ptrace.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242
  1. /*
  2. * Ptrace user space interface.
  3. *
  4. * Copyright IBM Corp. 1999, 2010
  5. * Author(s): Denis Joseph Barrow
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/mm.h>
  11. #include <linux/smp.h>
  12. #include <linux/errno.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/user.h>
  15. #include <linux/security.h>
  16. #include <linux/audit.h>
  17. #include <linux/signal.h>
  18. #include <linux/elf.h>
  19. #include <linux/regset.h>
  20. #include <linux/tracehook.h>
  21. #include <linux/seccomp.h>
  22. #include <linux/compat.h>
  23. #include <trace/syscall.h>
  24. #include <asm/segment.h>
  25. #include <asm/page.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/pgalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/unistd.h>
  30. #include <asm/switch_to.h>
  31. #include "entry.h"
  32. #ifdef CONFIG_COMPAT
  33. #include "compat_ptrace.h"
  34. #endif
  35. #define CREATE_TRACE_POINTS
  36. #include <trace/events/syscalls.h>
  37. enum s390_regset {
  38. REGSET_GENERAL,
  39. REGSET_FP,
  40. REGSET_LAST_BREAK,
  41. REGSET_SYSTEM_CALL,
  42. REGSET_GENERAL_EXTENDED,
  43. };
  44. void update_per_regs(struct task_struct *task)
  45. {
  46. struct pt_regs *regs = task_pt_regs(task);
  47. struct thread_struct *thread = &task->thread;
  48. struct per_regs old, new;
  49. /* Copy user specified PER registers */
  50. new.control = thread->per_user.control;
  51. new.start = thread->per_user.start;
  52. new.end = thread->per_user.end;
  53. /* merge TIF_SINGLE_STEP into user specified PER registers. */
  54. if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
  55. new.control |= PER_EVENT_IFETCH;
  56. new.start = 0;
  57. new.end = PSW_ADDR_INSN;
  58. }
  59. /* Take care of the PER enablement bit in the PSW. */
  60. if (!(new.control & PER_EVENT_MASK)) {
  61. regs->psw.mask &= ~PSW_MASK_PER;
  62. return;
  63. }
  64. regs->psw.mask |= PSW_MASK_PER;
  65. __ctl_store(old, 9, 11);
  66. if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
  67. __ctl_load(new, 9, 11);
  68. }
  69. void user_enable_single_step(struct task_struct *task)
  70. {
  71. set_tsk_thread_flag(task, TIF_SINGLE_STEP);
  72. if (task == current)
  73. update_per_regs(task);
  74. }
  75. void user_disable_single_step(struct task_struct *task)
  76. {
  77. clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  78. if (task == current)
  79. update_per_regs(task);
  80. }
  81. /*
  82. * Called by kernel/ptrace.c when detaching..
  83. *
  84. * Clear all debugging related fields.
  85. */
  86. void ptrace_disable(struct task_struct *task)
  87. {
  88. memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
  89. memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
  90. clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  91. clear_tsk_thread_flag(task, TIF_PER_TRAP);
  92. }
  93. #ifndef CONFIG_64BIT
  94. # define __ADDR_MASK 3
  95. #else
  96. # define __ADDR_MASK 7
  97. #endif
  98. static inline unsigned long __peek_user_per(struct task_struct *child,
  99. addr_t addr)
  100. {
  101. struct per_struct_kernel *dummy = NULL;
  102. if (addr == (addr_t) &dummy->cr9)
  103. /* Control bits of the active per set. */
  104. return test_thread_flag(TIF_SINGLE_STEP) ?
  105. PER_EVENT_IFETCH : child->thread.per_user.control;
  106. else if (addr == (addr_t) &dummy->cr10)
  107. /* Start address of the active per set. */
  108. return test_thread_flag(TIF_SINGLE_STEP) ?
  109. 0 : child->thread.per_user.start;
  110. else if (addr == (addr_t) &dummy->cr11)
  111. /* End address of the active per set. */
  112. return test_thread_flag(TIF_SINGLE_STEP) ?
  113. PSW_ADDR_INSN : child->thread.per_user.end;
  114. else if (addr == (addr_t) &dummy->bits)
  115. /* Single-step bit. */
  116. return test_thread_flag(TIF_SINGLE_STEP) ?
  117. (1UL << (BITS_PER_LONG - 1)) : 0;
  118. else if (addr == (addr_t) &dummy->starting_addr)
  119. /* Start address of the user specified per set. */
  120. return child->thread.per_user.start;
  121. else if (addr == (addr_t) &dummy->ending_addr)
  122. /* End address of the user specified per set. */
  123. return child->thread.per_user.end;
  124. else if (addr == (addr_t) &dummy->perc_atmid)
  125. /* PER code, ATMID and AI of the last PER trap */
  126. return (unsigned long)
  127. child->thread.per_event.cause << (BITS_PER_LONG - 16);
  128. else if (addr == (addr_t) &dummy->address)
  129. /* Address of the last PER trap */
  130. return child->thread.per_event.address;
  131. else if (addr == (addr_t) &dummy->access_id)
  132. /* Access id of the last PER trap */
  133. return (unsigned long)
  134. child->thread.per_event.paid << (BITS_PER_LONG - 8);
  135. return 0;
  136. }
  137. /*
  138. * Read the word at offset addr from the user area of a process. The
  139. * trouble here is that the information is littered over different
  140. * locations. The process registers are found on the kernel stack,
  141. * the floating point stuff and the trace settings are stored in
  142. * the task structure. In addition the different structures in
  143. * struct user contain pad bytes that should be read as zeroes.
