0000000;
  5009. bitmap += 1024;
  5010. }
  5011. /* Then read the msr_index'th bit from this bitmap: */
  5012. if (msr_index < 1024*8) {
  5013. unsigned char b;
  5014. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  5015. return 1 & (b >> (msr_index & 7));
  5016. } else
  5017. return 1; /* let L1 handle the wrong parameter */
  5018. }
  5019. /*
  5020. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5021. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5022. * intercept (via guest_host_mask etc.) the current event.
  5023. */
  5024. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5025. struct vmcs12 *vmcs12)
  5026. {
  5027. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5028. int cr = exit_qualification & 15;
  5029. int reg = (exit_qualification >> 8) & 15;
  5030. unsigned long val = kvm_register_read(vcpu, reg);
  5031. switch ((exit_qualification >> 4) & 3) {
  5032. case 0: /* mov to cr */
  5033. switch (cr) {
  5034. case 0:
  5035. if (vmcs12->cr0_guest_host_mask &
  5036. (val ^ vmcs12->cr0_read_shadow))
  5037. return 1;
  5038. break;
  5039. case 3:
  5040. if ((vmcs12->cr3_target_count >= 1 &&
  5041. vmcs12->cr3_target_value0 == val) ||
  5042. (vmcs12->cr3_target_count >= 2 &&
  5043. vmcs12->cr3_target_value1 == val) ||
  5044. (vmcs12->cr3_target_count >= 3 &&
  5045. vmcs12->cr3_target_value2 == val) ||
  5046. (vmcs12->cr3_target_count >= 4 &&
  5047. vmcs12->cr3_target_value3 == val))
  5048. return 0;
  5049. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5050. return 1;
  5051. break;
  5052. case 4:
  5053. if (vmcs12->cr4_guest_host_mask &
  5054. (vmcs12->cr4_read_shadow ^ val))
  5055. return 1;
  5056. break;
  5057. case 8:
  5058. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5059. return 1;
  5060. break;
  5061. }
  5062. break;
  5063. case 2: /* clts */
  5064. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5065. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5066. return 1;
  5067. break;
  5068. case 1: /* mov from cr */
  5069. switch (cr) {
  5070. case 3:
  5071. if (vmcs12->cpu_based_vm_exec_control &
  5072. CPU_BASED_CR3_STORE_EXITING)
  5073. return 1;
  5074. break;
  5075. case 8:
  5076. if (vmcs12->cpu_based_vm_exec_control &
  5077. CPU_BASED_CR8_STORE_EXITING)
  5078. return 1;
  5079. break;
  5080. }
  5081. break;
  5082. case 3: /* lmsw */
  5083. /*
  5084. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5085. * cr0. Other attempted changes are ignored, with no exit.
  5086. */
  5087. if (vmcs12->cr0_guest_host_mask & 0xe &
  5088. (val ^ vmcs12->cr0_read_shadow))
  5089. return 1;
  5090. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5091. !(vmcs12->cr0_read_shadow & 0x1) &&
  5092. (val & 0x1))
  5093. return 1;
  5094. break;
  5095. }
  5096. return 0;
  5097. }
  5098. /*
  5099. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5100. * should handle it ourselves in L0 (and then continue L2). Only call this
  5101. * when in is_guest_mode (L2).
  5102. */
  5103. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5104. {
  5105. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  5106. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5107. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5108. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5109. if (vmx->nested.nested_run_pending)
  5110. return 0;
  5111. if (unlikely(vmx->fail)) {
  5112. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5113. vmcs_read32(VM_INSTRUCTION_ERROR));
  5114. return 1;
  5115. }
  5116. switch (exit_reason) {
  5117. case EXIT_REASON_EXCEPTION_NMI:
  5118. if (!is_exception(intr_info))
  5119. return 0;
  5120. else if (is_page_fault(intr_info))
  5121. return enable_ept;
  5122. return vmcs12->exception_bitmap &
  5123. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5124. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5125. return 0;
  5126. case EXIT_REASON_TRIPLE_FAULT:
  5127. return 1;
  5128. case EXIT_REASON_PENDING_INTERRUPT:
  5129. case EXIT_REASON_NMI_WINDOW:
  5130. /*
  5131. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5132. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5133. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5134. * Same for NMI Window Exiting.
  5135. */
  5136. return 1;
  5137. case EXIT_REASON_TASK_SWITCH:
  5138. return 1;
  5139. case EXIT_REASON_CPUID:
  5140. return 1;
  5141. case EXIT_REASON_HLT:
  5142. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5143. case EXIT_REASON_INVD:
  5144. return 1;
  5145. case EXIT_REASON_INVLPG:
  5146. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5147. case EXIT_REASON_RDPMC:
  5148. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5149. case EXIT_REASON_RDTSC:
  5150. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5151. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5152. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5153. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5154. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5155. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5156. /*
  5157. * VMX instructions trap unconditionally. This allows L1 to
  5158. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5159. */
  5160. return 1;
  5161. case EXIT_REASON_CR_ACCESS:
  5162. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5163. case EXIT_REASON_DR_ACCESS:
  5164. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5165. case EXIT_REASON_IO_INSTRUCTION:
  5166. /* TODO: support IO bitmaps */
  5167. return 1;
  5168. case EXIT_REASON_MSR_READ:
  5169. case EXIT_REASON_MSR_WRITE:
  5170. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5171. case EXIT_REASON_INVALID_STATE:
  5172. return 1;
  5173. case EXIT_REASON_MWAIT_INSTRUCTION:
  5174. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5175. case EXIT_REASON_MONITOR_INSTRUCTION:
  5176. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5177. case EXIT_REASON_PAUSE_INSTRUCTION:
  5178. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5179. nested_cpu_has2(vmcs12,
  5180. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5181. case EXIT_REASON_MCE_DURING_VMENTRY:
  5182. return 0;
  5183. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5184. return 1;
  5185. case EXIT_REASON_APIC_ACCESS:
  5186. return nested_cpu_has2(vmcs12,
  5187. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5188. case EXIT_REASON_EPT_VIOLATION:
  5189. case EXIT_REASON_EPT_MISCONFIG:
  5190. return 0;
  5191. case EXIT_REASON_WBINVD:
  5192. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5193. case EXIT_REASON_XSETBV:
  5194. return 1;
  5195. default:
  5196. return 1;
  5197. }
  5198. }
  5199. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5200. {
  5201. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5202. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5203. }
  5204. /*
  5205. * The guest has exited. See if we can fix it or if we need userspace
  5206. * assistance.
