setup.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. /*
  2. * arch/sh/kernel/setup.c
  3. *
  4. * This file handles the architecture-dependent parts of initialization
  5. *
  6. * Copyright (C) 1999 Niibe Yutaka
  7. * Copyright (C) 2002 - 2007 Paul Mundt
  8. */
  9. #include <linux/screen_info.h>
  10. #include <linux/ioport.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/console.h>
  15. #include <linux/seq_file.h>
  16. #include <linux/root_dev.h>
  17. #include <linux/utsname.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/pfn.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/kexec.h>
  24. #include <linux/module.h>
  25. #include <linux/smp.h>
  26. #include <linux/err.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/mmzone.h>
  30. #include <linux/clk.h>
  31. #include <linux/delay.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/lmb.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/io.h>
  36. #include <asm/page.h>
  37. #include <asm/elf.h>
  38. #include <asm/sections.h>
  39. #include <asm/irq.h>
  40. #include <asm/setup.h>
  41. #include <asm/clock.h>
  42. #include <asm/mmu_context.h>
  43. /*
  44. * Initialize loops_per_jiffy as 10000000 (1000MIPS).
  45. * This value will be used at the very early stage of serial setup.
  46. * The bigger value means no problem.
  47. */
  48. struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
  49. [0] = {
  50. .type = CPU_SH_NONE,
  51. .loops_per_jiffy = 10000000,
  52. },
  53. };
  54. EXPORT_SYMBOL(cpu_data);
  55. /*
  56. * The machine vector. First entry in .machvec.init, or clobbered by
  57. * sh_mv= on the command line, prior to .machvec.init teardown.
  58. */
  59. struct sh_machine_vector sh_mv = { .mv_name = "generic", };
  60. EXPORT_SYMBOL(sh_mv);
  61. #ifdef CONFIG_VT
  62. struct screen_info screen_info;
  63. #endif
  64. extern int root_mountflags;
  65. #define RAMDISK_IMAGE_START_MASK 0x07FF
  66. #define RAMDISK_PROMPT_FLAG 0x8000
  67. #define RAMDISK_LOAD_FLAG 0x4000
  68. static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
  69. static struct resource code_resource = {
  70. .name = "Kernel code",
  71. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  72. };
  73. static struct resource data_resource = {
  74. .name = "Kernel data",
  75. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  76. };
  77. static struct resource bss_resource = {
  78. .name = "Kernel bss",
  79. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  80. };
  81. unsigned long memory_start;
  82. EXPORT_SYMBOL(memory_start);
  83. unsigned long memory_end = 0;
  84. EXPORT_SYMBOL(memory_end);
  85. static struct resource mem_resources[MAX_NUMNODES];
  86. int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
  87. static int __init early_parse_mem(char *p)
  88. {
  89. unsigned long size;
  90. memory_start = (unsigned long)__va(__MEMORY_START);
  91. size = memparse(p, &p);
  92. if (size > __MEMORY_SIZE) {
  93. printk(KERN_ERR
  94. "Using mem= to increase the size of kernel memory "
  95. "is not allowed.\n"
  96. " Recompile the kernel with the correct value for "
  97. "CONFIG_MEMORY_SIZE.\n");
  98. return 0;
  99. }
  100. memory_end = memory_start + size;
  101. return 0;
  102. }
  103. early_param("mem", early_parse_mem);
  104. /*
  105. * Register fully available low RAM pages with the bootmem allocator.
