book3s_64_mmu_host.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. /*
  2. * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
  3. *
  4. * Authors:
  5. * Alexander Graf <agraf@suse.de>
  6. * Kevin Wolf <mail@kevin-wolf.de>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License, version 2, as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  20. */
  21. #include <linux/kvm_host.h>
  22. #include <asm/kvm_ppc.h>
  23. #include <asm/kvm_book3s.h>
  24. #include <asm/mmu-hash64.h>
  25. #include <asm/machdep.h>
  26. #include <asm/mmu_context.h>
  27. #include <asm/hw_irq.h>
  28. #include "trace.h"
  29. #define PTE_SIZE 12
  30. void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
  31. {
  32. ppc_md.hpte_invalidate(pte->slot, pte->host_va,
  33. MMU_PAGE_4K, MMU_SEGSIZE_256M,
  34. false);
  35. }
  36. /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
  37. * a hash, so we don't waste cycles on looping */
  38. static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
  39. {
  40. return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
  41. ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
  42. ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
  43. ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
  44. ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
  45. ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
  46. ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
  47. ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
  48. }
  49. static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
  50. {
  51. struct kvmppc_sid_map *map;
  52. u16 sid_map_mask;
  53. if (vcpu->arch.shared->msr & MSR_PR)
  54. gvsid |= VSID_PR;
  55. sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
  56. map = &to_book3s(vcpu)->sid_map[sid_map_mask];
  57. if (map->valid && (map->guest_vsid == gvsid)) {
  58. trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
  59. return map;
  60. }
  61. map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
  62. if (map->valid && (map->guest_vsid == gvsid)) {
  63. trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
  64. return map;
  65. }
  66. trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
  67. return NULL;
  68. }
  69. int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
  70. {
  71. pfn_t hpaddr;
  72. ulong hash, hpteg, va;
  73. u64 vsid;
  74. int ret;
  75. int rflags = 0x192;
  76. int vflags = 0;
  77. int attempt = 0;
  78. struct kvmppc_sid_map *map;
  79. int r = 0;
  80. /* Get host physical address for gpa */
  81. hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
  82. if (is_error_pfn(hpaddr)) {
  83. printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr);
  84. r = -EINVAL;
  85. goto out;
  86. }
  87. hpaddr <<= PAGE_SHIFT;
  88. hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
  89. /* and write the mapping ea -> hpa into the pt */
  90. vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
  91. map = find_sid_vsid(vcpu, vsid);
  92. if (!map) {
  93. ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
  94. WARN_ON(ret < 0);
  95. map = find_sid_vsid(vcpu, vsid);
  96. }
  97. if (!map) {
  98. printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
  99. vsid, orig_pte->eaddr);
  100. WARN_ON(true);
  101. r = -EINVAL;
  102. goto out;
  103. }
  104. vsid = map->host_vsid;
  105. va = hpt_va(orig_pte->eaddr, vsid, MMU_SEGSIZE_256M);
  106. if (!orig_pte->may_write)
  107. rflags |= HPTE_R_PP;
  108. else
  109. mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
  110. if (!orig_pte->may_execute)
  111. rflags |= HPTE_R_N;
  112. else
  113. kvmppc_mmu_flush_icache(hpaddr >> PAGE_SHIFT);
  114. hash = hpt_hash(va, PTE_SIZE, MMU_SEGSIZE_256M);
  115. map_again:
  116. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  117. /* In case we tried normal mapping already, let's nuke old entries */
  118. if (attempt > 1)
  119. if (ppc_md.hpte_remove(hpteg) < 0) {
  120. r = -1;
  121. goto out;
  122. }
  123. ret = ppc_md.hpte_insert(hpteg, va, hpaddr, rflags, vflags, MMU_PAGE_4K, MMU_SEGSIZE_256M);
  124. if (ret < 0) {
  125. /* If we couldn't map a primary PTE, try a secondary */
  126. hash = ~hash;
  127. vflags ^= HPTE_V_SECONDARY;
  128. attempt++;
  129. goto map_again;
  130. } else {
  131. struct hpte_cache *pte = kvmppc_mmu_hpte_cache_next(vcpu);
  132. trace_kvm_book3s_64_mmu_map(rflags, hpteg, va, hpaddr, orig_pte);
  133. /* The ppc_md code may give us a secondary entry even though we
  134. asked for a primary. Fix up. */
  135. if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