  144. * Lovely...
  145. */
  146. static unsigned long __peek_user(struct task_struct *child, addr_t addr)
  147. {
  148. struct user *dummy = NULL;
  149. addr_t offset, tmp;
  150. if (addr < (addr_t) &dummy->regs.acrs) {
  151. /*
  152. * psw and gprs are stored on the stack
  153. */
  154. tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
  155. if (addr == (addr_t) &dummy->regs.psw.mask)
  156. /* Return a clean psw mask. */
  157. tmp = psw_user_bits | (tmp & PSW_MASK_USER);
  158. } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
  159. /*
  160. * access registers are stored in the thread structure
  161. */
  162. offset = addr - (addr_t) &dummy->regs.acrs;
  163. #ifdef CONFIG_64BIT
  164. /*
  165. * Very special case: old & broken 64 bit gdb reading
  166. * from acrs[15]. Result is a 64 bit value. Read the
  167. * 32 bit acrs[15] value and shift it by 32. Sick...
  168. */
  169. if (addr == (addr_t) &dummy->regs.acrs[15])
  170. tmp = ((unsigned long) child->thread.acrs[15]) << 32;
  171. else
  172. #endif
  173. tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
  174. } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
  175. /*
  176. * orig_gpr2 is stored on the kernel stack
  177. */
  178. tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
  179. } else if (addr < (addr_t) &dummy->regs.fp_regs) {
  180. /*
  181. * prevent reads of padding hole between
  182. * orig_gpr2 and fp_regs on s390.
  183. */
  184. tmp = 0;
  185. } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
  186. /*
  187. * floating point regs. are stored in the thread structure
  188. */
  189. offset = addr - (addr_t) &dummy->regs.fp_regs;
  190. tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
  191. if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
  192. tmp &= (unsigned long) FPC_VALID_MASK
  193. << (BITS_PER_LONG - 32);
  194. } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
  195. /*
  196. * Handle access to the per_info structure.
  197. */
  198. addr -= (addr_t) &dummy->regs.per_info;
  199. tmp = __peek_user_per(child, addr);
  200. } else
  201. tmp = 0;
  202. return tmp;
  203. }
  204. static int
  205. peek_user(struct task_struct *child, addr_t addr, addr_t data)
  206. {
  207. addr_t tmp, mask;
  208. /*
  209. * Stupid gdb peeks/pokes the access registers in 64 bit with
  210. * an alignment of 4. Programmers from hell...
  211. */
  212. mask = __ADDR_MASK;
  213. #ifdef CONFIG_64BIT
  214. if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
  215. addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
  216. mask = 3;
  217. #endif
  218. if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
  219. return -EIO;
  220. tmp = __peek_user(child, addr);
  221. return put_user(tmp, (addr_t __user *) data);
  222. }
  223. static inline void __poke_user_per(struct task_struct *child,
  224. addr_t addr, addr_t data)
  225. {
  226. struct per_struct_kernel *dummy = NULL;
  227. /*
  228. * There are only three fields in the per_info struct that the
  229. * debugger user can write to.
  230. * 1) cr9: the debugger wants to set a new PER event mask
  231. * 2) starting_addr: the debugger wants to set a new starting
  232. * address to use with the PER event mask.
  233. * 3) ending_addr: the debugger wants to set a new ending
  234. * address to use with the PER event mask.
  235. * The user specified PER event mask and the start and end
  236. * addresses are used only if single stepping is not in effect.
  237. * Writes to any other field in per_info are ignored.
  238. */
  239. if (addr == (addr_t) &dummy->cr9)
  240. /* PER event mask of the user specified per set. */
  241. child->thread.per_user.control =
  242. data & (PER_EVENT_MASK | PER_CONTROL_MASK);
  243. else if (addr == (addr_t) &dummy->starting_addr)
  244. /* Starting address of the user specified per set. */
  245. child->thread.per_user.start = data;
  246. else if (addr == (addr_t) &dummy->ending_addr)
  247. /* Ending address of the user specified per set. */
  248. child->thread.per_user.end = data;
  249. }
  250. /*
  251. * Write a word to the user area of a process at location addr. This
  252. * operation does have an additional problem compared to peek_user.
  253. * Stores to the program status word and on the floating point
  254. * control register needs to get checked for validity.
  255. */
  256. static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
  257. {
  258. struct user *dummy = NULL;
  259. addr_t offset;
  260. if (addr < (addr_t) &dummy->regs.acrs) {
  261. /*
  262. * psw and gprs are stored on the stack
  263. */
  264. if (addr == (addr_t) &dummy->regs.psw.mask &&
  265. ((data & ~PSW_MASK_USER) != psw_user_bits ||
  266. ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))))
  267. /* Invalid psw mask. */
  268. return -EINVAL;
  269. *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
  270. } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
  271. /*
  272. * access registers are stored in the thread structure
  273. */
  274. offset = addr - (addr_t) &dummy->regs.acrs;
  275. #ifdef CONFIG_64BIT
  276. /*
  277. * Very special case: old & broken 64 bit gdb writing
  278. * to acrs[15] with a 64 bit value. Ignore the lower
  279. * half of the value and write the upper 32 bit to
  280. * acrs[15]. Sick...