  5207. */
  5208. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5209. {
  5210. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5211. u32 exit_reason = vmx->exit_reason;
  5212. u32 vectoring_info = vmx->idt_vectoring_info;
  5213. /* If guest state is invalid, start emulating */
  5214. if (vmx->emulation_required && emulate_invalid_guest_state)
  5215. return handle_invalid_guest_state(vcpu);
  5216. /*
  5217. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5218. * we did not inject a still-pending event to L1 now because of
  5219. * nested_run_pending, we need to re-enable this bit.
  5220. */
  5221. if (vmx->nested.nested_run_pending)
  5222. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5223. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5224. exit_reason == EXIT_REASON_VMRESUME))
  5225. vmx->nested.nested_run_pending = 1;
  5226. else
  5227. vmx->nested.nested_run_pending = 0;
  5228. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5229. nested_vmx_vmexit(vcpu);
  5230. return 1;
  5231. }
  5232. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5233. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5234. vcpu->run->fail_entry.hardware_entry_failure_reason
  5235. = exit_reason;
  5236. return 0;
  5237. }
  5238. if (unlikely(vmx->fail)) {
  5239. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5240. vcpu->run->fail_entry.hardware_entry_failure_reason
  5241. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5242. return 0;
  5243. }
  5244. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5245. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5246. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5247. exit_reason != EXIT_REASON_TASK_SWITCH))
  5248. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  5249. "(0x%x) and exit reason is 0x%x\n",
  5250. __func__, vectoring_info, exit_reason);
  5251. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5252. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5253. get_vmcs12(vcpu), vcpu)))) {
  5254. if (vmx_interrupt_allowed(vcpu)) {
  5255. vmx->soft_vnmi_blocked = 0;
  5256. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5257. vcpu->arch.nmi_pending) {
  5258. /*
  5259. * This CPU don't support us in finding the end of an
  5260. * NMI-blocked window if the guest runs with IRQs
  5261. * disabled. So we pull the trigger after 1 s of
  5262. * futile waiting, but inform the user about this.
  5263. */
  5264. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5265. "state on VCPU %d after 1 s timeout\n",
  5266. __func__, vcpu->vcpu_id);
  5267. vmx->soft_vnmi_blocked = 0;
  5268. }
  5269. }
  5270. if (exit_reason < kvm_vmx_max_exit_handlers
  5271. && kvm_vmx_exit_handlers[exit_reason])
  5272. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5273. else {
  5274. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5275. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5276. }
  5277. return 0;
  5278. }
  5279. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5280. {
  5281. if (irr == -1 || tpr < irr) {
  5282. vmcs_write32(TPR_THRESHOLD, 0);
  5283. return;
  5284. }
  5285. vmcs_write32(TPR_THRESHOLD, irr);
  5286. }
  5287. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5288. {
  5289. u32 exit_intr_info;
  5290. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5291. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5292. return;
  5293. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5294. exit_intr_info = vmx->exit_intr_info;
  5295. /* Handle machine checks before interrupts are enabled */
  5296. if (is_machine_check(exit_intr_info))
  5297. kvm_machine_check();
  5298. /* We need to handle NMIs before interrupts are enabled */
  5299. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5300. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5301. kvm_before_handle_nmi(&vmx->vcpu);
  5302. asm("int $2");
  5303. kvm_after_handle_nmi(&vmx->vcpu);
  5304. }
  5305. }
  5306. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5307. {
  5308. u32 exit_intr_info;
  5309. bool unblock_nmi;
  5310. u8 vector;
  5311. bool idtv_info_valid;
  5312. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5313. if (cpu_has_virtual_nmis()) {
  5314. if (vmx->nmi_known_unmasked)
  5315. return;
  5316. /*
  5317. * Can't use vmx->exit_intr_info since we're not sure what
  5318. * the exit reason is.
  5319. */
  5320. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5321. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5322. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5323. /*
  5324. * SDM 3: 27.7.1.2 (September 2008)
  5325. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5326. * a guest IRET fault.
  5327. * SDM 3: 23.2.2 (September 2008)
  5328. * Bit 12 is undefined in any of the following cases:
  5329. * If the VM exit sets the valid bit in the IDT-vectoring
  5330. * information field.
  5331. * If the VM exit is due to a double fault.
  5332. */
  5333. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5334. vector != DF_VECTOR && !idtv_info_valid)
  5335. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5336. GUEST_INTR_STATE_NMI);
  5337. else
  5338. vmx->nmi_known_unmasked =
  5339. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5340. & GUEST_INTR_STATE_NMI);
  5341. } else if (unlikely(vmx->soft_vnmi_blocked))
  5342. vmx->vnmi_blocked_time +=
  5343. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5344. }
  5345. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5346. u32 idt_vectoring_info,
  5347. int instr_len_field,
  5348. int error_code_field)
  5349. {
  5350. u8 vector;
  5351. int type;
  5352. bool idtv_info_valid;
  5353. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5354. vmx->vcpu.arch.nmi_injected = false;
  5355. kvm_clear_exception_queue(&vmx->vcpu);
  5356. kvm_clear_interrupt_queue(&vmx->vcpu);
  5357. if (!idtv_info_valid)
  5358. return;
  5359. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5360. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5361. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5362. switch (type) {
  5363. case INTR_TYPE_NMI_INTR:
  5364. vmx->vcpu.arch.nmi_injected = true;
  5365. /*
  5366. * SDM 3: 27.7.1.2 (September 2008)
  5367. * Clear bit "block by NMI" before VM entry if a NMI
  5368. * delivery faulted.
