slab.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/kmemleak.h>
  110. #include <linux/mempolicy.h>
  111. #include <linux/mutex.h>
  112. #include <linux/fault-inject.h>
  113. #include <linux/rtmutex.h>
  114. #include <linux/reciprocal_div.h>
  115. #include <linux/debugobjects.h>
  116. #include <linux/kmemcheck.h>
  117. #include <asm/cacheflush.h>
  118. #include <asm/tlbflush.h>
  119. #include <asm/page.h>
  120. /*
  121. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  122. * 0 for faster, smaller code (especially in the critical paths).
  123. *
  124. * STATS - 1 to collect stats for /proc/slabinfo.
  125. * 0 for faster, smaller code (especially in the critical paths).
  126. *
  127. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  128. */
  129. #ifdef CONFIG_DEBUG_SLAB
  130. #define DEBUG 1
  131. #define STATS 1
  132. #define FORCED_DEBUG 1
  133. #else
  134. #define DEBUG 0
  135. #define STATS 0
  136. #define FORCED_DEBUG 0
  137. #endif
  138. /* Shouldn't this be in a header file somewhere? */
  139. #define BYTES_PER_WORD sizeof(void *)
  140. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  141. #ifndef ARCH_KMALLOC_MINALIGN
  142. /*
  143. * Enforce a minimum alignment for the kmalloc caches.
  144. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  145. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  146. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  147. * alignment larger than the alignment of a 64-bit integer.
  148. * ARCH_KMALLOC_MINALIGN allows that.
  149. * Note that increasing this value may disable some debug features.
  150. */
  151. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  152. #endif
  153. #ifndef ARCH_SLAB_MINALIGN
  154. /*
  155. * Enforce a minimum alignment for all caches.
  156. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  157. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  158. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  159. * some debug features.
  160. */
  161. #define ARCH_SLAB_MINALIGN 0
  162. #endif
  163. #ifndef ARCH_KMALLOC_FLAGS
  164. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  165. #endif
  166. /* Legal flag mask for kmem_cache_create(). */
  167. #if DEBUG
  168. # define CREATE_MASK (SLAB_RED_ZONE | \
  169. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | \
  171. SLAB_STORE_USER | \
  172. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  173. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  174. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  175. #else
  176. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  177. SLAB_CACHE_DMA | \
  178. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  179. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  180. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  181. #endif
  182. /*
  183. * kmem_bufctl_t:
  184. *
  185. * Bufctl's are used for linking objs within a slab
  186. * linked offsets.
  187. *
  188. * This implementation relies on "struct page" for locating the cache &
  189. * slab an object belongs to.
  190. * This allows the bufctl structure to be small (one int), but limits
  191. * the number of objects a slab (not a cache) can contain when off-slab
  192. * bufctls are used. The limit is the size of the largest general cache
  193. * that does not use off-slab slabs.
  194. * For 32bit archs with 4 kB pages, is this 56.
  195. * This is not serious, as it is only for large objects, when it is unwise
  196. * to have too many per slab.
  197. * Note: This limit can be raised by introducing a general cache whose size
  198. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  199. */
  200. typedef unsigned int kmem_bufctl_t;
  201. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  202. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  203. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  204. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  205. /*
  206. * struct slab
  207. *
  208. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  209. * for a slab, or allocated from an general cache.
  210. * Slabs are chained into three list: fully used, partial, fully free slabs.
  211. */
  212. struct slab {
  213. struct list_head list;
  214. unsigned long colouroff;
  215. void *s_mem; /* including colour offset */
  216. unsigned int inuse; /* num of objs active in slab */
  217. kmem_bufctl_t free;
  218. unsigned short nodeid;
  219. };
  220. /*
  221. * struct slab_rcu
  222. *
  223. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  224. * arrange for kmem_freepages to be called via RCU. This is useful if
  225. * we need to approach a kernel structure obliquely, from its address
  226. * obtained without the usual locking. We can lock the structure to
  227. * stabilize it and check it's still at the given address, only if we
  228. * can be sure that the memory has not been meanwhile reused for some
  229. * other kind of object (which our subsystem's lock might corrupt).
  230. *
  231. * rcu_read_lock before reading the address, then rcu_read_unlock after
  232. * taking the spinlock within the structure expected at that address.
  233. *
  234. * We assume struct slab_rcu can overlay struct slab when destroying.
  235. */
  236. struct slab_rcu {
  237. struct rcu_head head;
  238. struct kmem_cache *cachep;
  239. void *addr;
  240. };
  241. /*
  242. * struct array_cache
  243. *
  244. * Purpose:
  245. * - LIFO ordering, to hand out cache-warm objects from _alloc
  246. * - reduce the number of linked list operations
  247. * - reduce spinlock operations
  248. *
  249. * The limit is stored in the per-cpu structure to reduce the data cache
  250. * footprint.
  251. *
  252. */
  253. struct array_cache {
  254. unsigned int avail;
  255. unsigned int limit;
  256. unsigned int batchcount;
  257. unsigned int touched;
  258. spinlock_t lock;
  259. void *entry[]; /*
  260. * Must have this definition in here for the proper
  261. * alignment of array_cache. Also simplifies accessing
  262. * the entries.
  263. */
  264. };
  265. /*
  266. * bootstrap: The caches do not work without cpuarrays anymore, but the
  267. * cpuarrays are allocated from the generic caches...
  268. */
  269. #define BOOT_CPUCACHE_ENTRIES 1
  270. struct arraycache_init {
  271. struct array_cache cache;
  272. void *entries[BOOT_CPUCACHE_ENTRIES];
  273. };
  274. /*
  275. * The slab lists for all objects.
  276. */
  277. struct kmem_list3 {
  278. struct list_head slabs_partial; /* partial list first, better asm code */
  279. struct list_head slabs_full;
  280. struct list_head slabs_free;
  281. unsigned long free_objects;
  282. unsigned int free_limit;
  283. unsigned int colour_next; /* Per-node cache coloring */
  284. spinlock_t list_lock;
  285. struct array_cache *shared; /* shared per node */
  286. struct array_cache **alien; /* on other nodes */
  287. unsigned long next_reap; /* updated without locking */
  288. int free_touched; /* updated without locking */
  289. };
  290. /*
  291. * Need this for bootstrapping a per node allocator.
  292. */
  293. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  294. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  295. #define CACHE_CACHE 0
  296. #define SIZE_AC MAX_NUMNODES
  297. #define SIZE_L3 (2 * MAX_NUMNODES)
  298. static int drain_freelist(struct kmem_cache *cache,
  299. struct kmem_list3 *l3, int tofree);
  300. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  301. int node);
  302. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  303. static void cache_reap(struct work_struct *unused);
  304. /*
  305. * This function must be completely optimized away if a constant is passed to
  306. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  307. */
  308. static __always_inline int index_of(const size_t size)
  309. {
  310. extern void __bad_size(void);
  311. if (__builtin_constant_p(size)) {
  312. int i = 0;
  313. #define CACHE(x) \
  314. if (size <=x) \
  315. return i; \
  316. else \
  317. i++;
  318. #include <linux/kmalloc_sizes.h>
  319. #undef CACHE
  320. __bad_size();
  321. } else
  322. __bad_size();
  323. return 0;
  324. }
  325. static int slab_early_init = 1;
  326. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  327. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  328. static void kmem_list3_init(struct kmem_list3 *parent)
  329. {
  330. INIT_LIST_HEAD(&parent->slabs_full);
  331. INIT_LIST_HEAD(&parent->slabs_partial);
  332. INIT_LIST_HEAD(&parent->slabs_free);
  333. parent->shared = NULL;
  334. parent->alien = NULL;
  335. parent->colour_next = 0;
  336. spin_lock_init(&parent->list_lock);
  337. parent->free_objects = 0;
  338. parent->free_touched = 0;
  339. }
  340. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  341. do { \
  342. INIT_LIST_HEAD(listp); \
  343. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  344. } while (0)
  345. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  346. do { \
  347. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  348. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  349. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  350. } while (0)
  351. #define CFLGS_OFF_SLAB (0x80000000UL)
  352. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  353. #define BATCHREFILL_LIMIT 16
  354. /*
  355. * Optimization question: fewer reaps means less probability for unnessary
  356. * cpucache drain/refill cycles.
  357. *
  358. * OTOH the cpuarrays can contain lots of objects,
  359. * which could lock up otherwise freeable slabs.
  360. */
  361. #define REAPTIMEOUT_CPUC (2*HZ)
  362. #define REAPTIMEOUT_LIST3 (4*HZ)
  363. #if STATS
  364. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  365. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  366. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  367. #define STATS_INC_GROWN(x) ((x)->grown++)
  368. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  369. #define STATS_SET_HIGH(x) \
  370. do { \
  371. if ((x)->num_active > (x)->high_mark) \
  372. (x)->high_mark = (x)->num_active; \
  373. } while (0)
  374. #define STATS_INC_ERR(x) ((x)->errors++)
  375. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  376. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  377. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  378. #define STATS_SET_FREEABLE(x, i) \
  379. do { \
  380. if ((x)->max_freeable < i) \
  381. (x)->max_freeable = i; \
  382. } while (0)
  383. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  384. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  385. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  386. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  387. #else
  388. #define STATS_INC_ACTIVE(x) do { } while (0)
  389. #define STATS_DEC_ACTIVE(x) do { } while (0)
  390. #define STATS_INC_ALLOCED(x) do { } while (0)
  391. #define STATS_INC_GROWN(x) do { } while (0)
  392. #define STATS_ADD_REAPED(x,y) do { } while (0)
  393. #define STATS_SET_HIGH(x) do { } while (0)
  394. #define STATS_INC_ERR(x) do { } while (0)
  395. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  396. #define STATS_INC_NODEFREES(x) do { } while (0)
  397. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  398. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  399. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  400. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  401. #define STATS_INC_FREEHIT(x) do { } while (0)
  402. #define STATS_INC_FREEMISS(x) do { } while (0)
  403. #endif
  404. #if DEBUG
  405. /*
  406. * memory layout of objects:
  407. * 0 : objp
  408. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  409. * the end of an object is aligned with the end of the real
  410. * allocation. Catches writes behind the end of the allocation.
  411. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  412. * redzone word.
  413. * cachep->obj_offset: The real object.
  414. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  415. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  416. * [BYTES_PER_WORD long]
  417. */
  418. static int obj_offset(struct kmem_cache *cachep)
  419. {
  420. return cachep->obj_offset;
  421. }
  422. static int obj_size(struct kmem_cache *cachep)
  423. {
  424. return cachep->obj_size;
  425. }
  426. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  427. {
  428. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  429. return (unsigned long long*) (objp + obj_offset(cachep) -
  430. sizeof(unsigned long long));
  431. }
  432. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  433. {
  434. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  435. if (cachep->flags & SLAB_STORE_USER)
  436. return (unsigned long long *)(objp + cachep->buffer_size -
  437. sizeof(unsigned long long) -
  438. REDZONE_ALIGN);
  439. return (unsigned long long *) (objp + cachep->buffer_size -
  440. sizeof(unsigned long long));
  441. }
  442. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  443. {
  444. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  445. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  446. }
  447. #else
  448. #define obj_offset(x) 0
  449. #define obj_size(cachep) (cachep->buffer_size)
  450. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  451. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  452. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  453. #endif
  454. #ifdef CONFIG_KMEMTRACE
  455. size_t slab_buffer_size(struct kmem_cache *cachep)
  456. {
  457. return cachep->buffer_size;
  458. }
  459. EXPORT_SYMBOL(slab_buffer_size);
  460. #endif
  461. /*
  462. * Do not go above this order unless 0 objects fit into the slab.
  463. */
  464. #define BREAK_GFP_ORDER_HI 1
  465. #define BREAK_GFP_ORDER_LO 0
  466. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  467. /*
  468. * Functions for storing/retrieving the cachep and or slab from the page
  469. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  470. * these are used to find the cache which an obj belongs to.
  471. */
  472. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  473. {
  474. page->lru.next = (struct list_head *)cache;
  475. }
  476. static inline struct kmem_cache *page_get_cache(struct page *page)
  477. {
  478. page = compound_head(page);
  479. BUG_ON(!PageSlab(page));
  480. return (struct kmem_cache *)page->lru.next;
  481. }
  482. static inline void page_set_slab(struct page *page, struct slab *slab)
  483. {
  484. page->lru.prev = (struct list_head *)slab;
  485. }
  486. static inline struct slab *page_get_slab(struct page *page)
  487. {
  488. BUG_ON(!PageSlab(page));
  489. return (struct slab *)page->lru.prev;
  490. }
  491. static inline struct kmem_cache *virt_to_cache(const void *obj)
  492. {
  493. struct page *page = virt_to_head_page(obj);
  494. return page_get_cache(page);
  495. }
  496. static inline struct slab *virt_to_slab(const void *obj)
  497. {
  498. struct page *page = virt_to_head_page(obj);
  499. return page_get_slab(page);
  500. }
  501. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  502. unsigned int idx)
  503. {
  504. return slab->s_mem + cache->buffer_size * idx;
  505. }
  506. /*
  507. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  508. * Using the fact that buffer_size is a constant for a particular cache,
  509. * we can replace (offset / cache->buffer_size) by
  510. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  511. */
  512. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  513. const struct slab *slab, void *obj)
  514. {
  515. u32 offset = (obj - slab->s_mem);
  516. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  517. }
  518. /*
  519. * These are the default caches for kmalloc. Custom caches can have other sizes.
  520. */
  521. struct cache_sizes malloc_sizes[] = {
  522. #define CACHE(x) { .cs_size = (x) },
  523. #include <linux/kmalloc_sizes.h>
  524. CACHE(ULONG_MAX)
  525. #undef CACHE
  526. };
  527. EXPORT_SYMBOL(malloc_sizes);
  528. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  529. struct cache_names {
  530. char *name;
  531. char *name_dma;
  532. };
  533. static struct cache_names __initdata cache_names[] = {
  534. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  535. #include <linux/kmalloc_sizes.h>
  536. {NULL,}
  537. #undef CACHE
  538. };
  539. static struct arraycache_init initarray_cache __initdata =
  540. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  541. static struct arraycache_init initarray_generic =
  542. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  543. /* internal cache of cache description objs */
  544. static struct kmem_cache cache_cache = {
  545. .batchcount = 1,
  546. .limit = BOOT_CPUCACHE_ENTRIES,
  547. .shared = 1,
  548. .buffer_size = sizeof(struct kmem_cache),
  549. .name = "kmem_cache",
  550. };
  551. #define BAD_ALIEN_MAGIC 0x01020304ul
  552. #ifdef CONFIG_LOCKDEP
  553. /*
  554. * Slab sometimes uses the kmalloc slabs to store the slab headers
  555. * for other slabs "off slab".
  556. * The locking for this is tricky in that it nests within the locks
  557. * of all other slabs in a few places; to deal with this special
  558. * locking we put on-slab caches into a separate lock-class.
  559. *
  560. * We set lock class for alien array caches which are up during init.
  561. * The lock annotation will be lost if all cpus of a node goes down and
  562. * then comes back up during hotplug
  563. */
  564. static struct lock_class_key on_slab_l3_key;
  565. static struct lock_class_key on_slab_alc_key;
  566. static inline void init_lock_keys(void)
  567. {
  568. int q;
  569. struct cache_sizes *s = malloc_sizes;
  570. while (s->cs_size != ULONG_MAX) {
  571. for_each_node(q) {
  572. struct array_cache **alc;
  573. int r;
  574. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  575. if (!l3 || OFF_SLAB(s->cs_cachep))
  576. continue;
  577. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  578. alc = l3->alien;
  579. /*
  580. * FIXME: This check for BAD_ALIEN_MAGIC
  581. * should go away when common slab code is taught to
  582. * work even without alien caches.
  583. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  584. * for alloc_alien_cache,
  585. */
  586. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  587. continue;
  588. for_each_node(r) {
  589. if (alc[r])
  590. lockdep_set_class(&alc[r]->lock,
  591. &on_slab_alc_key);
  592. }
  593. }
  594. s++;
  595. }
  596. }
  597. #else
  598. static inline void init_lock_keys(void)
  599. {
  600. }
  601. #endif
  602. /*
  603. * Guard access to the cache-chain.
  604. */
  605. static DEFINE_MUTEX(cache_chain_mutex);
  606. static struct list_head cache_chain;
  607. /*
  608. * chicken and egg problem: delay the per-cpu array allocation
  609. * until the general caches are up.