  281. */
  282. if (addr == (addr_t) &dummy->regs.acrs[15])
  283. child->thread.acrs[15] = (unsigned int) (data >> 32);
  284. else
  285. #endif
  286. *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
  287. } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
  288. /*
  289. * orig_gpr2 is stored on the kernel stack
  290. */
  291. task_pt_regs(child)->orig_gpr2 = data;
  292. } else if (addr < (addr_t) &dummy->regs.fp_regs) {
  293. /*
  294. * prevent writes of padding hole between
  295. * orig_gpr2 and fp_regs on s390.
  296. */
  297. return 0;
  298. } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
  299. /*
  300. * floating point regs. are stored in the thread structure
  301. */
  302. if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
  303. (data & ~((unsigned long) FPC_VALID_MASK
  304. << (BITS_PER_LONG - 32))) != 0)
  305. return -EINVAL;
  306. offset = addr - (addr_t) &dummy->regs.fp_regs;
  307. *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
  308. } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
  309. /*
  310. * Handle access to the per_info structure.
  311. */
  312. addr -= (addr_t) &dummy->regs.per_info;
  313. __poke_user_per(child, addr, data);
  314. }
  315. return 0;
  316. }
  317. static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
  318. {
  319. addr_t mask;
  320. /*
  321. * Stupid gdb peeks/pokes the access registers in 64 bit with
  322. * an alignment of 4. Programmers from hell indeed...
  323. */
  324. mask = __ADDR_MASK;
  325. #ifdef CONFIG_64BIT
  326. if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
  327. addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
  328. mask = 3;
  329. #endif
  330. if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
  331. return -EIO;
  332. return __poke_user(child, addr, data);
  333. }
  334. long arch_ptrace(struct task_struct *child, long request,
  335. unsigned long addr, unsigned long data)
  336. {
  337. ptrace_area parea;
  338. int copied, ret;
  339. switch (request) {
  340. case PTRACE_PEEKUSR:
  341. /* read the word at location addr in the USER area. */
  342. return peek_user(child, addr, data);
  343. case PTRACE_POKEUSR:
  344. /* write the word at location addr in the USER area */
  345. return poke_user(child, addr, data);
  346. case PTRACE_PEEKUSR_AREA:
  347. case PTRACE_POKEUSR_AREA:
  348. if (copy_from_user(&parea, (void __force __user *) addr,
  349. sizeof(parea)))
  350. return -EFAULT;
  351. addr = parea.kernel_addr;
  352. data = parea.process_addr;
  353. copied = 0;
  354. while (copied < parea.len) {
  355. if (request == PTRACE_PEEKUSR_AREA)
  356. ret = peek_user(child, addr, data);
  357. else {
  358. addr_t utmp;
  359. if (get_user(utmp,
  360. (addr_t __force __user *) data))
  361. return -EFAULT;
  362. ret = poke_user(child, addr, utmp);
  363. }
  364. if (ret)
  365. return ret;
  366. addr += sizeof(unsigned long);
  367. data += sizeof(unsigned long);
  368. copied += sizeof(unsigned long);
  369. }
  370. return 0;
  371. case PTRACE_GET_LAST_BREAK:
  372. put_user(task_thread_info(child)->last_break,
  373. (unsigned long __user *) data);
  374. return 0;
  375. default:
  376. /* Removing high order bit from addr (only for 31 bit). */
  377. addr &= PSW_ADDR_INSN;
  378. return ptrace_request(child, request, addr, data);
  379. }
  380. }
  381. #ifdef CONFIG_COMPAT
  382. /*
  383. * Now the fun part starts... a 31 bit program running in the
  384. * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
  385. * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
  386. * to handle, the difference to the 64 bit versions of the requests
  387. * is that the access is done in multiples of 4 byte instead of
  388. * 8 bytes (sizeof(unsigned long) on 31/64 bit).
  389. * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
  390. * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
  391. * is a 31 bit program too, the content of struct user can be
  392. * emulated. A 31 bit program peeking into the struct user of
  393. * a 64 bit program is a no-no.
  394. */
  395. /*
  396. * Same as peek_user_per but for a 31 bit program.
  397. */
  398. static inline __u32 __peek_user_per_compat(struct task_struct *child,
  399. addr_t addr)
  400. {
  401. struct compat_per_struct_kernel *dummy32 = NULL;
  402. if (addr == (addr_t) &dummy32->cr9)
  403. /* Control bits of the active per set. */
  404. return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
  405. PER_EVENT_IFETCH : child->thread.per_user.control;
  406. else if (addr == (addr_t) &dummy32->cr10)
  407. /* Start address of the active per set. */
  408. return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
  409. 0 : child->thread.per_user.start;
  410. else if (addr == (addr_t) &dummy32->cr11)
  411. /* End address of the active per set. */
  412. return test_thread_flag(TIF_SINGLE_STEP) ?