  5369. */
  5370. vmx_set_nmi_mask(&vmx->vcpu, false);
  5371. break;
  5372. case INTR_TYPE_SOFT_EXCEPTION:
  5373. vmx->vcpu.arch.event_exit_inst_len =
  5374. vmcs_read32(instr_len_field);
  5375. /* fall through */
  5376. case INTR_TYPE_HARD_EXCEPTION:
  5377. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5378. u32 err = vmcs_read32(error_code_field);
  5379. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5380. } else
  5381. kvm_queue_exception(&vmx->vcpu, vector);
  5382. break;
  5383. case INTR_TYPE_SOFT_INTR:
  5384. vmx->vcpu.arch.event_exit_inst_len =
  5385. vmcs_read32(instr_len_field);
  5386. /* fall through */
  5387. case INTR_TYPE_EXT_INTR:
  5388. kvm_queue_interrupt(&vmx->vcpu, vector,
  5389. type == INTR_TYPE_SOFT_INTR);
  5390. break;
  5391. default:
  5392. break;
  5393. }
  5394. }
  5395. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5396. {
  5397. if (is_guest_mode(&vmx->vcpu))
  5398. return;
  5399. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5400. VM_EXIT_INSTRUCTION_LEN,
  5401. IDT_VECTORING_ERROR_CODE);
  5402. }
  5403. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5404. {
  5405. if (is_guest_mode(vcpu))
  5406. return;
  5407. __vmx_complete_interrupts(to_vmx(vcpu),
  5408. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5409. VM_ENTRY_INSTRUCTION_LEN,
  5410. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5411. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5412. }
  5413. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5414. {
  5415. int i, nr_msrs;
  5416. struct perf_guest_switch_msr *msrs;
  5417. msrs = perf_guest_get_msrs(&nr_msrs);
  5418. if (!msrs)
  5419. return;
  5420. for (i = 0; i < nr_msrs; i++)
  5421. if (msrs[i].host == msrs[i].guest)
  5422. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5423. else
  5424. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5425. msrs[i].host);
  5426. }
  5427. #ifdef CONFIG_X86_64
  5428. #define R "r"
  5429. #define Q "q"
  5430. #else
  5431. #define R "e"
  5432. #define Q "l"
  5433. #endif
  5434. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5435. {
  5436. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5437. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5438. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5439. if (vmcs12->idt_vectoring_info_field &
  5440. VECTORING_INFO_VALID_MASK) {
  5441. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5442. vmcs12->idt_vectoring_info_field);
  5443. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5444. vmcs12->vm_exit_instruction_len);
  5445. if (vmcs12->idt_vectoring_info_field &
  5446. VECTORING_INFO_DELIVER_CODE_MASK)
  5447. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5448. vmcs12->idt_vectoring_error_code);
  5449. }
  5450. }
  5451. /* Record the guest's net vcpu time for enforced NMI injections. */
  5452. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5453. vmx->entry_time = ktime_get();
  5454. /* Don't enter VMX if guest state is invalid, let the exit handler
  5455. start emulation until we arrive back to a valid state */
  5456. if (vmx->emulation_required && emulate_invalid_guest_state)
  5457. return;
  5458. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5459. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5460. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5461. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5462. /* When single-stepping over STI and MOV SS, we must clear the
  5463. * corresponding interruptibility bits in the guest state. Otherwise
  5464. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5465. * exceptions being set, but that's not correct for the guest debugging
  5466. * case. */
  5467. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5468. vmx_set_interrupt_shadow(vcpu, 0);
  5469. atomic_switch_perf_msrs(vmx);
  5470. vmx->__launched = vmx->loaded_vmcs->launched;
  5471. asm(
  5472. /* Store host registers */
  5473. "push %%"R"dx; push %%"R"bp;"
  5474. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  5475. "push %%"R"cx \n\t"
  5476. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  5477. "je 1f \n\t"
  5478. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  5479. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5480. "1: \n\t"
  5481. /* Reload cr2 if changed */
  5482. "mov %c[cr2](%0), %%"R"ax \n\t"
  5483. "mov %%cr2, %%"R"dx \n\t"
  5484. "cmp %%"R"ax, %%"R"dx \n\t"
  5485. "je 2f \n\t"
  5486. "mov %%"R"ax, %%cr2 \n\t"
  5487. "2: \n\t"
  5488. /* Check if vmlaunch of vmresume is needed */
  5489. "cmpl $0, %c[launched](%0) \n\t"
  5490. /* Load guest registers. Don't clobber flags. */
  5491. "mov %c[rax](%0), %%"R"ax \n\t"
  5492. "mov %c[rbx](%0), %%"R"bx \n\t"
  5493. "mov %c[rdx](%0), %%"R"dx \n\t"
  5494. "mov %c[rsi](%0), %%"R"si \n\t"
  5495. "mov %c[rdi](%0), %%"R"di \n\t"
  5496. "mov %c[rbp](%0), %%"R"bp \n\t"
  5497. #ifdef CONFIG_X86_64
  5498. "mov %c[r8](%0), %%r8 \n\t"
  5499. "mov %c[r9](%0), %%r9 \n\t"
  5500. "mov %c[r10](%0), %%r10 \n\t"
  5501. "mov %c[r11](%0), %%r11 \n\t"
  5502. "mov %c[r12](%0), %%r12 \n\t"
  5503. "mov %c[r13](%0), %%r13 \n\t"
  5504. "mov %c[r14](%0), %%r14 \n\t"
  5505. "mov %c[r15](%0), %%r15 \n\t"
  5506. #endif
  5507. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  5508. /* Enter guest mode */
  5509. "jne .Llaunched \n\t"
  5510. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5511. "jmp .Lkvm_vmx_return \n\t"
  5512. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5513. ".Lkvm_vmx_return: "
  5514. /* Save guest registers, load host registers, keep flags */
  5515. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  5516. "pop %0 \n\t"
  5517. "mov %%"R"ax, %c[rax](%0) \n\t"
  5518. "mov %%"R"bx, %c[rbx](%0) \n\t"
  5519. "pop"Q" %c[rcx](%0) \n\t"
  5520. "mov %%"R"dx, %c[rdx](%0) \n\t"
  5521. "mov %%"R"si, %c[rsi](%0) \n\t"
  5522. "mov %%"R"di, %c[rdi](%0) \n\t"
  5523. "mov %%"R"bp, %c[rbp](%0) \n\t"
  5524. #ifdef CONFIG_X86_64
  5525. "mov %%r8, %c[r8](%0) \n\t"
  5526. "mov %%r9, %c[r9](%0) \n\t"
  5527. "mov %%r10, %c[r10](%0) \n\t"
  5528. "mov %%r11, %c[r11](%0) \n\t"
  5529. "mov %%r12, %c[r12](%0) \n\t"
  5530. "mov %%r13, %c[r13](%0) \n\t"
