huge_memory.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is enabled for all mappings
  28. * and khugepaged scans all mappings. Defrag is only invoked by
  29. * khugepaged hugepage allocations and by page faults inside
  30. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  31. * allocations.
  32. */
  33. unsigned long transparent_hugepage_flags __read_mostly =
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  35. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  36. #endif
  37. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  38. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  39. #endif
  40. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  43. /* default scan 8*512 pte (or vmas) every 30 second */
  44. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  45. static unsigned int khugepaged_pages_collapsed;
  46. static unsigned int khugepaged_full_scans;
  47. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  48. /* during fragmentation poll the hugepage allocator once every minute */
  49. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  50. static struct task_struct *khugepaged_thread __read_mostly;
  51. static DEFINE_MUTEX(khugepaged_mutex);
  52. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  53. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  54. /*
  55. * default collapse hugepages if there is at least one pte mapped like
  56. * it would have happened if the vma was large enough during page
  57. * fault.
  58. */
  59. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  60. static int khugepaged(void *none);
  61. static int khugepaged_slab_init(void);
  62. #define MM_SLOTS_HASH_BITS 10
  63. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  64. static struct kmem_cache *mm_slot_cache __read_mostly;
  65. /**
  66. * struct mm_slot - hash lookup from mm to mm_slot
  67. * @hash: hash collision list
  68. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  69. * @mm: the mm that this information is valid for
  70. */
  71. struct mm_slot {
  72. struct hlist_node hash;
  73. struct list_head mm_node;
  74. struct mm_struct *mm;
  75. };
  76. /**
  77. * struct khugepaged_scan - cursor for scanning
  78. * @mm_head: the head of the mm list to scan
  79. * @mm_slot: the current mm_slot we are scanning
  80. * @address: the next address inside that to be scanned
  81. *
  82. * There is only the one khugepaged_scan instance of this cursor structure.
  83. */
  84. struct khugepaged_scan {
  85. struct list_head mm_head;
  86. struct mm_slot *mm_slot;
  87. unsigned long address;
  88. };
  89. static struct khugepaged_scan khugepaged_scan = {
  90. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  91. };
  92. static int set_recommended_min_free_kbytes(void)
  93. {
  94. struct zone *zone;
  95. int nr_zones = 0;
  96. unsigned long recommended_min;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static atomic_t huge_zero_refcount;
  144. static struct page *huge_zero_page __read_mostly;
  145. static inline bool is_huge_zero_page(struct page *page)
  146. {
  147. return ACCESS_ONCE(huge_zero_page) == page;
  148. }
  149. static inline bool is_huge_zero_pmd(pmd_t pmd)
  150. {
  151. return is_huge_zero_page(pmd_page(pmd));
  152. }
  153. static struct page *get_huge_zero_page(void)
  154. {
  155. struct page *zero_page;
  156. retry:
  157. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  158. return ACCESS_ONCE(huge_zero_page);
  159. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  160. HPAGE_PMD_ORDER);
  161. if (!zero_page) {
  162. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  163. return NULL;
  164. }
  165. count_vm_event(THP_ZERO_PAGE_ALLOC);
  166. preempt_disable();
  167. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  168. preempt_enable();
  169. __free_page(zero_page);
  170. goto retry;
  171. }
  172. /* We take additional reference here. It will be put back by shrinker */
  173. atomic_set(&huge_zero_refcount, 2);
  174. preempt_enable();
  175. return ACCESS_ONCE(huge_zero_page);
  176. }
  177. static void put_huge_zero_page(void)
  178. {
  179. /*
  180. * Counter should never go to zero here. Only shrinker can put
  181. * last reference.
  182. */
  183. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  184. }
  185. static int shrink_huge_zero_page(struct shrinker *shrink,
  186. struct shrink_control *sc)
  187. {
  188. if (!sc->nr_to_scan)
  189. /* we can free zero page only if last reference remains */
  190. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  191. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  192. struct page *zero_page = xchg(&huge_zero_page, NULL);
  193. BUG_ON(zero_page == NULL);
  194. __free_page(zero_page);
  195. }
  196. return 0;
  197. }
  198. static struct shrinker huge_zero_page_shrinker = {
  199. .shrink = shrink_huge_zero_page,
  200. .seeks = DEFAULT_SEEKS,
  201. };
  202. #ifdef CONFIG_SYSFS
  203. static ssize_t double_flag_show(struct kobject *kobj,
  204. struct kobj_attribute *attr, char *buf,
  205. enum transparent_hugepage_flag enabled,
  206. enum transparent_hugepage_flag req_madv)
  207. {
  208. if (test_bit(enabled, &transparent_hugepage_flags)) {
  209. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  210. return sprintf(buf, "[always] madvise never\n");
  211. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  212. return sprintf(buf, "always [madvise] never\n");
  213. else
  214. return sprintf(buf, "always madvise [never]\n");
  215. }
  216. static ssize_t double_flag_store(struct kobject *kobj,
  217. struct kobj_attribute *attr,
  218. const char *buf, size_t count,
  219. enum transparent_hugepage_flag enabled,
  220. enum transparent_hugepage_flag req_madv)
  221. {
  222. if (!memcmp("always", buf,
  223. min(sizeof("always")-1, count))) {
  224. set_bit(enabled, &transparent_hugepage_flags);
  225. clear_bit(req_madv, &transparent_hugepage_flags);
  226. } else if (!memcmp("madvise", buf,
  227. min(sizeof("madvise")-1, count))) {
  228. clear_bit(enabled, &transparent_hugepage_flags);
  229. set_bit(req_madv, &transparent_hugepage_flags);
  230. } else if (!memcmp("never", buf,
  231. min(sizeof("never")-1, count))) {
  232. clear_bit(enabled, &transparent_hugepage_flags);
  233. clear_bit(req_madv, &transparent_hugepage_flags);
  234. } else
  235. return -EINVAL;
  236. return count;
  237. }
  238. static ssize_t enabled_show(struct kobject *kobj,
  239. struct kobj_attribute *attr, char *buf)
  240. {
  241. return double_flag_show(kobj, attr, buf,
  242. TRANSPARENT_HUGEPAGE_FLAG,
  243. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  244. }
  245. static ssize_t enabled_store(struct kobject *kobj,
  246. struct kobj_attribute *attr,
  247. const char *buf, size_t count)
  248. {
  249. ssize_t ret;
  250. ret = double_flag_store(kobj, attr, buf, count,
  251. TRANSPARENT_HUGEPAGE_FLAG,
  252. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  253. if (ret > 0) {
  254. int err;
  255. mutex_lock(&khugepaged_mutex);
  256. err = start_khugepaged();
  257. mutex_unlock(&khugepaged_mutex);
  258. if (err)
  259. ret = err;
  260. }
  261. return ret;
  262. }
  263. static struct kobj_attribute enabled_attr =
  264. __ATTR(enabled, 0644, enabled_show, enabled_store);
  265. static ssize_t single_flag_show(struct kobject *kobj,
  266. struct kobj_attribute *attr, char *buf,
  267. enum transparent_hugepage_flag flag)
  268. {
  269. return sprintf(buf, "%d\n",
  270. !!test_bit(flag, &transparent_hugepage_flags));
  271. }
  272. static ssize_t single_flag_store(struct kobject *kobj,
  273. struct kobj_attribute *attr,
  274. const char *buf, size_t count,
  275. enum transparent_hugepage_flag flag)
  276. {
  277. unsigned long value;
  278. int ret;
  279. ret = kstrtoul(buf, 10, &value);
  280. if (ret < 0)
  281. return ret;
  282. if (value > 1)
  283. return -EINVAL;
  284. if (value)
  285. set_bit(flag, &transparent_hugepage_flags);
  286. else
  287. clear_bit(flag, &transparent_hugepage_flags);
  288. return count;
  289. }
  290. /*
  291. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  292. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  293. * memory just to allocate one more hugepage.