  106. */
  107. static void __init register_bootmem_low_pages(void)
  108. {
  109. unsigned long curr_pfn, last_pfn, pages;
  110. /*
  111. * We are rounding up the start address of usable memory:
  112. */
  113. curr_pfn = PFN_UP(__MEMORY_START);
  114. /*
  115. * ... and at the end of the usable range downwards:
  116. */
  117. last_pfn = PFN_DOWN(__pa(memory_end));
  118. if (last_pfn > max_low_pfn)
  119. last_pfn = max_low_pfn;
  120. pages = last_pfn - curr_pfn;
  121. free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
  122. }
  123. #ifdef CONFIG_KEXEC
  124. static void __init reserve_crashkernel(void)
  125. {
  126. unsigned long long free_mem;
  127. unsigned long long crash_size, crash_base;
  128. void *vp;
  129. int ret;
  130. free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  131. ret = parse_crashkernel(boot_command_line, free_mem,
  132. &crash_size, &crash_base);
  133. if (ret == 0 && crash_size) {
  134. if (crash_base <= 0) {
  135. vp = alloc_bootmem_nopanic(crash_size);
  136. if (!vp) {
  137. printk(KERN_INFO "crashkernel allocation "
  138. "failed\n");
  139. return;
  140. }
  141. crash_base = __pa(vp);
  142. } else if (reserve_bootmem(crash_base, crash_size,
  143. BOOTMEM_EXCLUSIVE) < 0) {
  144. printk(KERN_INFO "crashkernel reservation failed - "
  145. "memory is in use\n");
  146. return;
  147. }
  148. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  149. "for crashkernel (System RAM: %ldMB)\n",
  150. (unsigned long)(crash_size >> 20),
  151. (unsigned long)(crash_base >> 20),
  152. (unsigned long)(free_mem >> 20));
  153. crashk_res.start = crash_base;
  154. crashk_res.end = crash_base + crash_size - 1;
  155. insert_resource(&iomem_resource, &crashk_res);
  156. }
  157. }
  158. #else
  159. static inline void __init reserve_crashkernel(void)
  160. {}
  161. #endif
  162. void __cpuinit calibrate_delay(void)
  163. {
  164. struct clk *clk = clk_get(NULL, "cpu_clk");
  165. if (IS_ERR(clk))
  166. panic("Need a sane CPU clock definition!");
  167. loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
  168. printk(KERN_INFO "Calibrating delay loop (skipped)... "
  169. "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
  170. loops_per_jiffy/(500000/HZ),
  171. (loops_per_jiffy/(5000/HZ)) % 100,
  172. loops_per_jiffy);
  173. }
  174. void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
  175. unsigned long end_pfn)
  176. {
  177. struct resource *res = &mem_resources[nid];
  178. WARN_ON(res->name); /* max one active range per node for now */
  179. res->name = "System RAM";
  180. res->start = start_pfn << PAGE_SHIFT;
  181. res->end = (end_pfn << PAGE_SHIFT) - 1;
  182. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  183. if (request_resource(&iomem_resource, res)) {
  184. pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
  185. start_pfn, end_pfn);
  186. return;
  187. }
  188. /*
  189. * We don't know which RAM region contains kernel data,
  190. * so we try it repeatedly and let the resource manager
  191. * test it.
  192. */
  193. request_resource(res, &code_resource);
  194. request_resource(res, &data_resource);
  195. request_resource(res, &bss_resource);
  196. add_active_range(nid, start_pfn, end_pfn);
  197. }
  198. void __init setup_bootmem_allocator(unsigned long free_pfn)
  199. {
  200. unsigned long bootmap_size;
  201. unsigned long bootmap_pages, bootmem_paddr;
  202. u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
  203. int i;
  204. bootmap_pages = bootmem_bootmap_pages(total_pages);
  205. bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
  206. /*
  207. * Find a proper area for the bootmem bitmap. After this
  208. * bootstrap step all allocations (until the page allocator
  209. * is intact) must be done via bootmem_alloc().
  210. */
  211. bootmap_size = init_bootmem_node(NODE_DATA(0),
  212. bootmem_paddr >> PAGE_SHIFT,
  213. min_low_pfn, max_low_pfn);
  214. /* Add active regions with valid PFNs. */
  215. for (i = 0; i < lmb.memory.cnt; i++) {
  216. unsigned long start_pfn, end_pfn;
  217. start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
  218. end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
  219. __add_active_range(0, start_pfn, end_pfn);
  220. }
  221. /*
  222. * Add all physical memory to the bootmem map and mark each
  223. * area as present.
  224. */
  225. register_bootmem_low_pages();
  226. /* Reserve the sections we're already using. */
  227. for (i = 0; i < lmb.reserved.cnt; i++)
  228. reserve_bootmem(lmb.reserved.region[i].base,
  229. lmb_size_bytes(&lmb.reserved, i),
  230. BOOTMEM_DEFAULT);
  231. node_set_online(0);
  232. sparse_memory_present_with_active_regions(0);
  233. #ifdef CONFIG_BLK_DEV_INITRD
  234. ROOT_DEV = Root_RAM0;
  235. if (LOADER_TYPE && INITRD_START) {
  236. unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
  237. if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
  238. reserve_bootmem(initrd_start_phys, INITRD_SIZE,
  239. BOOTMEM_DEFAULT);
  240. initrd_start = (unsigned long)__va(initrd_start_phys);
  241. initrd_end = initrd_start + INITRD_SIZE;
  242. } else {
  243. printk("initrd extends beyond end of memory "
  244. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  245. initrd_start_phys + INITRD_SIZE,
  246. (unsigned long)PFN_PHYS(max_low_pfn));
  247. initrd_start = 0;
  248. }
  249. }
  250. #endif
  251. reserve_crashkernel();
  252. }
  253. #ifndef CONFIG_NEED_MULTIPLE_NODES
  254. static void __init setup_memory(void)
  255. {
  256. unsigned long start_pfn;
  257. u64 base = min_low_pfn << PAGE_SHIFT;
  258. u64 size = (max_low_pfn << PAGE_SHIFT) - base;
  259. /*
  260. * Partially used pages are not usable - thus
  261. * we are rounding upwards:
  262. */
  263. start_pfn = PFN_UP(__pa(_end));
  264. lmb_add(base, size);
  265. /*
  266. * Reserve the kernel text and
  267. * Reserve the bootmem bitmap. We do this in two steps (first step
  268. * was init_bootmem()), because this catches the (definitely buggy)
  269. * case of us accidentally initializing the bootmem allocator with
  270. * an invalid RAM area.