  610. */
  611. static enum {
  612. NONE,
  613. PARTIAL_AC,
  614. PARTIAL_L3,
  615. EARLY,
  616. FULL
  617. } g_cpucache_up;
  618. /*
  619. * used by boot code to determine if it can use slab based allocator
  620. */
  621. int slab_is_available(void)
  622. {
  623. return g_cpucache_up >= EARLY;
  624. }
  625. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  626. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  627. {
  628. return cachep->array[smp_processor_id()];
  629. }
  630. static inline struct kmem_cache *__find_general_cachep(size_t size,
  631. gfp_t gfpflags)
  632. {
  633. struct cache_sizes *csizep = malloc_sizes;
  634. #if DEBUG
  635. /* This happens if someone tries to call
  636. * kmem_cache_create(), or __kmalloc(), before
  637. * the generic caches are initialized.
  638. */
  639. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  640. #endif
  641. if (!size)
  642. return ZERO_SIZE_PTR;
  643. while (size > csizep->cs_size)
  644. csizep++;
  645. /*
  646. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  647. * has cs_{dma,}cachep==NULL. Thus no special case
  648. * for large kmalloc calls required.
  649. */
  650. #ifdef CONFIG_ZONE_DMA
  651. if (unlikely(gfpflags & GFP_DMA))
  652. return csizep->cs_dmacachep;
  653. #endif
  654. return csizep->cs_cachep;
  655. }
  656. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  657. {
  658. return __find_general_cachep(size, gfpflags);
  659. }
  660. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  661. {
  662. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  663. }
  664. /*
  665. * Calculate the number of objects and left-over bytes for a given buffer size.
  666. */
  667. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  668. size_t align, int flags, size_t *left_over,
  669. unsigned int *num)
  670. {
  671. int nr_objs;
  672. size_t mgmt_size;
  673. size_t slab_size = PAGE_SIZE << gfporder;
  674. /*
  675. * The slab management structure can be either off the slab or
  676. * on it. For the latter case, the memory allocated for a
  677. * slab is used for:
  678. *
  679. * - The struct slab
  680. * - One kmem_bufctl_t for each object
  681. * - Padding to respect alignment of @align
  682. * - @buffer_size bytes for each object
  683. *
  684. * If the slab management structure is off the slab, then the
  685. * alignment will already be calculated into the size. Because
  686. * the slabs are all pages aligned, the objects will be at the
  687. * correct alignment when allocated.
  688. */
  689. if (flags & CFLGS_OFF_SLAB) {
  690. mgmt_size = 0;
  691. nr_objs = slab_size / buffer_size;
  692. if (nr_objs > SLAB_LIMIT)
  693. nr_objs = SLAB_LIMIT;
  694. } else {
  695. /*
  696. * Ignore padding for the initial guess. The padding
  697. * is at most @align-1 bytes, and @buffer_size is at
  698. * least @align. In the worst case, this result will
  699. * be one greater than the number of objects that fit
  700. * into the memory allocation when taking the padding
  701. * into account.
  702. */
  703. nr_objs = (slab_size - sizeof(struct slab)) /
  704. (buffer_size + sizeof(kmem_bufctl_t));
  705. /*
  706. * This calculated number will be either the right
  707. * amount, or one greater than what we want.
  708. */
  709. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  710. > slab_size)
  711. nr_objs--;
  712. if (nr_objs > SLAB_LIMIT)
  713. nr_objs = SLAB_LIMIT;
  714. mgmt_size = slab_mgmt_size(nr_objs, align);
  715. }
  716. *num = nr_objs;
  717. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  718. }
  719. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  720. static void __slab_error(const char *function, struct kmem_cache *cachep,
  721. char *msg)
  722. {
  723. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  724. function, cachep->name, msg);
  725. dump_stack();
  726. }
  727. /*
  728. * By default on NUMA we use alien caches to stage the freeing of
  729. * objects allocated from other nodes. This causes massive memory
  730. * inefficiencies when using fake NUMA setup to split memory into a
  731. * large number of small nodes, so it can be disabled on the command
  732. * line
  733. */
  734. static int use_alien_caches __read_mostly = 1;
  735. static int __init noaliencache_setup(char *s)
  736. {
  737. use_alien_caches = 0;
  738. return 1;
  739. }
  740. __setup("noaliencache", noaliencache_setup);
  741. #ifdef CONFIG_NUMA
  742. /*
  743. * Special reaping functions for NUMA systems called from cache_reap().
  744. * These take care of doing round robin flushing of alien caches (containing
  745. * objects freed on different nodes from which they were allocated) and the
  746. * flushing of remote pcps by calling drain_node_pages.
  747. */
  748. static DEFINE_PER_CPU(unsigned long, reap_node);
  749. static void init_reap_node(int cpu)
  750. {
  751. int node;
  752. node = next_node(cpu_to_node(cpu), node_online_map);
  753. if (node == MAX_NUMNODES)
  754. node = first_node(node_online_map);
  755. per_cpu(reap_node, cpu) = node;
  756. }
  757. static void next_reap_node(void)
  758. {
  759. int node = __get_cpu_var(reap_node);
  760. node = next_node(node, node_online_map);
  761. if (unlikely(node >= MAX_NUMNODES))
  762. node = first_node(node_online_map);
  763. __get_cpu_var(reap_node) = node;
  764. }
  765. #else
  766. #define init_reap_node(cpu) do { } while (0)
  767. #define next_reap_node(void) do { } while (0)
  768. #endif
  769. /*
  770. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  771. * via the workqueue/eventd.
  772. * Add the CPU number into the expiration time to minimize the possibility of
  773. * the CPUs getting into lockstep and contending for the global cache chain
  774. * lock.
  775. */
  776. static void __cpuinit start_cpu_timer(int cpu)
  777. {
  778. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  779. /*
  780. * When this gets called from do_initcalls via cpucache_init(),
  781. * init_workqueues() has already run, so keventd will be setup
  782. * at that time.
  783. */
  784. if (keventd_up() && reap_work->work.func == NULL) {
  785. init_reap_node(cpu);
  786. INIT_DELAYED_WORK(reap_work, cache_reap);
  787. schedule_delayed_work_on(cpu, reap_work,
  788. __round_jiffies_relative(HZ, cpu));
  789. }
  790. }
  791. static struct array_cache *alloc_arraycache(int node, int entries,
  792. int batchcount, gfp_t gfp)
  793. {
  794. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  795. struct array_cache *nc = NULL;
  796. nc = kmalloc_node(memsize, gfp, node);
  797. /*
  798. * The array_cache structures contain pointers to free object.
  799. * However, when such objects are allocated or transfered to another
  800. * cache the pointers are not cleared and they could be counted as
  801. * valid references during a kmemleak scan. Therefore, kmemleak must
  802. * not scan such objects.
  803. */
  804. kmemleak_no_scan(nc);
  805. if (nc) {
  806. nc->avail = 0;
  807. nc->limit = entries;
  808. nc->batchcount = batchcount;
  809. nc->touched = 0;
  810. spin_lock_init(&nc->lock);
  811. }
  812. return nc;
  813. }
  814. /*
  815. * Transfer objects in one arraycache to another.
  816. * Locking must be handled by the caller.
  817. *
  818. * Return the number of entries transferred.
  819. */
  820. static int transfer_objects(struct array_cache *to,
  821. struct array_cache *from, unsigned int max)
  822. {
  823. /* Figure out how many entries to transfer */
  824. int nr = min(min(from->avail, max), to->limit - to->avail);
  825. if (!nr)
  826. return 0;
  827. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  828. sizeof(void *) *nr);
  829. from->avail -= nr;
  830. to->avail += nr;
  831. to->touched = 1;
  832. return nr;
  833. }
  834. #ifndef CONFIG_NUMA
  835. #define drain_alien_cache(cachep, alien) do { } while (0)
  836. #define reap_alien(cachep, l3) do { } while (0)
  837. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  838. {
  839. return (struct array_cache **)BAD_ALIEN_MAGIC;
  840. }
  841. static inline void free_alien_cache(struct array_cache **ac_ptr)
  842. {
  843. }
  844. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  845. {
  846. return 0;
  847. }
  848. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  849. gfp_t flags)
  850. {
  851. return NULL;
  852. }
  853. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  854. gfp_t flags, int nodeid)
  855. {
  856. return NULL;
  857. }
  858. #else /* CONFIG_NUMA */
  859. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  860. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  861. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  862. {
  863. struct array_cache **ac_ptr;
  864. int memsize = sizeof(void *) * nr_node_ids;
  865. int i;
  866. if (limit > 1)
  867. limit = 12;
  868. ac_ptr = kmalloc_node(memsize, gfp, node);
  869. if (ac_ptr) {
  870. for_each_node(i) {
  871. if (i == node || !node_online(i)) {
  872. ac_ptr[i] = NULL;
  873. continue;
  874. }
  875. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  876. if (!ac_ptr[i]) {
  877. for (i--; i >= 0; i--)
  878. kfree(ac_ptr[i]);
  879. kfree(ac_ptr);
  880. return NULL;
  881. }
  882. }
  883. }
  884. return ac_ptr;
  885. }
  886. static void free_alien_cache(struct array_cache **ac_ptr)
  887. {
  888. int i;
  889. if (!ac_ptr)
  890. return;
  891. for_each_node(i)
  892. kfree(ac_ptr[i]);
  893. kfree(ac_ptr);
  894. }
  895. static void __drain_alien_cache(struct kmem_cache *cachep,
  896. struct array_cache *ac, int node)
  897. {
  898. struct kmem_list3 *rl3 = cachep->nodelists[node];
  899. if (ac->avail) {
  900. spin_lock(&rl3->list_lock);
  901. /*
  902. * Stuff objects into the remote nodes shared array first.
  903. * That way we could avoid the overhead of putting the objects
  904. * into the free lists and getting them back later.
  905. */
  906. if (rl3->shared)
  907. transfer_objects(rl3->shared, ac, ac->limit);
  908. free_block(cachep, ac->entry, ac->avail, node);
  909. ac->avail = 0;
  910. spin_unlock(&rl3->list_lock);
  911. }
  912. }
  913. /*
  914. * Called from cache_reap() to regularly drain alien caches round robin.
  915. */
  916. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  917. {
  918. int node = __get_cpu_var(reap_node);
  919. if (l3->alien) {
  920. struct array_cache *ac = l3->alien[node];
  921. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  922. __drain_alien_cache(cachep, ac, node);
  923. spin_unlock_irq(&ac->lock);
  924. }
  925. }
  926. }
  927. static void drain_alien_cache(struct kmem_cache *cachep,
  928. struct array_cache **alien)
  929. {
  930. int i = 0;
  931. struct array_cache *ac;
  932. unsigned long flags;
  933. for_each_online_node(i) {
  934. ac = alien[i];
  935. if (ac) {
  936. spin_lock_irqsave(&ac->lock, flags);
  937. __drain_alien_cache(cachep, ac, i);
  938. spin_unlock_irqrestore(&ac->lock, flags);
  939. }
  940. }
  941. }
  942. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  943. {
  944. struct slab *slabp = virt_to_slab(objp);
  945. int nodeid = slabp->nodeid;
  946. struct kmem_list3 *l3;
  947. struct array_cache *alien = NULL;
  948. int node;
  949. node = numa_node_id();
  950. /*
  951. * Make sure we are not freeing a object from another node to the array
  952. * cache on this cpu.
  953. */
  954. if (likely(slabp->nodeid == node))
  955. return 0;
  956. l3 = cachep->nodelists[node];
  957. STATS_INC_NODEFREES(cachep);
  958. if (l3->alien && l3->alien[nodeid]) {
  959. alien = l3->alien[nodeid];
  960. spin_lock(&alien->lock);
  961. if (unlikely(alien->avail == alien->limit)) {
  962. STATS_INC_ACOVERFLOW(cachep);
  963. __drain_alien_cache(cachep, alien, nodeid);
  964. }
  965. alien->entry[alien->avail++] = objp;
  966. spin_unlock(&alien->lock);
  967. } else {
  968. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  969. free_block(cachep, &objp, 1, nodeid);
  970. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  971. }
  972. return 1;
  973. }
  974. #endif
  975. static void __cpuinit cpuup_canceled(long cpu)
  976. {
  977. struct kmem_cache *cachep;
  978. struct kmem_list3 *l3 = NULL;
  979. int node = cpu_to_node(cpu);
  980. const struct cpumask *mask = cpumask_of_node(node);
  981. list_for_each_entry(cachep, &cache_chain, next) {
  982. struct array_cache *nc;
  983. struct array_cache *shared;
  984. struct array_cache **alien;
  985. /* cpu is dead; no one can alloc from it. */
  986. nc = cachep->array[cpu];
  987. cachep->array[cpu] = NULL;
  988. l3 = cachep->nodelists[node];
  989. if (!l3)
  990. goto free_array_cache;
  991. spin_lock_irq(&l3->list_lock);
  992. /* Free limit for this kmem_list3 */
  993. l3->free_limit -= cachep->batchcount;
  994. if (nc)
  995. free_block(cachep, nc->entry, nc->avail, node);
  996. if (!cpus_empty(*mask)) {
  997. spin_unlock_irq(&l3->list_lock);
  998. goto free_array_cache;
  999. }
  1000. shared = l3->shared;
  1001. if (shared) {
  1002. free_block(cachep, shared->entry,
  1003. shared->avail, node);
  1004. l3->shared = NULL;
  1005. }
  1006. alien = l3->alien;
  1007. l3->alien = NULL;
  1008. spin_unlock_irq(&l3->list_lock);
  1009. kfree(shared);
  1010. if (alien) {
  1011. drain_alien_cache(cachep, alien);
  1012. free_alien_cache(alien);
  1013. }
  1014. free_array_cache:
  1015. kfree(nc);
  1016. }
  1017. /*
  1018. * In the previous loop, all the objects were freed to
  1019. * the respective cache's slabs, now we can go ahead and
  1020. * shrink each nodelist to its limit.
  1021. */
  1022. list_for_each_entry(cachep, &cache_chain, next) {
  1023. l3 = cachep->nodelists[node];
  1024. if (!l3)
  1025. continue;
  1026. drain_freelist(cachep, l3, l3->free_objects);
  1027. }
  1028. }
  1029. static int __cpuinit cpuup_prepare(long cpu)
  1030. {
  1031. struct kmem_cache *cachep;
  1032. struct kmem_list3 *l3 = NULL;
  1033. int node = cpu_to_node(cpu);
  1034. const int memsize = sizeof(struct kmem_list3);
  1035. /*
  1036. * We need to do this right in the beginning since
  1037. * alloc_arraycache's are going to use this list.
  1038. * kmalloc_node allows us to add the slab to the right
  1039. * kmem_list3 and not this cpu's kmem_list3
  1040. */
  1041. list_for_each_entry(cachep, &cache_chain, next) {
  1042. /*
  1043. * Set up the size64 kmemlist for cpu before we can
  1044. * begin anything. Make sure some other cpu on this
  1045. * node has not already allocated this
  1046. */
  1047. if (!cachep->nodelists[node]) {
  1048. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1049. if (!l3)
  1050. goto bad;
  1051. kmem_list3_init(l3);
  1052. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1053. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1054. /*
  1055. * The l3s don't come and go as CPUs come and
  1056. * go. cache_chain_mutex is sufficient
  1057. * protection here.
  1058. */
  1059. cachep->nodelists[node] = l3;
  1060. }
  1061. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1062. cachep->nodelists[node]->free_limit =
  1063. (1 + nr_cpus_node(node)) *
  1064. cachep->batchcount + cachep->num;
  1065. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1066. }
  1067. /*
  1068. * Now we can go ahead with allocating the shared arrays and
  1069. * array caches
  1070. */
  1071. list_for_each_entry(cachep, &cache_chain, next) {
  1072. struct array_cache *nc;
  1073. struct array_cache *shared = NULL;
  1074. struct array_cache **alien = NULL;
  1075. nc = alloc_arraycache(node, cachep->limit,
  1076. cachep->batchcount, GFP_KERNEL);
  1077. if (!nc)
  1078. goto bad;
  1079. if (cachep->shared) {
  1080. shared = alloc_arraycache(node,
  1081. cachep->shared * cachep->batchcount,
  1082. 0xbaadf00d, GFP_KERNEL);
  1083. if (!shared) {
  1084. kfree(nc);
  1085. goto bad;
  1086. }
  1087. }
  1088. if (use_alien_caches) {
  1089. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1090. if (!alien) {
  1091. kfree(shared);
  1092. kfree(nc);
  1093. goto bad;
  1094. }
  1095. }
  1096. cachep->array[cpu] = nc;
  1097. l3 = cachep->nodelists[node];
  1098. BUG_ON(!l3);
  1099. spin_lock_irq(&l3->list_lock);
  1100. if (!l3->shared) {
  1101. /*
  1102. * We are serialised from CPU_DEAD or
  1103. * CPU_UP_CANCELLED by the cpucontrol lock
  1104. */
  1105. l3->shared = shared;
  1106. shared = NULL;
  1107. }
  1108. #ifdef CONFIG_NUMA
  1109. if (!l3->alien) {
  1110. l3->alien = alien;
  1111. alien = NULL;
  1112. }
  1113. #endif
  1114. spin_unlock_irq(&l3->list_lock);
  1115. kfree(shared);
  1116. free_alien_cache(alien);
  1117. }
  1118. return 0;
  1119. bad:
  1120. cpuup_canceled(cpu);
  1121. return -ENOMEM;
  1122. }
  1123. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1124. unsigned long action, void *hcpu)
  1125. {
  1126. long cpu = (long)hcpu;
  1127. int err = 0;
  1128. switch (action) {
  1129. case CPU_UP_PREPARE:
  1130. case CPU_UP_PREPARE_FROZEN:
  1131. mutex_lock(&cache_chain_mutex);
  1132. err = cpuup_prepare(cpu);
  1133. mutex_unlock(&cache_chain_mutex);
  1134. break;
  1135. case CPU_ONLINE:
  1136. case CPU_ONLINE_FROZEN:
  1137. start_cpu_timer(cpu);
  1138. break;
  1139. #ifdef CONFIG_HOTPLUG_CPU
  1140. case CPU_DOWN_PREPARE:
  1141. case CPU_DOWN_PREPARE_FROZEN:
  1142. /*
  1143. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1144. * held so that if cache_reap() is invoked it cannot do
  1145. * anything expensive but will only modify reap_work
  1146. * and reschedule the timer.