  5531. "mov %%r14, %c[r14](%0) \n\t"
  5532. "mov %%r15, %c[r15](%0) \n\t"
  5533. #endif
  5534. "mov %%cr2, %%"R"ax \n\t"
  5535. "mov %%"R"ax, %c[cr2](%0) \n\t"
  5536. "pop %%"R"bp; pop %%"R"dx \n\t"
  5537. "setbe %c[fail](%0) \n\t"
  5538. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5539. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5540. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5541. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5542. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5543. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5544. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5545. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5546. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5547. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5548. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5549. #ifdef CONFIG_X86_64
  5550. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5551. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5552. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5553. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5554. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5555. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5556. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5557. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5558. #endif
  5559. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5560. [wordsize]"i"(sizeof(ulong))
  5561. : "cc", "memory"
  5562. , R"ax", R"bx", R"di", R"si"
  5563. #ifdef CONFIG_X86_64
  5564. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5565. #endif
  5566. );
  5567. #ifndef CONFIG_X86_64
  5568. /*
  5569. * The sysexit path does not restore ds/es, so we must set them to
  5570. * a reasonable value ourselves.
  5571. *
  5572. * We can't defer this to vmx_load_host_state() since that function
  5573. * may be executed in interrupt context, which saves and restore segments
  5574. * around it, nullifying its effect.
  5575. */
  5576. loadsegment(ds, __USER_DS);
  5577. loadsegment(es, __USER_DS);
  5578. #endif
  5579. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5580. | (1 << VCPU_EXREG_RFLAGS)
  5581. | (1 << VCPU_EXREG_CPL)
  5582. | (1 << VCPU_EXREG_PDPTR)
  5583. | (1 << VCPU_EXREG_SEGMENTS)
  5584. | (1 << VCPU_EXREG_CR3));
  5585. vcpu->arch.regs_dirty = 0;
  5586. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5587. if (is_guest_mode(vcpu)) {
  5588. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5589. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5590. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5591. vmcs12->idt_vectoring_error_code =
  5592. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5593. vmcs12->vm_exit_instruction_len =
  5594. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5595. }
  5596. }
  5597. vmx->loaded_vmcs->launched = 1;
  5598. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5599. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5600. vmx_complete_atomic_exit(vmx);
  5601. vmx_recover_nmi_blocking(vmx);
  5602. vmx_complete_interrupts(vmx);
  5603. }
  5604. #undef R
  5605. #undef Q
  5606. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5607. {
  5608. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5609. free_vpid(vmx);
  5610. free_nested(vmx);
  5611. free_loaded_vmcs(vmx->loaded_vmcs);
  5612. kfree(vmx->guest_msrs);
  5613. kvm_vcpu_uninit(vcpu);
  5614. kmem_cache_free(kvm_vcpu_cache, vmx);
  5615. }
  5616. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5617. {
  5618. int err;
  5619. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5620. int cpu;
  5621. if (!vmx)
  5622. return ERR_PTR(-ENOMEM);
  5623. allocate_vpid(vmx);
  5624. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5625. if (err)
  5626. goto free_vcpu;
  5627. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5628. err = -ENOMEM;
  5629. if (!vmx->guest_msrs) {
  5630. goto uninit_vcpu;
  5631. }
  5632. vmx->loaded_vmcs = &vmx->vmcs01;
  5633. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5634. if (!vmx->loaded_vmcs->vmcs)
  5635. goto free_msrs;
  5636. if (!vmm_exclusive)
  5637. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5638. loaded_vmcs_init(vmx->loaded_vmcs);
  5639. if (!vmm_exclusive)
  5640. kvm_cpu_vmxoff();
  5641. cpu = get_cpu();
  5642. vmx_vcpu_load(&vmx->vcpu, cpu);
  5643. vmx->vcpu.cpu = cpu;
  5644. err = vmx_vcpu_setup(vmx);
  5645. vmx_vcpu_put(&vmx->vcpu);
  5646. put_cpu();
  5647. if (err)
  5648. goto free_vmcs;
  5649. if (vm_need_virtualize_apic_accesses(kvm))
  5650. err = alloc_apic_access_page(kvm);
  5651. if (err)
  5652. goto free_vmcs;
  5653. if (enable_ept) {
  5654. if (!kvm->arch.ept_identity_map_addr)
  5655. kvm->arch.ept_identity_map_addr =
  5656. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5657. err = -ENOMEM;
  5658. if (alloc_identity_pagetable(kvm) != 0)
  5659. goto free_vmcs;
  5660. if (!init_rmode_identity_map(kvm))
  5661. goto free_vmcs;
  5662. }
  5663. vmx->nested.current_vmptr = -1ull;
  5664. vmx->nested.current_vmcs12 = NULL;
  5665. return &vmx->vcpu;
  5666. free_vmcs:
  5667. free_loaded_vmcs(vmx->loaded_vmcs);
  5668. free_msrs:
  5669. kfree(vmx->guest_msrs);
  5670. uninit_vcpu:
  5671. kvm_vcpu_uninit(&vmx->vcpu);
  5672. free_vcpu:
  5673. free_vpid(vmx);
  5674. kmem_cache_free(kvm_vcpu_cache, vmx);
  5675. return ERR_PTR(err);
  5676. }
  5677. static void __init vmx_check_processor_compat(void *rtn)
  5678. {
  5679. struct vmcs_config vmcs_conf;
  5680. *(int *)rtn = 0;
  5681. if (setup_vmcs_config(&vmcs_conf) < 0)
  5682. *(int *)rtn = -EIO;
  5683. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5684. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5685. smp_processor_id());
  5686. *(int *)rtn = -EIO;
  5687. }
  5688. }
  5689. static int get_ept_level(void)
  5690. {
  5691. return VMX_EPT_DEFAULT_GAW + 1;
  5692. }
  5693. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5694. {
  5695. u64 ret;
  5696. /* For VT-d and EPT combination
  5697. * 1. MMIO: always map as UC
  5698. * 2. EPT with VT-d:
  5699. * a. VT-d without snooping control feature: can't guarantee the
  5700. * result, try to trust guest.