  271. */
  272. lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
  273. (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
  274. (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
  275. /*
  276. * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
  277. */
  278. if (CONFIG_ZERO_PAGE_OFFSET != 0)
  279. lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
  280. lmb_analyze();
  281. lmb_dump_all();
  282. setup_bootmem_allocator(start_pfn);
  283. }
  284. #else
  285. extern void __init setup_memory(void);
  286. #endif
  287. /*
  288. * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
  289. * is_kdump_kernel() to determine if we are booting after a panic. Hence
  290. * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
  291. */
  292. #ifdef CONFIG_CRASH_DUMP
  293. /* elfcorehdr= specifies the location of elf core header
  294. * stored by the crashed kernel.
  295. */
  296. static int __init parse_elfcorehdr(char *arg)
  297. {
  298. if (!arg)
  299. return -EINVAL;
  300. elfcorehdr_addr = memparse(arg, &arg);
  301. return 0;
  302. }
  303. early_param("elfcorehdr", parse_elfcorehdr);
  304. #endif
  305. void __init __attribute__ ((weak)) plat_early_device_setup(void)
  306. {
  307. }
  308. void __init setup_arch(char **cmdline_p)
  309. {
  310. enable_mmu();
  311. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  312. printk(KERN_NOTICE "Boot params:\n"
  313. "... MOUNT_ROOT_RDONLY - %08lx\n"
  314. "... RAMDISK_FLAGS - %08lx\n"
  315. "... ORIG_ROOT_DEV - %08lx\n"
  316. "... LOADER_TYPE - %08lx\n"
  317. "... INITRD_START - %08lx\n"
  318. "... INITRD_SIZE - %08lx\n",
  319. MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
  320. ORIG_ROOT_DEV, LOADER_TYPE,
  321. INITRD_START, INITRD_SIZE);
  322. #ifdef CONFIG_BLK_DEV_RAM
  323. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  324. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  325. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  326. #endif
  327. if (!MOUNT_ROOT_RDONLY)
  328. root_mountflags &= ~MS_RDONLY;
  329. init_mm.start_code = (unsigned long) _text;
  330. init_mm.end_code = (unsigned long) _etext;
  331. init_mm.end_data = (unsigned long) _edata;
  332. init_mm.brk = (unsigned long) _end;
  333. code_resource.start = virt_to_phys(_text);
  334. code_resource.end = virt_to_phys(_etext)-1;
  335. data_resource.start = virt_to_phys(_etext);
  336. data_resource.end = virt_to_phys(_edata)-1;
  337. bss_resource.start = virt_to_phys(__bss_start);
  338. bss_resource.end = virt_to_phys(_ebss)-1;
  339. memory_start = (unsigned long)__va(__MEMORY_START);
  340. if (!memory_end)
  341. memory_end = memory_start + __MEMORY_SIZE;
  342. #ifdef CONFIG_CMDLINE_BOOL
  343. strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
  344. #else
  345. strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
  346. #endif
  347. /* Save unparsed command line copy for /proc/cmdline */
  348. memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  349. *cmdline_p = command_line;
  350. parse_early_param();
  351. plat_early_device_setup();
  352. sh_mv_setup();
  353. /*
  354. * Find the highest page frame number we have available
  355. */
  356. max_pfn = PFN_DOWN(__pa(memory_end));
  357. /*
  358. * Determine low and high memory ranges:
  359. */
  360. max_low_pfn = max_pfn;
  361. min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
  362. nodes_clear(node_online_map);
  363. /* Setup bootmem with available RAM */
  364. lmb_init();
  365. setup_memory();
  366. sparse_init();
  367. #ifdef CONFIG_DUMMY_CONSOLE
  368. conswitchp = &dummy_con;
  369. #endif
  370. /* Perform the machine specific initialisation */
  371. if (likely(sh_mv.mv_setup))
  372. sh_mv.mv_setup(cmdline_p);
  373. paging_init();
  374. #ifdef CONFIG_SMP
  375. plat_smp_setup();
  376. #endif
  377. }
  378. /* processor boot mode configuration */
  379. int generic_mode_pins(void)
  380. {
  381. pr_warning("generic_mode_pins(): missing mode pin configuration\n");
  382. return 0;
  383. }
  384. int test_mode_pin(int pin)
  385. {
  386. return sh_mv.mv_mode_pins() & pin;
  387. }
  388. static const char *cpu_name[] = {
  389. [CPU_SH7201] = "SH7201",
  390. [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
  391. [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
  392. [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
  393. [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
  394. [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
