elevator.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@suse.de> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <linux/hash.h>
  37. #include <asm/uaccess.h>
  38. static DEFINE_SPINLOCK(elv_list_lock);
  39. static LIST_HEAD(elv_list);
  40. /*
  41. * Merge hash stuff.
  42. */
  43. static const int elv_hash_shift = 6;
  44. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  45. #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  46. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  47. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  48. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  49. /*
  50. * can we safely merge with this request?
  51. */
  52. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  53. {
  54. if (!rq_mergeable(rq))
  55. return 0;
  56. /*
  57. * different data direction or already started, don't merge
  58. */
  59. if (bio_data_dir(bio) != rq_data_dir(rq))
  60. return 0;
  61. /*
  62. * same device and no special stuff set, merge is ok
  63. */
  64. if (rq->rq_disk == bio->bi_bdev->bd_disk && !rq->special)
  65. return 1;
  66. return 0;
  67. }
  68. EXPORT_SYMBOL(elv_rq_merge_ok);
  69. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  70. {
  71. int ret = ELEVATOR_NO_MERGE;
  72. /*
  73. * we can merge and sequence is ok, check if it's possible
  74. */
  75. if (elv_rq_merge_ok(__rq, bio)) {
  76. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  77. ret = ELEVATOR_BACK_MERGE;
  78. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  79. ret = ELEVATOR_FRONT_MERGE;
  80. }
  81. return ret;
  82. }
  83. static struct elevator_type *elevator_find(const char *name)
  84. {
  85. struct elevator_type *e = NULL;
  86. struct list_head *entry;
  87. list_for_each(entry, &elv_list) {
  88. struct elevator_type *__e;
  89. __e = list_entry(entry, struct elevator_type, list);
  90. if (!strcmp(__e->elevator_name, name)) {
  91. e = __e;
  92. break;
  93. }
  94. }
  95. return e;
  96. }
  97. static void elevator_put(struct elevator_type *e)
  98. {
  99. module_put(e->elevator_owner);
  100. }
  101. static struct elevator_type *elevator_get(const char *name)
  102. {
  103. struct elevator_type *e;
  104. spin_lock_irq(&elv_list_lock);
  105. e = elevator_find(name);
  106. if (e && !try_module_get(e->elevator_owner))
  107. e = NULL;
  108. spin_unlock_irq(&elv_list_lock);
  109. return e;
  110. }
  111. static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
  112. {
  113. return eq->ops->elevator_init_fn(q, eq);
  114. }
  115. static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
  116. void *data)
  117. {
  118. q->elevator = eq;
  119. eq->elevator_data = data;
  120. }
  121. static char chosen_elevator[16];
  122. static int __init elevator_setup(char *str)
  123. {
  124. /*
  125. * Be backwards-compatible with previous kernels, so users
  126. * won't get the wrong elevator.
  127. */
  128. if (!strcmp(str, "as"))
  129. strcpy(chosen_elevator, "anticipatory");
  130. else
  131. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  132. return 1;
  133. }
  134. __setup("elevator=", elevator_setup);
  135. static struct kobj_type elv_ktype;
  136. static elevator_t *elevator_alloc(struct elevator_type *e)
  137. {
  138. elevator_t *eq;
  139. int i;
  140. eq = kmalloc(sizeof(elevator_t), GFP_KERNEL);
  141. if (unlikely(!eq))
  142. goto err;
  143. memset(eq, 0, sizeof(*eq));
  144. eq->ops = &e->ops;
  145. eq->elevator_type = e;
  146. kobject_init(&eq->kobj);
  147. snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  148. eq->kobj.ktype = &elv_ktype;
  149. mutex_init(&eq->sysfs_lock);
  150. eq->hash = kmalloc(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, GFP_KERNEL);
  151. if (!eq->hash)
  152. goto err;
  153. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  154. INIT_HLIST_HEAD(&eq->hash[i]);
  155. return eq;
  156. err:
  157. kfree(eq);
  158. elevator_put(e);
  159. return NULL;
  160. }
  161. static void elevator_release(struct kobject *kobj)
  162. {
  163. elevator_t *e = container_of(kobj, elevator_t, kobj);