  5701. * b. VT-d with snooping control feature: snooping control feature of
  5702. * VT-d engine can guarantee the cache correctness. Just set it
  5703. * to WB to keep consistent with host. So the same as item 3.
  5704. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5705. * consistent with host MTRR
  5706. */
  5707. if (is_mmio)
  5708. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5709. else if (vcpu->kvm->arch.iommu_domain &&
  5710. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5711. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5712. VMX_EPT_MT_EPTE_SHIFT;
  5713. else
  5714. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5715. | VMX_EPT_IPAT_BIT;
  5716. return ret;
  5717. }
  5718. static int vmx_get_lpage_level(void)
  5719. {
  5720. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5721. return PT_DIRECTORY_LEVEL;
  5722. else
  5723. /* For shadow and EPT supported 1GB page */
  5724. return PT_PDPE_LEVEL;
  5725. }
  5726. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5727. {
  5728. struct kvm_cpuid_entry2 *best;
  5729. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5730. u32 exec_control;
  5731. vmx->rdtscp_enabled = false;
  5732. if (vmx_rdtscp_supported()) {
  5733. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5734. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5735. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5736. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5737. vmx->rdtscp_enabled = true;
  5738. else {
  5739. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5740. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5741. exec_control);
  5742. }
  5743. }
  5744. }
  5745. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5746. /* Exposing INVPCID only when PCID is exposed */
  5747. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  5748. if (vmx_invpcid_supported() &&
  5749. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  5750. guest_cpuid_has_pcid(vcpu)) {
  5751. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  5752. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5753. exec_control);
  5754. } else {
  5755. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  5756. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5757. exec_control);
  5758. if (best)
  5759. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  5760. }
  5761. }
  5762. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5763. {
  5764. if (func == 1 && nested)
  5765. entry->ecx |= bit(X86_FEATURE_VMX);
  5766. }
  5767. /*
  5768. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5769. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5770. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5771. * guest in a way that will both be appropriate to L1's requests, and our
  5772. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5773. * function also has additional necessary side-effects, like setting various
  5774. * vcpu->arch fields.
  5775. */
  5776. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5777. {
  5778. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5779. u32 exec_control;
  5780. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5781. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5782. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5783. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5784. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5785. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5786. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5787. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5788. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5789. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5790. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5791. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5792. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5793. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5794. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5795. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5796. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5797. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5798. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5799. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5800. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5801. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5802. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5803. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5804. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5805. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5806. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5807. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5808. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5809. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5810. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5811. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5812. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5813. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5814. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5815. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5816. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5817. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5818. vmcs12->vm_entry_intr_info_field);
  5819. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5820. vmcs12->vm_entry_exception_error_code);
  5821. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5822. vmcs12->vm_entry_instruction_len);
  5823. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5824. vmcs12->guest_interruptibility_info);
  5825. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5826. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5827. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5828. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5829. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5830. vmcs12->guest_pending_dbg_exceptions);
  5831. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5832. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5833. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5834. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5835. (vmcs_config.pin_based_exec_ctrl |
  5836. vmcs12->pin_based_vm_exec_control));
  5837. /*
  5838. * Whether page-faults are trapped is determined by a combination of
  5839. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5840. * If enable_ept, L0 doesn't care about page faults and we should
  5841. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5842. * care about (at least some) page faults, and because it is not easy
  5843. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5844. * to exit on each and every L2 page fault. This is done by setting
  5845. * MASK=MATCH=0 and (see below) EB.PF=1.
  5846. * Note that below we don't need special code to set EB.PF beyond the
  5847. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5848. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5849. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5850. *
  5851. * A problem with this approach (when !enable_ept) is that L1 may be
  5852. * injected with more page faults than it asked for. This could have
  5853. * caused problems, but in practice existing hypervisors don't care.
  5854. * To fix this, we will need to emulate the PFEC checking (on the L1
  5855. * page tables), using walk_addr(), when injecting PFs to L1.
  5856. */
  5857. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5858. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5859. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5860. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5861. if (cpu_has_secondary_exec_ctrls()) {
  5862. u32 exec_control = vmx_secondary_exec_control(vmx);
  5863. if (!vmx->rdtscp_enabled)
  5864. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5865. /* Take the following fields only from vmcs12 */
  5866. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5867. if (nested_cpu_has(vmcs12,
  5868. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5869. exec_control |= vmcs12->secondary_vm_exec_control;
  5870. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5871. /*
  5872. * Translate L1 physical address to host physical
  5873. * address for vmcs02. Keep the page pinned, so this
  5874. * physical address remains valid. We keep a reference
  5875. * to it so we can release it later.
  5876. */
  5877. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5878. nested_release_page(vmx->nested.apic_access_page);
  5879. vmx->nested.apic_access_page =
  5880. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5881. /*
  5882. * If translation failed, no matter: This feature asks
  5883. * to exit when accessing the given address, and if it
  5884. * can never be accessed, this feature won't do
  5885. * anything anyway.