  294. */
  295. static ssize_t defrag_show(struct kobject *kobj,
  296. struct kobj_attribute *attr, char *buf)
  297. {
  298. return double_flag_show(kobj, attr, buf,
  299. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  300. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  301. }
  302. static ssize_t defrag_store(struct kobject *kobj,
  303. struct kobj_attribute *attr,
  304. const char *buf, size_t count)
  305. {
  306. return double_flag_store(kobj, attr, buf, count,
  307. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  308. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  309. }
  310. static struct kobj_attribute defrag_attr =
  311. __ATTR(defrag, 0644, defrag_show, defrag_store);
  312. static ssize_t use_zero_page_show(struct kobject *kobj,
  313. struct kobj_attribute *attr, char *buf)
  314. {
  315. return single_flag_show(kobj, attr, buf,
  316. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  317. }
  318. static ssize_t use_zero_page_store(struct kobject *kobj,
  319. struct kobj_attribute *attr, const char *buf, size_t count)
  320. {
  321. return single_flag_store(kobj, attr, buf, count,
  322. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  323. }
  324. static struct kobj_attribute use_zero_page_attr =
  325. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  326. #ifdef CONFIG_DEBUG_VM
  327. static ssize_t debug_cow_show(struct kobject *kobj,
  328. struct kobj_attribute *attr, char *buf)
  329. {
  330. return single_flag_show(kobj, attr, buf,
  331. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  332. }
  333. static ssize_t debug_cow_store(struct kobject *kobj,
  334. struct kobj_attribute *attr,
  335. const char *buf, size_t count)
  336. {
  337. return single_flag_store(kobj, attr, buf, count,
  338. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  339. }
  340. static struct kobj_attribute debug_cow_attr =
  341. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  342. #endif /* CONFIG_DEBUG_VM */
  343. static struct attribute *hugepage_attr[] = {
  344. &enabled_attr.attr,
  345. &defrag_attr.attr,
  346. &use_zero_page_attr.attr,
  347. #ifdef CONFIG_DEBUG_VM
  348. &debug_cow_attr.attr,
  349. #endif
  350. NULL,
  351. };
  352. static struct attribute_group hugepage_attr_group = {
  353. .attrs = hugepage_attr,
  354. };
  355. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  356. struct kobj_attribute *attr,
  357. char *buf)
  358. {
  359. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  360. }
  361. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  362. struct kobj_attribute *attr,
  363. const char *buf, size_t count)
  364. {
  365. unsigned long msecs;
  366. int err;
  367. err = kstrtoul(buf, 10, &msecs);
  368. if (err || msecs > UINT_MAX)
  369. return -EINVAL;
  370. khugepaged_scan_sleep_millisecs = msecs;
  371. wake_up_interruptible(&khugepaged_wait);
  372. return count;
  373. }
  374. static struct kobj_attribute scan_sleep_millisecs_attr =
  375. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  376. scan_sleep_millisecs_store);
  377. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  378. struct kobj_attribute *attr,
  379. char *buf)
  380. {
  381. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  382. }
  383. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  384. struct kobj_attribute *attr,
  385. const char *buf, size_t count)
  386. {
  387. unsigned long msecs;
  388. int err;
  389. err = kstrtoul(buf, 10, &msecs);
  390. if (err || msecs > UINT_MAX)
  391. return -EINVAL;
  392. khugepaged_alloc_sleep_millisecs = msecs;
  393. wake_up_interruptible(&khugepaged_wait);
  394. return count;
  395. }
  396. static struct kobj_attribute alloc_sleep_millisecs_attr =
  397. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  398. alloc_sleep_millisecs_store);
  399. static ssize_t pages_to_scan_show(struct kobject *kobj,
  400. struct kobj_attribute *attr,
  401. char *buf)
  402. {
  403. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  404. }
  405. static ssize_t pages_to_scan_store(struct kobject *kobj,
  406. struct kobj_attribute *attr,
  407. const char *buf, size_t count)
  408. {
  409. int err;
  410. unsigned long pages;
  411. err = kstrtoul(buf, 10, &pages);
  412. if (err || !pages || pages > UINT_MAX)
  413. return -EINVAL;
  414. khugepaged_pages_to_scan = pages;
  415. return count;
  416. }
  417. static struct kobj_attribute pages_to_scan_attr =
  418. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  419. pages_to_scan_store);
  420. static ssize_t pages_collapsed_show(struct kobject *kobj,
  421. struct kobj_attribute *attr,
  422. char *buf)
  423. {
  424. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  425. }
  426. static struct kobj_attribute pages_collapsed_attr =
  427. __ATTR_RO(pages_collapsed);
  428. static ssize_t full_scans_show(struct kobject *kobj,
  429. struct kobj_attribute *attr,
  430. char *buf)
  431. {
  432. return sprintf(buf, "%u\n", khugepaged_full_scans);
  433. }
  434. static struct kobj_attribute full_scans_attr =
  435. __ATTR_RO(full_scans);
  436. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  437. struct kobj_attribute *attr, char *buf)
  438. {
  439. return single_flag_show(kobj, attr, buf,
  440. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  441. }
  442. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  443. struct kobj_attribute *attr,
  444. const char *buf, size_t count)
  445. {
  446. return single_flag_store(kobj, attr, buf, count,
  447. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  448. }
  449. static struct kobj_attribute khugepaged_defrag_attr =
  450. __ATTR(defrag, 0644, khugepaged_defrag_show,
  451. khugepaged_defrag_store);
  452. /*
  453. * max_ptes_none controls if khugepaged should collapse hugepages over
  454. * any unmapped ptes in turn potentially increasing the memory
  455. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  456. * reduce the available free memory in the system as it
  457. * runs. Increasing max_ptes_none will instead potentially reduce the
  458. * free memory in the system during the khugepaged scan.
  459. */
  460. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  461. struct kobj_attribute *attr,
  462. char *buf)
  463. {
  464. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  465. }
  466. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  467. struct kobj_attribute *attr,
  468. const char *buf, size_t count)
  469. {
  470. int err;
  471. unsigned long max_ptes_none;
  472. err = kstrtoul(buf, 10, &max_ptes_none);
  473. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  474. return -EINVAL;
  475. khugepaged_max_ptes_none = max_ptes_none;
  476. return count;
  477. }
  478. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  479. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  480. khugepaged_max_ptes_none_store);
  481. static struct attribute *khugepaged_attr[] = {
  482. &khugepaged_defrag_attr.attr,
  483. &khugepaged_max_ptes_none_attr.attr,
  484. &pages_to_scan_attr.attr,
  485. &pages_collapsed_attr.attr,
  486. &full_scans_attr.attr,
  487. &scan_sleep_millisecs_attr.attr,
  488. &alloc_sleep_millisecs_attr.attr,
  489. NULL,
  490. };
  491. static struct attribute_group khugepaged_attr_group = {
  492. .attrs = khugepaged_attr,
  493. .name = "khugepaged",
  494. };
  495. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  496. {
  497. int err;
  498. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  499. if (unlikely(!*hugepage_kobj)) {
  500. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  501. return -ENOMEM;
  502. }
  503. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  504. if (err) {
  505. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  506. goto delete_obj;
  507. }
  508. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  509. if (err) {
  510. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  511. goto remove_hp_group;
  512. }
  513. return 0;
  514. remove_hp_group:
  515. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  516. delete_obj:
  517. kobject_put(*hugepage_kobj);
  518. return err;
  519. }
  520. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  521. {
  522. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  523. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  524. kobject_put(hugepage_kobj);
  525. }
  526. #else
  527. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  528. {
  529. return 0;
  530. }
  531. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  532. {
  533. }
  534. #endif /* CONFIG_SYSFS */
  535. static int __init hugepage_init(void)
  536. {
  537. int err;
  538. struct kobject *hugepage_kobj;
  539. if (!has_transparent_hugepage()) {
  540. transparent_hugepage_flags = 0;
  541. return -EINVAL;
  542. }
  543. err = hugepage_init_sysfs(&hugepage_kobj);
  544. if (err)
  545. return err;
  546. err = khugepaged_slab_init();
  547. if (err)
  548. goto out;
  549. register_shrinker(&huge_zero_page_shrinker);
  550. /*
  551. * By default disable transparent hugepages on smaller systems,
  552. * where the extra memory used could hurt more than TLB overhead
  553. * is likely to save. The admin can still enable it through /sys.
  554. */
  555. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  556. transparent_hugepage_flags = 0;
  557. start_khugepaged();
  558. return 0;
  559. out:
  560. hugepage_exit_sysfs(hugepage_kobj);
  561. return err;
  562. }
  563. module_init(hugepage_init)
  564. static int __init setup_transparent_hugepage(char *str)
  565. {
  566. int ret = 0;
  567. if (!str)
  568. goto out;
  569. if (!strcmp(str, "always")) {
  570. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  571. &transparent_hugepage_flags);
  572. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  573. &transparent_hugepage_flags);
  574. ret = 1;
  575. } else if (!strcmp(str, "madvise")) {
  576. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  577. &transparent_hugepage_flags);
  578. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  579. &transparent_hugepage_flags);
  580. ret = 1;
  581. } else if (!strcmp(str, "never")) {
  582. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  583. &transparent_hugepage_flags);
  584. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  585. &transparent_hugepage_flags);
  586. ret = 1;
  587. }
  588. out:
  589. if (!ret)
  590. printk(KERN_WARNING
  591. "transparent_hugepage= cannot parse, ignored\n");
  592. return ret;
  593. }
  594. __setup("transparent_hugepage=", setup_transparent_hugepage);
  595. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  596. {
  597. if (likely(vma->vm_flags & VM_WRITE))
  598. pmd = pmd_mkwrite(pmd);
  599. return pmd;
  600. }
  601. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  602. {
  603. pmd_t entry;
  604. entry = mk_pmd(page, prot);
  605. entry = pmd_mkhuge(entry);
  606. return entry;
  607. }
  608. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  609. struct vm_area_struct *vma,
  610. unsigned long haddr, pmd_t *pmd,
  611. struct page *page)
  612. {
  613. pgtable_t pgtable;
  614. VM_BUG_ON(!PageCompound(page));
  615. pgtable = pte_alloc_one(mm, haddr);
  616. if (unlikely(!pgtable))
  617. return VM_FAULT_OOM;
  618. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  619. /*
  620. * The memory barrier inside __SetPageUptodate makes sure that
  621. * clear_huge_page writes become visible before the set_pmd_at()
  622. * write.
  623. */
  624. __SetPageUptodate(page);
  625. spin_lock(&mm->page_table_lock);
  626. if (unlikely(!pmd_none(*pmd))) {
  627. spin_unlock(&mm->page_table_lock);
  628. mem_cgroup_uncharge_page(page);
  629. put_page(page);
  630. pte_free(mm, pgtable);
  631. } else {
  632. pmd_t entry;
  633. entry = mk_huge_pmd(page, vma->vm_page_prot);
  634. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  635. page_add_new_anon_rmap(page, vma, haddr);
  636. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  637. set_pmd_at(mm, haddr, pmd, entry);
  638. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  639. mm->nr_ptes++;
  640. spin_unlock(&mm->page_table_lock);
  641. }
  642. return 0;
  643. }
  644. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  645. {
  646. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  647. }
  648. static inline struct page *alloc_hugepage_vma(int defrag,
  649. struct vm_area_struct *vma,
  650. unsigned long haddr, int nd,
  651. gfp_t extra_gfp)
  652. {
  653. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  654. HPAGE_PMD_ORDER, vma, haddr, nd);
  655. }
  656. #ifndef CONFIG_NUMA
  657. static inline struct page *alloc_hugepage(int defrag)
  658. {
  659. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  660. HPAGE_PMD_ORDER);
  661. }
  662. #endif
  663. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  664. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  665. struct page *zero_page)
  666. {
  667. pmd_t entry;
  668. if (!pmd_none(*pmd))
  669. return false;
  670. entry = mk_pmd(zero_page, vma->vm_page_prot);
  671. entry = pmd_wrprotect(entry);
  672. entry = pmd_mkhuge(entry);
  673. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  674. set_pmd_at(mm, haddr, pmd, entry);
  675. mm->nr_ptes++;
  676. return true;
  677. }
  678. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  679. unsigned long address, pmd_t *pmd,
  680. unsigned int flags)
  681. {
  682. struct page *page;
  683. unsigned long haddr = address & HPAGE_PMD_MASK;
  684. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  685. return VM_FAULT_FALLBACK;
  686. if (unlikely(anon_vma_prepare(vma)))
  687. return VM_FAULT_OOM;
  688. if (unlikely(khugepaged_enter(vma)))
  689. return VM_FAULT_OOM;
  690. if (!(flags & FAULT_FLAG_WRITE) &&
  691. transparent_hugepage_use_zero_page()) {
  692. pgtable_t pgtable;
  693. struct page *zero_page;
  694. bool set;
  695. pgtable = pte_alloc_one(mm, haddr);
  696. if (unlikely(!pgtable))
  697. return VM_FAULT_OOM;
  698. zero_page = get_huge_zero_page();
  699. if (unlikely(!zero_page)) {
  700. pte_free(mm, pgtable);
  701. count_vm_event(THP_FAULT_FALLBACK);
  702. return VM_FAULT_FALLBACK;
  703. }
  704. spin_lock(&mm->page_table_lock);
  705. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  706. zero_page);
  707. spin_unlock(&mm->page_table_lock);
  708. if (!set) {
  709. pte_free(mm, pgtable);
  710. put_huge_zero_page();
  711. }
  712. return 0;
  713. }
  714. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  715. vma, haddr, numa_node_id(), 0);
  716. if (unlikely(!page)) {
  717. count_vm_event(THP_FAULT_FALLBACK);
  718. return VM_FAULT_FALLBACK;
  719. }
  720. count_vm_event(THP_FAULT_ALLOC);
  721. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  722. put_page(page);
  723. return VM_FAULT_FALLBACK;
  724. }
  725. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
  726. mem_cgroup_uncharge_page(page);
  727. put_page(page);
  728. return VM_FAULT_FALLBACK;
  729. }
  730. return 0;
  731. }
  732. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  733. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  734. struct vm_area_struct *vma)
  735. {
  736. struct page *src_page;
  737. pmd_t pmd;
  738. pgtable_t pgtable;
  739. int ret;
  740. ret = -ENOMEM;
  741. pgtable = pte_alloc_one(dst_mm, addr);
  742. if (unlikely(!pgtable))
  743. goto out;
  744. spin_lock(&dst_mm->page_table_lock);
  745. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  746. ret = -EAGAIN;
  747. pmd = *src_pmd;
  748. if (unlikely(!pmd_trans_huge(pmd))) {
  749. pte_free(dst_mm, pgtable);
  750. goto out_unlock;
  751. }
  752. /*
  753. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  754. * under splitting since we don't split the page itself, only pmd to
  755. * a page table.