  164. elevator_put(e->elevator_type);
  165. kfree(e->hash);
  166. kfree(e);
  167. }
  168. int elevator_init(request_queue_t *q, char *name)
  169. {
  170. struct elevator_type *e = NULL;
  171. struct elevator_queue *eq;
  172. int ret = 0;
  173. void *data;
  174. INIT_LIST_HEAD(&q->queue_head);
  175. q->last_merge = NULL;
  176. q->end_sector = 0;
  177. q->boundary_rq = NULL;
  178. if (name && !(e = elevator_get(name)))
  179. return -EINVAL;
  180. if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
  181. printk("I/O scheduler %s not found\n", chosen_elevator);
  182. if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
  183. printk("Default I/O scheduler not found, using no-op\n");
  184. e = elevator_get("noop");
  185. }
  186. eq = elevator_alloc(e);
  187. if (!eq)
  188. return -ENOMEM;
  189. data = elevator_init_queue(q, eq);
  190. if (!data) {
  191. kobject_put(&eq->kobj);
  192. return -ENOMEM;
  193. }
  194. elevator_attach(q, eq, data);
  195. return ret;
  196. }
  197. EXPORT_SYMBOL(elevator_init);
  198. void elevator_exit(elevator_t *e)
  199. {
  200. mutex_lock(&e->sysfs_lock);
  201. if (e->ops->elevator_exit_fn)
  202. e->ops->elevator_exit_fn(e);
  203. e->ops = NULL;
  204. mutex_unlock(&e->sysfs_lock);
  205. kobject_put(&e->kobj);
  206. }
  207. EXPORT_SYMBOL(elevator_exit);
  208. static inline void __elv_rqhash_del(struct request *rq)
  209. {
  210. hlist_del_init(&rq->hash);
  211. }
  212. static void elv_rqhash_del(request_queue_t *q, struct request *rq)
  213. {
  214. if (ELV_ON_HASH(rq))
  215. __elv_rqhash_del(rq);
  216. }
  217. static void elv_rqhash_add(request_queue_t *q, struct request *rq)
  218. {
  219. elevator_t *e = q->elevator;
  220. BUG_ON(ELV_ON_HASH(rq));
  221. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  222. }
  223. static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
  224. {
  225. __elv_rqhash_del(rq);
  226. elv_rqhash_add(q, rq);
  227. }
  228. static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
  229. {
  230. elevator_t *e = q->elevator;
  231. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  232. struct hlist_node *entry, *next;
  233. struct request *rq;
  234. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  235. BUG_ON(!ELV_ON_HASH(rq));
  236. if (unlikely(!rq_mergeable(rq))) {
  237. __elv_rqhash_del(rq);
  238. continue;
  239. }
  240. if (rq_hash_key(rq) == offset)
  241. return rq;
  242. }
  243. return NULL;
  244. }
  245. /*
  246. * RB-tree support functions for inserting/lookup/removal of requests
  247. * in a sorted RB tree.
  248. */
  249. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  250. {
  251. struct rb_node **p = &root->rb_node;
  252. struct rb_node *parent = NULL;
  253. struct request *__rq;
  254. while (*p) {
  255. parent = *p;
  256. __rq = rb_entry(parent, struct request, rb_node);
  257. if (rq->sector < __rq->sector)
  258. p = &(*p)->rb_left;
  259. else if (rq->sector > __rq->sector)
  260. p = &(*p)->rb_right;
  261. else
  262. return __rq;
  263. }
  264. rb_link_node(&rq->rb_node, parent, p);
  265. rb_insert_color(&rq->rb_node, root);
  266. return NULL;
  267. }
  268. EXPORT_SYMBOL(elv_rb_add);
  269. void elv_rb_del(struct rb_root *root, struct request *rq)
  270. {
  271. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  272. rb_erase(&rq->rb_node, root);
  273. RB_CLEAR_NODE(&rq->rb_node);
  274. }
  275. EXPORT_SYMBOL(elv_rb_del);
  276. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  277. {
  278. struct rb_node *n = root->rb_node;
  279. struct request *rq;
  280. while (n) {
  281. rq = rb_entry(n, struct request, rb_node);
  282. if (sector < rq->sector)
  283. n = n->rb_left;
  284. else if (sector > rq->sector)
  285. n = n->rb_right;
  286. else
  287. return rq;
  288. }
  289. return NULL;
  290. }
  291. EXPORT_SYMBOL(elv_rb_find);
  292. /*
  293. * Insert rq into dispatch queue of q. Queue lock must be held on
  294. * entry. rq is sort insted into the dispatch queue. To be used by
  295. * specific elevators.