  5886. */
  5887. if (!vmx->nested.apic_access_page)
  5888. exec_control &=
  5889. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5890. else
  5891. vmcs_write64(APIC_ACCESS_ADDR,
  5892. page_to_phys(vmx->nested.apic_access_page));
  5893. }
  5894. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5895. }
  5896. /*
  5897. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5898. * Some constant fields are set here by vmx_set_constant_host_state().
  5899. * Other fields are different per CPU, and will be set later when
  5900. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5901. */
  5902. vmx_set_constant_host_state();
  5903. /*
  5904. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5905. * entry, but only if the current (host) sp changed from the value
  5906. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5907. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5908. * here we just force the write to happen on entry.
  5909. */
  5910. vmx->host_rsp = 0;
  5911. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5912. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5913. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5914. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5915. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5916. /*
  5917. * Merging of IO and MSR bitmaps not currently supported.
  5918. * Rather, exit every time.
  5919. */
  5920. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5921. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5922. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5923. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5924. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5925. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5926. * trap. Note that CR0.TS also needs updating - we do this later.
  5927. */
  5928. update_exception_bitmap(vcpu);
  5929. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5930. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5931. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5932. vmcs_write32(VM_EXIT_CONTROLS,
  5933. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5934. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5935. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5936. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5937. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5938. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5939. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5940. set_cr4_guest_host_mask(vmx);
  5941. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  5942. vmcs_write64(TSC_OFFSET,
  5943. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5944. else
  5945. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5946. if (enable_vpid) {
  5947. /*
  5948. * Trivially support vpid by letting L2s share their parent
  5949. * L1's vpid. TODO: move to a more elaborate solution, giving
  5950. * each L2 its own vpid and exposing the vpid feature to L1.
  5951. */
  5952. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5953. vmx_flush_tlb(vcpu);
  5954. }
  5955. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5956. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5957. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5958. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5959. else
  5960. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5961. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5962. vmx_set_efer(vcpu, vcpu->arch.efer);
  5963. /*
  5964. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5965. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5966. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5967. * the specifications by L1; It's not enough to take
  5968. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5969. * have more bits than L1 expected.
  5970. */
  5971. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5972. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5973. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5974. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5975. /* shadow page tables on either EPT or shadow page tables */
  5976. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5977. kvm_mmu_reset_context(vcpu);
  5978. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5979. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5980. }
  5981. /*
  5982. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5983. * for running an L2 nested guest.
  5984. */
  5985. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5986. {
  5987. struct vmcs12 *vmcs12;
  5988. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5989. int cpu;
  5990. struct loaded_vmcs *vmcs02;
  5991. if (!nested_vmx_check_permission(vcpu) ||
  5992. !nested_vmx_check_vmcs12(vcpu))
  5993. return 1;
  5994. skip_emulated_instruction(vcpu);
  5995. vmcs12 = get_vmcs12(vcpu);
  5996. /*
  5997. * The nested entry process starts with enforcing various prerequisites
  5998. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5999. * they fail: As the SDM explains, some conditions should cause the
  6000. * instruction to fail, while others will cause the instruction to seem
  6001. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6002. * To speed up the normal (success) code path, we should avoid checking
  6003. * for misconfigurations which will anyway be caught by the processor
  6004. * when using the merged vmcs02.
  6005. */
  6006. if (vmcs12->launch_state == launch) {
  6007. nested_vmx_failValid(vcpu,
  6008. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6009. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6010. return 1;
  6011. }
  6012. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6013. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6014. /*TODO: Also verify bits beyond physical address width are 0*/
  6015. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6016. return 1;
  6017. }
  6018. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6019. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6020. /*TODO: Also verify bits beyond physical address width are 0*/
  6021. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6022. return 1;
  6023. }
  6024. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6025. vmcs12->vm_exit_msr_load_count > 0 ||
  6026. vmcs12->vm_exit_msr_store_count > 0) {
  6027. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6028. __func__);
  6029. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6030. return 1;
  6031. }
  6032. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6033. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6034. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6035. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6036. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6037. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6038. !vmx_control_verify(vmcs12->vm_exit_controls,
  6039. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6040. !vmx_control_verify(vmcs12->vm_entry_controls,
  6041. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6042. {
  6043. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6044. return 1;
  6045. }
  6046. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6047. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6048. nested_vmx_failValid(vcpu,
  6049. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6050. return 1;
  6051. }
  6052. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6053. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6054. nested_vmx_entry_failure(vcpu, vmcs12,
  6055. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6056. return 1;
  6057. }
  6058. if (vmcs12->vmcs_link_pointer != -1ull) {
  6059. nested_vmx_entry_failure(vcpu, vmcs12,
  6060. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6061. return 1;
  6062. }
  6063. /*
  6064. * We're finally done with prerequisite checking, and can start with
  6065. * the nested entry.
  6066. */
  6067. vmcs02 = nested_get_current_vmcs02(vmx);
  6068. if (!vmcs02)
  6069. return -ENOMEM;
  6070. enter_guest_mode(vcpu);
  6071. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6072. cpu = get_cpu();
  6073. vmx->loaded_vmcs = vmcs02;
  6074. vmx_vcpu_put(vcpu);
  6075. vmx_vcpu_load(vcpu, cpu);
  6076. vcpu->cpu = cpu;
  6077. put_cpu();
  6078. vmcs12->launch_state = 1;
  6079. prepare_vmcs02(vcpu, vmcs12);
  6080. /*
  6081. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6082. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6083. * returned as far as L1 is concerned. It will only return (and set
  6084. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6085. */
  6086. return 1;
  6087. }
  6088. /*
  6089. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6090. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6091. * This function returns the new value we should put in vmcs12.guest_cr0.
  6092. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6093. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6094. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6095. * didn't trap the bit, because if L1 did, so would L0).