  756. */
  757. if (is_huge_zero_pmd(pmd)) {
  758. struct page *zero_page;
  759. bool set;
  760. /*
  761. * get_huge_zero_page() will never allocate a new page here,
  762. * since we already have a zero page to copy. It just takes a
  763. * reference.
  764. */
  765. zero_page = get_huge_zero_page();
  766. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  767. zero_page);
  768. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  769. ret = 0;
  770. goto out_unlock;
  771. }
  772. if (unlikely(pmd_trans_splitting(pmd))) {
  773. /* split huge page running from under us */
  774. spin_unlock(&src_mm->page_table_lock);
  775. spin_unlock(&dst_mm->page_table_lock);
  776. pte_free(dst_mm, pgtable);
  777. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  778. goto out;
  779. }
  780. src_page = pmd_page(pmd);
  781. VM_BUG_ON(!PageHead(src_page));
  782. get_page(src_page);
  783. page_dup_rmap(src_page);
  784. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  785. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  786. pmd = pmd_mkold(pmd_wrprotect(pmd));
  787. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  788. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  789. dst_mm->nr_ptes++;
  790. ret = 0;
  791. out_unlock:
  792. spin_unlock(&src_mm->page_table_lock);
  793. spin_unlock(&dst_mm->page_table_lock);
  794. out:
  795. return ret;
  796. }
  797. void huge_pmd_set_accessed(struct mm_struct *mm,
  798. struct vm_area_struct *vma,
  799. unsigned long address,
  800. pmd_t *pmd, pmd_t orig_pmd,
  801. int dirty)
  802. {
  803. pmd_t entry;
  804. unsigned long haddr;
  805. spin_lock(&mm->page_table_lock);
  806. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  807. goto unlock;
  808. entry = pmd_mkyoung(orig_pmd);
  809. haddr = address & HPAGE_PMD_MASK;
  810. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  811. update_mmu_cache_pmd(vma, address, pmd);
  812. unlock:
  813. spin_unlock(&mm->page_table_lock);
  814. }
  815. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  816. struct vm_area_struct *vma, unsigned long address,
  817. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  818. {
  819. pgtable_t pgtable;
  820. pmd_t _pmd;
  821. struct page *page;
  822. int i, ret = 0;
  823. unsigned long mmun_start; /* For mmu_notifiers */
  824. unsigned long mmun_end; /* For mmu_notifiers */
  825. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  826. if (!page) {
  827. ret |= VM_FAULT_OOM;
  828. goto out;
  829. }
  830. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  831. put_page(page);
  832. ret |= VM_FAULT_OOM;
  833. goto out;
  834. }
  835. clear_user_highpage(page, address);
  836. __SetPageUptodate(page);
  837. mmun_start = haddr;
  838. mmun_end = haddr + HPAGE_PMD_SIZE;
  839. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  840. spin_lock(&mm->page_table_lock);
  841. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  842. goto out_free_page;
  843. pmdp_clear_flush(vma, haddr, pmd);
  844. /* leave pmd empty until pte is filled */
  845. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  846. pmd_populate(mm, &_pmd, pgtable);
  847. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  848. pte_t *pte, entry;
  849. if (haddr == (address & PAGE_MASK)) {
  850. entry = mk_pte(page, vma->vm_page_prot);
  851. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  852. page_add_new_anon_rmap(page, vma, haddr);
  853. } else {
  854. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  855. entry = pte_mkspecial(entry);
  856. }
  857. pte = pte_offset_map(&_pmd, haddr);
  858. VM_BUG_ON(!pte_none(*pte));
  859. set_pte_at(mm, haddr, pte, entry);
  860. pte_unmap(pte);
  861. }
  862. smp_wmb(); /* make pte visible before pmd */
  863. pmd_populate(mm, pmd, pgtable);
  864. spin_unlock(&mm->page_table_lock);
  865. put_huge_zero_page();
  866. inc_mm_counter(mm, MM_ANONPAGES);
  867. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  868. ret |= VM_FAULT_WRITE;
  869. out:
  870. return ret;
  871. out_free_page:
  872. spin_unlock(&mm->page_table_lock);
  873. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  874. mem_cgroup_uncharge_page(page);
  875. put_page(page);
  876. goto out;
  877. }
  878. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  879. struct vm_area_struct *vma,
  880. unsigned long address,
  881. pmd_t *pmd, pmd_t orig_pmd,
  882. struct page *page,
  883. unsigned long haddr)
  884. {
  885. pgtable_t pgtable;
  886. pmd_t _pmd;
  887. int ret = 0, i;
  888. struct page **pages;
  889. unsigned long mmun_start; /* For mmu_notifiers */
  890. unsigned long mmun_end; /* For mmu_notifiers */
  891. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  892. GFP_KERNEL);
  893. if (unlikely(!pages)) {
  894. ret |= VM_FAULT_OOM;
  895. goto out;
  896. }
  897. for (i = 0; i < HPAGE_PMD_NR; i++) {
  898. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  899. __GFP_OTHER_NODE,
  900. vma, address, page_to_nid(page));
  901. if (unlikely(!pages[i] ||
  902. mem_cgroup_newpage_charge(pages[i], mm,
  903. GFP_KERNEL))) {
  904. if (pages[i])
  905. put_page(pages[i]);
  906. mem_cgroup_uncharge_start();
  907. while (--i >= 0) {
  908. mem_cgroup_uncharge_page(pages[i]);
  909. put_page(pages[i]);
  910. }
  911. mem_cgroup_uncharge_end();
  912. kfree(pages);
  913. ret |= VM_FAULT_OOM;
  914. goto out;
  915. }
  916. }
  917. for (i = 0; i < HPAGE_PMD_NR; i++) {
  918. copy_user_highpage(pages[i], page + i,
  919. haddr + PAGE_SIZE * i, vma);
  920. __SetPageUptodate(pages[i]);
  921. cond_resched();
  922. }
  923. mmun_start = haddr;
  924. mmun_end = haddr + HPAGE_PMD_SIZE;
  925. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  926. spin_lock(&mm->page_table_lock);
  927. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  928. goto out_free_pages;
  929. VM_BUG_ON(!PageHead(page));
  930. pmdp_clear_flush(vma, haddr, pmd);
  931. /* leave pmd empty until pte is filled */
  932. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  933. pmd_populate(mm, &_pmd, pgtable);
  934. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  935. pte_t *pte, entry;
  936. entry = mk_pte(pages[i], vma->vm_page_prot);
  937. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  938. page_add_new_anon_rmap(pages[i], vma, haddr);
  939. pte = pte_offset_map(&_pmd, haddr);
  940. VM_BUG_ON(!pte_none(*pte));
  941. set_pte_at(mm, haddr, pte, entry);
  942. pte_unmap(pte);
  943. }
  944. kfree(pages);
  945. smp_wmb(); /* make pte visible before pmd */
  946. pmd_populate(mm, pmd, pgtable);
  947. page_remove_rmap(page);
  948. spin_unlock(&mm->page_table_lock);
  949. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  950. ret |= VM_FAULT_WRITE;
  951. put_page(page);
  952. out:
  953. return ret;
  954. out_free_pages:
  955. spin_unlock(&mm->page_table_lock);
  956. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  957. mem_cgroup_uncharge_start();
  958. for (i = 0; i < HPAGE_PMD_NR; i++) {
  959. mem_cgroup_uncharge_page(pages[i]);
  960. put_page(pages[i]);
  961. }
  962. mem_cgroup_uncharge_end();
  963. kfree(pages);
  964. goto out;
  965. }
  966. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  967. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  968. {
  969. int ret = 0;
  970. struct page *page = NULL, *new_page;
  971. unsigned long haddr;
  972. unsigned long mmun_start; /* For mmu_notifiers */
  973. unsigned long mmun_end; /* For mmu_notifiers */
  974. VM_BUG_ON(!vma->anon_vma);
  975. haddr = address & HPAGE_PMD_MASK;
  976. if (is_huge_zero_pmd(orig_pmd))
  977. goto alloc;
  978. spin_lock(&mm->page_table_lock);
  979. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  980. goto out_unlock;
  981. page = pmd_page(orig_pmd);
  982. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  983. if (page_mapcount(page) == 1) {
  984. pmd_t entry;
  985. entry = pmd_mkyoung(orig_pmd);
  986. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  987. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  988. update_mmu_cache_pmd(vma, address, pmd);
  989. ret |= VM_FAULT_WRITE;
  990. goto out_unlock;
  991. }
  992. get_page(page);
  993. spin_unlock(&mm->page_table_lock);
  994. alloc:
  995. if (transparent_hugepage_enabled(vma) &&
  996. !transparent_hugepage_debug_cow())
  997. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  998. vma, haddr, numa_node_id(), 0);
  999. else
  1000. new_page = NULL;
  1001. if (unlikely(!new_page)) {
  1002. count_vm_event(THP_FAULT_FALLBACK);
  1003. if (is_huge_zero_pmd(orig_pmd)) {
  1004. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1005. address, pmd, orig_pmd, haddr);
  1006. } else {
  1007. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1008. pmd, orig_pmd, page, haddr);
  1009. if (ret & VM_FAULT_OOM)
  1010. split_huge_page(page);
  1011. put_page(page);
  1012. }
  1013. goto out;
  1014. }
  1015. count_vm_event(THP_FAULT_ALLOC);
  1016. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1017. put_page(new_page);
  1018. if (page) {
  1019. split_huge_page(page);
  1020. put_page(page);
  1021. }
  1022. ret |= VM_FAULT_OOM;
  1023. goto out;
  1024. }
  1025. if (is_huge_zero_pmd(orig_pmd))
  1026. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1027. else
  1028. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1029. __SetPageUptodate(new_page);
  1030. mmun_start = haddr;
  1031. mmun_end = haddr + HPAGE_PMD_SIZE;
  1032. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1033. spin_lock(&mm->page_table_lock);
  1034. if (page)
  1035. put_page(page);
  1036. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1037. spin_unlock(&mm->page_table_lock);
  1038. mem_cgroup_uncharge_page(new_page);
  1039. put_page(new_page);
  1040. goto out_mn;
  1041. } else {
  1042. pmd_t entry;
  1043. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1044. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1045. pmdp_clear_flush(vma, haddr, pmd);
  1046. page_add_new_anon_rmap(new_page, vma, haddr);
  1047. set_pmd_at(mm, haddr, pmd, entry);
  1048. update_mmu_cache_pmd(vma, address, pmd);
  1049. if (is_huge_zero_pmd(orig_pmd)) {
  1050. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1051. put_huge_zero_page();
  1052. } else {
  1053. VM_BUG_ON(!PageHead(page));
  1054. page_remove_rmap(page);
  1055. put_page(page);
  1056. }
  1057. ret |= VM_FAULT_WRITE;
  1058. }
  1059. spin_unlock(&mm->page_table_lock);
  1060. out_mn:
  1061. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1062. out:
  1063. return ret;
  1064. out_unlock:
  1065. spin_unlock(&mm->page_table_lock);
  1066. return ret;
  1067. }
  1068. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1069. unsigned long addr,
  1070. pmd_t *pmd,
  1071. unsigned int flags)
  1072. {
  1073. struct mm_struct *mm = vma->vm_mm;
  1074. struct page *page = NULL;
  1075. assert_spin_locked(&mm->page_table_lock);
  1076. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1077. goto out;
  1078. /* Avoid dumping huge zero page */
  1079. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1080. return ERR_PTR(-EFAULT);
  1081. page = pmd_page(*pmd);
  1082. VM_BUG_ON(!PageHead(page));
  1083. if (flags & FOLL_TOUCH) {
  1084. pmd_t _pmd;
  1085. /*
  1086. * We should set the dirty bit only for FOLL_WRITE but
  1087. * for now the dirty bit in the pmd is meaningless.