  413. PSW32_ADDR_INSN : child->thread.per_user.end;
  414. else if (addr == (addr_t) &dummy32->bits)
  415. /* Single-step bit. */
  416. return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
  417. 0x80000000 : 0;
  418. else if (addr == (addr_t) &dummy32->starting_addr)
  419. /* Start address of the user specified per set. */
  420. return (__u32) child->thread.per_user.start;
  421. else if (addr == (addr_t) &dummy32->ending_addr)
  422. /* End address of the user specified per set. */
  423. return (__u32) child->thread.per_user.end;
  424. else if (addr == (addr_t) &dummy32->perc_atmid)
  425. /* PER code, ATMID and AI of the last PER trap */
  426. return (__u32) child->thread.per_event.cause << 16;
  427. else if (addr == (addr_t) &dummy32->address)
  428. /* Address of the last PER trap */
  429. return (__u32) child->thread.per_event.address;
  430. else if (addr == (addr_t) &dummy32->access_id)
  431. /* Access id of the last PER trap */
  432. return (__u32) child->thread.per_event.paid << 24;
  433. return 0;
  434. }
  435. /*
  436. * Same as peek_user but for a 31 bit program.
  437. */
  438. static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
  439. {
  440. struct compat_user *dummy32 = NULL;
  441. addr_t offset;
  442. __u32 tmp;
  443. if (addr < (addr_t) &dummy32->regs.acrs) {
  444. struct pt_regs *regs = task_pt_regs(child);
  445. /*
  446. * psw and gprs are stored on the stack
  447. */
  448. if (addr == (addr_t) &dummy32->regs.psw.mask) {
  449. /* Fake a 31 bit psw mask. */
  450. tmp = (__u32)(regs->psw.mask >> 32);
  451. tmp = psw32_user_bits | (tmp & PSW32_MASK_USER);
  452. } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
  453. /* Fake a 31 bit psw address. */
  454. tmp = (__u32) regs->psw.addr |
  455. (__u32)(regs->psw.mask & PSW_MASK_BA);
  456. } else {
  457. /* gpr 0-15 */
  458. tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
  459. }
  460. } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
  461. /*
  462. * access registers are stored in the thread structure
  463. */
  464. offset = addr - (addr_t) &dummy32->regs.acrs;
  465. tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
  466. } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
  467. /*
  468. * orig_gpr2 is stored on the kernel stack
  469. */
  470. tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
  471. } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
  472. /*
  473. * prevent reads of padding hole between
  474. * orig_gpr2 and fp_regs on s390.
  475. */
  476. tmp = 0;
  477. } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
  478. /*
  479. * floating point regs. are stored in the thread structure
  480. */
  481. offset = addr - (addr_t) &dummy32->regs.fp_regs;
  482. tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
  483. } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
  484. /*
  485. * Handle access to the per_info structure.
  486. */
  487. addr -= (addr_t) &dummy32->regs.per_info;
  488. tmp = __peek_user_per_compat(child, addr);
  489. } else
  490. tmp = 0;
  491. return tmp;
  492. }
  493. static int peek_user_compat(struct task_struct *child,
  494. addr_t addr, addr_t data)
  495. {
  496. __u32 tmp;
  497. if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
  498. return -EIO;
  499. tmp = __peek_user_compat(child, addr);
  500. return put_user(tmp, (__u32 __user *) data);
  501. }
  502. /*
  503. * Same as poke_user_per but for a 31 bit program.
  504. */
  505. static inline void __poke_user_per_compat(struct task_struct *child,
  506. addr_t addr, __u32 data)
  507. {
  508. struct compat_per_struct_kernel *dummy32 = NULL;
  509. if (addr == (addr_t) &dummy32->cr9)
  510. /* PER event mask of the user specified per set. */
  511. child->thread.per_user.control =
  512. data & (PER_EVENT_MASK | PER_CONTROL_MASK);
  513. else if (addr == (addr_t) &dummy32->starting_addr)
  514. /* Starting address of the user specified per set. */
  515. child->thread.per_user.start = data;
  516. else if (addr == (addr_t) &dummy32->ending_addr)
  517. /* Ending address of the user specified per set. */
  518. child->thread.per_user.end = data;
  519. }
  520. /*
  521. * Same as poke_user but for a 31 bit program.