  6096. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6097. * been modified by L2, and L1 knows it. So just leave the old value of
  6098. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6099. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6100. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6101. * changed these bits, and therefore they need to be updated, but L0
  6102. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6103. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6104. */
  6105. static inline unsigned long
  6106. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6107. {
  6108. return
  6109. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6110. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6111. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6112. vcpu->arch.cr0_guest_owned_bits));
  6113. }
  6114. static inline unsigned long
  6115. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6116. {
  6117. return
  6118. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6119. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6120. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6121. vcpu->arch.cr4_guest_owned_bits));
  6122. }
  6123. /*
  6124. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6125. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6126. * and this function updates it to reflect the changes to the guest state while
  6127. * L2 was running (and perhaps made some exits which were handled directly by L0
  6128. * without going back to L1), and to reflect the exit reason.
  6129. * Note that we do not have to copy here all VMCS fields, just those that
  6130. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6131. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6132. * which already writes to vmcs12 directly.
  6133. */
  6134. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6135. {
  6136. /* update guest state fields: */
  6137. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6138. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6139. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6140. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6141. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6142. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6143. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6144. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6145. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6146. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6147. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6148. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6149. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6150. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6151. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6152. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6153. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6154. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6155. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6156. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6157. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6158. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6159. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6160. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6161. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6162. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6163. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6164. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6165. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6166. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6167. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6168. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6169. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6170. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6171. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6172. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6173. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6174. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6175. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6176. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6177. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6178. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6179. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6180. vmcs12->guest_interruptibility_info =
  6181. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6182. vmcs12->guest_pending_dbg_exceptions =
  6183. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6184. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6185. * the relevant bit asks not to trap the change */
  6186. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6187. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6188. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6189. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6190. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6191. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6192. /* update exit information fields: */
  6193. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6194. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6195. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6196. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6197. vmcs12->idt_vectoring_info_field =
  6198. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6199. vmcs12->idt_vectoring_error_code =
  6200. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6201. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6202. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6203. /* clear vm-entry fields which are to be cleared on exit */
  6204. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6205. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6206. }
  6207. /*
  6208. * A part of what we need to when the nested L2 guest exits and we want to
  6209. * run its L1 parent, is to reset L1's guest state to the host state specified
  6210. * in vmcs12.
  6211. * This function is to be called not only on normal nested exit, but also on
  6212. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6213. * Failures During or After Loading Guest State").
  6214. * This function should be called when the active VMCS is L1's (vmcs01).
  6215. */
  6216. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6217. {
  6218. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6219. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6220. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6221. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6222. else
  6223. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6224. vmx_set_efer(vcpu, vcpu->arch.efer);
  6225. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6226. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6227. /*
  6228. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6229. * actually changed, because it depends on the current state of
  6230. * fpu_active (which may have changed).
  6231. * Note that vmx_set_cr0 refers to efer set above.
  6232. */
  6233. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6234. /*
  6235. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6236. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6237. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6238. */
  6239. update_exception_bitmap(vcpu);
  6240. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6241. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6242. /*
  6243. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6244. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6245. */
  6246. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6247. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6248. /* shadow page tables on either EPT or shadow page tables */
  6249. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6250. kvm_mmu_reset_context(vcpu);
  6251. if (enable_vpid) {
  6252. /*
  6253. * Trivially support vpid by letting L2s share their parent
  6254. * L1's vpid. TODO: move to a more elaborate solution, giving
  6255. * each L2 its own vpid and exposing the vpid feature to L1.
  6256. */
  6257. vmx_flush_tlb(vcpu);
  6258. }
  6259. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6260. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6261. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6262. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6263. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6264. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6265. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6266. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6267. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6268. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6269. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6270. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6271. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6272. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6273. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6274. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6275. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6276. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6277. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6278. vmcs12->host_ia32_perf_global_ctrl);
  6279. }
  6280. /*
  6281. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6282. * and modify vmcs12 to make it see what it would expect to see there if
  6283. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6284. */
  6285. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6286. {
  6287. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6288. int cpu;
  6289. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6290. leave_guest_mode(vcpu);
  6291. prepare_vmcs12(vcpu, vmcs12);
  6292. cpu = get_cpu();
  6293. vmx->loaded_vmcs = &vmx->vmcs01;
  6294. vmx_vcpu_put(vcpu);
  6295. vmx_vcpu_load(vcpu, cpu);
  6296. vcpu->cpu = cpu;
  6297. put_cpu();
  6298. /* if no vmcs02 cache requested, remove the one we used */
  6299. if (VMCS02_POOL_SIZE == 0)
  6300. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6301. load_vmcs12_host_state(vcpu, vmcs12);
  6302. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6303. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6304. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6305. vmx->host_rsp = 0;
  6306. /* Unpin physical memory we referred to in vmcs02 */
  6307. if (vmx->nested.apic_access_page) {
  6308. nested_release_page(vmx->nested.apic_access_page);
  6309. vmx->nested.apic_access_page = 0;
  6310. }
  6311. /*
  6312. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6313. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6314. * success or failure flag accordingly.
  6315. */
  6316. if (unlikely(vmx->fail)) {
  6317. vmx->fail = 0;
  6318. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6319. } else
  6320. nested_vmx_succeed(vcpu);
  6321. }
  6322. /*
  6323. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6324. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6325. * lists the acceptable exit-reason and exit-qualification parameters).