  136. hash = ~hash;
  137. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  138. }
  139. pte->slot = hpteg + (ret & 7);
  140. pte->host_va = va;
  141. pte->pte = *orig_pte;
  142. pte->pfn = hpaddr >> PAGE_SHIFT;
  143. kvmppc_mmu_hpte_cache_map(vcpu, pte);
  144. }
  145. out:
  146. return r;
  147. }
  148. static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
  149. {
  150. struct kvmppc_sid_map *map;
  151. struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
  152. u16 sid_map_mask;
  153. static int backwards_map = 0;
  154. if (vcpu->arch.shared->msr & MSR_PR)
  155. gvsid |= VSID_PR;
  156. /* We might get collisions that trap in preceding order, so let's
  157. map them differently */
  158. sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
  159. if (backwards_map)
  160. sid_map_mask = SID_MAP_MASK - sid_map_mask;
  161. map = &to_book3s(vcpu)->sid_map[sid_map_mask];
  162. /* Make sure we're taking the other map next time */
  163. backwards_map = !backwards_map;
  164. /* Uh-oh ... out of mappings. Let's flush! */
  165. if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) {
  166. vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first;
  167. memset(vcpu_book3s->sid_map, 0,
  168. sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
  169. kvmppc_mmu_pte_flush(vcpu, 0, 0);
  170. kvmppc_mmu_flush_segments(vcpu);
  171. }
  172. map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, 256M);
  173. map->guest_vsid = gvsid;
  174. map->valid = true;
  175. trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
  176. return map;
  177. }
  178. static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
  179. {
  180. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  181. int i;
  182. int max_slb_size = 64;
  183. int found_inval = -1;
  184. int r;
  185. if (!svcpu->slb_max)
  186. svcpu->slb_max = 1;
  187. /* Are we overwriting? */
  188. for (i = 1; i < svcpu->slb_max; i++) {
  189. if (!(svcpu->slb[i].esid & SLB_ESID_V))
  190. found_inval = i;
  191. else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
  192. r = i;
  193. goto out;
  194. }
  195. }
  196. /* Found a spare entry that was invalidated before */
  197. if (found_inval > 0) {
  198. r = found_inval;
  199. goto out;
  200. }
  201. /* No spare invalid entry, so create one */
  202. if (mmu_slb_size < 64)
  203. max_slb_size = mmu_slb_size;
  204. /* Overflowing -> purge */
  205. if ((svcpu->slb_max) == max_slb_size)
  206. kvmppc_mmu_flush_segments(vcpu);
  207. r = svcpu->slb_max;
  208. svcpu->slb_max++;
  209. out:
  210. svcpu_put(svcpu);
  211. return r;
  212. }
  213. int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
  214. {
  215. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  216. u64 esid = eaddr >> SID_SHIFT;
  217. u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
  218. u64 slb_vsid = SLB_VSID_USER;
  219. u64 gvsid;
  220. int slb_index;
  221. struct kvmppc_sid_map *map;
  222. int r = 0;
  223. slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
  224. if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
  225. /* Invalidate an entry */
  226. svcpu->slb[slb_index].esid = 0;
  227. r = -ENOENT;
  228. goto out;
  229. }
  230. map = find_sid_vsid(vcpu, gvsid);
  231. if (!map)
  232. map = create_sid_map(vcpu, gvsid);
  233. map->guest_esid = esid;
  234. slb_vsid |= (map->host_vsid << 12);
  235. slb_vsid &= ~SLB_VSID_KP;
  236. slb_esid |= slb_index;
  237. svcpu->slb[slb_index].esid = slb_esid;
  238. svcpu->slb[slb_index].vsid = slb_vsid;
  239. trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
  240. out:
  241. svcpu_put(svcpu);
  242. return r;
  243. }
  244. void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
  245. {
  246. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  247. svcpu->slb_max = 1;
  248. svcpu->slb[0].esid = 0;
  249. svcpu_put(svcpu);
  250. }
  251. void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
  252. {
  253. kvmppc_mmu_hpte_destroy(vcpu);
  254. __destroy_context(to_book3s(vcpu)->context_id[0]);
  255. }
  256. int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
  257. {
  258. struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
  259. int err;
  260. err = __init_new_context();
  261. if (err < 0)
  262. return -1;
  263. vcpu3s->context_id[0] = err;
  264. vcpu3s->proto_vsid_max = ((vcpu3s->context_id[0] + 1)
  265. << USER_ESID_BITS) - 1;
  266. vcpu3s->proto_vsid_first = vcpu3s->context_id[0] << USER_ESID_BITS;
  267. vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
  268. kvmppc_mmu_hpte_init(vcpu);
  269. return 0;
  270. }