  1147. */
  1148. cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
  1149. /* Now the cache_reaper is guaranteed to be not running. */
  1150. per_cpu(reap_work, cpu).work.func = NULL;
  1151. break;
  1152. case CPU_DOWN_FAILED:
  1153. case CPU_DOWN_FAILED_FROZEN:
  1154. start_cpu_timer(cpu);
  1155. break;
  1156. case CPU_DEAD:
  1157. case CPU_DEAD_FROZEN:
  1158. /*
  1159. * Even if all the cpus of a node are down, we don't free the
  1160. * kmem_list3 of any cache. This to avoid a race between
  1161. * cpu_down, and a kmalloc allocation from another cpu for
  1162. * memory from the node of the cpu going down. The list3
  1163. * structure is usually allocated from kmem_cache_create() and
  1164. * gets destroyed at kmem_cache_destroy().
  1165. */
  1166. /* fall through */
  1167. #endif
  1168. case CPU_UP_CANCELED:
  1169. case CPU_UP_CANCELED_FROZEN:
  1170. mutex_lock(&cache_chain_mutex);
  1171. cpuup_canceled(cpu);
  1172. mutex_unlock(&cache_chain_mutex);
  1173. break;
  1174. }
  1175. return err ? NOTIFY_BAD : NOTIFY_OK;
  1176. }
  1177. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1178. &cpuup_callback, NULL, 0
  1179. };
  1180. /*
  1181. * swap the static kmem_list3 with kmalloced memory
  1182. */
  1183. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1184. int nodeid)
  1185. {
  1186. struct kmem_list3 *ptr;
  1187. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1188. BUG_ON(!ptr);
  1189. memcpy(ptr, list, sizeof(struct kmem_list3));
  1190. /*
  1191. * Do not assume that spinlocks can be initialized via memcpy:
  1192. */
  1193. spin_lock_init(&ptr->list_lock);
  1194. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1195. cachep->nodelists[nodeid] = ptr;
  1196. }
  1197. /*
  1198. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1199. * size of kmem_list3.
  1200. */
  1201. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1202. {
  1203. int node;
  1204. for_each_online_node(node) {
  1205. cachep->nodelists[node] = &initkmem_list3[index + node];
  1206. cachep->nodelists[node]->next_reap = jiffies +
  1207. REAPTIMEOUT_LIST3 +
  1208. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1209. }
  1210. }
  1211. /*
  1212. * Initialisation. Called after the page allocator have been initialised and
  1213. * before smp_init().
  1214. */
  1215. void __init kmem_cache_init(void)
  1216. {
  1217. size_t left_over;
  1218. struct cache_sizes *sizes;
  1219. struct cache_names *names;
  1220. int i;
  1221. int order;
  1222. int node;
  1223. if (num_possible_nodes() == 1)
  1224. use_alien_caches = 0;
  1225. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1226. kmem_list3_init(&initkmem_list3[i]);
  1227. if (i < MAX_NUMNODES)
  1228. cache_cache.nodelists[i] = NULL;
  1229. }
  1230. set_up_list3s(&cache_cache, CACHE_CACHE);
  1231. /*
  1232. * Fragmentation resistance on low memory - only use bigger
  1233. * page orders on machines with more than 32MB of memory.
  1234. */
  1235. if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1236. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1237. /* Bootstrap is tricky, because several objects are allocated
  1238. * from caches that do not exist yet:
  1239. * 1) initialize the cache_cache cache: it contains the struct
  1240. * kmem_cache structures of all caches, except cache_cache itself:
  1241. * cache_cache is statically allocated.
  1242. * Initially an __init data area is used for the head array and the
  1243. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1244. * array at the end of the bootstrap.
  1245. * 2) Create the first kmalloc cache.
  1246. * The struct kmem_cache for the new cache is allocated normally.
  1247. * An __init data area is used for the head array.
  1248. * 3) Create the remaining kmalloc caches, with minimally sized
  1249. * head arrays.
  1250. * 4) Replace the __init data head arrays for cache_cache and the first
  1251. * kmalloc cache with kmalloc allocated arrays.
  1252. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1253. * the other cache's with kmalloc allocated memory.
  1254. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1255. */
  1256. node = numa_node_id();
  1257. /* 1) create the cache_cache */
  1258. INIT_LIST_HEAD(&cache_chain);
  1259. list_add(&cache_cache.next, &cache_chain);
  1260. cache_cache.colour_off = cache_line_size();
  1261. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1262. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1263. /*
  1264. * struct kmem_cache size depends on nr_node_ids, which
  1265. * can be less than MAX_NUMNODES.
  1266. */
  1267. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1268. nr_node_ids * sizeof(struct kmem_list3 *);
  1269. #if DEBUG
  1270. cache_cache.obj_size = cache_cache.buffer_size;
  1271. #endif
  1272. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1273. cache_line_size());
  1274. cache_cache.reciprocal_buffer_size =
  1275. reciprocal_value(cache_cache.buffer_size);
  1276. for (order = 0; order < MAX_ORDER; order++) {
  1277. cache_estimate(order, cache_cache.buffer_size,
  1278. cache_line_size(), 0, &left_over, &cache_cache.num);
  1279. if (cache_cache.num)
  1280. break;
  1281. }
  1282. BUG_ON(!cache_cache.num);
  1283. cache_cache.gfporder = order;
  1284. cache_cache.colour = left_over / cache_cache.colour_off;
  1285. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1286. sizeof(struct slab), cache_line_size());
  1287. /* 2+3) create the kmalloc caches */
  1288. sizes = malloc_sizes;
  1289. names = cache_names;
  1290. /*
  1291. * Initialize the caches that provide memory for the array cache and the
  1292. * kmem_list3 structures first. Without this, further allocations will
  1293. * bug.
  1294. */
  1295. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1296. sizes[INDEX_AC].cs_size,
  1297. ARCH_KMALLOC_MINALIGN,
  1298. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1299. NULL);
  1300. if (INDEX_AC != INDEX_L3) {
  1301. sizes[INDEX_L3].cs_cachep =
  1302. kmem_cache_create(names[INDEX_L3].name,
  1303. sizes[INDEX_L3].cs_size,
  1304. ARCH_KMALLOC_MINALIGN,
  1305. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1306. NULL);
  1307. }
  1308. slab_early_init = 0;
  1309. while (sizes->cs_size != ULONG_MAX) {
  1310. /*
  1311. * For performance, all the general caches are L1 aligned.
  1312. * This should be particularly beneficial on SMP boxes, as it
  1313. * eliminates "false sharing".
  1314. * Note for systems short on memory removing the alignment will
  1315. * allow tighter packing of the smaller caches.
  1316. */
  1317. if (!sizes->cs_cachep) {
  1318. sizes->cs_cachep = kmem_cache_create(names->name,
  1319. sizes->cs_size,
  1320. ARCH_KMALLOC_MINALIGN,
  1321. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1322. NULL);
  1323. }
  1324. #ifdef CONFIG_ZONE_DMA
  1325. sizes->cs_dmacachep = kmem_cache_create(
  1326. names->name_dma,
  1327. sizes->cs_size,
  1328. ARCH_KMALLOC_MINALIGN,
  1329. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1330. SLAB_PANIC,
  1331. NULL);
  1332. #endif
  1333. sizes++;
  1334. names++;
  1335. }
  1336. /* 4) Replace the bootstrap head arrays */
  1337. {
  1338. struct array_cache *ptr;
  1339. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1340. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1341. memcpy(ptr, cpu_cache_get(&cache_cache),
  1342. sizeof(struct arraycache_init));
  1343. /*
  1344. * Do not assume that spinlocks can be initialized via memcpy:
  1345. */
  1346. spin_lock_init(&ptr->lock);
  1347. cache_cache.array[smp_processor_id()] = ptr;
  1348. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1349. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1350. != &initarray_generic.cache);
  1351. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1352. sizeof(struct arraycache_init));
  1353. /*
  1354. * Do not assume that spinlocks can be initialized via memcpy:
  1355. */
  1356. spin_lock_init(&ptr->lock);
  1357. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1358. ptr;
  1359. }
  1360. /* 5) Replace the bootstrap kmem_list3's */
  1361. {
  1362. int nid;
  1363. for_each_online_node(nid) {
  1364. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1365. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1366. &initkmem_list3[SIZE_AC + nid], nid);
  1367. if (INDEX_AC != INDEX_L3) {
  1368. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1369. &initkmem_list3[SIZE_L3 + nid], nid);
  1370. }
  1371. }
  1372. }
  1373. g_cpucache_up = EARLY;
  1374. }
  1375. void __init kmem_cache_init_late(void)
  1376. {
  1377. struct kmem_cache *cachep;
  1378. /* 6) resize the head arrays to their final sizes */
  1379. mutex_lock(&cache_chain_mutex);
  1380. list_for_each_entry(cachep, &cache_chain, next)
  1381. if (enable_cpucache(cachep, GFP_NOWAIT))
  1382. BUG();
  1383. mutex_unlock(&cache_chain_mutex);
  1384. /* Done! */
  1385. g_cpucache_up = FULL;
  1386. /* Annotate slab for lockdep -- annotate the malloc caches */
  1387. init_lock_keys();
  1388. /*
  1389. * Register a cpu startup notifier callback that initializes
  1390. * cpu_cache_get for all new cpus
  1391. */
  1392. register_cpu_notifier(&cpucache_notifier);
  1393. /*
  1394. * The reap timers are started later, with a module init call: That part
  1395. * of the kernel is not yet operational.
  1396. */
  1397. }
  1398. static int __init cpucache_init(void)
  1399. {
  1400. int cpu;
  1401. /*
  1402. * Register the timers that return unneeded pages to the page allocator
  1403. */
  1404. for_each_online_cpu(cpu)
  1405. start_cpu_timer(cpu);
  1406. return 0;
  1407. }
  1408. __initcall(cpucache_init);
  1409. /*
  1410. * Interface to system's page allocator. No need to hold the cache-lock.
  1411. *
  1412. * If we requested dmaable memory, we will get it. Even if we
  1413. * did not request dmaable memory, we might get it, but that
  1414. * would be relatively rare and ignorable.
  1415. */
  1416. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1417. {
  1418. struct page *page;
  1419. int nr_pages;
  1420. int i;
  1421. #ifndef CONFIG_MMU
  1422. /*
  1423. * Nommu uses slab's for process anonymous memory allocations, and thus
  1424. * requires __GFP_COMP to properly refcount higher order allocations
  1425. */
  1426. flags |= __GFP_COMP;
  1427. #endif
  1428. flags |= cachep->gfpflags;
  1429. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1430. flags |= __GFP_RECLAIMABLE;
  1431. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1432. if (!page)
  1433. return NULL;
  1434. nr_pages = (1 << cachep->gfporder);
  1435. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1436. add_zone_page_state(page_zone(page),
  1437. NR_SLAB_RECLAIMABLE, nr_pages);
  1438. else
  1439. add_zone_page_state(page_zone(page),
  1440. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1441. for (i = 0; i < nr_pages; i++)
  1442. __SetPageSlab(page + i);
  1443. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1444. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1445. if (cachep->ctor)
  1446. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1447. else
  1448. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1449. }
  1450. return page_address(page);
  1451. }
  1452. /*
  1453. * Interface to system's page release.
  1454. */
  1455. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1456. {
  1457. unsigned long i = (1 << cachep->gfporder);
  1458. struct page *page = virt_to_page(addr);
  1459. const unsigned long nr_freed = i;
  1460. kmemcheck_free_shadow(page, cachep->gfporder);
  1461. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1462. sub_zone_page_state(page_zone(page),
  1463. NR_SLAB_RECLAIMABLE, nr_freed);
  1464. else
  1465. sub_zone_page_state(page_zone(page),
  1466. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1467. while (i--) {
  1468. BUG_ON(!PageSlab(page));
  1469. __ClearPageSlab(page);
  1470. page++;
  1471. }
  1472. if (current->reclaim_state)
  1473. current->reclaim_state->reclaimed_slab += nr_freed;
  1474. free_pages((unsigned long)addr, cachep->gfporder);
  1475. }
  1476. static void kmem_rcu_free(struct rcu_head *head)
  1477. {
  1478. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1479. struct kmem_cache *cachep = slab_rcu->cachep;
  1480. kmem_freepages(cachep, slab_rcu->addr);
  1481. if (OFF_SLAB(cachep))
  1482. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1483. }
  1484. #if DEBUG
  1485. #ifdef CONFIG_DEBUG_PAGEALLOC
  1486. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1487. unsigned long caller)
  1488. {
  1489. int size = obj_size(cachep);
  1490. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1491. if (size < 5 * sizeof(unsigned long))
  1492. return;
  1493. *addr++ = 0x12345678;
  1494. *addr++ = caller;
  1495. *addr++ = smp_processor_id();
  1496. size -= 3 * sizeof(unsigned long);
  1497. {
  1498. unsigned long *sptr = &caller;
  1499. unsigned long svalue;
  1500. while (!kstack_end(sptr)) {
  1501. svalue = *sptr++;
  1502. if (kernel_text_address(svalue)) {
  1503. *addr++ = svalue;
  1504. size -= sizeof(unsigned long);
  1505. if (size <= sizeof(unsigned long))
  1506. break;
  1507. }
  1508. }
  1509. }
  1510. *addr++ = 0x87654321;
  1511. }
  1512. #endif
  1513. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1514. {
  1515. int size = obj_size(cachep);
  1516. addr = &((char *)addr)[obj_offset(cachep)];
  1517. memset(addr, val, size);
  1518. *(unsigned char *)(addr + size - 1) = POISON_END;
  1519. }
  1520. static void dump_line(char *data, int offset, int limit)
  1521. {
  1522. int i;
  1523. unsigned char error = 0;
  1524. int bad_count = 0;
  1525. printk(KERN_ERR "%03x:", offset);
  1526. for (i = 0; i < limit; i++) {
  1527. if (data[offset + i] != POISON_FREE) {
  1528. error = data[offset + i];
  1529. bad_count++;
  1530. }
  1531. printk(" %02x", (unsigned char)data[offset + i]);
  1532. }
  1533. printk("\n");
  1534. if (bad_count == 1) {
  1535. error ^= POISON_FREE;
  1536. if (!(error & (error - 1))) {
  1537. printk(KERN_ERR "Single bit error detected. Probably "
  1538. "bad RAM.\n");
  1539. #ifdef CONFIG_X86
  1540. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1541. "test tool.\n");
  1542. #else
  1543. printk(KERN_ERR "Run a memory test tool.\n");
  1544. #endif
  1545. }
  1546. }
  1547. }
  1548. #endif
  1549. #if DEBUG
  1550. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1551. {
  1552. int i, size;
  1553. char *realobj;
  1554. if (cachep->flags & SLAB_RED_ZONE) {
  1555. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1556. *dbg_redzone1(cachep, objp),
  1557. *dbg_redzone2(cachep, objp));
  1558. }
  1559. if (cachep->flags & SLAB_STORE_USER) {
  1560. printk(KERN_ERR "Last user: [<%p>]",
  1561. *dbg_userword(cachep, objp));
  1562. print_symbol("(%s)",
  1563. (unsigned long)*dbg_userword(cachep, objp));
  1564. printk("\n");
  1565. }
  1566. realobj = (char *)objp + obj_offset(cachep);
  1567. size = obj_size(cachep);
  1568. for (i = 0; i < size && lines; i += 16, lines--) {
  1569. int limit;
  1570. limit = 16;
  1571. if (i + limit > size)
  1572. limit = size - i;
  1573. dump_line(realobj, i, limit);
  1574. }
  1575. }
  1576. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1577. {
  1578. char *realobj;
  1579. int size, i;
  1580. int lines = 0;
  1581. realobj = (char *)objp + obj_offset(cachep);
  1582. size = obj_size(cachep);
  1583. for (i = 0; i < size; i++) {
  1584. char exp = POISON_FREE;
  1585. if (i == size - 1)
  1586. exp = POISON_END;
  1587. if (realobj[i] != exp) {
  1588. int limit;
  1589. /* Mismatch ! */
  1590. /* Print header */
  1591. if (lines == 0) {
  1592. printk(KERN_ERR
  1593. "Slab corruption: %s start=%p, len=%d\n",
  1594. cachep->name, realobj, size);
  1595. print_objinfo(cachep, objp, 0);
  1596. }
  1597. /* Hexdump the affected line */
  1598. i = (i / 16) * 16;
  1599. limit = 16;
  1600. if (i + limit > size)
  1601. limit = size - i;
  1602. dump_line(realobj, i, limit);
  1603. i += 16;
  1604. lines++;
  1605. /* Limit to 5 lines */
  1606. if (lines > 5)
  1607. break;
  1608. }
  1609. }
  1610. if (lines != 0) {
  1611. /* Print some data about the neighboring objects, if they
  1612. * exist:
  1613. */
  1614. struct slab *slabp = virt_to_slab(objp);
  1615. unsigned int objnr;
  1616. objnr = obj_to_index(cachep, slabp, objp);
  1617. if (objnr) {
  1618. objp = index_to_obj(cachep, slabp, objnr - 1);
  1619. realobj = (char *)objp + obj_offset(cachep);
  1620. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1621. realobj, size);
  1622. print_objinfo(cachep, objp, 2);
  1623. }
  1624. if (objnr + 1 < cachep->num) {
  1625. objp = index_to_obj(cachep, slabp, objnr + 1);
  1626. realobj = (char *)objp + obj_offset(cachep);
  1627. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1628. realobj, size);
  1629. print_objinfo(cachep, objp, 2);
  1630. }
  1631. }
  1632. }
  1633. #endif
  1634. #if DEBUG
  1635. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1636. {
  1637. int i;
  1638. for (i = 0; i < cachep->num; i++) {
  1639. void *objp = index_to_obj(cachep, slabp, i);
  1640. if (cachep->flags & SLAB_POISON) {
  1641. #ifdef CONFIG_DEBUG_PAGEALLOC
  1642. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1643. OFF_SLAB(cachep))
  1644. kernel_map_pages(virt_to_page(objp),
  1645. cachep->buffer_size / PAGE_SIZE, 1);
  1646. else
  1647. check_poison_obj(cachep, objp);
  1648. #else
  1649. check_poison_obj(cachep, objp);
  1650. #endif
  1651. }
  1652. if (cachep->flags & SLAB_RED_ZONE) {
  1653. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1654. slab_error(cachep, "start of a freed object "
  1655. "was overwritten");
  1656. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1657. slab_error(cachep, "end of a freed object "
  1658. "was overwritten");
  1659. }
  1660. }
  1661. }
  1662. #else
  1663. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1664. {
  1665. }
  1666. #endif
  1667. /**
  1668. * slab_destroy - destroy and release all objects in a slab
  1669. * @cachep: cache pointer being destroyed
  1670. * @slabp: slab pointer being destroyed
  1671. *
  1672. * Destroy all the objs in a slab, and release the mem back to the system.