  1088. * And if the dirty bit will become meaningful and
  1089. * we'll only set it with FOLL_WRITE, an atomic
  1090. * set_bit will be required on the pmd to set the
  1091. * young bit, instead of the current set_pmd_at.
  1092. */
  1093. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1094. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1095. pmd, _pmd, 1))
  1096. update_mmu_cache_pmd(vma, addr, pmd);
  1097. }
  1098. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1099. if (page->mapping && trylock_page(page)) {
  1100. lru_add_drain();
  1101. if (page->mapping)
  1102. mlock_vma_page(page);
  1103. unlock_page(page);
  1104. }
  1105. }
  1106. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1107. VM_BUG_ON(!PageCompound(page));
  1108. if (flags & FOLL_GET)
  1109. get_page_foll(page);
  1110. out:
  1111. return page;
  1112. }
  1113. /* NUMA hinting page fault entry point for trans huge pmds */
  1114. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1115. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1116. {
  1117. struct page *page;
  1118. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1119. int target_nid;
  1120. int current_nid = -1;
  1121. bool migrated;
  1122. spin_lock(&mm->page_table_lock);
  1123. if (unlikely(!pmd_same(pmd, *pmdp)))
  1124. goto out_unlock;
  1125. page = pmd_page(pmd);
  1126. get_page(page);
  1127. current_nid = page_to_nid(page);
  1128. count_vm_numa_event(NUMA_HINT_FAULTS);
  1129. if (current_nid == numa_node_id())
  1130. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1131. target_nid = mpol_misplaced(page, vma, haddr);
  1132. if (target_nid == -1) {
  1133. put_page(page);
  1134. goto clear_pmdnuma;
  1135. }
  1136. /* Acquire the page lock to serialise THP migrations */
  1137. spin_unlock(&mm->page_table_lock);
  1138. lock_page(page);
  1139. /* Confirm the PTE did not while locked */
  1140. spin_lock(&mm->page_table_lock);
  1141. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1142. unlock_page(page);
  1143. put_page(page);
  1144. goto out_unlock;
  1145. }
  1146. spin_unlock(&mm->page_table_lock);
  1147. /* Migrate the THP to the requested node */
  1148. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1149. pmdp, pmd, addr, page, target_nid);
  1150. if (!migrated)
  1151. goto check_same;
  1152. task_numa_fault(target_nid, HPAGE_PMD_NR, true);
  1153. return 0;
  1154. check_same:
  1155. spin_lock(&mm->page_table_lock);
  1156. if (unlikely(!pmd_same(pmd, *pmdp)))
  1157. goto out_unlock;
  1158. clear_pmdnuma:
  1159. pmd = pmd_mknonnuma(pmd);
  1160. set_pmd_at(mm, haddr, pmdp, pmd);
  1161. VM_BUG_ON(pmd_numa(*pmdp));
  1162. update_mmu_cache_pmd(vma, addr, pmdp);
  1163. out_unlock:
  1164. spin_unlock(&mm->page_table_lock);
  1165. if (current_nid != -1)
  1166. task_numa_fault(current_nid, HPAGE_PMD_NR, false);
  1167. return 0;
  1168. }
  1169. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1170. pmd_t *pmd, unsigned long addr)
  1171. {
  1172. int ret = 0;
  1173. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1174. struct page *page;
  1175. pgtable_t pgtable;
  1176. pmd_t orig_pmd;
  1177. /*
  1178. * For architectures like ppc64 we look at deposited pgtable
  1179. * when calling pmdp_get_and_clear. So do the
  1180. * pgtable_trans_huge_withdraw after finishing pmdp related
  1181. * operations.
  1182. */
  1183. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1184. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1185. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1186. if (is_huge_zero_pmd(orig_pmd)) {
  1187. tlb->mm->nr_ptes--;
  1188. spin_unlock(&tlb->mm->page_table_lock);
  1189. put_huge_zero_page();
  1190. } else {
  1191. page = pmd_page(orig_pmd);
  1192. page_remove_rmap(page);
  1193. VM_BUG_ON(page_mapcount(page) < 0);
  1194. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1195. VM_BUG_ON(!PageHead(page));
  1196. tlb->mm->nr_ptes--;
  1197. spin_unlock(&tlb->mm->page_table_lock);
  1198. tlb_remove_page(tlb, page);
  1199. }
  1200. pte_free(tlb->mm, pgtable);
  1201. ret = 1;
  1202. }
  1203. return ret;
  1204. }
  1205. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1206. unsigned long addr, unsigned long end,
  1207. unsigned char *vec)
  1208. {
  1209. int ret = 0;
  1210. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1211. /*
  1212. * All logical pages in the range are present
  1213. * if backed by a huge page.
  1214. */
  1215. spin_unlock(&vma->vm_mm->page_table_lock);
  1216. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1217. ret = 1;
  1218. }
  1219. return ret;
  1220. }
  1221. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1222. unsigned long old_addr,
  1223. unsigned long new_addr, unsigned long old_end,
  1224. pmd_t *old_pmd, pmd_t *new_pmd)
  1225. {
  1226. int ret = 0;
  1227. pmd_t pmd;
  1228. struct mm_struct *mm = vma->vm_mm;
  1229. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1230. (new_addr & ~HPAGE_PMD_MASK) ||
  1231. old_end - old_addr < HPAGE_PMD_SIZE ||
  1232. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1233. goto out;
  1234. /*
  1235. * The destination pmd shouldn't be established, free_pgtables()
  1236. * should have release it.
  1237. */
  1238. if (WARN_ON(!pmd_none(*new_pmd))) {
  1239. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1240. goto out;
  1241. }
  1242. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1243. if (ret == 1) {
  1244. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1245. VM_BUG_ON(!pmd_none(*new_pmd));
  1246. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1247. spin_unlock(&mm->page_table_lock);
  1248. }
  1249. out:
  1250. return ret;
  1251. }
  1252. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1253. unsigned long addr, pgprot_t newprot, int prot_numa)
  1254. {
  1255. struct mm_struct *mm = vma->vm_mm;
  1256. int ret = 0;
  1257. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1258. pmd_t entry;
  1259. entry = pmdp_get_and_clear(mm, addr, pmd);
  1260. if (!prot_numa) {
  1261. entry = pmd_modify(entry, newprot);
  1262. BUG_ON(pmd_write(entry));
  1263. } else {
  1264. struct page *page = pmd_page(*pmd);
  1265. /* only check non-shared pages */
  1266. if (page_mapcount(page) == 1 &&
  1267. !pmd_numa(*pmd)) {
  1268. entry = pmd_mknuma(entry);
  1269. }
  1270. }
  1271. set_pmd_at(mm, addr, pmd, entry);
  1272. spin_unlock(&vma->vm_mm->page_table_lock);
  1273. ret = 1;
  1274. }
  1275. return ret;
  1276. }
  1277. /*
  1278. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1279. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1280. *
  1281. * Note that if it returns 1, this routine returns without unlocking page
  1282. * table locks. So callers must unlock them.
  1283. */
  1284. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1285. {
  1286. spin_lock(&vma->vm_mm->page_table_lock);
  1287. if (likely(pmd_trans_huge(*pmd))) {
  1288. if (unlikely(pmd_trans_splitting(*pmd))) {
  1289. spin_unlock(&vma->vm_mm->page_table_lock);
  1290. wait_split_huge_page(vma->anon_vma, pmd);
  1291. return -1;
  1292. } else {
  1293. /* Thp mapped by 'pmd' is stable, so we can
  1294. * handle it as it is. */
  1295. return 1;
  1296. }
  1297. }
  1298. spin_unlock(&vma->vm_mm->page_table_lock);
  1299. return 0;
  1300. }
  1301. pmd_t *page_check_address_pmd(struct page *page,
  1302. struct mm_struct *mm,
  1303. unsigned long address,
  1304. enum page_check_address_pmd_flag flag)
  1305. {
  1306. pmd_t *pmd, *ret = NULL;
  1307. if (address & ~HPAGE_PMD_MASK)
  1308. goto out;
  1309. pmd = mm_find_pmd(mm, address);
  1310. if (!pmd)
  1311. goto out;
  1312. if (pmd_none(*pmd))
  1313. goto out;
  1314. if (pmd_page(*pmd) != page)
  1315. goto out;
  1316. /*
  1317. * split_vma() may create temporary aliased mappings. There is
  1318. * no risk as long as all huge pmd are found and have their
  1319. * splitting bit set before __split_huge_page_refcount
  1320. * runs. Finding the same huge pmd more than once during the
  1321. * same rmap walk is not a problem.