  395. [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
  396. [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
  397. [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
  398. [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
  399. [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
  400. [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
  401. [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
  402. [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
  403. [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
  404. [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757",
  405. [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
  406. [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
  407. [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
  408. [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
  409. [CPU_SH_NONE] = "Unknown"
  410. };
  411. const char *get_cpu_subtype(struct sh_cpuinfo *c)
  412. {
  413. return cpu_name[c->type];
  414. }
  415. EXPORT_SYMBOL(get_cpu_subtype);
  416. #ifdef CONFIG_PROC_FS
  417. /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
  418. static const char *cpu_flags[] = {
  419. "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
  420. "ptea", "llsc", "l2", "op32", "pteaex", NULL
  421. };
  422. static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
  423. {
  424. unsigned long i;
  425. seq_printf(m, "cpu flags\t:");
  426. if (!c->flags) {
  427. seq_printf(m, " %s\n", cpu_flags[0]);
  428. return;
  429. }
  430. for (i = 0; cpu_flags[i]; i++)
  431. if ((c->flags & (1 << i)))
  432. seq_printf(m, " %s", cpu_flags[i+1]);
  433. seq_printf(m, "\n");
  434. }
  435. static void show_cacheinfo(struct seq_file *m, const char *type,
  436. struct cache_info info)
  437. {
  438. unsigned int cache_size;
  439. cache_size = info.ways * info.sets * info.linesz;
  440. seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
  441. type, cache_size >> 10, info.ways);
  442. }
  443. /*
  444. * Get CPU information for use by the procfs.
  445. */
  446. static int show_cpuinfo(struct seq_file *m, void *v)
  447. {
  448. struct sh_cpuinfo *c = v;
  449. unsigned int cpu = c - cpu_data;
  450. if (!cpu_online(cpu))
  451. return 0;
  452. if (cpu == 0)
  453. seq_printf(m, "machine\t\t: %s\n", get_system_type());
  454. seq_printf(m, "processor\t: %d\n", cpu);
  455. seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
  456. seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
  457. if (c->cut_major == -1)
  458. seq_printf(m, "cut\t\t: unknown\n");
  459. else if (c->cut_minor == -1)
  460. seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
  461. else
  462. seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
  463. show_cpuflags(m, c);
  464. seq_printf(m, "cache type\t: ");
  465. /*
  466. * Check for what type of cache we have, we support both the
  467. * unified cache on the SH-2 and SH-3, as well as the harvard
  468. * style cache on the SH-4.
  469. */
  470. if (c->icache.flags & SH_CACHE_COMBINED) {
  471. seq_printf(m, "unified\n");
  472. show_cacheinfo(m, "cache", c->icache);
  473. } else {
  474. seq_printf(m, "split (harvard)\n");
  475. show_cacheinfo(m, "icache", c->icache);
  476. show_cacheinfo(m, "dcache", c->dcache);
  477. }
  478. /* Optional secondary cache */
  479. if (c->flags & CPU_HAS_L2_CACHE)
  480. show_cacheinfo(m, "scache", c->scache);
  481. seq_printf(m, "bogomips\t: %lu.%02lu\n",
  482. c->loops_per_jiffy/(500000/HZ),
  483. (c->loops_per_jiffy/(5000/HZ)) % 100);
  484. return 0;
  485. }
  486. static void *c_start(struct seq_file *m, loff_t *pos)
  487. {
  488. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  489. }
  490. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  491. {
  492. ++*pos;
  493. return c_start(m, pos);
  494. }
  495. static void c_stop(struct seq_file *m, void *v)
  496. {
  497. }
  498. const struct seq_operations cpuinfo_op = {
  499. .start = c_start,
  500. .next = c_next,
  501. .stop = c_stop,
  502. .show = show_cpuinfo,
  503. };
  504. #endif /* CONFIG_PROC_FS */
  505. struct dentry *sh_debugfs_root;
  506. static int __init sh_debugfs_init(void)
  507. {
  508. sh_debugfs_root = debugfs_create_dir("sh", NULL);
  509. if (!sh_debugfs_root)
  510. return -ENOMEM;
  511. if (IS_ERR(sh_debugfs_root))
  512. return PTR_ERR(sh_debugfs_root);
  513. return 0;
  514. }
  515. arch_initcall(sh_debugfs_init);