  1673. * Before calling the slab must have been unlinked from the cache. The
  1674. * cache-lock is not held/needed.
  1675. */
  1676. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1677. {
  1678. void *addr = slabp->s_mem - slabp->colouroff;
  1679. slab_destroy_debugcheck(cachep, slabp);
  1680. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1681. struct slab_rcu *slab_rcu;
  1682. slab_rcu = (struct slab_rcu *)slabp;
  1683. slab_rcu->cachep = cachep;
  1684. slab_rcu->addr = addr;
  1685. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1686. } else {
  1687. kmem_freepages(cachep, addr);
  1688. if (OFF_SLAB(cachep))
  1689. kmem_cache_free(cachep->slabp_cache, slabp);
  1690. }
  1691. }
  1692. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1693. {
  1694. int i;
  1695. struct kmem_list3 *l3;
  1696. for_each_online_cpu(i)
  1697. kfree(cachep->array[i]);
  1698. /* NUMA: free the list3 structures */
  1699. for_each_online_node(i) {
  1700. l3 = cachep->nodelists[i];
  1701. if (l3) {
  1702. kfree(l3->shared);
  1703. free_alien_cache(l3->alien);
  1704. kfree(l3);
  1705. }
  1706. }
  1707. kmem_cache_free(&cache_cache, cachep);
  1708. }
  1709. /**
  1710. * calculate_slab_order - calculate size (page order) of slabs
  1711. * @cachep: pointer to the cache that is being created
  1712. * @size: size of objects to be created in this cache.
  1713. * @align: required alignment for the objects.
  1714. * @flags: slab allocation flags
  1715. *
  1716. * Also calculates the number of objects per slab.
  1717. *
  1718. * This could be made much more intelligent. For now, try to avoid using
  1719. * high order pages for slabs. When the gfp() functions are more friendly
  1720. * towards high-order requests, this should be changed.
  1721. */
  1722. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1723. size_t size, size_t align, unsigned long flags)
  1724. {
  1725. unsigned long offslab_limit;
  1726. size_t left_over = 0;
  1727. int gfporder;
  1728. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1729. unsigned int num;
  1730. size_t remainder;
  1731. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1732. if (!num)
  1733. continue;
  1734. if (flags & CFLGS_OFF_SLAB) {
  1735. /*
  1736. * Max number of objs-per-slab for caches which
  1737. * use off-slab slabs. Needed to avoid a possible
  1738. * looping condition in cache_grow().
  1739. */
  1740. offslab_limit = size - sizeof(struct slab);
  1741. offslab_limit /= sizeof(kmem_bufctl_t);
  1742. if (num > offslab_limit)
  1743. break;
  1744. }
  1745. /* Found something acceptable - save it away */
  1746. cachep->num = num;
  1747. cachep->gfporder = gfporder;
  1748. left_over = remainder;
  1749. /*
  1750. * A VFS-reclaimable slab tends to have most allocations
  1751. * as GFP_NOFS and we really don't want to have to be allocating
  1752. * higher-order pages when we are unable to shrink dcache.
  1753. */
  1754. if (flags & SLAB_RECLAIM_ACCOUNT)
  1755. break;
  1756. /*
  1757. * Large number of objects is good, but very large slabs are
  1758. * currently bad for the gfp()s.
  1759. */
  1760. if (gfporder >= slab_break_gfp_order)
  1761. break;
  1762. /*
  1763. * Acceptable internal fragmentation?
  1764. */
  1765. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1766. break;
  1767. }
  1768. return left_over;
  1769. }
  1770. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1771. {
  1772. if (g_cpucache_up == FULL)
  1773. return enable_cpucache(cachep, gfp);
  1774. if (g_cpucache_up == NONE) {
  1775. /*
  1776. * Note: the first kmem_cache_create must create the cache
  1777. * that's used by kmalloc(24), otherwise the creation of
  1778. * further caches will BUG().
  1779. */
  1780. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1781. /*
  1782. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1783. * the first cache, then we need to set up all its list3s,
  1784. * otherwise the creation of further caches will BUG().
  1785. */
  1786. set_up_list3s(cachep, SIZE_AC);
  1787. if (INDEX_AC == INDEX_L3)
  1788. g_cpucache_up = PARTIAL_L3;
  1789. else
  1790. g_cpucache_up = PARTIAL_AC;
  1791. } else {
  1792. cachep->array[smp_processor_id()] =
  1793. kmalloc(sizeof(struct arraycache_init), gfp);
  1794. if (g_cpucache_up == PARTIAL_AC) {
  1795. set_up_list3s(cachep, SIZE_L3);
  1796. g_cpucache_up = PARTIAL_L3;
  1797. } else {
  1798. int node;
  1799. for_each_online_node(node) {
  1800. cachep->nodelists[node] =
  1801. kmalloc_node(sizeof(struct kmem_list3),
  1802. gfp, node);
  1803. BUG_ON(!cachep->nodelists[node]);
  1804. kmem_list3_init(cachep->nodelists[node]);
  1805. }
  1806. }
  1807. }
  1808. cachep->nodelists[numa_node_id()]->next_reap =
  1809. jiffies + REAPTIMEOUT_LIST3 +
  1810. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1811. cpu_cache_get(cachep)->avail = 0;
  1812. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1813. cpu_cache_get(cachep)->batchcount = 1;
  1814. cpu_cache_get(cachep)->touched = 0;
  1815. cachep->batchcount = 1;
  1816. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1817. return 0;
  1818. }
  1819. /**
  1820. * kmem_cache_create - Create a cache.
  1821. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1822. * @size: The size of objects to be created in this cache.
  1823. * @align: The required alignment for the objects.
  1824. * @flags: SLAB flags
  1825. * @ctor: A constructor for the objects.
  1826. *
  1827. * Returns a ptr to the cache on success, NULL on failure.
  1828. * Cannot be called within a int, but can be interrupted.
  1829. * The @ctor is run when new pages are allocated by the cache.
  1830. *
  1831. * @name must be valid until the cache is destroyed. This implies that
  1832. * the module calling this has to destroy the cache before getting unloaded.
  1833. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1834. * therefore applications must manage it themselves.
  1835. *
  1836. * The flags are
  1837. *
  1838. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1839. * to catch references to uninitialised memory.
  1840. *
  1841. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1842. * for buffer overruns.
  1843. *
  1844. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1845. * cacheline. This can be beneficial if you're counting cycles as closely
  1846. * as davem.
  1847. */
  1848. struct kmem_cache *
  1849. kmem_cache_create (const char *name, size_t size, size_t align,
  1850. unsigned long flags, void (*ctor)(void *))
  1851. {
  1852. size_t left_over, slab_size, ralign;
  1853. struct kmem_cache *cachep = NULL, *pc;
  1854. gfp_t gfp;
  1855. /*
  1856. * Sanity checks... these are all serious usage bugs.
  1857. */
  1858. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1859. size > KMALLOC_MAX_SIZE) {
  1860. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1861. name);
  1862. BUG();
  1863. }
  1864. /*
  1865. * We use cache_chain_mutex to ensure a consistent view of
  1866. * cpu_online_mask as well. Please see cpuup_callback
  1867. */
  1868. if (slab_is_available()) {
  1869. get_online_cpus();
  1870. mutex_lock(&cache_chain_mutex);
  1871. }
  1872. list_for_each_entry(pc, &cache_chain, next) {
  1873. char tmp;
  1874. int res;
  1875. /*
  1876. * This happens when the module gets unloaded and doesn't
  1877. * destroy its slab cache and no-one else reuses the vmalloc
  1878. * area of the module. Print a warning.
  1879. */
  1880. res = probe_kernel_address(pc->name, tmp);
  1881. if (res) {
  1882. printk(KERN_ERR
  1883. "SLAB: cache with size %d has lost its name\n",
  1884. pc->buffer_size);
  1885. continue;
  1886. }
  1887. if (!strcmp(pc->name, name)) {
  1888. printk(KERN_ERR
  1889. "kmem_cache_create: duplicate cache %s\n", name);
  1890. dump_stack();
  1891. goto oops;
  1892. }
  1893. }
  1894. #if DEBUG
  1895. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1896. #if FORCED_DEBUG
  1897. /*
  1898. * Enable redzoning and last user accounting, except for caches with
  1899. * large objects, if the increased size would increase the object size
  1900. * above the next power of two: caches with object sizes just above a
  1901. * power of two have a significant amount of internal fragmentation.
  1902. */
  1903. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1904. 2 * sizeof(unsigned long long)))
  1905. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1906. if (!(flags & SLAB_DESTROY_BY_RCU))
  1907. flags |= SLAB_POISON;
  1908. #endif
  1909. if (flags & SLAB_DESTROY_BY_RCU)
  1910. BUG_ON(flags & SLAB_POISON);
  1911. #endif
  1912. /*
  1913. * Always checks flags, a caller might be expecting debug support which
  1914. * isn't available.
  1915. */
  1916. BUG_ON(flags & ~CREATE_MASK);
  1917. /*
  1918. * Check that size is in terms of words. This is needed to avoid
  1919. * unaligned accesses for some archs when redzoning is used, and makes
  1920. * sure any on-slab bufctl's are also correctly aligned.
  1921. */
  1922. if (size & (BYTES_PER_WORD - 1)) {
  1923. size += (BYTES_PER_WORD - 1);
  1924. size &= ~(BYTES_PER_WORD - 1);
  1925. }
  1926. /* calculate the final buffer alignment: */
  1927. /* 1) arch recommendation: can be overridden for debug */
  1928. if (flags & SLAB_HWCACHE_ALIGN) {
  1929. /*
  1930. * Default alignment: as specified by the arch code. Except if
  1931. * an object is really small, then squeeze multiple objects into
  1932. * one cacheline.
  1933. */
  1934. ralign = cache_line_size();
  1935. while (size <= ralign / 2)
  1936. ralign /= 2;
  1937. } else {
  1938. ralign = BYTES_PER_WORD;
  1939. }
  1940. /*
  1941. * Redzoning and user store require word alignment or possibly larger.
  1942. * Note this will be overridden by architecture or caller mandated
  1943. * alignment if either is greater than BYTES_PER_WORD.
  1944. */
  1945. if (flags & SLAB_STORE_USER)
  1946. ralign = BYTES_PER_WORD;
  1947. if (flags & SLAB_RED_ZONE) {
  1948. ralign = REDZONE_ALIGN;
  1949. /* If redzoning, ensure that the second redzone is suitably
  1950. * aligned, by adjusting the object size accordingly. */
  1951. size += REDZONE_ALIGN - 1;
  1952. size &= ~(REDZONE_ALIGN - 1);
  1953. }
  1954. /* 2) arch mandated alignment */
  1955. if (ralign < ARCH_SLAB_MINALIGN) {
  1956. ralign = ARCH_SLAB_MINALIGN;
  1957. }
  1958. /* 3) caller mandated alignment */
  1959. if (ralign < align) {
  1960. ralign = align;
  1961. }
  1962. /* disable debug if necessary */
  1963. if (ralign > __alignof__(unsigned long long))
  1964. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1965. /*
  1966. * 4) Store it.
  1967. */
  1968. align = ralign;
  1969. if (slab_is_available())
  1970. gfp = GFP_KERNEL;
  1971. else
  1972. gfp = GFP_NOWAIT;
  1973. /* Get cache's description obj. */
  1974. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  1975. if (!cachep)
  1976. goto oops;
  1977. #if DEBUG
  1978. cachep->obj_size = size;
  1979. /*
  1980. * Both debugging options require word-alignment which is calculated
  1981. * into align above.
  1982. */
  1983. if (flags & SLAB_RED_ZONE) {
  1984. /* add space for red zone words */
  1985. cachep->obj_offset += sizeof(unsigned long long);
  1986. size += 2 * sizeof(unsigned long long);
  1987. }
  1988. if (flags & SLAB_STORE_USER) {
  1989. /* user store requires one word storage behind the end of
  1990. * the real object. But if the second red zone needs to be
  1991. * aligned to 64 bits, we must allow that much space.
  1992. */
  1993. if (flags & SLAB_RED_ZONE)
  1994. size += REDZONE_ALIGN;
  1995. else
  1996. size += BYTES_PER_WORD;
  1997. }
  1998. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1999. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2000. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2001. cachep->obj_offset += PAGE_SIZE - size;
  2002. size = PAGE_SIZE;
  2003. }
  2004. #endif
  2005. #endif
  2006. /*
  2007. * Determine if the slab management is 'on' or 'off' slab.
  2008. * (bootstrapping cannot cope with offslab caches so don't do
  2009. * it too early on. Always use on-slab management when
  2010. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  2011. */
  2012. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
  2013. !(flags & SLAB_NOLEAKTRACE))
  2014. /*
  2015. * Size is large, assume best to place the slab management obj
  2016. * off-slab (should allow better packing of objs).
  2017. */
  2018. flags |= CFLGS_OFF_SLAB;
  2019. size = ALIGN(size, align);
  2020. left_over = calculate_slab_order(cachep, size, align, flags);
  2021. if (!cachep->num) {
  2022. printk(KERN_ERR
  2023. "kmem_cache_create: couldn't create cache %s.\n", name);
  2024. kmem_cache_free(&cache_cache, cachep);
  2025. cachep = NULL;
  2026. goto oops;
  2027. }
  2028. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2029. + sizeof(struct slab), align);
  2030. /*
  2031. * If the slab has been placed off-slab, and we have enough space then
  2032. * move it on-slab. This is at the expense of any extra colouring.