  1322. */
  1323. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1324. pmd_trans_splitting(*pmd))
  1325. goto out;
  1326. if (pmd_trans_huge(*pmd)) {
  1327. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1328. !pmd_trans_splitting(*pmd));
  1329. ret = pmd;
  1330. }
  1331. out:
  1332. return ret;
  1333. }
  1334. static int __split_huge_page_splitting(struct page *page,
  1335. struct vm_area_struct *vma,
  1336. unsigned long address)
  1337. {
  1338. struct mm_struct *mm = vma->vm_mm;
  1339. pmd_t *pmd;
  1340. int ret = 0;
  1341. /* For mmu_notifiers */
  1342. const unsigned long mmun_start = address;
  1343. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1344. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1345. spin_lock(&mm->page_table_lock);
  1346. pmd = page_check_address_pmd(page, mm, address,
  1347. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1348. if (pmd) {
  1349. /*
  1350. * We can't temporarily set the pmd to null in order
  1351. * to split it, the pmd must remain marked huge at all
  1352. * times or the VM won't take the pmd_trans_huge paths
  1353. * and it won't wait on the anon_vma->root->rwsem to
  1354. * serialize against split_huge_page*.
  1355. */
  1356. pmdp_splitting_flush(vma, address, pmd);
  1357. ret = 1;
  1358. }
  1359. spin_unlock(&mm->page_table_lock);
  1360. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1361. return ret;
  1362. }
  1363. static void __split_huge_page_refcount(struct page *page,
  1364. struct list_head *list)
  1365. {
  1366. int i;
  1367. struct zone *zone = page_zone(page);
  1368. struct lruvec *lruvec;
  1369. int tail_count = 0;
  1370. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1371. spin_lock_irq(&zone->lru_lock);
  1372. lruvec = mem_cgroup_page_lruvec(page, zone);
  1373. compound_lock(page);
  1374. /* complete memcg works before add pages to LRU */
  1375. mem_cgroup_split_huge_fixup(page);
  1376. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1377. struct page *page_tail = page + i;
  1378. /* tail_page->_mapcount cannot change */
  1379. BUG_ON(page_mapcount(page_tail) < 0);
  1380. tail_count += page_mapcount(page_tail);
  1381. /* check for overflow */
  1382. BUG_ON(tail_count < 0);
  1383. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1384. /*
  1385. * tail_page->_count is zero and not changing from
  1386. * under us. But get_page_unless_zero() may be running
  1387. * from under us on the tail_page. If we used
  1388. * atomic_set() below instead of atomic_add(), we
  1389. * would then run atomic_set() concurrently with
  1390. * get_page_unless_zero(), and atomic_set() is
  1391. * implemented in C not using locked ops. spin_unlock
  1392. * on x86 sometime uses locked ops because of PPro
  1393. * errata 66, 92, so unless somebody can guarantee
  1394. * atomic_set() here would be safe on all archs (and
  1395. * not only on x86), it's safer to use atomic_add().
  1396. */
  1397. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1398. &page_tail->_count);
  1399. /* after clearing PageTail the gup refcount can be released */
  1400. smp_mb();
  1401. /*
  1402. * retain hwpoison flag of the poisoned tail page:
  1403. * fix for the unsuitable process killed on Guest Machine(KVM)
  1404. * by the memory-failure.
  1405. */
  1406. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1407. page_tail->flags |= (page->flags &
  1408. ((1L << PG_referenced) |
  1409. (1L << PG_swapbacked) |
  1410. (1L << PG_mlocked) |
  1411. (1L << PG_uptodate) |
  1412. (1L << PG_active) |
  1413. (1L << PG_unevictable)));
  1414. page_tail->flags |= (1L << PG_dirty);
  1415. /* clear PageTail before overwriting first_page */
  1416. smp_wmb();
  1417. /*
  1418. * __split_huge_page_splitting() already set the
  1419. * splitting bit in all pmd that could map this
  1420. * hugepage, that will ensure no CPU can alter the
  1421. * mapcount on the head page. The mapcount is only
  1422. * accounted in the head page and it has to be
  1423. * transferred to all tail pages in the below code. So
  1424. * for this code to be safe, the split the mapcount
  1425. * can't change. But that doesn't mean userland can't
  1426. * keep changing and reading the page contents while
  1427. * we transfer the mapcount, so the pmd splitting
  1428. * status is achieved setting a reserved bit in the
  1429. * pmd, not by clearing the present bit.
  1430. */
  1431. page_tail->_mapcount = page->_mapcount;
  1432. BUG_ON(page_tail->mapping);
  1433. page_tail->mapping = page->mapping;
  1434. page_tail->index = page->index + i;
  1435. page_nid_xchg_last(page_tail, page_nid_last(page));
  1436. BUG_ON(!PageAnon(page_tail));
  1437. BUG_ON(!PageUptodate(page_tail));
  1438. BUG_ON(!PageDirty(page_tail));
  1439. BUG_ON(!PageSwapBacked(page_tail));
  1440. lru_add_page_tail(page, page_tail, lruvec, list);
  1441. }
  1442. atomic_sub(tail_count, &page->_count);
  1443. BUG_ON(atomic_read(&page->_count) <= 0);
  1444. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1445. ClearPageCompound(page);
  1446. compound_unlock(page);
  1447. spin_unlock_irq(&zone->lru_lock);
  1448. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1449. struct page *page_tail = page + i;
  1450. BUG_ON(page_count(page_tail) <= 0);
  1451. /*
  1452. * Tail pages may be freed if there wasn't any mapping
  1453. * like if add_to_swap() is running on a lru page that
  1454. * had its mapping zapped. And freeing these pages
  1455. * requires taking the lru_lock so we do the put_page
  1456. * of the tail pages after the split is complete.
  1457. */
  1458. put_page(page_tail);
  1459. }
  1460. /*
  1461. * Only the head page (now become a regular page) is required
  1462. * to be pinned by the caller.
  1463. */
  1464. BUG_ON(page_count(page) <= 0);
  1465. }
  1466. static int __split_huge_page_map(struct page *page,
  1467. struct vm_area_struct *vma,
  1468. unsigned long address)
  1469. {
  1470. struct mm_struct *mm = vma->vm_mm;
  1471. pmd_t *pmd, _pmd;
  1472. int ret = 0, i;
  1473. pgtable_t pgtable;
  1474. unsigned long haddr;
  1475. spin_lock(&mm->page_table_lock);
  1476. pmd = page_check_address_pmd(page, mm, address,
  1477. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1478. if (pmd) {
  1479. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1480. pmd_populate(mm, &_pmd, pgtable);
  1481. haddr = address;
  1482. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1483. pte_t *pte, entry;
  1484. BUG_ON(PageCompound(page+i));
  1485. entry = mk_pte(page + i, vma->vm_page_prot);
  1486. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1487. if (!pmd_write(*pmd))
  1488. entry = pte_wrprotect(entry);
  1489. else
  1490. BUG_ON(page_mapcount(page) != 1);
  1491. if (!pmd_young(*pmd))
  1492. entry = pte_mkold(entry);
  1493. if (pmd_numa(*pmd))
  1494. entry = pte_mknuma(entry);
  1495. pte = pte_offset_map(&_pmd, haddr);
  1496. BUG_ON(!pte_none(*pte));
  1497. set_pte_at(mm, haddr, pte, entry);
  1498. pte_unmap(pte);
  1499. }
  1500. smp_wmb(); /* make pte visible before pmd */
  1501. /*
  1502. * Up to this point the pmd is present and huge and
  1503. * userland has the whole access to the hugepage
  1504. * during the split (which happens in place). If we
  1505. * overwrite the pmd with the not-huge version
  1506. * pointing to the pte here (which of course we could
  1507. * if all CPUs were bug free), userland could trigger
  1508. * a small page size TLB miss on the small sized TLB
  1509. * while the hugepage TLB entry is still established
  1510. * in the huge TLB. Some CPU doesn't like that. See
  1511. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1512. * Erratum 383 on page 93. Intel should be safe but is
  1513. * also warns that it's only safe if the permission
  1514. * and cache attributes of the two entries loaded in
  1515. * the two TLB is identical (which should be the case
  1516. * here). But it is generally safer to never allow
  1517. * small and huge TLB entries for the same virtual
  1518. * address to be loaded simultaneously. So instead of
  1519. * doing "pmd_populate(); flush_tlb_range();" we first
  1520. * mark the current pmd notpresent (atomically because
  1521. * here the pmd_trans_huge and pmd_trans_splitting
  1522. * must remain set at all times on the pmd until the
  1523. * split is complete for this pmd), then we flush the
  1524. * SMP TLB and finally we write the non-huge version
  1525. * of the pmd entry with pmd_populate.
  1526. */
  1527. pmdp_invalidate(vma, address, pmd);
  1528. pmd_populate(mm, pmd, pgtable);
  1529. ret = 1;
  1530. }
  1531. spin_unlock(&mm->page_table_lock);
  1532. return ret;
  1533. }
  1534. /* must be called with anon_vma->root->rwsem held */
  1535. static void __split_huge_page(struct page *page,
  1536. struct anon_vma *anon_vma,
  1537. struct list_head *list)
  1538. {
  1539. int mapcount, mapcount2;
  1540. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1541. struct anon_vma_chain *avc;
  1542. BUG_ON(!PageHead(page));
  1543. BUG_ON(PageTail(page));
  1544. mapcount = 0;
  1545. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1546. struct vm_area_struct *vma = avc->vma;
  1547. unsigned long addr = vma_address(page, vma);
  1548. BUG_ON(is_vma_temporary_stack(vma));
  1549. mapcount += __split_huge_page_splitting(page, vma, addr);
  1550. }
  1551. /*
  1552. * It is critical that new vmas are added to the tail of the
  1553. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1554. * and establishes a child pmd before
  1555. * __split_huge_page_splitting() freezes the parent pmd (so if
  1556. * we fail to prevent copy_huge_pmd() from running until the
  1557. * whole __split_huge_page() is complete), we will still see
  1558. * the newly established pmd of the child later during the
  1559. * walk, to be able to set it as pmd_trans_splitting too.