  522. */
  523. static int __poke_user_compat(struct task_struct *child,
  524. addr_t addr, addr_t data)
  525. {
  526. struct compat_user *dummy32 = NULL;
  527. __u32 tmp = (__u32) data;
  528. addr_t offset;
  529. if (addr < (addr_t) &dummy32->regs.acrs) {
  530. struct pt_regs *regs = task_pt_regs(child);
  531. /*
  532. * psw, gprs, acrs and orig_gpr2 are stored on the stack
  533. */
  534. if (addr == (addr_t) &dummy32->regs.psw.mask) {
  535. /* Build a 64 bit psw mask from 31 bit mask. */
  536. if ((tmp & ~PSW32_MASK_USER) != psw32_user_bits)
  537. /* Invalid psw mask. */
  538. return -EINVAL;
  539. regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
  540. (regs->psw.mask & PSW_MASK_BA) |
  541. (__u64)(tmp & PSW32_MASK_USER) << 32;
  542. } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
  543. /* Build a 64 bit psw address from 31 bit address. */
  544. regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
  545. /* Transfer 31 bit amode bit to psw mask. */
  546. regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
  547. (__u64)(tmp & PSW32_ADDR_AMODE);
  548. } else {
  549. /* gpr 0-15 */
  550. *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
  551. }
  552. } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
  553. /*
  554. * access registers are stored in the thread structure
  555. */
  556. offset = addr - (addr_t) &dummy32->regs.acrs;
  557. *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
  558. } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
  559. /*
  560. * orig_gpr2 is stored on the kernel stack
  561. */
  562. *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
  563. } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
  564. /*
  565. * prevent writess of padding hole between
  566. * orig_gpr2 and fp_regs on s390.
  567. */
  568. return 0;
  569. } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
  570. /*
  571. * floating point regs. are stored in the thread structure
  572. */
  573. if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
  574. (tmp & ~FPC_VALID_MASK) != 0)
  575. /* Invalid floating point control. */
  576. return -EINVAL;
  577. offset = addr - (addr_t) &dummy32->regs.fp_regs;
  578. *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
  579. } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
  580. /*
  581. * Handle access to the per_info structure.
  582. */
  583. addr -= (addr_t) &dummy32->regs.per_info;
  584. __poke_user_per_compat(child, addr, data);
  585. }
  586. return 0;
  587. }
  588. static int poke_user_compat(struct task_struct *child,
  589. addr_t addr, addr_t data)
  590. {
  591. if (!is_compat_task() || (addr & 3) ||
  592. addr > sizeof(struct compat_user) - 3)
  593. return -EIO;
  594. return __poke_user_compat(child, addr, data);
  595. }
  596. long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
  597. compat_ulong_t caddr, compat_ulong_t cdata)
  598. {
  599. unsigned long addr = caddr;
  600. unsigned long data = cdata;
  601. compat_ptrace_area parea;
  602. int copied, ret;
  603. switch (request) {
  604. case PTRACE_PEEKUSR:
  605. /* read the word at location addr in the USER area. */
  606. return peek_user_compat(child, addr, data);
  607. case PTRACE_POKEUSR:
  608. /* write the word at location addr in the USER area */
  609. return poke_user_compat(child, addr, data);
  610. case PTRACE_PEEKUSR_AREA:
  611. case PTRACE_POKEUSR_AREA:
  612. if (copy_from_user(&parea, (void __force __user *) addr,
  613. sizeof(parea)))
  614. return -EFAULT;
  615. addr = parea.kernel_addr;
  616. data = parea.process_addr;
  617. copied = 0;
  618. while (copied < parea.len) {
  619. if (request == PTRACE_PEEKUSR_AREA)
  620. ret = peek_user_compat(child, addr, data);
  621. else {
  622. __u32 utmp;
  623. if (get_user(utmp,
  624. (__u32 __force __user *) data))
  625. return -EFAULT;
  626. ret = poke_user_compat(child, addr, utmp);
  627. }
  628. if (ret)
  629. return ret;
  630. addr += sizeof(unsigned int);
  631. data += sizeof(unsigned int);
  632. copied += sizeof(unsigned int);
  633. }
  634. return 0;
  635. case PTRACE_GET_LAST_BREAK:
  636. put_user(task_thread_info(child)->last_break,
  637. (unsigned int __user *) data);
  638. return 0;
  639. }
  640. return compat_ptrace_request(child, request, addr, data);
  641. }
  642. #endif
  643. asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
  644. {
  645. long ret = 0;
  646. /* Do the secure computing check first. */
  647. if (secure_computing(regs->gprs[2])) {
  648. /* seccomp failures shouldn't expose any additional code. */
  649. ret = -1;
  650. goto out;
  651. }
  652. /*
  653. * The sysc_tracesys code in entry.S stored the system
  654. * call number to gprs[2].
  655. */
  656. if (test_thread_flag(TIF_SYSCALL_TRACE) &&
  657. (tracehook_report_syscall_entry(regs) ||
  658. regs->gprs[2] >= NR_syscalls)) {
  659. /*
  660. * Tracing decided this syscall should not happen or the
  661. * debugger stored an invalid system call number. Skip
  662. * the system call and the system call restart handling.
  663. */
  664. clear_thread_flag(TIF_SYSCALL);
  665. ret = -1;
  666. }
  667. if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
  668. trace_sys_enter(regs, regs->gprs[2]);
  669. audit_syscall_entry(is_compat_task() ?
  670. AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
  671. regs->gprs[2], regs->orig_gpr2,
  672. regs->gprs[3], regs->gprs[4],
  673. regs->gprs[5]);
  674. out:
  675. return ret ?: regs->gprs[2];
  676. }
  677. asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
  678. {
  679. audit_syscall_exit(regs);
  680. if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
  681. trace_sys_exit(regs, regs->gprs[2]);
  682. if (test_thread_flag(TIF_SYSCALL_TRACE))
  683. tracehook_report_syscall_exit(regs, 0);
  684. }
  685. /*
  686. * user_regset definitions.