  6326. * It should only be called before L2 actually succeeded to run, and when
  6327. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6328. */
  6329. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6330. struct vmcs12 *vmcs12,
  6331. u32 reason, unsigned long qualification)
  6332. {
  6333. load_vmcs12_host_state(vcpu, vmcs12);
  6334. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6335. vmcs12->exit_qualification = qualification;
  6336. nested_vmx_succeed(vcpu);
  6337. }
  6338. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6339. struct x86_instruction_info *info,
  6340. enum x86_intercept_stage stage)
  6341. {
  6342. return X86EMUL_CONTINUE;
  6343. }
  6344. static struct kvm_x86_ops vmx_x86_ops = {
  6345. .cpu_has_kvm_support = cpu_has_kvm_support,
  6346. .disabled_by_bios = vmx_disabled_by_bios,
  6347. .hardware_setup = hardware_setup,
  6348. .hardware_unsetup = hardware_unsetup,
  6349. .check_processor_compatibility = vmx_check_processor_compat,
  6350. .hardware_enable = hardware_enable,
  6351. .hardware_disable = hardware_disable,
  6352. .cpu_has_accelerated_tpr = report_flexpriority,
  6353. .vcpu_create = vmx_create_vcpu,
  6354. .vcpu_free = vmx_free_vcpu,
  6355. .vcpu_reset = vmx_vcpu_reset,
  6356. .prepare_guest_switch = vmx_save_host_state,
  6357. .vcpu_load = vmx_vcpu_load,
  6358. .vcpu_put = vmx_vcpu_put,
  6359. .set_guest_debug = set_guest_debug,
  6360. .get_msr = vmx_get_msr,
  6361. .set_msr = vmx_set_msr,
  6362. .get_segment_base = vmx_get_segment_base,
  6363. .get_segment = vmx_get_segment,
  6364. .set_segment = vmx_set_segment,
  6365. .get_cpl = vmx_get_cpl,
  6366. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6367. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6368. .decache_cr3 = vmx_decache_cr3,
  6369. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6370. .set_cr0 = vmx_set_cr0,
  6371. .set_cr3 = vmx_set_cr3,
  6372. .set_cr4 = vmx_set_cr4,
  6373. .set_efer = vmx_set_efer,
  6374. .get_idt = vmx_get_idt,
  6375. .set_idt = vmx_set_idt,
  6376. .get_gdt = vmx_get_gdt,
  6377. .set_gdt = vmx_set_gdt,
  6378. .set_dr7 = vmx_set_dr7,
  6379. .cache_reg = vmx_cache_reg,
  6380. .get_rflags = vmx_get_rflags,
  6381. .set_rflags = vmx_set_rflags,
  6382. .fpu_activate = vmx_fpu_activate,
  6383. .fpu_deactivate = vmx_fpu_deactivate,
  6384. .tlb_flush = vmx_flush_tlb,
  6385. .run = vmx_vcpu_run,
  6386. .handle_exit = vmx_handle_exit,
  6387. .skip_emulated_instruction = skip_emulated_instruction,
  6388. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6389. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6390. .patch_hypercall = vmx_patch_hypercall,
  6391. .set_irq = vmx_inject_irq,
  6392. .set_nmi = vmx_inject_nmi,
  6393. .queue_exception = vmx_queue_exception,
  6394. .cancel_injection = vmx_cancel_injection,
  6395. .interrupt_allowed = vmx_interrupt_allowed,
  6396. .nmi_allowed = vmx_nmi_allowed,
  6397. .get_nmi_mask = vmx_get_nmi_mask,
  6398. .set_nmi_mask = vmx_set_nmi_mask,
  6399. .enable_nmi_window = enable_nmi_window,
  6400. .enable_irq_window = enable_irq_window,
  6401. .update_cr8_intercept = update_cr8_intercept,
  6402. .set_tss_addr = vmx_set_tss_addr,
  6403. .get_tdp_level = get_ept_level,
  6404. .get_mt_mask = vmx_get_mt_mask,
  6405. .get_exit_info = vmx_get_exit_info,
  6406. .get_lpage_level = vmx_get_lpage_level,
  6407. .cpuid_update = vmx_cpuid_update,
  6408. .rdtscp_supported = vmx_rdtscp_supported,
  6409. .invpcid_supported = vmx_invpcid_supported,
  6410. .set_supported_cpuid = vmx_set_supported_cpuid,
  6411. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6412. .set_tsc_khz = vmx_set_tsc_khz,
  6413. .write_tsc_offset = vmx_write_tsc_offset,
  6414. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6415. .compute_tsc_offset = vmx_compute_tsc_offset,
  6416. .read_l1_tsc = vmx_read_l1_tsc,
  6417. .set_tdp_cr3 = vmx_set_cr3,
  6418. .check_intercept = vmx_check_intercept,
  6419. };
  6420. static int __init vmx_init(void)
  6421. {
  6422. int r, i;
  6423. rdmsrl_safe(MSR_EFER, &host_efer);
  6424. for (i = 0; i < NR_VMX_MSR; ++i)
  6425. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6426. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6427. if (!vmx_io_bitmap_a)
  6428. return -ENOMEM;
  6429. r = -ENOMEM;
  6430. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6431. if (!vmx_io_bitmap_b)
  6432. goto out;
  6433. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6434. if (!vmx_msr_bitmap_legacy)
  6435. goto out1;
  6436. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6437. if (!vmx_msr_bitmap_longmode)
  6438. goto out2;
  6439. /*
  6440. * Allow direct access to the PC debug port (it is often used for I/O
  6441. * delays, but the vmexits simply slow things down).
  6442. */
  6443. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6444. clear_bit(0x80, vmx_io_bitmap_a);
  6445. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6446. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6447. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6448. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6449. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6450. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6451. if (r)
  6452. goto out3;
  6453. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6454. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6455. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6456. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6457. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6458. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6459. if (enable_ept) {
  6460. kvm_mmu_set_mask_ptes(0ull,
  6461. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  6462. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  6463. 0ull, VMX_EPT_EXECUTABLE_MASK);
  6464. ept_set_mmio_spte_mask();
  6465. kvm_enable_tdp();
  6466. } else
  6467. kvm_disable_tdp();
  6468. return 0;
  6469. out3:
  6470. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6471. out2:
  6472. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6473. out1:
  6474. free_page((unsigned long)vmx_io_bitmap_b);
  6475. out:
  6476. free_page((unsigned long)vmx_io_bitmap_a);
  6477. return r;
  6478. }
  6479. static void __exit vmx_exit(void)
  6480. {
  6481. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6482. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6483. free_page((unsigned long)vmx_io_bitmap_b);
  6484. free_page((unsigned long)vmx_io_bitmap_a);
  6485. kvm_exit();
  6486. }
  6487. module_init(vmx_init)
  6488. module_exit(vmx_exit)