  1560. */
  1561. if (mapcount != page_mapcount(page))
  1562. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1563. mapcount, page_mapcount(page));
  1564. BUG_ON(mapcount != page_mapcount(page));
  1565. __split_huge_page_refcount(page, list);
  1566. mapcount2 = 0;
  1567. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1568. struct vm_area_struct *vma = avc->vma;
  1569. unsigned long addr = vma_address(page, vma);
  1570. BUG_ON(is_vma_temporary_stack(vma));
  1571. mapcount2 += __split_huge_page_map(page, vma, addr);
  1572. }
  1573. if (mapcount != mapcount2)
  1574. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1575. mapcount, mapcount2, page_mapcount(page));
  1576. BUG_ON(mapcount != mapcount2);
  1577. }
  1578. /*
  1579. * Split a hugepage into normal pages. This doesn't change the position of head
  1580. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1581. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1582. * from the hugepage.
  1583. * Return 0 if the hugepage is split successfully otherwise return 1.
  1584. */
  1585. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1586. {
  1587. struct anon_vma *anon_vma;
  1588. int ret = 1;
  1589. BUG_ON(is_huge_zero_page(page));
  1590. BUG_ON(!PageAnon(page));
  1591. /*
  1592. * The caller does not necessarily hold an mmap_sem that would prevent
  1593. * the anon_vma disappearing so we first we take a reference to it
  1594. * and then lock the anon_vma for write. This is similar to
  1595. * page_lock_anon_vma_read except the write lock is taken to serialise
  1596. * against parallel split or collapse operations.
  1597. */
  1598. anon_vma = page_get_anon_vma(page);
  1599. if (!anon_vma)
  1600. goto out;
  1601. anon_vma_lock_write(anon_vma);
  1602. ret = 0;
  1603. if (!PageCompound(page))
  1604. goto out_unlock;
  1605. BUG_ON(!PageSwapBacked(page));
  1606. __split_huge_page(page, anon_vma, list);
  1607. count_vm_event(THP_SPLIT);
  1608. BUG_ON(PageCompound(page));
  1609. out_unlock:
  1610. anon_vma_unlock_write(anon_vma);
  1611. put_anon_vma(anon_vma);
  1612. out:
  1613. return ret;
  1614. }
  1615. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1616. int hugepage_madvise(struct vm_area_struct *vma,
  1617. unsigned long *vm_flags, int advice)
  1618. {
  1619. struct mm_struct *mm = vma->vm_mm;
  1620. switch (advice) {
  1621. case MADV_HUGEPAGE:
  1622. /*
  1623. * Be somewhat over-protective like KSM for now!
  1624. */
  1625. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1626. return -EINVAL;
  1627. if (mm->def_flags & VM_NOHUGEPAGE)
  1628. return -EINVAL;
  1629. *vm_flags &= ~VM_NOHUGEPAGE;
  1630. *vm_flags |= VM_HUGEPAGE;
  1631. /*
  1632. * If the vma become good for khugepaged to scan,
  1633. * register it here without waiting a page fault that
  1634. * may not happen any time soon.
  1635. */
  1636. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1637. return -ENOMEM;
  1638. break;
  1639. case MADV_NOHUGEPAGE:
  1640. /*
  1641. * Be somewhat over-protective like KSM for now!
  1642. */
  1643. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1644. return -EINVAL;
  1645. *vm_flags &= ~VM_HUGEPAGE;
  1646. *vm_flags |= VM_NOHUGEPAGE;
  1647. /*
  1648. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1649. * this vma even if we leave the mm registered in khugepaged if
  1650. * it got registered before VM_NOHUGEPAGE was set.
  1651. */
  1652. break;
  1653. }
  1654. return 0;
  1655. }
  1656. static int __init khugepaged_slab_init(void)
  1657. {
  1658. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1659. sizeof(struct mm_slot),
  1660. __alignof__(struct mm_slot), 0, NULL);
  1661. if (!mm_slot_cache)
  1662. return -ENOMEM;
  1663. return 0;
  1664. }
  1665. static inline struct mm_slot *alloc_mm_slot(void)
  1666. {
  1667. if (!mm_slot_cache) /* initialization failed */
  1668. return NULL;
  1669. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1670. }
  1671. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1672. {
  1673. kmem_cache_free(mm_slot_cache, mm_slot);
  1674. }
  1675. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1676. {
  1677. struct mm_slot *mm_slot;
  1678. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1679. if (mm == mm_slot->mm)
  1680. return mm_slot;
  1681. return NULL;
  1682. }
  1683. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1684. struct mm_slot *mm_slot)
  1685. {
  1686. mm_slot->mm = mm;
  1687. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1688. }
  1689. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1690. {
  1691. return atomic_read(&mm->mm_users) == 0;
  1692. }
  1693. int __khugepaged_enter(struct mm_struct *mm)
  1694. {
  1695. struct mm_slot *mm_slot;
  1696. int wakeup;
  1697. mm_slot = alloc_mm_slot();
  1698. if (!mm_slot)
  1699. return -ENOMEM;
  1700. /* __khugepaged_exit() must not run from under us */
  1701. VM_BUG_ON(khugepaged_test_exit(mm));
  1702. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1703. free_mm_slot(mm_slot);
  1704. return 0;
  1705. }
  1706. spin_lock(&khugepaged_mm_lock);
  1707. insert_to_mm_slots_hash(mm, mm_slot);
  1708. /*
  1709. * Insert just behind the scanning cursor, to let the area settle
  1710. * down a little.
  1711. */
  1712. wakeup = list_empty(&khugepaged_scan.mm_head);
  1713. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1714. spin_unlock(&khugepaged_mm_lock);
  1715. atomic_inc(&mm->mm_count);
  1716. if (wakeup)
  1717. wake_up_interruptible(&khugepaged_wait);
  1718. return 0;
  1719. }
  1720. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1721. {
  1722. unsigned long hstart, hend;
  1723. if (!vma->anon_vma)
  1724. /*
  1725. * Not yet faulted in so we will register later in the
  1726. * page fault if needed.
  1727. */
  1728. return 0;
  1729. if (vma->vm_ops)
  1730. /* khugepaged not yet working on file or special mappings */
  1731. return 0;
  1732. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1733. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1734. hend = vma->vm_end & HPAGE_PMD_MASK;
  1735. if (hstart < hend)
  1736. return khugepaged_enter(vma);
  1737. return 0;
  1738. }
  1739. void __khugepaged_exit(struct mm_struct *mm)
  1740. {
  1741. struct mm_slot *mm_slot;
  1742. int free = 0;
  1743. spin_lock(&khugepaged_mm_lock);
  1744. mm_slot = get_mm_slot(mm);
  1745. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1746. hash_del(&mm_slot->hash);
  1747. list_del(&mm_slot->mm_node);
  1748. free = 1;
  1749. }
  1750. spin_unlock(&khugepaged_mm_lock);
  1751. if (free) {
  1752. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1753. free_mm_slot(mm_slot);
  1754. mmdrop(mm);
  1755. } else if (mm_slot) {
  1756. /*
  1757. * This is required to serialize against
  1758. * khugepaged_test_exit() (which is guaranteed to run
  1759. * under mmap sem read mode). Stop here (after we
  1760. * return all pagetables will be destroyed) until
  1761. * khugepaged has finished working on the pagetables
  1762. * under the mmap_sem.
  1763. */
  1764. down_write(&mm->mmap_sem);
  1765. up_write(&mm->mmap_sem);
  1766. }
  1767. }
  1768. static void release_pte_page(struct page *page)
  1769. {
  1770. /* 0 stands for page_is_file_cache(page) == false */
  1771. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1772. unlock_page(page);
  1773. putback_lru_page(page);
  1774. }
  1775. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1776. {
  1777. while (--_pte >= pte) {
  1778. pte_t pteval = *_pte;
  1779. if (!pte_none(pteval))
  1780. release_pte_page(pte_page(pteval));
  1781. }
  1782. }
  1783. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1784. unsigned long address,
  1785. pte_t *pte)
  1786. {
  1787. struct page *page;
  1788. pte_t *_pte;
  1789. int referenced = 0, none = 0;
  1790. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1791. _pte++, address += PAGE_SIZE) {
  1792. pte_t pteval = *_pte;
  1793. if (pte_none(pteval)) {
  1794. if (++none <= khugepaged_max_ptes_none)
  1795. continue;
  1796. else
  1797. goto out;
  1798. }
  1799. if (!pte_present(pteval) || !pte_write(pteval))
  1800. goto out;
  1801. page = vm_normal_page(vma, address, pteval);
  1802. if (unlikely(!page))
  1803. goto out;
  1804. VM_BUG_ON(PageCompound(page));
  1805. BUG_ON(!PageAnon(page));
  1806. VM_BUG_ON(!PageSwapBacked(page));
  1807. /* cannot use mapcount: can't collapse if there's a gup pin */
  1808. if (page_count(page) != 1)
  1809. goto out;
  1810. /*
  1811. * We can do it before isolate_lru_page because the
  1812. * page can't be freed from under us. NOTE: PG_lock
  1813. * is needed to serialize against split_huge_page
  1814. * when invoked from the VM.
  1815. */
  1816. if (!trylock_page(page))
  1817. goto out;
  1818. /*
  1819. * Isolate the page to avoid collapsing an hugepage
  1820. * currently in use by the VM.
  1821. */
  1822. if (isolate_lru_page(page)) {
  1823. unlock_page(page);
  1824. goto out;
  1825. }
  1826. /* 0 stands for page_is_file_cache(page) == false */
  1827. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1828. VM_BUG_ON(!PageLocked(page));
  1829. VM_BUG_ON(PageLRU(page));
  1830. /* If there is no mapped pte young don't collapse the page */
  1831. if (pte_young(pteval) || PageReferenced(page) ||
  1832. mmu_notifier_test_young(vma->vm_mm, address))
  1833. referenced = 1;
  1834. }
  1835. if (likely(referenced))
  1836. return 1;
  1837. out:
  1838. release_pte_pages(pte, _pte);
  1839. return 0;
  1840. }
  1841. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1842. struct vm_area_struct *vma,
  1843. unsigned long address,
  1844. spinlock_t *ptl)
  1845. {
  1846. pte_t *_pte;
  1847. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1848. pte_t pteval = *_pte;
  1849. struct page *src_page;
  1850. if (pte_none(pteval)) {
  1851. clear_user_highpage(page, address);
  1852. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1853. } else {
  1854. src_page = pte_page(pteval);
  1855. copy_user_highpage(page, src_page, address, vma);
  1856. VM_BUG_ON(page_mapcount(src_page) != 1);
  1857. release_pte_page(src_page);
  1858. /*
  1859. * ptl mostly unnecessary, but preempt has to
  1860. * be disabled to update the per-cpu stats
  1861. * inside page_remove_rmap().