  687. */
  688. static int s390_regs_get(struct task_struct *target,
  689. const struct user_regset *regset,
  690. unsigned int pos, unsigned int count,
  691. void *kbuf, void __user *ubuf)
  692. {
  693. if (target == current)
  694. save_access_regs(target->thread.acrs);
  695. if (kbuf) {
  696. unsigned long *k = kbuf;
  697. while (count > 0) {
  698. *k++ = __peek_user(target, pos);
  699. count -= sizeof(*k);
  700. pos += sizeof(*k);
  701. }
  702. } else {
  703. unsigned long __user *u = ubuf;
  704. while (count > 0) {
  705. if (__put_user(__peek_user(target, pos), u++))
  706. return -EFAULT;
  707. count -= sizeof(*u);
  708. pos += sizeof(*u);
  709. }
  710. }
  711. return 0;
  712. }
  713. static int s390_regs_set(struct task_struct *target,
  714. const struct user_regset *regset,
  715. unsigned int pos, unsigned int count,
  716. const void *kbuf, const void __user *ubuf)
  717. {
  718. int rc = 0;
  719. if (target == current)
  720. save_access_regs(target->thread.acrs);
  721. if (kbuf) {
  722. const unsigned long *k = kbuf;
  723. while (count > 0 && !rc) {
  724. rc = __poke_user(target, pos, *k++);
  725. count -= sizeof(*k);
  726. pos += sizeof(*k);
  727. }
  728. } else {
  729. const unsigned long __user *u = ubuf;
  730. while (count > 0 && !rc) {
  731. unsigned long word;
  732. rc = __get_user(word, u++);
  733. if (rc)
  734. break;
  735. rc = __poke_user(target, pos, word);
  736. count -= sizeof(*u);
  737. pos += sizeof(*u);
  738. }
  739. }
  740. if (rc == 0 && target == current)
  741. restore_access_regs(target->thread.acrs);
  742. return rc;
  743. }
  744. static int s390_fpregs_get(struct task_struct *target,
  745. const struct user_regset *regset, unsigned int pos,
  746. unsigned int count, void *kbuf, void __user *ubuf)
  747. {
  748. if (target == current)
  749. save_fp_regs(&target->thread.fp_regs);
  750. return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
  751. &target->thread.fp_regs, 0, -1);
  752. }
  753. static int s390_fpregs_set(struct task_struct *target,
  754. const struct user_regset *regset, unsigned int pos,
  755. unsigned int count, const void *kbuf,
  756. const void __user *ubuf)
  757. {
  758. int rc = 0;
  759. if (target == current)
  760. save_fp_regs(&target->thread.fp_regs);
  761. /* If setting FPC, must validate it first. */
  762. if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
  763. u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
  764. rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
  765. 0, offsetof(s390_fp_regs, fprs));
  766. if (rc)
  767. return rc;
  768. if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
  769. return -EINVAL;
  770. target->thread.fp_regs.fpc = fpc[0];
  771. }
  772. if (rc == 0 && count > 0)
  773. rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
  774. target->thread.fp_regs.fprs,
  775. offsetof(s390_fp_regs, fprs), -1);
  776. if (rc == 0 && target == current)
  777. restore_fp_regs(&target->thread.fp_regs);
  778. return rc;
  779. }
  780. #ifdef CONFIG_64BIT
  781. static int s390_last_break_get(struct task_struct *target,
  782. const struct user_regset *regset,
  783. unsigned int pos, unsigned int count,
  784. void *kbuf, void __user *ubuf)
  785. {
  786. if (count > 0) {
  787. if (kbuf) {
  788. unsigned long *k = kbuf;
  789. *k = task_thread_info(target)->last_break;
  790. } else {
  791. unsigned long __user *u = ubuf;
  792. if (__put_user(task_thread_info(target)->last_break, u))
  793. return -EFAULT;
  794. }
  795. }
  796. return 0;
  797. }
  798. static int s390_last_break_set(struct task_struct *target,
  799. const struct user_regset *regset,
  800. unsigned int pos, unsigned int count,
  801. const void *kbuf, const void __user *ubuf)
  802. {
  803. return 0;
  804. }
  805. #endif
  806. static int s390_system_call_get(struct task_struct *target,
  807. const struct user_regset *regset,
  808. unsigned int pos, unsigned int count,
  809. void *kbuf, void __user *ubuf)
  810. {
  811. unsigned int *data = &task_thread_info(target)->system_call;
  812. return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
  813. data, 0, sizeof(unsigned int));
  814. }
  815. static int s390_system_call_set(struct task_struct *target,
  816. const struct user_regset *regset,
  817. unsigned int pos, unsigned int count,
  818. const void *kbuf, const void __user *ubuf)
  819. {
  820. unsigned int *data = &task_thread_info(target)->system_call;
  821. return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