  2033. */
  2034. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2035. flags &= ~CFLGS_OFF_SLAB;
  2036. left_over -= slab_size;
  2037. }
  2038. if (flags & CFLGS_OFF_SLAB) {
  2039. /* really off slab. No need for manual alignment */
  2040. slab_size =
  2041. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2042. #ifdef CONFIG_PAGE_POISONING
  2043. /* If we're going to use the generic kernel_map_pages()
  2044. * poisoning, then it's going to smash the contents of
  2045. * the redzone and userword anyhow, so switch them off.
  2046. */
  2047. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2048. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2049. #endif
  2050. }
  2051. cachep->colour_off = cache_line_size();
  2052. /* Offset must be a multiple of the alignment. */
  2053. if (cachep->colour_off < align)
  2054. cachep->colour_off = align;
  2055. cachep->colour = left_over / cachep->colour_off;
  2056. cachep->slab_size = slab_size;
  2057. cachep->flags = flags;
  2058. cachep->gfpflags = 0;
  2059. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2060. cachep->gfpflags |= GFP_DMA;
  2061. cachep->buffer_size = size;
  2062. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2063. if (flags & CFLGS_OFF_SLAB) {
  2064. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2065. /*
  2066. * This is a possibility for one of the malloc_sizes caches.
  2067. * But since we go off slab only for object size greater than
  2068. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2069. * this should not happen at all.
  2070. * But leave a BUG_ON for some lucky dude.
  2071. */
  2072. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2073. }
  2074. cachep->ctor = ctor;
  2075. cachep->name = name;
  2076. if (setup_cpu_cache(cachep, gfp)) {
  2077. __kmem_cache_destroy(cachep);
  2078. cachep = NULL;
  2079. goto oops;
  2080. }
  2081. /* cache setup completed, link it into the list */
  2082. list_add(&cachep->next, &cache_chain);
  2083. oops:
  2084. if (!cachep && (flags & SLAB_PANIC))
  2085. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2086. name);
  2087. if (slab_is_available()) {
  2088. mutex_unlock(&cache_chain_mutex);
  2089. put_online_cpus();
  2090. }
  2091. return cachep;
  2092. }
  2093. EXPORT_SYMBOL(kmem_cache_create);
  2094. #if DEBUG
  2095. static void check_irq_off(void)
  2096. {
  2097. BUG_ON(!irqs_disabled());
  2098. }
  2099. static void check_irq_on(void)
  2100. {
  2101. BUG_ON(irqs_disabled());
  2102. }
  2103. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2104. {
  2105. #ifdef CONFIG_SMP
  2106. check_irq_off();
  2107. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2108. #endif
  2109. }
  2110. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2111. {
  2112. #ifdef CONFIG_SMP
  2113. check_irq_off();
  2114. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2115. #endif
  2116. }
  2117. #else
  2118. #define check_irq_off() do { } while(0)
  2119. #define check_irq_on() do { } while(0)
  2120. #define check_spinlock_acquired(x) do { } while(0)
  2121. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2122. #endif
  2123. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2124. struct array_cache *ac,
  2125. int force, int node);
  2126. static void do_drain(void *arg)
  2127. {
  2128. struct kmem_cache *cachep = arg;
  2129. struct array_cache *ac;
  2130. int node = numa_node_id();
  2131. check_irq_off();
  2132. ac = cpu_cache_get(cachep);
  2133. spin_lock(&cachep->nodelists[node]->list_lock);
  2134. free_block(cachep, ac->entry, ac->avail, node);
  2135. spin_unlock(&cachep->nodelists[node]->list_lock);
  2136. ac->avail = 0;
  2137. }
  2138. static void drain_cpu_caches(struct kmem_cache *cachep)
  2139. {
  2140. struct kmem_list3 *l3;
  2141. int node;
  2142. on_each_cpu(do_drain, cachep, 1);
  2143. check_irq_on();
  2144. for_each_online_node(node) {
  2145. l3 = cachep->nodelists[node];
  2146. if (l3 && l3->alien)
  2147. drain_alien_cache(cachep, l3->alien);
  2148. }
  2149. for_each_online_node(node) {
  2150. l3 = cachep->nodelists[node];
  2151. if (l3)
  2152. drain_array(cachep, l3, l3->shared, 1, node);
  2153. }
  2154. }
  2155. /*
  2156. * Remove slabs from the list of free slabs.
  2157. * Specify the number of slabs to drain in tofree.
  2158. *
  2159. * Returns the actual number of slabs released.
  2160. */
  2161. static int drain_freelist(struct kmem_cache *cache,
  2162. struct kmem_list3 *l3, int tofree)
  2163. {
  2164. struct list_head *p;
  2165. int nr_freed;
  2166. struct slab *slabp;
  2167. nr_freed = 0;
  2168. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2169. spin_lock_irq(&l3->list_lock);
  2170. p = l3->slabs_free.prev;
  2171. if (p == &l3->slabs_free) {
  2172. spin_unlock_irq(&l3->list_lock);
  2173. goto out;
  2174. }
  2175. slabp = list_entry(p, struct slab, list);
  2176. #if DEBUG
  2177. BUG_ON(slabp->inuse);
  2178. #endif
  2179. list_del(&slabp->list);
  2180. /*
  2181. * Safe to drop the lock. The slab is no longer linked
  2182. * to the cache.
  2183. */
  2184. l3->free_objects -= cache->num;
  2185. spin_unlock_irq(&l3->list_lock);
  2186. slab_destroy(cache, slabp);
  2187. nr_freed++;
  2188. }
  2189. out:
  2190. return nr_freed;
  2191. }
  2192. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2193. static int __cache_shrink(struct kmem_cache *cachep)
  2194. {
  2195. int ret = 0, i = 0;
  2196. struct kmem_list3 *l3;
  2197. drain_cpu_caches(cachep);
  2198. check_irq_on();
  2199. for_each_online_node(i) {
  2200. l3 = cachep->nodelists[i];
  2201. if (!l3)
  2202. continue;
  2203. drain_freelist(cachep, l3, l3->free_objects);
  2204. ret += !list_empty(&l3->slabs_full) ||
  2205. !list_empty(&l3->slabs_partial);
  2206. }
  2207. return (ret ? 1 : 0);
  2208. }
  2209. /**
  2210. * kmem_cache_shrink - Shrink a cache.
  2211. * @cachep: The cache to shrink.
  2212. *
  2213. * Releases as many slabs as possible for a cache.
  2214. * To help debugging, a zero exit status indicates all slabs were released.
  2215. */
  2216. int kmem_cache_shrink(struct kmem_cache *cachep)
  2217. {
  2218. int ret;
  2219. BUG_ON(!cachep || in_interrupt());
  2220. get_online_cpus();
  2221. mutex_lock(&cache_chain_mutex);
  2222. ret = __cache_shrink(cachep);
  2223. mutex_unlock(&cache_chain_mutex);
  2224. put_online_cpus();
  2225. return ret;
  2226. }
  2227. EXPORT_SYMBOL(kmem_cache_shrink);
  2228. /**
  2229. * kmem_cache_destroy - delete a cache
  2230. * @cachep: the cache to destroy
  2231. *
  2232. * Remove a &struct kmem_cache object from the slab cache.
  2233. *
  2234. * It is expected this function will be called by a module when it is
  2235. * unloaded. This will remove the cache completely, and avoid a duplicate
  2236. * cache being allocated each time a module is loaded and unloaded, if the
  2237. * module doesn't have persistent in-kernel storage across loads and unloads.
  2238. *
  2239. * The cache must be empty before calling this function.
  2240. *
  2241. * The caller must guarantee that noone will allocate memory from the cache
  2242. * during the kmem_cache_destroy().
  2243. */
  2244. void kmem_cache_destroy(struct kmem_cache *cachep)
  2245. {
  2246. BUG_ON(!cachep || in_interrupt());
  2247. /* Find the cache in the chain of caches. */
  2248. get_online_cpus();
  2249. mutex_lock(&cache_chain_mutex);
  2250. /*
  2251. * the chain is never empty, cache_cache is never destroyed
  2252. */
  2253. list_del(&cachep->next);
  2254. if (__cache_shrink(cachep)) {
  2255. slab_error(cachep, "Can't free all objects");
  2256. list_add(&cachep->next, &cache_chain);
  2257. mutex_unlock(&cache_chain_mutex);
  2258. put_online_cpus();
  2259. return;
  2260. }
  2261. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2262. rcu_barrier();
  2263. __kmem_cache_destroy(cachep);
  2264. mutex_unlock(&cache_chain_mutex);
  2265. put_online_cpus();
  2266. }
  2267. EXPORT_SYMBOL(kmem_cache_destroy);
  2268. /*
  2269. * Get the memory for a slab management obj.
  2270. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2271. * always come from malloc_sizes caches. The slab descriptor cannot
  2272. * come from the same cache which is getting created because,
  2273. * when we are searching for an appropriate cache for these
  2274. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2275. * If we are creating a malloc_sizes cache here it would not be visible to
  2276. * kmem_find_general_cachep till the initialization is complete.
  2277. * Hence we cannot have slabp_cache same as the original cache.
  2278. */
  2279. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2280. int colour_off, gfp_t local_flags,
  2281. int nodeid)
  2282. {
  2283. struct slab *slabp;
  2284. if (OFF_SLAB(cachep)) {
  2285. /* Slab management obj is off-slab. */
  2286. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2287. local_flags, nodeid);
  2288. /*
  2289. * If the first object in the slab is leaked (it's allocated
  2290. * but no one has a reference to it), we want to make sure
  2291. * kmemleak does not treat the ->s_mem pointer as a reference
  2292. * to the object. Otherwise we will not report the leak.
  2293. */
  2294. kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
  2295. local_flags);
  2296. if (!slabp)
  2297. return NULL;
  2298. } else {
  2299. slabp = objp + colour_off;
  2300. colour_off += cachep->slab_size;
  2301. }
  2302. slabp->inuse = 0;
  2303. slabp->colouroff = colour_off;
  2304. slabp->s_mem = objp + colour_off;
  2305. slabp->nodeid = nodeid;
  2306. slabp->free = 0;
  2307. return slabp;
  2308. }
  2309. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2310. {
  2311. return (kmem_bufctl_t *) (slabp + 1);
  2312. }
  2313. static void cache_init_objs(struct kmem_cache *cachep,
  2314. struct slab *slabp)
  2315. {
  2316. int i;
  2317. for (i = 0; i < cachep->num; i++) {
  2318. void *objp = index_to_obj(cachep, slabp, i);
  2319. #if DEBUG
  2320. /* need to poison the objs? */
  2321. if (cachep->flags & SLAB_POISON)
  2322. poison_obj(cachep, objp, POISON_FREE);
  2323. if (cachep->flags & SLAB_STORE_USER)
  2324. *dbg_userword(cachep, objp) = NULL;
  2325. if (cachep->flags & SLAB_RED_ZONE) {
  2326. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2327. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2328. }
  2329. /*
  2330. * Constructors are not allowed to allocate memory from the same
  2331. * cache which they are a constructor for. Otherwise, deadlock.
  2332. * They must also be threaded.
  2333. */
  2334. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2335. cachep->ctor(objp + obj_offset(cachep));
  2336. if (cachep->flags & SLAB_RED_ZONE) {
  2337. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2338. slab_error(cachep, "constructor overwrote the"
  2339. " end of an object");
  2340. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2341. slab_error(cachep, "constructor overwrote the"
  2342. " start of an object");
  2343. }
  2344. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2345. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2346. kernel_map_pages(virt_to_page(objp),
  2347. cachep->buffer_size / PAGE_SIZE, 0);
  2348. #else
  2349. if (cachep->ctor)
  2350. cachep->ctor(objp);
  2351. #endif
  2352. slab_bufctl(slabp)[i] = i + 1;
  2353. }
  2354. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2355. }
  2356. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2357. {
  2358. if (CONFIG_ZONE_DMA_FLAG) {
  2359. if (flags & GFP_DMA)
  2360. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2361. else
  2362. BUG_ON(cachep->gfpflags & GFP_DMA);
  2363. }
  2364. }
  2365. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2366. int nodeid)
  2367. {
  2368. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2369. kmem_bufctl_t next;
  2370. slabp->inuse++;
  2371. next = slab_bufctl(slabp)[slabp->free];
  2372. #if DEBUG
  2373. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2374. WARN_ON(slabp->nodeid != nodeid);
  2375. #endif
  2376. slabp->free = next;
  2377. return objp;
  2378. }
  2379. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2380. void *objp, int nodeid)
  2381. {
  2382. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2383. #if DEBUG
  2384. /* Verify that the slab belongs to the intended node */
  2385. WARN_ON(slabp->nodeid != nodeid);
  2386. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2387. printk(KERN_ERR "slab: double free detected in cache "
  2388. "'%s', objp %p\n", cachep->name, objp);
  2389. BUG();
  2390. }
  2391. #endif
  2392. slab_bufctl(slabp)[objnr] = slabp->free;
  2393. slabp->free = objnr;
  2394. slabp->inuse--;
  2395. }
  2396. /*
  2397. * Map pages beginning at addr to the given cache and slab. This is required
  2398. * for the slab allocator to be able to lookup the cache and slab of a
  2399. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2400. */
  2401. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2402. void *addr)
  2403. {
  2404. int nr_pages;
  2405. struct page *page;
  2406. page = virt_to_page(addr);
  2407. nr_pages = 1;
  2408. if (likely(!PageCompound(page)))
  2409. nr_pages <<= cache->gfporder;
  2410. do {
  2411. page_set_cache(page, cache);
  2412. page_set_slab(page, slab);
  2413. page++;
  2414. } while (--nr_pages);
  2415. }
  2416. /*
  2417. * Grow (by 1) the number of slabs within a cache. This is called by
  2418. * kmem_cache_alloc() when there are no active objs left in a cache.
  2419. */
  2420. static int cache_grow(struct kmem_cache *cachep,
  2421. gfp_t flags, int nodeid, void *objp)
  2422. {
  2423. struct slab *slabp;
  2424. size_t offset;
  2425. gfp_t local_flags;
  2426. struct kmem_list3 *l3;
  2427. /*
  2428. * Be lazy and only check for valid flags here, keeping it out of the
  2429. * critical path in kmem_cache_alloc().
  2430. */
  2431. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2432. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2433. /* Take the l3 list lock to change the colour_next on this node */
  2434. check_irq_off();
  2435. l3 = cachep->nodelists[nodeid];
  2436. spin_lock(&l3->list_lock);
  2437. /* Get colour for the slab, and cal the next value. */
  2438. offset = l3->colour_next;
  2439. l3->colour_next++;
  2440. if (l3->colour_next >= cachep->colour)
  2441. l3->colour_next = 0;
  2442. spin_unlock(&l3->list_lock);
  2443. offset *= cachep->colour_off;
  2444. if (local_flags & __GFP_WAIT)
  2445. local_irq_enable();
  2446. /*
  2447. * The test for missing atomic flag is performed here, rather than
  2448. * the more obvious place, simply to reduce the critical path length
  2449. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2450. * will eventually be caught here (where it matters).
  2451. */
  2452. kmem_flagcheck(cachep, flags);
  2453. /*
  2454. * Get mem for the objs. Attempt to allocate a physical page from
  2455. * 'nodeid'.
  2456. */
  2457. if (!objp)
  2458. objp = kmem_getpages(cachep, local_flags, nodeid);
  2459. if (!objp)
  2460. goto failed;
  2461. /* Get slab management. */
  2462. slabp = alloc_slabmgmt(cachep, objp, offset,
  2463. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2464. if (!slabp)
  2465. goto opps1;
  2466. slab_map_pages(cachep, slabp, objp);
  2467. cache_init_objs(cachep, slabp);
  2468. if (local_flags & __GFP_WAIT)
  2469. local_irq_disable();
  2470. check_irq_off();
  2471. spin_lock(&l3->list_lock);
  2472. /* Make slab active. */
  2473. list_add_tail(&slabp->list, &(l3->slabs_free));
  2474. STATS_INC_GROWN(cachep);
  2475. l3->free_objects += cachep->num;
  2476. spin_unlock(&l3->list_lock);
  2477. return 1;
  2478. opps1:
  2479. kmem_freepages(cachep, objp);
  2480. failed:
  2481. if (local_flags & __GFP_WAIT)
  2482. local_irq_disable();
  2483. return 0;
  2484. }
  2485. #if DEBUG
  2486. /*
  2487. * Perform extra freeing checks:
  2488. * - detect bad pointers.