  1862. */
  1863. spin_lock(ptl);
  1864. /*
  1865. * paravirt calls inside pte_clear here are
  1866. * superfluous.
  1867. */
  1868. pte_clear(vma->vm_mm, address, _pte);
  1869. page_remove_rmap(src_page);
  1870. spin_unlock(ptl);
  1871. free_page_and_swap_cache(src_page);
  1872. }
  1873. address += PAGE_SIZE;
  1874. page++;
  1875. }
  1876. }
  1877. static void khugepaged_alloc_sleep(void)
  1878. {
  1879. wait_event_freezable_timeout(khugepaged_wait, false,
  1880. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1881. }
  1882. #ifdef CONFIG_NUMA
  1883. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1884. {
  1885. if (IS_ERR(*hpage)) {
  1886. if (!*wait)
  1887. return false;
  1888. *wait = false;
  1889. *hpage = NULL;
  1890. khugepaged_alloc_sleep();
  1891. } else if (*hpage) {
  1892. put_page(*hpage);
  1893. *hpage = NULL;
  1894. }
  1895. return true;
  1896. }
  1897. static struct page
  1898. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1899. struct vm_area_struct *vma, unsigned long address,
  1900. int node)
  1901. {
  1902. VM_BUG_ON(*hpage);
  1903. /*
  1904. * Allocate the page while the vma is still valid and under
  1905. * the mmap_sem read mode so there is no memory allocation
  1906. * later when we take the mmap_sem in write mode. This is more
  1907. * friendly behavior (OTOH it may actually hide bugs) to
  1908. * filesystems in userland with daemons allocating memory in
  1909. * the userland I/O paths. Allocating memory with the
  1910. * mmap_sem in read mode is good idea also to allow greater
  1911. * scalability.
  1912. */
  1913. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1914. node, __GFP_OTHER_NODE);
  1915. /*
  1916. * After allocating the hugepage, release the mmap_sem read lock in
  1917. * preparation for taking it in write mode.
  1918. */
  1919. up_read(&mm->mmap_sem);
  1920. if (unlikely(!*hpage)) {
  1921. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1922. *hpage = ERR_PTR(-ENOMEM);
  1923. return NULL;
  1924. }
  1925. count_vm_event(THP_COLLAPSE_ALLOC);
  1926. return *hpage;
  1927. }
  1928. #else
  1929. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1930. {
  1931. struct page *hpage;
  1932. do {
  1933. hpage = alloc_hugepage(khugepaged_defrag());
  1934. if (!hpage) {
  1935. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1936. if (!*wait)
  1937. return NULL;
  1938. *wait = false;
  1939. khugepaged_alloc_sleep();
  1940. } else
  1941. count_vm_event(THP_COLLAPSE_ALLOC);
  1942. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1943. return hpage;
  1944. }
  1945. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1946. {
  1947. if (!*hpage)
  1948. *hpage = khugepaged_alloc_hugepage(wait);
  1949. if (unlikely(!*hpage))
  1950. return false;
  1951. return true;
  1952. }
  1953. static struct page
  1954. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1955. struct vm_area_struct *vma, unsigned long address,
  1956. int node)
  1957. {
  1958. up_read(&mm->mmap_sem);
  1959. VM_BUG_ON(!*hpage);
  1960. return *hpage;
  1961. }
  1962. #endif
  1963. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1964. {
  1965. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1966. (vma->vm_flags & VM_NOHUGEPAGE))
  1967. return false;
  1968. if (!vma->anon_vma || vma->vm_ops)
  1969. return false;
  1970. if (is_vma_temporary_stack(vma))
  1971. return false;
  1972. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1973. return true;
  1974. }
  1975. static void collapse_huge_page(struct mm_struct *mm,
  1976. unsigned long address,
  1977. struct page **hpage,
  1978. struct vm_area_struct *vma,
  1979. int node)
  1980. {
  1981. pmd_t *pmd, _pmd;
  1982. pte_t *pte;
  1983. pgtable_t pgtable;
  1984. struct page *new_page;
  1985. spinlock_t *ptl;
  1986. int isolated;
  1987. unsigned long hstart, hend;
  1988. unsigned long mmun_start; /* For mmu_notifiers */
  1989. unsigned long mmun_end; /* For mmu_notifiers */
  1990. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1991. /* release the mmap_sem read lock. */
  1992. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1993. if (!new_page)
  1994. return;
  1995. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1996. return;
  1997. /*
  1998. * Prevent all access to pagetables with the exception of
  1999. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2000. * handled by the anon_vma lock + PG_lock.
  2001. */
  2002. down_write(&mm->mmap_sem);
  2003. if (unlikely(khugepaged_test_exit(mm)))
  2004. goto out;
  2005. vma = find_vma(mm, address);
  2006. if (!vma)
  2007. goto out;
  2008. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2009. hend = vma->vm_end & HPAGE_PMD_MASK;
  2010. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2011. goto out;
  2012. if (!hugepage_vma_check(vma))
  2013. goto out;
  2014. pmd = mm_find_pmd(mm, address);
  2015. if (!pmd)
  2016. goto out;
  2017. if (pmd_trans_huge(*pmd))
  2018. goto out;
  2019. anon_vma_lock_write(vma->anon_vma);
  2020. pte = pte_offset_map(pmd, address);
  2021. ptl = pte_lockptr(mm, pmd);
  2022. mmun_start = address;
  2023. mmun_end = address + HPAGE_PMD_SIZE;
  2024. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2025. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  2026. /*
  2027. * After this gup_fast can't run anymore. This also removes
  2028. * any huge TLB entry from the CPU so we won't allow
  2029. * huge and small TLB entries for the same virtual address
  2030. * to avoid the risk of CPU bugs in that area.
  2031. */
  2032. _pmd = pmdp_clear_flush(vma, address, pmd);
  2033. spin_unlock(&mm->page_table_lock);
  2034. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2035. spin_lock(ptl);
  2036. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2037. spin_unlock(ptl);
  2038. if (unlikely(!isolated)) {
  2039. pte_unmap(pte);
  2040. spin_lock(&mm->page_table_lock);
  2041. BUG_ON(!pmd_none(*pmd));
  2042. /*
  2043. * We can only use set_pmd_at when establishing
  2044. * hugepmds and never for establishing regular pmds that
  2045. * points to regular pagetables. Use pmd_populate for that
  2046. */
  2047. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2048. spin_unlock(&mm->page_table_lock);
  2049. anon_vma_unlock_write(vma->anon_vma);
  2050. goto out;
  2051. }
  2052. /*
  2053. * All pages are isolated and locked so anon_vma rmap
  2054. * can't run anymore.
  2055. */
  2056. anon_vma_unlock_write(vma->anon_vma);
  2057. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  2058. pte_unmap(pte);
  2059. __SetPageUptodate(new_page);
  2060. pgtable = pmd_pgtable(_pmd);
  2061. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2062. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2063. /*
  2064. * spin_lock() below is not the equivalent of smp_wmb(), so
  2065. * this is needed to avoid the copy_huge_page writes to become
  2066. * visible after the set_pmd_at() write.
  2067. */
  2068. smp_wmb();
  2069. spin_lock(&mm->page_table_lock);
  2070. BUG_ON(!pmd_none(*pmd));
  2071. page_add_new_anon_rmap(new_page, vma, address);
  2072. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2073. set_pmd_at(mm, address, pmd, _pmd);
  2074. update_mmu_cache_pmd(vma, address, pmd);
  2075. spin_unlock(&mm->page_table_lock);
  2076. *hpage = NULL;
  2077. khugepaged_pages_collapsed++;
  2078. out_up_write:
  2079. up_write(&mm->mmap_sem);
  2080. return;
  2081. out:
  2082. mem_cgroup_uncharge_page(new_page);
  2083. goto out_up_write;
  2084. }
  2085. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2086. struct vm_area_struct *vma,
  2087. unsigned long address,
  2088. struct page **hpage)
  2089. {
  2090. pmd_t *pmd;
  2091. pte_t *pte, *_pte;
  2092. int ret = 0, referenced = 0, none = 0;
  2093. struct page *page;
  2094. unsigned long _address;
  2095. spinlock_t *ptl;
  2096. int node = NUMA_NO_NODE;
  2097. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2098. pmd = mm_find_pmd(mm, address);
  2099. if (!pmd)
  2100. goto out;
  2101. if (pmd_trans_huge(*pmd))
  2102. goto out;
  2103. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2104. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2105. _pte++, _address += PAGE_SIZE) {
  2106. pte_t pteval = *_pte;
  2107. if (pte_none(pteval)) {
  2108. if (++none <= khugepaged_max_ptes_none)
  2109. continue;
  2110. else
  2111. goto out_unmap;
  2112. }
  2113. if (!pte_present(pteval) || !pte_write(pteval))
  2114. goto out_unmap;
  2115. page = vm_normal_page(vma, _address, pteval);
  2116. if (unlikely(!page))
  2117. goto out_unmap;
  2118. /*
  2119. * Chose the node of the first page. This could
  2120. * be more sophisticated and look at more pages,
  2121. * but isn't for now.
  2122. */
  2123. if (node == NUMA_NO_NODE)
  2124. node = page_to_nid(page);
  2125. VM_BUG_ON(PageCompound(page));
  2126. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2127. goto out_unmap;
  2128. /* cannot use mapcount: can't collapse if there's a gup pin */
  2129. if (page_count(page) != 1)
  2130. goto out_unmap;
  2131. if (pte_young(pteval) || PageReferenced(page) ||
  2132. mmu_notifier_test_young(vma->vm_mm, address))
  2133. referenced = 1;
  2134. }
  2135. if (referenced)
  2136. ret = 1;
  2137. out_unmap:
  2138. pte_unmap_unlock(pte, ptl);
  2139. if (ret)
  2140. /* collapse_huge_page will return with the mmap_sem released */
  2141. collapse_huge_page(mm, address, hpage, vma, node);
  2142. out:
  2143. return ret;
  2144. }
  2145. static void collect_mm_slot(struct mm_slot *mm_slot)
  2146. {
  2147. struct mm_struct *mm = mm_slot->mm;
  2148. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2149. if (khugepaged_test_exit(mm)) {
  2150. /* free mm_slot */
  2151. hash_del(&mm_slot->hash);
  2152. list_del(&mm_slot->mm_node);
  2153. /*
  2154. * Not strictly needed because the mm exited already.