  822. data, 0, sizeof(unsigned int));
  823. }
  824. static const struct user_regset s390_regsets[] = {
  825. [REGSET_GENERAL] = {
  826. .core_note_type = NT_PRSTATUS,
  827. .n = sizeof(s390_regs) / sizeof(long),
  828. .size = sizeof(long),
  829. .align = sizeof(long),
  830. .get = s390_regs_get,
  831. .set = s390_regs_set,
  832. },
  833. [REGSET_FP] = {
  834. .core_note_type = NT_PRFPREG,
  835. .n = sizeof(s390_fp_regs) / sizeof(long),
  836. .size = sizeof(long),
  837. .align = sizeof(long),
  838. .get = s390_fpregs_get,
  839. .set = s390_fpregs_set,
  840. },
  841. #ifdef CONFIG_64BIT
  842. [REGSET_LAST_BREAK] = {
  843. .core_note_type = NT_S390_LAST_BREAK,
  844. .n = 1,
  845. .size = sizeof(long),
  846. .align = sizeof(long),
  847. .get = s390_last_break_get,
  848. .set = s390_last_break_set,
  849. },
  850. #endif
  851. [REGSET_SYSTEM_CALL] = {
  852. .core_note_type = NT_S390_SYSTEM_CALL,
  853. .n = 1,
  854. .size = sizeof(unsigned int),
  855. .align = sizeof(unsigned int),
  856. .get = s390_system_call_get,
  857. .set = s390_system_call_set,
  858. },
  859. };
  860. static const struct user_regset_view user_s390_view = {
  861. .name = UTS_MACHINE,
  862. .e_machine = EM_S390,
  863. .regsets = s390_regsets,
  864. .n = ARRAY_SIZE(s390_regsets)
  865. };
  866. #ifdef CONFIG_COMPAT
  867. static int s390_compat_regs_get(struct task_struct *target,
  868. const struct user_regset *regset,
  869. unsigned int pos, unsigned int count,
  870. void *kbuf, void __user *ubuf)
  871. {
  872. if (target == current)
  873. save_access_regs(target->thread.acrs);
  874. if (kbuf) {
  875. compat_ulong_t *k = kbuf;
  876. while (count > 0) {
  877. *k++ = __peek_user_compat(target, pos);
  878. count -= sizeof(*k);
  879. pos += sizeof(*k);
  880. }
  881. } else {
  882. compat_ulong_t __user *u = ubuf;
  883. while (count > 0) {
  884. if (__put_user(__peek_user_compat(target, pos), u++))
  885. return -EFAULT;
  886. count -= sizeof(*u);
  887. pos += sizeof(*u);
  888. }
  889. }
  890. return 0;
  891. }
  892. static int s390_compat_regs_set(struct task_struct *target,
  893. const struct user_regset *regset,
  894. unsigned int pos, unsigned int count,
  895. const void *kbuf, const void __user *ubuf)
  896. {
  897. int rc = 0;
  898. if (target == current)
  899. save_access_regs(target->thread.acrs);
  900. if (kbuf) {
  901. const compat_ulong_t *k = kbuf;
  902. while (count > 0 && !rc) {
  903. rc = __poke_user_compat(target, pos, *k++);
  904. count -= sizeof(*k);
  905. pos += sizeof(*k);
  906. }
  907. } else {
  908. const compat_ulong_t __user *u = ubuf;
  909. while (count > 0 && !rc) {
  910. compat_ulong_t word;
  911. rc = __get_user(word, u++);
  912. if (rc)
  913. break;
  914. rc = __poke_user_compat(target, pos, word);
  915. count -= sizeof(*u);
  916. pos += sizeof(*u);
  917. }
  918. }
  919. if (rc == 0 && target == current)
  920. restore_access_regs(target->thread.acrs);
  921. return rc;
  922. }
  923. static int s390_compat_regs_high_get(struct task_struct *target,
  924. const struct user_regset *regset,
  925. unsigned int pos, unsigned int count,
  926. void *kbuf, void __user *ubuf)
  927. {
  928. compat_ulong_t *gprs_high;
  929. gprs_high = (compat_ulong_t *)
  930. &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
  931. if (kbuf) {
  932. compat_ulong_t *k = kbuf;
  933. while (count > 0) {
  934. *k++ = *gprs_high;
  935. gprs_high += 2;
  936. count -= sizeof(*k);
  937. }
  938. } else {
  939. compat_ulong_t __user *u = ubuf;
  940. while (count > 0) {
  941. if (__put_user(*gprs_high, u++))
  942. return -EFAULT;
  943. gprs_high += 2;
  944. count -= sizeof(*u);
  945. }
  946. }
  947. return 0;
  948. }
  949. static int s390_compat_regs_high_set(struct task_struct *target,
  950. const struct user_regset *regset,
  951. unsigned int pos, unsigned int count,
  952. const void *kbuf, const void __user *ubuf)
  953. {
  954. compat_ulong_t *gprs_high;
  955. int rc = 0;
  956. gprs_high = (compat_ulong_t *)
  957. &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
  958. if (kbuf) {
  959. const compat_ulong_t *k = kbuf;
  960. while (count > 0) {
  961. *gprs_high = *k++;
  962. *gprs_high += 2;
  963. count -= sizeof(*k);
  964. }
  965. } else {
  966. const compat_ulong_t __user *u = ubuf;
  967. while (count > 0 && !rc) {
  968. unsigned long word;
  969. rc = __get_user(word, u++);
  970. if (rc)
  971. break;
  972. *gprs_high = word;
  973. *gprs_high += 2;