  2489. * - POISON/RED_ZONE checking
  2490. */
  2491. static void kfree_debugcheck(const void *objp)
  2492. {
  2493. if (!virt_addr_valid(objp)) {
  2494. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2495. (unsigned long)objp);
  2496. BUG();
  2497. }
  2498. }
  2499. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2500. {
  2501. unsigned long long redzone1, redzone2;
  2502. redzone1 = *dbg_redzone1(cache, obj);
  2503. redzone2 = *dbg_redzone2(cache, obj);
  2504. /*
  2505. * Redzone is ok.
  2506. */
  2507. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2508. return;
  2509. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2510. slab_error(cache, "double free detected");
  2511. else
  2512. slab_error(cache, "memory outside object was overwritten");
  2513. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2514. obj, redzone1, redzone2);
  2515. }
  2516. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2517. void *caller)
  2518. {
  2519. struct page *page;
  2520. unsigned int objnr;
  2521. struct slab *slabp;
  2522. BUG_ON(virt_to_cache(objp) != cachep);
  2523. objp -= obj_offset(cachep);
  2524. kfree_debugcheck(objp);
  2525. page = virt_to_head_page(objp);
  2526. slabp = page_get_slab(page);
  2527. if (cachep->flags & SLAB_RED_ZONE) {
  2528. verify_redzone_free(cachep, objp);
  2529. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2530. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2531. }
  2532. if (cachep->flags & SLAB_STORE_USER)
  2533. *dbg_userword(cachep, objp) = caller;
  2534. objnr = obj_to_index(cachep, slabp, objp);
  2535. BUG_ON(objnr >= cachep->num);
  2536. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2537. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2538. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2539. #endif
  2540. if (cachep->flags & SLAB_POISON) {
  2541. #ifdef CONFIG_DEBUG_PAGEALLOC
  2542. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2543. store_stackinfo(cachep, objp, (unsigned long)caller);
  2544. kernel_map_pages(virt_to_page(objp),
  2545. cachep->buffer_size / PAGE_SIZE, 0);
  2546. } else {
  2547. poison_obj(cachep, objp, POISON_FREE);
  2548. }
  2549. #else
  2550. poison_obj(cachep, objp, POISON_FREE);
  2551. #endif
  2552. }
  2553. return objp;
  2554. }
  2555. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2556. {
  2557. kmem_bufctl_t i;
  2558. int entries = 0;
  2559. /* Check slab's freelist to see if this obj is there. */
  2560. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2561. entries++;
  2562. if (entries > cachep->num || i >= cachep->num)
  2563. goto bad;
  2564. }
  2565. if (entries != cachep->num - slabp->inuse) {
  2566. bad:
  2567. printk(KERN_ERR "slab: Internal list corruption detected in "
  2568. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2569. cachep->name, cachep->num, slabp, slabp->inuse);
  2570. for (i = 0;
  2571. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2572. i++) {
  2573. if (i % 16 == 0)
  2574. printk("\n%03x:", i);
  2575. printk(" %02x", ((unsigned char *)slabp)[i]);
  2576. }
  2577. printk("\n");
  2578. BUG();
  2579. }
  2580. }
  2581. #else
  2582. #define kfree_debugcheck(x) do { } while(0)
  2583. #define cache_free_debugcheck(x,objp,z) (objp)
  2584. #define check_slabp(x,y) do { } while(0)
  2585. #endif
  2586. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2587. {
  2588. int batchcount;
  2589. struct kmem_list3 *l3;
  2590. struct array_cache *ac;
  2591. int node;
  2592. retry:
  2593. check_irq_off();
  2594. node = numa_node_id();
  2595. ac = cpu_cache_get(cachep);
  2596. batchcount = ac->batchcount;
  2597. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2598. /*
  2599. * If there was little recent activity on this cache, then
  2600. * perform only a partial refill. Otherwise we could generate
  2601. * refill bouncing.
  2602. */
  2603. batchcount = BATCHREFILL_LIMIT;
  2604. }
  2605. l3 = cachep->nodelists[node];
  2606. BUG_ON(ac->avail > 0 || !l3);
  2607. spin_lock(&l3->list_lock);
  2608. /* See if we can refill from the shared array */
  2609. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2610. goto alloc_done;
  2611. while (batchcount > 0) {
  2612. struct list_head *entry;
  2613. struct slab *slabp;
  2614. /* Get slab alloc is to come from. */
  2615. entry = l3->slabs_partial.next;
  2616. if (entry == &l3->slabs_partial) {
  2617. l3->free_touched = 1;
  2618. entry = l3->slabs_free.next;
  2619. if (entry == &l3->slabs_free)
  2620. goto must_grow;
  2621. }
  2622. slabp = list_entry(entry, struct slab, list);
  2623. check_slabp(cachep, slabp);
  2624. check_spinlock_acquired(cachep);
  2625. /*
  2626. * The slab was either on partial or free list so
  2627. * there must be at least one object available for
  2628. * allocation.
  2629. */
  2630. BUG_ON(slabp->inuse >= cachep->num);
  2631. while (slabp->inuse < cachep->num && batchcount--) {
  2632. STATS_INC_ALLOCED(cachep);
  2633. STATS_INC_ACTIVE(cachep);
  2634. STATS_SET_HIGH(cachep);
  2635. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2636. node);
  2637. }
  2638. check_slabp(cachep, slabp);
  2639. /* move slabp to correct slabp list: */
  2640. list_del(&slabp->list);
  2641. if (slabp->free == BUFCTL_END)
  2642. list_add(&slabp->list, &l3->slabs_full);
  2643. else
  2644. list_add(&slabp->list, &l3->slabs_partial);
  2645. }
  2646. must_grow:
  2647. l3->free_objects -= ac->avail;
  2648. alloc_done:
  2649. spin_unlock(&l3->list_lock);
  2650. if (unlikely(!ac->avail)) {
  2651. int x;
  2652. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2653. /* cache_grow can reenable interrupts, then ac could change. */
  2654. ac = cpu_cache_get(cachep);
  2655. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2656. return NULL;
  2657. if (!ac->avail) /* objects refilled by interrupt? */
  2658. goto retry;
  2659. }
  2660. ac->touched = 1;
  2661. return ac->entry[--ac->avail];
  2662. }
  2663. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2664. gfp_t flags)
  2665. {
  2666. might_sleep_if(flags & __GFP_WAIT);
  2667. #if DEBUG
  2668. kmem_flagcheck(cachep, flags);
  2669. #endif
  2670. }
  2671. #if DEBUG
  2672. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2673. gfp_t flags, void *objp, void *caller)
  2674. {
  2675. if (!objp)
  2676. return objp;
  2677. if (cachep->flags & SLAB_POISON) {
  2678. #ifdef CONFIG_DEBUG_PAGEALLOC
  2679. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2680. kernel_map_pages(virt_to_page(objp),
  2681. cachep->buffer_size / PAGE_SIZE, 1);
  2682. else
  2683. check_poison_obj(cachep, objp);
  2684. #else
  2685. check_poison_obj(cachep, objp);
  2686. #endif
  2687. poison_obj(cachep, objp, POISON_INUSE);
  2688. }
  2689. if (cachep->flags & SLAB_STORE_USER)
  2690. *dbg_userword(cachep, objp) = caller;
  2691. if (cachep->flags & SLAB_RED_ZONE) {
  2692. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2693. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2694. slab_error(cachep, "double free, or memory outside"
  2695. " object was overwritten");
  2696. printk(KERN_ERR
  2697. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2698. objp, *dbg_redzone1(cachep, objp),
  2699. *dbg_redzone2(cachep, objp));
  2700. }
  2701. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2702. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2703. }
  2704. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2705. {
  2706. struct slab *slabp;
  2707. unsigned objnr;
  2708. slabp = page_get_slab(virt_to_head_page(objp));
  2709. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2710. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2711. }
  2712. #endif
  2713. objp += obj_offset(cachep);
  2714. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2715. cachep->ctor(objp);
  2716. #if ARCH_SLAB_MINALIGN
  2717. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2718. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2719. objp, ARCH_SLAB_MINALIGN);
  2720. }
  2721. #endif
  2722. return objp;
  2723. }
  2724. #else
  2725. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2726. #endif
  2727. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2728. {
  2729. if (cachep == &cache_cache)
  2730. return false;
  2731. return should_failslab(obj_size(cachep), flags);
  2732. }
  2733. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2734. {
  2735. void *objp;
  2736. struct array_cache *ac;
  2737. check_irq_off();
  2738. ac = cpu_cache_get(cachep);
  2739. if (likely(ac->avail)) {
  2740. STATS_INC_ALLOCHIT(cachep);
  2741. ac->touched = 1;
  2742. objp = ac->entry[--ac->avail];
  2743. } else {
  2744. STATS_INC_ALLOCMISS(cachep);
  2745. objp = cache_alloc_refill(cachep, flags);
  2746. }
  2747. /*
  2748. * To avoid a false negative, if an object that is in one of the
  2749. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2750. * treat the array pointers as a reference to the object.
  2751. */
  2752. kmemleak_erase(&ac->entry[ac->avail]);
  2753. return objp;
  2754. }
  2755. #ifdef CONFIG_NUMA
  2756. /*
  2757. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2758. *
  2759. * If we are in_interrupt, then process context, including cpusets and
  2760. * mempolicy, may not apply and should not be used for allocation policy.
  2761. */
  2762. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2763. {
  2764. int nid_alloc, nid_here;
  2765. if (in_interrupt() || (flags & __GFP_THISNODE))
  2766. return NULL;
  2767. nid_alloc = nid_here = numa_node_id();
  2768. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2769. nid_alloc = cpuset_mem_spread_node();
  2770. else if (current->mempolicy)
  2771. nid_alloc = slab_node(current->mempolicy);
  2772. if (nid_alloc != nid_here)
  2773. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2774. return NULL;
  2775. }
  2776. /*
  2777. * Fallback function if there was no memory available and no objects on a
  2778. * certain node and fall back is permitted. First we scan all the
  2779. * available nodelists for available objects. If that fails then we
  2780. * perform an allocation without specifying a node. This allows the page
  2781. * allocator to do its reclaim / fallback magic. We then insert the
  2782. * slab into the proper nodelist and then allocate from it.
  2783. */
  2784. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2785. {
  2786. struct zonelist *zonelist;
  2787. gfp_t local_flags;
  2788. struct zoneref *z;
  2789. struct zone *zone;
  2790. enum zone_type high_zoneidx = gfp_zone(flags);
  2791. void *obj = NULL;
  2792. int nid;
  2793. if (flags & __GFP_THISNODE)
  2794. return NULL;
  2795. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2796. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2797. retry:
  2798. /*
  2799. * Look through allowed nodes for objects available
  2800. * from existing per node queues.
  2801. */
  2802. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2803. nid = zone_to_nid(zone);
  2804. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2805. cache->nodelists[nid] &&
  2806. cache->nodelists[nid]->free_objects) {
  2807. obj = ____cache_alloc_node(cache,
  2808. flags | GFP_THISNODE, nid);
  2809. if (obj)
  2810. break;
  2811. }
  2812. }
  2813. if (!obj) {
  2814. /*
  2815. * This allocation will be performed within the constraints
  2816. * of the current cpuset / memory policy requirements.
  2817. * We may trigger various forms of reclaim on the allowed
  2818. * set and go into memory reserves if necessary.
  2819. */
  2820. if (local_flags & __GFP_WAIT)
  2821. local_irq_enable();
  2822. kmem_flagcheck(cache, flags);
  2823. obj = kmem_getpages(cache, local_flags, numa_node_id());
  2824. if (local_flags & __GFP_WAIT)
  2825. local_irq_disable();
  2826. if (obj) {
  2827. /*
  2828. * Insert into the appropriate per node queues
  2829. */
  2830. nid = page_to_nid(virt_to_page(obj));
  2831. if (cache_grow(cache, flags, nid, obj)) {
  2832. obj = ____cache_alloc_node(cache,
  2833. flags | GFP_THISNODE, nid);
  2834. if (!obj)
  2835. /*
  2836. * Another processor may allocate the
  2837. * objects in the slab since we are
  2838. * not holding any locks.
  2839. */
  2840. goto retry;
  2841. } else {
  2842. /* cache_grow already freed obj */
  2843. obj = NULL;
  2844. }
  2845. }
  2846. }
  2847. return obj;
  2848. }
  2849. /*
  2850. * A interface to enable slab creation on nodeid
  2851. */
  2852. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2853. int nodeid)
  2854. {
  2855. struct list_head *entry;
  2856. struct slab *slabp;
  2857. struct kmem_list3 *l3;
  2858. void *obj;
  2859. int x;
  2860. l3 = cachep->nodelists[nodeid];
  2861. BUG_ON(!l3);
  2862. retry:
  2863. check_irq_off();
  2864. spin_lock(&l3->list_lock);
  2865. entry = l3->slabs_partial.next;
  2866. if (entry == &l3->slabs_partial) {
  2867. l3->free_touched = 1;
  2868. entry = l3->slabs_free.next;
  2869. if (entry == &l3->slabs_free)
  2870. goto must_grow;
  2871. }
  2872. slabp = list_entry(entry, struct slab, list);
  2873. check_spinlock_acquired_node(cachep, nodeid);
  2874. check_slabp(cachep, slabp);
  2875. STATS_INC_NODEALLOCS(cachep);
  2876. STATS_INC_ACTIVE(cachep);
  2877. STATS_SET_HIGH(cachep);
  2878. BUG_ON(slabp->inuse == cachep->num);
  2879. obj = slab_get_obj(cachep, slabp, nodeid);
  2880. check_slabp(cachep, slabp);
  2881. l3->free_objects--;
  2882. /* move slabp to correct slabp list: */
  2883. list_del(&slabp->list);
  2884. if (slabp->free == BUFCTL_END)
  2885. list_add(&slabp->list, &l3->slabs_full);
  2886. else
  2887. list_add(&slabp->list, &l3->slabs_partial);
  2888. spin_unlock(&l3->list_lock);
  2889. goto done;
  2890. must_grow:
  2891. spin_unlock(&l3->list_lock);
  2892. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2893. if (x)
  2894. goto retry;
  2895. return fallback_alloc(cachep, flags);
  2896. done:
  2897. return obj;
  2898. }
  2899. /**
  2900. * kmem_cache_alloc_node - Allocate an object on the specified node
  2901. * @cachep: The cache to allocate from.
  2902. * @flags: See kmalloc().
  2903. * @nodeid: node number of the target node.
  2904. * @caller: return address of caller, used for debug information
  2905. *
  2906. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2907. * node, which can improve the performance for cpu bound structures.
  2908. *
  2909. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2910. */
  2911. static __always_inline void *
  2912. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2913. void *caller)
  2914. {
  2915. unsigned long save_flags;
  2916. void *ptr;
  2917. flags &= gfp_allowed_mask;
  2918. lockdep_trace_alloc(flags);
  2919. if (slab_should_failslab(cachep, flags))
  2920. return NULL;
  2921. cache_alloc_debugcheck_before(cachep, flags);
  2922. local_irq_save(save_flags);
  2923. if (unlikely(nodeid == -1))
  2924. nodeid = numa_node_id();
  2925. if (unlikely(!cachep->nodelists[nodeid])) {
  2926. /* Node not bootstrapped yet */
  2927. ptr = fallback_alloc(cachep, flags);
  2928. goto out;
  2929. }
  2930. if (nodeid == numa_node_id()) {
  2931. /*
  2932. * Use the locally cached objects if possible.
  2933. * However ____cache_alloc does not allow fallback
  2934. * to other nodes. It may fail while we still have
  2935. * objects on other nodes available.
  2936. */
  2937. ptr = ____cache_alloc(cachep, flags);
  2938. if (ptr)
  2939. goto out;
  2940. }
  2941. /* ___cache_alloc_node can fall back to other nodes */
  2942. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2943. out:
  2944. local_irq_restore(save_flags);
  2945. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2946. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  2947. flags);
  2948. if (likely(ptr))
  2949. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  2950. if (unlikely((flags & __GFP_ZERO) && ptr))
  2951. memset(ptr, 0, obj_size(cachep));
  2952. return ptr;
  2953. }
  2954. static __always_inline void *
  2955. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2956. {
  2957. void *objp;
  2958. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2959. objp = alternate_node_alloc(cache, flags);
  2960. if (objp)
  2961. goto out;
  2962. }
  2963. objp = ____cache_alloc(cache, flags);
  2964. /*
  2965. * We may just have run out of memory on the local node.