  2155. *
  2156. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2157. */
  2158. /* khugepaged_mm_lock actually not necessary for the below */
  2159. free_mm_slot(mm_slot);
  2160. mmdrop(mm);
  2161. }
  2162. }
  2163. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2164. struct page **hpage)
  2165. __releases(&khugepaged_mm_lock)
  2166. __acquires(&khugepaged_mm_lock)
  2167. {
  2168. struct mm_slot *mm_slot;
  2169. struct mm_struct *mm;
  2170. struct vm_area_struct *vma;
  2171. int progress = 0;
  2172. VM_BUG_ON(!pages);
  2173. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2174. if (khugepaged_scan.mm_slot)
  2175. mm_slot = khugepaged_scan.mm_slot;
  2176. else {
  2177. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2178. struct mm_slot, mm_node);
  2179. khugepaged_scan.address = 0;
  2180. khugepaged_scan.mm_slot = mm_slot;
  2181. }
  2182. spin_unlock(&khugepaged_mm_lock);
  2183. mm = mm_slot->mm;
  2184. down_read(&mm->mmap_sem);
  2185. if (unlikely(khugepaged_test_exit(mm)))
  2186. vma = NULL;
  2187. else
  2188. vma = find_vma(mm, khugepaged_scan.address);
  2189. progress++;
  2190. for (; vma; vma = vma->vm_next) {
  2191. unsigned long hstart, hend;
  2192. cond_resched();
  2193. if (unlikely(khugepaged_test_exit(mm))) {
  2194. progress++;
  2195. break;
  2196. }
  2197. if (!hugepage_vma_check(vma)) {
  2198. skip:
  2199. progress++;
  2200. continue;
  2201. }
  2202. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2203. hend = vma->vm_end & HPAGE_PMD_MASK;
  2204. if (hstart >= hend)
  2205. goto skip;
  2206. if (khugepaged_scan.address > hend)
  2207. goto skip;
  2208. if (khugepaged_scan.address < hstart)
  2209. khugepaged_scan.address = hstart;
  2210. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2211. while (khugepaged_scan.address < hend) {
  2212. int ret;
  2213. cond_resched();
  2214. if (unlikely(khugepaged_test_exit(mm)))
  2215. goto breakouterloop;
  2216. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2217. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2218. hend);
  2219. ret = khugepaged_scan_pmd(mm, vma,
  2220. khugepaged_scan.address,
  2221. hpage);
  2222. /* move to next address */
  2223. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2224. progress += HPAGE_PMD_NR;
  2225. if (ret)
  2226. /* we released mmap_sem so break loop */
  2227. goto breakouterloop_mmap_sem;
  2228. if (progress >= pages)
  2229. goto breakouterloop;
  2230. }
  2231. }
  2232. breakouterloop:
  2233. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2234. breakouterloop_mmap_sem:
  2235. spin_lock(&khugepaged_mm_lock);
  2236. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2237. /*
  2238. * Release the current mm_slot if this mm is about to die, or
  2239. * if we scanned all vmas of this mm.
  2240. */
  2241. if (khugepaged_test_exit(mm) || !vma) {
  2242. /*
  2243. * Make sure that if mm_users is reaching zero while
  2244. * khugepaged runs here, khugepaged_exit will find
  2245. * mm_slot not pointing to the exiting mm.
  2246. */
  2247. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2248. khugepaged_scan.mm_slot = list_entry(
  2249. mm_slot->mm_node.next,
  2250. struct mm_slot, mm_node);
  2251. khugepaged_scan.address = 0;
  2252. } else {
  2253. khugepaged_scan.mm_slot = NULL;
  2254. khugepaged_full_scans++;
  2255. }
  2256. collect_mm_slot(mm_slot);
  2257. }
  2258. return progress;
  2259. }
  2260. static int khugepaged_has_work(void)
  2261. {
  2262. return !list_empty(&khugepaged_scan.mm_head) &&
  2263. khugepaged_enabled();
  2264. }
  2265. static int khugepaged_wait_event(void)
  2266. {
  2267. return !list_empty(&khugepaged_scan.mm_head) ||
  2268. kthread_should_stop();
  2269. }
  2270. static void khugepaged_do_scan(void)
  2271. {
  2272. struct page *hpage = NULL;
  2273. unsigned int progress = 0, pass_through_head = 0;
  2274. unsigned int pages = khugepaged_pages_to_scan;
  2275. bool wait = true;
  2276. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2277. while (progress < pages) {
  2278. if (!khugepaged_prealloc_page(&hpage, &wait))
  2279. break;
  2280. cond_resched();
  2281. if (unlikely(kthread_should_stop() || freezing(current)))
  2282. break;
  2283. spin_lock(&khugepaged_mm_lock);
  2284. if (!khugepaged_scan.mm_slot)
  2285. pass_through_head++;
  2286. if (khugepaged_has_work() &&
  2287. pass_through_head < 2)
  2288. progress += khugepaged_scan_mm_slot(pages - progress,
  2289. &hpage);
  2290. else
  2291. progress = pages;
  2292. spin_unlock(&khugepaged_mm_lock);
  2293. }
  2294. if (!IS_ERR_OR_NULL(hpage))
  2295. put_page(hpage);
  2296. }
  2297. static void khugepaged_wait_work(void)
  2298. {
  2299. try_to_freeze();
  2300. if (khugepaged_has_work()) {
  2301. if (!khugepaged_scan_sleep_millisecs)
  2302. return;
  2303. wait_event_freezable_timeout(khugepaged_wait,
  2304. kthread_should_stop(),
  2305. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2306. return;
  2307. }
  2308. if (khugepaged_enabled())
  2309. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2310. }
  2311. static int khugepaged(void *none)
  2312. {
  2313. struct mm_slot *mm_slot;
  2314. set_freezable();
  2315. set_user_nice(current, 19);
  2316. while (!kthread_should_stop()) {
  2317. khugepaged_do_scan();
  2318. khugepaged_wait_work();
  2319. }
  2320. spin_lock(&khugepaged_mm_lock);
  2321. mm_slot = khugepaged_scan.mm_slot;
  2322. khugepaged_scan.mm_slot = NULL;
  2323. if (mm_slot)
  2324. collect_mm_slot(mm_slot);
  2325. spin_unlock(&khugepaged_mm_lock);
  2326. return 0;
  2327. }
  2328. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2329. unsigned long haddr, pmd_t *pmd)
  2330. {
  2331. struct mm_struct *mm = vma->vm_mm;
  2332. pgtable_t pgtable;
  2333. pmd_t _pmd;
  2334. int i;
  2335. pmdp_clear_flush(vma, haddr, pmd);
  2336. /* leave pmd empty until pte is filled */
  2337. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2338. pmd_populate(mm, &_pmd, pgtable);
  2339. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2340. pte_t *pte, entry;
  2341. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2342. entry = pte_mkspecial(entry);
  2343. pte = pte_offset_map(&_pmd, haddr);
  2344. VM_BUG_ON(!pte_none(*pte));
  2345. set_pte_at(mm, haddr, pte, entry);
  2346. pte_unmap(pte);
  2347. }
  2348. smp_wmb(); /* make pte visible before pmd */
  2349. pmd_populate(mm, pmd, pgtable);
  2350. put_huge_zero_page();
  2351. }
  2352. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2353. pmd_t *pmd)
  2354. {
  2355. struct page *page;
  2356. struct mm_struct *mm = vma->vm_mm;
  2357. unsigned long haddr = address & HPAGE_PMD_MASK;
  2358. unsigned long mmun_start; /* For mmu_notifiers */
  2359. unsigned long mmun_end; /* For mmu_notifiers */
  2360. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2361. mmun_start = haddr;
  2362. mmun_end = haddr + HPAGE_PMD_SIZE;
  2363. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2364. spin_lock(&mm->page_table_lock);
  2365. if (unlikely(!pmd_trans_huge(*pmd))) {
  2366. spin_unlock(&mm->page_table_lock);
  2367. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2368. return;
  2369. }
  2370. if (is_huge_zero_pmd(*pmd)) {
  2371. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2372. spin_unlock(&mm->page_table_lock);
  2373. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2374. return;
  2375. }
  2376. page = pmd_page(*pmd);
  2377. VM_BUG_ON(!page_count(page));
  2378. get_page(page);
  2379. spin_unlock(&mm->page_table_lock);
  2380. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2381. split_huge_page(page);
  2382. put_page(page);
  2383. BUG_ON(pmd_trans_huge(*pmd));
  2384. }
  2385. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2386. pmd_t *pmd)
  2387. {
  2388. struct vm_area_struct *vma;
  2389. vma = find_vma(mm, address);
  2390. BUG_ON(vma == NULL);
  2391. split_huge_page_pmd(vma, address, pmd);
  2392. }
  2393. static void split_huge_page_address(struct mm_struct *mm,
  2394. unsigned long address)
  2395. {
  2396. pmd_t *pmd;
  2397. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2398. pmd = mm_find_pmd(mm, address);
  2399. if (!pmd)
  2400. return;
  2401. /*
  2402. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2403. * materialize from under us.
  2404. */
  2405. split_huge_page_pmd_mm(mm, address, pmd);
  2406. }
  2407. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2408. unsigned long start,
  2409. unsigned long end,
  2410. long adjust_next)
  2411. {
  2412. /*
  2413. * If the new start address isn't hpage aligned and it could
  2414. * previously contain an hugepage: check if we need to split
  2415. * an huge pmd.
  2416. */
  2417. if (start & ~HPAGE_PMD_MASK &&
  2418. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2419. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2420. split_huge_page_address(vma->vm_mm, start);
  2421. /*
  2422. * If the new end address isn't hpage aligned and it could
  2423. * previously contain an hugepage: check if we need to split
  2424. * an huge pmd.
  2425. */
  2426. if (end & ~HPAGE_PMD_MASK &&
  2427. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2428. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2429. split_huge_page_address(vma->vm_mm, end);
  2430. /*
  2431. * If we're also updating the vma->vm_next->vm_start, if the new
  2432. * vm_next->vm_start isn't page aligned and it could previously
  2433. * contain an hugepage: check if we need to split an huge pmd.
  2434. */
  2435. if (adjust_next > 0) {
  2436. struct vm_area_struct *next = vma->vm_next;
  2437. unsigned long nstart = next->vm_start;
  2438. nstart += adjust_next << PAGE_SHIFT;
  2439. if (nstart & ~HPAGE_PMD_MASK &&
  2440. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2441. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2442. split_huge_page_address(next->vm_mm, nstart);
  2443. }
  2444. }