  974. count -= sizeof(*u);
  975. }
  976. }
  977. return rc;
  978. }
  979. static int s390_compat_last_break_get(struct task_struct *target,
  980. const struct user_regset *regset,
  981. unsigned int pos, unsigned int count,
  982. void *kbuf, void __user *ubuf)
  983. {
  984. compat_ulong_t last_break;
  985. if (count > 0) {
  986. last_break = task_thread_info(target)->last_break;
  987. if (kbuf) {
  988. unsigned long *k = kbuf;
  989. *k = last_break;
  990. } else {
  991. unsigned long __user *u = ubuf;
  992. if (__put_user(last_break, u))
  993. return -EFAULT;
  994. }
  995. }
  996. return 0;
  997. }
  998. static int s390_compat_last_break_set(struct task_struct *target,
  999. const struct user_regset *regset,
  1000. unsigned int pos, unsigned int count,
  1001. const void *kbuf, const void __user *ubuf)
  1002. {
  1003. return 0;
  1004. }
  1005. static const struct user_regset s390_compat_regsets[] = {
  1006. [REGSET_GENERAL] = {
  1007. .core_note_type = NT_PRSTATUS,
  1008. .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
  1009. .size = sizeof(compat_long_t),
  1010. .align = sizeof(compat_long_t),
  1011. .get = s390_compat_regs_get,
  1012. .set = s390_compat_regs_set,
  1013. },
  1014. [REGSET_FP] = {
  1015. .core_note_type = NT_PRFPREG,
  1016. .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
  1017. .size = sizeof(compat_long_t),
  1018. .align = sizeof(compat_long_t),
  1019. .get = s390_fpregs_get,
  1020. .set = s390_fpregs_set,
  1021. },
  1022. [REGSET_LAST_BREAK] = {
  1023. .core_note_type = NT_S390_LAST_BREAK,
  1024. .n = 1,
  1025. .size = sizeof(long),
  1026. .align = sizeof(long),
  1027. .get = s390_compat_last_break_get,
  1028. .set = s390_compat_last_break_set,
  1029. },
  1030. [REGSET_SYSTEM_CALL] = {
  1031. .core_note_type = NT_S390_SYSTEM_CALL,
  1032. .n = 1,
  1033. .size = sizeof(compat_uint_t),
  1034. .align = sizeof(compat_uint_t),
  1035. .get = s390_system_call_get,
  1036. .set = s390_system_call_set,
  1037. },
  1038. [REGSET_GENERAL_EXTENDED] = {
  1039. .core_note_type = NT_S390_HIGH_GPRS,
  1040. .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
  1041. .size = sizeof(compat_long_t),
  1042. .align = sizeof(compat_long_t),
  1043. .get = s390_compat_regs_high_get,
  1044. .set = s390_compat_regs_high_set,
  1045. },
  1046. };
  1047. static const struct user_regset_view user_s390_compat_view = {
  1048. .name = "s390",
  1049. .e_machine = EM_S390,
  1050. .regsets = s390_compat_regsets,
  1051. .n = ARRAY_SIZE(s390_compat_regsets)
  1052. };
  1053. #endif
  1054. const struct user_regset_view *task_user_regset_view(struct task_struct *task)
  1055. {
  1056. #ifdef CONFIG_COMPAT
  1057. if (test_tsk_thread_flag(task, TIF_31BIT))
  1058. return &user_s390_compat_view;
  1059. #endif
  1060. return &user_s390_view;
  1061. }
  1062. static const char *gpr_names[NUM_GPRS] = {
  1063. "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  1064. "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
  1065. };
  1066. unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
  1067. {
  1068. if (offset >= NUM_GPRS)
  1069. return 0;
  1070. return regs->gprs[offset];
  1071. }
  1072. int regs_query_register_offset(const char *name)
  1073. {
  1074. unsigned long offset;
  1075. if (!name || *name != 'r')
  1076. return -EINVAL;
  1077. if (strict_strtoul(name + 1, 10, &offset))
  1078. return -EINVAL;
  1079. if (offset >= NUM_GPRS)
  1080. return -EINVAL;
  1081. return offset;
  1082. }
  1083. const char *regs_query_register_name(unsigned int offset)
  1084. {
  1085. if (offset >= NUM_GPRS)
  1086. return NULL;
  1087. return gpr_names[offset];
  1088. }
  1089. static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
  1090. {
  1091. unsigned long ksp = kernel_stack_pointer(regs);
  1092. return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
  1093. }
  1094. /**
  1095. * regs_get_kernel_stack_nth() - get Nth entry of the stack
  1096. * @regs:pt_regs which contains kernel stack pointer.
  1097. * @n:stack entry number.
  1098. *
  1099. * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
  1100. * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
  1101. * this returns 0.
  1102. */
  1103. unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
  1104. {
  1105. unsigned long addr;
  1106. addr = kernel_stack_pointer(regs) + n * sizeof(long);
  1107. if (!regs_within_kernel_stack(regs, addr))
  1108. return 0;
  1109. return *(unsigned long *)addr;
  1110. }