  2966. * ____cache_alloc_node() knows how to locate memory on other nodes
  2967. */
  2968. if (!objp)
  2969. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  2970. out:
  2971. return objp;
  2972. }
  2973. #else
  2974. static __always_inline void *
  2975. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2976. {
  2977. return ____cache_alloc(cachep, flags);
  2978. }
  2979. #endif /* CONFIG_NUMA */
  2980. static __always_inline void *
  2981. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  2982. {
  2983. unsigned long save_flags;
  2984. void *objp;
  2985. flags &= gfp_allowed_mask;
  2986. lockdep_trace_alloc(flags);
  2987. if (slab_should_failslab(cachep, flags))
  2988. return NULL;
  2989. cache_alloc_debugcheck_before(cachep, flags);
  2990. local_irq_save(save_flags);
  2991. objp = __do_cache_alloc(cachep, flags);
  2992. local_irq_restore(save_flags);
  2993. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  2994. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  2995. flags);
  2996. prefetchw(objp);
  2997. if (likely(objp))
  2998. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  2999. if (unlikely((flags & __GFP_ZERO) && objp))
  3000. memset(objp, 0, obj_size(cachep));
  3001. return objp;
  3002. }
  3003. /*
  3004. * Caller needs to acquire correct kmem_list's list_lock
  3005. */
  3006. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3007. int node)
  3008. {
  3009. int i;
  3010. struct kmem_list3 *l3;
  3011. for (i = 0; i < nr_objects; i++) {
  3012. void *objp = objpp[i];
  3013. struct slab *slabp;
  3014. slabp = virt_to_slab(objp);
  3015. l3 = cachep->nodelists[node];
  3016. list_del(&slabp->list);
  3017. check_spinlock_acquired_node(cachep, node);
  3018. check_slabp(cachep, slabp);
  3019. slab_put_obj(cachep, slabp, objp, node);
  3020. STATS_DEC_ACTIVE(cachep);
  3021. l3->free_objects++;
  3022. check_slabp(cachep, slabp);
  3023. /* fixup slab chains */
  3024. if (slabp->inuse == 0) {
  3025. if (l3->free_objects > l3->free_limit) {
  3026. l3->free_objects -= cachep->num;
  3027. /* No need to drop any previously held
  3028. * lock here, even if we have a off-slab slab
  3029. * descriptor it is guaranteed to come from
  3030. * a different cache, refer to comments before
  3031. * alloc_slabmgmt.
  3032. */
  3033. slab_destroy(cachep, slabp);
  3034. } else {
  3035. list_add(&slabp->list, &l3->slabs_free);
  3036. }
  3037. } else {
  3038. /* Unconditionally move a slab to the end of the
  3039. * partial list on free - maximum time for the
  3040. * other objects to be freed, too.
  3041. */
  3042. list_add_tail(&slabp->list, &l3->slabs_partial);
  3043. }
  3044. }
  3045. }
  3046. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3047. {
  3048. int batchcount;
  3049. struct kmem_list3 *l3;
  3050. int node = numa_node_id();
  3051. batchcount = ac->batchcount;
  3052. #if DEBUG
  3053. BUG_ON(!batchcount || batchcount > ac->avail);
  3054. #endif
  3055. check_irq_off();
  3056. l3 = cachep->nodelists[node];
  3057. spin_lock(&l3->list_lock);
  3058. if (l3->shared) {
  3059. struct array_cache *shared_array = l3->shared;
  3060. int max = shared_array->limit - shared_array->avail;
  3061. if (max) {
  3062. if (batchcount > max)
  3063. batchcount = max;
  3064. memcpy(&(shared_array->entry[shared_array->avail]),
  3065. ac->entry, sizeof(void *) * batchcount);
  3066. shared_array->avail += batchcount;
  3067. goto free_done;
  3068. }
  3069. }
  3070. free_block(cachep, ac->entry, batchcount, node);
  3071. free_done:
  3072. #if STATS
  3073. {
  3074. int i = 0;
  3075. struct list_head *p;
  3076. p = l3->slabs_free.next;
  3077. while (p != &(l3->slabs_free)) {
  3078. struct slab *slabp;
  3079. slabp = list_entry(p, struct slab, list);
  3080. BUG_ON(slabp->inuse);
  3081. i++;
  3082. p = p->next;
  3083. }
  3084. STATS_SET_FREEABLE(cachep, i);
  3085. }
  3086. #endif
  3087. spin_unlock(&l3->list_lock);
  3088. ac->avail -= batchcount;
  3089. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3090. }
  3091. /*
  3092. * Release an obj back to its cache. If the obj has a constructed state, it must
  3093. * be in this state _before_ it is released. Called with disabled ints.
  3094. */
  3095. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3096. {
  3097. struct array_cache *ac = cpu_cache_get(cachep);
  3098. check_irq_off();
  3099. kmemleak_free_recursive(objp, cachep->flags);
  3100. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3101. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3102. /*
  3103. * Skip calling cache_free_alien() when the platform is not numa.
  3104. * This will avoid cache misses that happen while accessing slabp (which
  3105. * is per page memory reference) to get nodeid. Instead use a global
  3106. * variable to skip the call, which is mostly likely to be present in
  3107. * the cache.
  3108. */
  3109. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3110. return;
  3111. if (likely(ac->avail < ac->limit)) {
  3112. STATS_INC_FREEHIT(cachep);
  3113. ac->entry[ac->avail++] = objp;
  3114. return;
  3115. } else {
  3116. STATS_INC_FREEMISS(cachep);
  3117. cache_flusharray(cachep, ac);
  3118. ac->entry[ac->avail++] = objp;
  3119. }
  3120. }
  3121. /**
  3122. * kmem_cache_alloc - Allocate an object
  3123. * @cachep: The cache to allocate from.
  3124. * @flags: See kmalloc().
  3125. *
  3126. * Allocate an object from this cache. The flags are only relevant
  3127. * if the cache has no available objects.
  3128. */
  3129. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3130. {
  3131. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3132. trace_kmem_cache_alloc(_RET_IP_, ret,
  3133. obj_size(cachep), cachep->buffer_size, flags);
  3134. return ret;
  3135. }
  3136. EXPORT_SYMBOL(kmem_cache_alloc);
  3137. #ifdef CONFIG_KMEMTRACE
  3138. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3139. {
  3140. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3141. }
  3142. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3143. #endif
  3144. /**
  3145. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3146. * @cachep: the cache we're checking against
  3147. * @ptr: pointer to validate
  3148. *
  3149. * This verifies that the untrusted pointer looks sane;
  3150. * it is _not_ a guarantee that the pointer is actually
  3151. * part of the slab cache in question, but it at least
  3152. * validates that the pointer can be dereferenced and
  3153. * looks half-way sane.
  3154. *
  3155. * Currently only used for dentry validation.
  3156. */
  3157. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3158. {
  3159. unsigned long addr = (unsigned long)ptr;
  3160. unsigned long min_addr = PAGE_OFFSET;
  3161. unsigned long align_mask = BYTES_PER_WORD - 1;
  3162. unsigned long size = cachep->buffer_size;
  3163. struct page *page;
  3164. if (unlikely(addr < min_addr))
  3165. goto out;
  3166. if (unlikely(addr > (unsigned long)high_memory - size))
  3167. goto out;
  3168. if (unlikely(addr & align_mask))
  3169. goto out;
  3170. if (unlikely(!kern_addr_valid(addr)))
  3171. goto out;
  3172. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3173. goto out;
  3174. page = virt_to_page(ptr);
  3175. if (unlikely(!PageSlab(page)))
  3176. goto out;
  3177. if (unlikely(page_get_cache(page) != cachep))
  3178. goto out;
  3179. return 1;
  3180. out:
  3181. return 0;
  3182. }
  3183. #ifdef CONFIG_NUMA
  3184. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3185. {
  3186. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3187. __builtin_return_address(0));
  3188. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3189. obj_size(cachep), cachep->buffer_size,
  3190. flags, nodeid);
  3191. return ret;
  3192. }
  3193. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3194. #ifdef CONFIG_KMEMTRACE
  3195. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3196. gfp_t flags,
  3197. int nodeid)
  3198. {
  3199. return __cache_alloc_node(cachep, flags, nodeid,
  3200. __builtin_return_address(0));
  3201. }
  3202. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3203. #endif
  3204. static __always_inline void *
  3205. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3206. {
  3207. struct kmem_cache *cachep;
  3208. void *ret;
  3209. cachep = kmem_find_general_cachep(size, flags);
  3210. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3211. return cachep;
  3212. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3213. trace_kmalloc_node((unsigned long) caller, ret,
  3214. size, cachep->buffer_size, flags, node);
  3215. return ret;
  3216. }
  3217. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3218. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3219. {
  3220. return __do_kmalloc_node(size, flags, node,
  3221. __builtin_return_address(0));
  3222. }
  3223. EXPORT_SYMBOL(__kmalloc_node);
  3224. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3225. int node, unsigned long caller)
  3226. {
  3227. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3228. }
  3229. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3230. #else
  3231. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3232. {
  3233. return __do_kmalloc_node(size, flags, node, NULL);
  3234. }
  3235. EXPORT_SYMBOL(__kmalloc_node);
  3236. #endif /* CONFIG_DEBUG_SLAB */
  3237. #endif /* CONFIG_NUMA */
  3238. /**
  3239. * __do_kmalloc - allocate memory
  3240. * @size: how many bytes of memory are required.
  3241. * @flags: the type of memory to allocate (see kmalloc).
  3242. * @caller: function caller for debug tracking of the caller
  3243. */
  3244. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3245. void *caller)
  3246. {
  3247. struct kmem_cache *cachep;
  3248. void *ret;
  3249. /* If you want to save a few bytes .text space: replace
  3250. * __ with kmem_.
  3251. * Then kmalloc uses the uninlined functions instead of the inline
  3252. * functions.
  3253. */
  3254. cachep = __find_general_cachep(size, flags);
  3255. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3256. return cachep;
  3257. ret = __cache_alloc(cachep, flags, caller);
  3258. trace_kmalloc((unsigned long) caller, ret,
  3259. size, cachep->buffer_size, flags);
  3260. return ret;
  3261. }
  3262. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3263. void *__kmalloc(size_t size, gfp_t flags)
  3264. {
  3265. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3266. }
  3267. EXPORT_SYMBOL(__kmalloc);
  3268. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3269. {
  3270. return __do_kmalloc(size, flags, (void *)caller);
  3271. }
  3272. EXPORT_SYMBOL(__kmalloc_track_caller);
  3273. #else
  3274. void *__kmalloc(size_t size, gfp_t flags)
  3275. {
  3276. return __do_kmalloc(size, flags, NULL);
  3277. }
  3278. EXPORT_SYMBOL(__kmalloc);
  3279. #endif
  3280. /**
  3281. * kmem_cache_free - Deallocate an object
  3282. * @cachep: The cache the allocation was from.
  3283. * @objp: The previously allocated object.
  3284. *
  3285. * Free an object which was previously allocated from this
  3286. * cache.
  3287. */
  3288. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3289. {
  3290. unsigned long flags;
  3291. local_irq_save(flags);
  3292. debug_check_no_locks_freed(objp, obj_size(cachep));
  3293. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3294. debug_check_no_obj_freed(objp, obj_size(cachep));
  3295. __cache_free(cachep, objp);
  3296. local_irq_restore(flags);
  3297. trace_kmem_cache_free(_RET_IP_, objp);
  3298. }
  3299. EXPORT_SYMBOL(kmem_cache_free);
  3300. /**
  3301. * kfree - free previously allocated memory
  3302. * @objp: pointer returned by kmalloc.
  3303. *
  3304. * If @objp is NULL, no operation is performed.
  3305. *
  3306. * Don't free memory not originally allocated by kmalloc()
  3307. * or you will run into trouble.
  3308. */
  3309. void kfree(const void *objp)
  3310. {
  3311. struct kmem_cache *c;
  3312. unsigned long flags;
  3313. trace_kfree(_RET_IP_, objp);
  3314. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3315. return;
  3316. local_irq_save(flags);
  3317. kfree_debugcheck(objp);
  3318. c = virt_to_cache(objp);
  3319. debug_check_no_locks_freed(objp, obj_size(c));
  3320. debug_check_no_obj_freed(objp, obj_size(c));
  3321. __cache_free(c, (void *)objp);
  3322. local_irq_restore(flags);
  3323. }
  3324. EXPORT_SYMBOL(kfree);
  3325. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3326. {
  3327. return obj_size(cachep);
  3328. }
  3329. EXPORT_SYMBOL(kmem_cache_size);
  3330. const char *kmem_cache_name(struct kmem_cache *cachep)
  3331. {
  3332. return cachep->name;
  3333. }
  3334. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3335. /*
  3336. * This initializes kmem_list3 or resizes various caches for all nodes.
  3337. */
  3338. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3339. {
  3340. int node;
  3341. struct kmem_list3 *l3;
  3342. struct array_cache *new_shared;
  3343. struct array_cache **new_alien = NULL;
  3344. for_each_online_node(node) {
  3345. if (use_alien_caches) {
  3346. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3347. if (!new_alien)
  3348. goto fail;
  3349. }
  3350. new_shared = NULL;
  3351. if (cachep->shared) {
  3352. new_shared = alloc_arraycache(node,
  3353. cachep->shared*cachep->batchcount,
  3354. 0xbaadf00d, gfp);
  3355. if (!new_shared) {
  3356. free_alien_cache(new_alien);
  3357. goto fail;
  3358. }
  3359. }
  3360. l3 = cachep->nodelists[node];
  3361. if (l3) {
  3362. struct array_cache *shared = l3->shared;
  3363. spin_lock_irq(&l3->list_lock);
  3364. if (shared)
  3365. free_block(cachep, shared->entry,
  3366. shared->avail, node);
  3367. l3->shared = new_shared;
  3368. if (!l3->alien) {
  3369. l3->alien = new_alien;
  3370. new_alien = NULL;
  3371. }
  3372. l3->free_limit = (1 + nr_cpus_node(node)) *
  3373. cachep->batchcount + cachep->num;
  3374. spin_unlock_irq(&l3->list_lock);
  3375. kfree(shared);
  3376. free_alien_cache(new_alien);
  3377. continue;
  3378. }
  3379. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3380. if (!l3) {
  3381. free_alien_cache(new_alien);
  3382. kfree(new_shared);
  3383. goto fail;
  3384. }
  3385. kmem_list3_init(l3);
  3386. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3387. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3388. l3->shared = new_shared;
  3389. l3->alien = new_alien;
  3390. l3->free_limit = (1 + nr_cpus_node(node)) *
  3391. cachep->batchcount + cachep->num;
  3392. cachep->nodelists[node] = l3;
  3393. }
  3394. return 0;
  3395. fail:
  3396. if (!cachep->next.next) {
  3397. /* Cache is not active yet. Roll back what we did */
  3398. node--;
  3399. while (node >= 0) {
  3400. if (cachep->nodelists[node]) {
  3401. l3 = cachep->nodelists[node];
  3402. kfree(l3->shared);
  3403. free_alien_cache(l3->alien);
  3404. kfree(l3);
  3405. cachep->nodelists[node] = NULL;
  3406. }
  3407. node--;
  3408. }
  3409. }
  3410. return -ENOMEM;
  3411. }
  3412. struct ccupdate_struct {
  3413. struct kmem_cache *cachep;
  3414. struct array_cache *new[NR_CPUS];
  3415. };
  3416. static void do_ccupdate_local(void *info)
  3417. {
  3418. struct ccupdate_struct *new = info;
  3419. struct array_cache *old;
  3420. check_irq_off();
  3421. old = cpu_cache_get(new->cachep);
  3422. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3423. new->new[smp_processor_id()] = old;
  3424. }
  3425. /* Always called with the cache_chain_mutex held */
  3426. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3427. int batchcount, int shared, gfp_t gfp)
  3428. {
  3429. struct ccupdate_struct *new;
  3430. int i;
  3431. new = kzalloc(sizeof(*new), gfp);
  3432. if (!new)
  3433. return -ENOMEM;
  3434. for_each_online_cpu(i) {
  3435. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3436. batchcount, gfp);
  3437. if (!new->new[i]) {
  3438. for (i--; i >= 0; i--)
  3439. kfree(new->new[i]);
  3440. kfree(new);
  3441. return -ENOMEM;
  3442. }
  3443. }
  3444. new->cachep = cachep;
  3445. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3446. check_irq_on();
  3447. cachep->batchcount = batchcount;
  3448. cachep->limit = limit;
  3449. cachep->shared = shared;
  3450. for_each_online_cpu(i) {
  3451. struct array_cache *ccold = new->new[i];
  3452. if (!ccold)
  3453. continue;
  3454. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3455. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3456. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3457. kfree(ccold);
  3458. }
  3459. kfree(new);
  3460. return alloc_kmemlist(cachep, gfp);
  3461. }
  3462. /* Called with cache_chain_mutex held always */
  3463. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3464. {
  3465. int err;
  3466. int limit, shared;
  3467. /*
  3468. * The head array serves three purposes:
  3469. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3470. * - reduce the number of spinlock operations.
  3471. * - reduce the number of linked list operations on the slab and
  3472. * bufctl chains: array operations are cheaper.
  3473. * The numbers are guessed, we should auto-tune as described by
  3474. * Bonwick.
  3475. */
  3476. if (cachep->buffer_size > 131072)
  3477. limit = 1;
  3478. else if (cachep->buffer_size > PAGE_SIZE)
  3479. limit = 8;
  3480. else if (cachep->buffer_size > 1024)
  3481. limit = 24;
  3482. else if (cachep->buffer_size > 256)
  3483. limit = 54;
  3484. else
  3485. limit = 120;
  3486. /*
  3487. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3488. * allocation behaviour: Most allocs on one cpu, most free operations
  3489. * on another cpu. For these cases, an efficient object passing between
  3490. * cpus is necessary. This is provided by a shared array. The array
  3491. * replaces Bonwick's magazine layer.
  3492. * On uniprocessor, it's functionally equivalent (but less efficient)
  3493. * to a larger limit. Thus disabled by default.
  3494. */
  3495. shared = 0;
  3496. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3497. shared = 8;
  3498. #if DEBUG
  3499. /*
  3500. * With debugging enabled, large batchcount lead to excessively long
  3501. * periods with disabled local interrupts. Limit the batchcount
  3502. */
  3503. if (limit > 32)
  3504. limit = 32;
  3505. #endif
  3506. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3507. if (err)
  3508. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3509. cachep->name, -err);
  3510. return err;
  3511. }
  3512. /*
  3513. * Drain an array if it contains any elements taking the l3 lock only if
  3514. * necessary. Note that the l3 listlock also protects the array_cache
  3515. * if drain_array() is used on the shared array.
  3516. */
  3517. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3518. struct array_cache *ac, int force, int node)
  3519. {
  3520. int tofree;
  3521. if (!ac || !ac->avail)
  3522. return;
  3523. if (ac->touched && !force) {
  3524. ac->touched = 0;
  3525. } else {
  3526. spin_lock_irq(&l3->list_lock);
  3527. if (ac->avail) {
  3528. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3529. if (tofree > ac->avail)
  3530. tofree = (ac->avail + 1) / 2;
  3531. free_block(cachep, ac->entry, tofree, node);
  3532. ac->avail -= tofree;
  3533. memmove(ac->entry, &(ac->entry[tofree]),
  3534. sizeof(void *) * ac->avail);
  3535. }
  3536. spin_unlock_irq(&l3->list_lock);
  3537. }
  3538. }
  3539. /**
  3540. * cache_reap - Reclaim memory from caches.
  3541. * @w: work descriptor
  3542. *
  3543. * Called from workqueue/eventd every few seconds.
  3544. * Purpose:
  3545. * - clear the per-cpu caches for this CPU.
  3546. * - return freeable pages to the main free memory pool.
  3547. *
  3548. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3549. * again on the next iteration.
  3550. */
  3551. static void cache_reap(struct work_struct *w)
  3552. {
  3553. struct kmem_cache *searchp;
  3554. struct kmem_list3 *l3;
  3555. int node = numa_node_id();
  3556. struct delayed_work *work = to_delayed_work(w);
  3557. if (!mutex_trylock(&cache_chain_mutex))
  3558. /* Give up. Setup the next iteration. */
  3559. goto out;
  3560. list_for_each_entry(searchp, &cache_chain, next) {
  3561. check_irq_on();
  3562. /*
  3563. * We only take the l3 lock if absolutely necessary and we
  3564. * have established with reasonable certainty that
  3565. * we can do some work if the lock was obtained.
  3566. */
  3567. l3 = searchp->nodelists[node];
  3568. reap_alien(searchp, l3);
  3569. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3570. /*
  3571. * These are racy checks but it does not matter
  3572. * if we skip one check or scan twice.
  3573. */
  3574. if (time_after(l3->next_reap, jiffies))
  3575. goto next;
  3576. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3577. drain_array(searchp, l3, l3->shared, 0, node);
  3578. if (l3->free_touched)
  3579. l3->free_touched = 0;
  3580. else {
  3581. int freed;
  3582. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3583. 5 * searchp->num - 1) / (5 * searchp->num));
  3584. STATS_ADD_REAPED(searchp, freed);
  3585. }
  3586. next:
  3587. cond_resched();
  3588. }
  3589. check_irq_on();
  3590. mutex_unlock(&cache_chain_mutex);
  3591. next_reap_node();
  3592. out:
  3593. /* Set up the next iteration */
  3594. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3595. }
  3596. #ifdef CONFIG_SLABINFO
  3597. static void print_slabinfo_header(struct seq_file *m)
  3598. {
  3599. /*
  3600. * Output format version, so at least we can change it
  3601. * without _too_ many complaints.
  3602. */
  3603. #if STATS
  3604. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3605. #else
  3606. seq_puts(m, "slabinfo - version: 2.1\n");
  3607. #endif
  3608. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3609. "<objperslab> <pagesperslab>");
  3610. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3611. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3612. #if STATS
  3613. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3614. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3615. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3616. #endif
  3617. seq_putc(m, '\n');
  3618. }
  3619. static void *s_start(struct seq_file *m, loff_t *pos)
  3620. {
  3621. loff_t n = *pos;
  3622. mutex_lock(&cache_chain_mutex);
  3623. if (!n)
  3624. print_slabinfo_header(m);
  3625. return seq_list_start(&cache_chain, *pos);
  3626. }
  3627. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3628. {
  3629. return seq_list_next(p, &cache_chain, pos);
  3630. }
  3631. static void s_stop(struct seq_file *m, void *p)
  3632. {
  3633. mutex_unlock(&cache_chain_mutex);
  3634. }
  3635. static int s_show(struct seq_file *m, void *p)
  3636. {
  3637. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3638. struct slab *slabp;
  3639. unsigned long active_objs;
  3640. unsigned long num_objs;
  3641. unsigned long active_slabs = 0;
  3642. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3643. const char *name;
  3644. char *error = NULL;
  3645. int node;
  3646. struct kmem_list3 *l3;
  3647. active_objs = 0;
  3648. num_slabs = 0;
  3649. for_each_online_node(node) {
  3650. l3 = cachep->nodelists[node];
  3651. if (!l3)
  3652. continue;
  3653. check_irq_on();
  3654. spin_lock_irq(&l3->list_lock);
  3655. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3656. if (slabp->inuse != cachep->num && !error)
  3657. error = "slabs_full accounting error";
  3658. active_objs += cachep->num;
  3659. active_slabs++;
  3660. }
  3661. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3662. if (slabp->inuse == cachep->num && !error)
  3663. error = "slabs_partial inuse accounting error";
  3664. if (!slabp->inuse && !error)
  3665. error = "slabs_partial/inuse accounting error";
  3666. active_objs += slabp->inuse;
  3667. active_slabs++;
  3668. }
  3669. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3670. if (slabp->inuse && !error)
  3671. error = "slabs_free/inuse accounting error";
  3672. num_slabs++;
  3673. }
  3674. free_objects += l3->free_objects;
  3675. if (l3->shared)
  3676. shared_avail += l3->shared->avail;
  3677. spin_unlock_irq(&l3->list_lock);
  3678. }
  3679. num_slabs += active_slabs;
  3680. num_objs = num_slabs * cachep->num;
  3681. if (num_objs - active_objs != free_objects && !error)
  3682. error = "free_objects accounting error";
  3683. name = cachep->name;
  3684. if (error)
  3685. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3686. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3687. name, active_objs, num_objs, cachep->buffer_size,
  3688. cachep->num, (1 << cachep->gfporder));
  3689. seq_printf(m, " : tunables %4u %4u %4u",
  3690. cachep->limit, cachep->batchcount, cachep->shared);
  3691. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3692. active_slabs, num_slabs, shared_avail);
  3693. #if STATS
  3694. { /* list3 stats */
  3695. unsigned long high = cachep->high_mark;
  3696. unsigned long allocs = cachep->num_allocations;
  3697. unsigned long grown = cachep->grown;
  3698. unsigned long reaped = cachep->reaped;
  3699. unsigned long errors = cachep->errors;
  3700. unsigned long max_freeable = cachep->max_freeable;
  3701. unsigned long node_allocs = cachep->node_allocs;
  3702. unsigned long node_frees = cachep->node_frees;
  3703. unsigned long overflows = cachep->node_overflow;
  3704. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3705. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3706. reaped, errors, max_freeable, node_allocs,
  3707. node_frees, overflows);
  3708. }
  3709. /* cpu stats */
  3710. {
  3711. unsigned long allochit = atomic_read(&cachep->allochit);
  3712. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3713. unsigned long freehit = atomic_read(&cachep->freehit);
  3714. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3715. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3716. allochit, allocmiss, freehit, freemiss);
  3717. }
  3718. #endif
  3719. seq_putc(m, '\n');
  3720. return 0;
  3721. }
  3722. /*
  3723. * slabinfo_op - iterator that generates /proc/slabinfo
  3724. *
  3725. * Output layout:
  3726. * cache-name
  3727. * num-active-objs
  3728. * total-objs
  3729. * object size
  3730. * num-active-slabs
  3731. * total-slabs
  3732. * num-pages-per-slab
  3733. * + further values on SMP and with statistics enabled
  3734. */
  3735. static const struct seq_operations slabinfo_op = {
  3736. .start = s_start,
  3737. .next = s_next,
  3738. .stop = s_stop,
  3739. .show = s_show,
  3740. };
  3741. #define MAX_SLABINFO_WRITE 128
  3742. /**
  3743. * slabinfo_write - Tuning for the slab allocator
  3744. * @file: unused
  3745. * @buffer: user buffer
  3746. * @count: data length
  3747. * @ppos: unused
  3748. */
  3749. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3750. size_t count, loff_t *ppos)
  3751. {
  3752. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3753. int limit, batchcount, shared, res;
  3754. struct kmem_cache *cachep;
  3755. if (count > MAX_SLABINFO_WRITE)
  3756. return -EINVAL;
  3757. if (copy_from_user(&kbuf, buffer, count))
  3758. return -EFAULT;
  3759. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3760. tmp = strchr(kbuf, ' ');
  3761. if (!tmp)
  3762. return -EINVAL;
  3763. *tmp = '\0';
  3764. tmp++;
  3765. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3766. return -EINVAL;
  3767. /* Find the cache in the chain of caches. */
  3768. mutex_lock(&cache_chain_mutex);
  3769. res = -EINVAL;
  3770. list_for_each_entry(cachep, &cache_chain, next) {
  3771. if (!strcmp(cachep->name, kbuf)) {
  3772. if (limit < 1 || batchcount < 1 ||
  3773. batchcount > limit || shared < 0) {
  3774. res = 0;
  3775. } else {
  3776. res = do_tune_cpucache(cachep, limit,
  3777. batchcount, shared,
  3778. GFP_KERNEL);
  3779. }
  3780. break;
  3781. }
  3782. }
  3783. mutex_unlock(&cache_chain_mutex);
  3784. if (res >= 0)
  3785. res = count;
  3786. return res;
  3787. }
  3788. static int slabinfo_open(struct inode *inode, struct file *file)
  3789. {
  3790. return seq_open(file, &slabinfo_op);
  3791. }
  3792. static const struct file_operations proc_slabinfo_operations = {
  3793. .open = slabinfo_open,
  3794. .read = seq_read,
  3795. .write = slabinfo_write,
  3796. .llseek = seq_lseek,
  3797. .release = seq_release,
  3798. };
  3799. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3800. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3801. {
  3802. mutex_lock(&cache_chain_mutex);
  3803. return seq_list_start(&cache_chain, *pos);
  3804. }
  3805. static inline int add_caller(unsigned long *n, unsigned long v)
  3806. {
  3807. unsigned long *p;
  3808. int l;
  3809. if (!v)
  3810. return 1;
  3811. l = n[1];
  3812. p = n + 2;
  3813. while (l) {
  3814. int i = l/2;
  3815. unsigned long *q = p + 2 * i;
  3816. if (*q == v) {
  3817. q[1]++;
  3818. return 1;
  3819. }
  3820. if (*q > v) {
  3821. l = i;
  3822. } else {
  3823. p = q + 2;
  3824. l -= i + 1;
  3825. }
  3826. }
  3827. if (++n[1] == n[0])
  3828. return 0;
  3829. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3830. p[0] = v;
  3831. p[1] = 1;
  3832. return 1;
  3833. }
  3834. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3835. {
  3836. void *p;
  3837. int i;
  3838. if (n[0] == n[1])
  3839. return;
  3840. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3841. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3842. continue;
  3843. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3844. return;
  3845. }
  3846. }
  3847. static void show_symbol(struct seq_file *m, unsigned long address)
  3848. {
  3849. #ifdef CONFIG_KALLSYMS
  3850. unsigned long offset, size;
  3851. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3852. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3853. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3854. if (modname[0])
  3855. seq_printf(m, " [%s]", modname);
  3856. return;
  3857. }
  3858. #endif
  3859. seq_printf(m, "%p", (void *)address);
  3860. }
  3861. static int leaks_show(struct seq_file *m, void *p)
  3862. {
  3863. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3864. struct slab *slabp;
  3865. struct kmem_list3 *l3;
  3866. const char *name;
  3867. unsigned long *n = m->private;
  3868. int node;
  3869. int i;
  3870. if (!(cachep->flags & SLAB_STORE_USER))
  3871. return 0;
  3872. if (!(cachep->flags & SLAB_RED_ZONE))
  3873. return 0;
  3874. /* OK, we can do it */
  3875. n[1] = 0;
  3876. for_each_online_node(node) {
  3877. l3 = cachep->nodelists[node];
  3878. if (!l3)
  3879. continue;
  3880. check_irq_on();
  3881. spin_lock_irq(&l3->list_lock);
  3882. list_for_each_entry(slabp, &l3->slabs_full, list)
  3883. handle_slab(n, cachep, slabp);
  3884. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3885. handle_slab(n, cachep, slabp);
  3886. spin_unlock_irq(&l3->list_lock);
  3887. }
  3888. name = cachep->name;
  3889. if (n[0] == n[1]) {
  3890. /* Increase the buffer size */
  3891. mutex_unlock(&cache_chain_mutex);
  3892. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3893. if (!m->private) {
  3894. /* Too bad, we are really out */
  3895. m->private = n;
  3896. mutex_lock(&cache_chain_mutex);
  3897. return -ENOMEM;
  3898. }
  3899. *(unsigned long *)m->private = n[0] * 2;
  3900. kfree(n);
  3901. mutex_lock(&cache_chain_mutex);
  3902. /* Now make sure this entry will be retried */
  3903. m->count = m->size;
  3904. return 0;
  3905. }
  3906. for (i = 0; i < n[1]; i++) {
  3907. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3908. show_symbol(m, n[2*i+2]);
  3909. seq_putc(m, '\n');
  3910. }
  3911. return 0;
  3912. }
  3913. static const struct seq_operations slabstats_op = {
  3914. .start = leaks_start,
  3915. .next = s_next,
  3916. .stop = s_stop,
  3917. .show = leaks_show,
  3918. };
  3919. static int slabstats_open(struct inode *inode, struct file *file)
  3920. {
  3921. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3922. int ret = -ENOMEM;
  3923. if (n) {
  3924. ret = seq_open(file, &slabstats_op);
  3925. if (!ret) {
  3926. struct seq_file *m = file->private_data;
  3927. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3928. m->private = n;
  3929. n = NULL;
  3930. }
  3931. kfree(n);
  3932. }
  3933. return ret;
  3934. }
  3935. static const struct file_operations proc_slabstats_operations = {
  3936. .open = slabstats_open,
  3937. .read = seq_read,
  3938. .llseek = seq_lseek,
  3939. .release = seq_release_private,
  3940. };
  3941. #endif
  3942. static int __init slab_proc_init(void)
  3943. {
  3944. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3945. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3946. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3947. #endif
  3948. return 0;
  3949. }
  3950. module_init(slab_proc_init);
  3951. #endif
  3952. /**
  3953. * ksize - get the actual amount of memory allocated for a given object
  3954. * @objp: Pointer to the object
  3955. *
  3956. * kmalloc may internally round up allocations and return more memory
  3957. * than requested. ksize() can be used to determine the actual amount of
  3958. * memory allocated. The caller may use this additional memory, even though
  3959. * a smaller amount of memory was initially specified with the kmalloc call.
  3960. * The caller must guarantee that objp points to a valid object previously
  3961. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3962. * must not be freed during the duration of the call.
  3963. */
  3964. size_t ksize(const void *objp)
  3965. {
  3966. BUG_ON(!objp);
  3967. if (unlikely(objp == ZERO_SIZE_PTR))
  3968. return 0;
  3969. return obj_size(virt_to_cache(objp));
  3970. }
  3971. EXPORT_SYMBOL(ksize);