  296. */
  297. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  298. {
  299. sector_t boundary;
  300. struct list_head *entry;
  301. if (q->last_merge == rq)
  302. q->last_merge = NULL;
  303. elv_rqhash_del(q, rq);
  304. q->nr_sorted--;
  305. boundary = q->end_sector;
  306. list_for_each_prev(entry, &q->queue_head) {
  307. struct request *pos = list_entry_rq(entry);
  308. if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  309. break;
  310. if (rq->sector >= boundary) {
  311. if (pos->sector < boundary)
  312. continue;
  313. } else {
  314. if (pos->sector >= boundary)
  315. break;
  316. }
  317. if (rq->sector >= pos->sector)
  318. break;
  319. }
  320. list_add(&rq->queuelist, entry);
  321. }
  322. EXPORT_SYMBOL(elv_dispatch_sort);
  323. /*
  324. * Insert rq into dispatch queue of q. Queue lock must be held on
  325. * entry. rq is added to the back of the dispatch queue. To be used by
  326. * specific elevators.
  327. */
  328. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  329. {
  330. if (q->last_merge == rq)
  331. q->last_merge = NULL;
  332. elv_rqhash_del(q, rq);
  333. q->nr_sorted--;
  334. q->end_sector = rq_end_sector(rq);
  335. q->boundary_rq = rq;
  336. list_add_tail(&rq->queuelist, &q->queue_head);
  337. }
  338. EXPORT_SYMBOL(elv_dispatch_add_tail);
  339. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  340. {
  341. elevator_t *e = q->elevator;
  342. struct request *__rq;
  343. int ret;
  344. /*
  345. * First try one-hit cache.
  346. */
  347. if (q->last_merge) {
  348. ret = elv_try_merge(q->last_merge, bio);
  349. if (ret != ELEVATOR_NO_MERGE) {
  350. *req = q->last_merge;
  351. return ret;
  352. }
  353. }
  354. /*
  355. * See if our hash lookup can find a potential backmerge.
  356. */
  357. __rq = elv_rqhash_find(q, bio->bi_sector);
  358. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  359. *req = __rq;
  360. return ELEVATOR_BACK_MERGE;
  361. }
  362. if (e->ops->elevator_merge_fn)
  363. return e->ops->elevator_merge_fn(q, req, bio);
  364. return ELEVATOR_NO_MERGE;
  365. }
  366. void elv_merged_request(request_queue_t *q, struct request *rq, int type)
  367. {
  368. elevator_t *e = q->elevator;
  369. if (e->ops->elevator_merged_fn)
  370. e->ops->elevator_merged_fn(q, rq, type);
  371. if (type == ELEVATOR_BACK_MERGE)
  372. elv_rqhash_reposition(q, rq);
  373. q->last_merge = rq;
  374. }
  375. void elv_merge_requests(request_queue_t *q, struct request *rq,
  376. struct request *next)
  377. {
  378. elevator_t *e = q->elevator;
  379. if (e->ops->elevator_merge_req_fn)
  380. e->ops->elevator_merge_req_fn(q, rq, next);
  381. elv_rqhash_reposition(q, rq);
  382. elv_rqhash_del(q, next);
  383. q->nr_sorted--;
  384. q->last_merge = rq;
  385. }
  386. void elv_requeue_request(request_queue_t *q, struct request *rq)
  387. {
  388. elevator_t *e = q->elevator;
  389. /*
  390. * it already went through dequeue, we need to decrement the
  391. * in_flight count again
  392. */
  393. if (blk_account_rq(rq)) {
  394. q->in_flight--;
  395. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  396. e->ops->elevator_deactivate_req_fn(q, rq);
  397. }
  398. rq->cmd_flags &= ~REQ_STARTED;
  399. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  400. }
  401. static void elv_drain_elevator(request_queue_t *q)
  402. {
  403. static int printed;
  404. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  405. ;
  406. if (q->nr_sorted == 0)
  407. return;
  408. if (printed++ < 10) {
  409. printk(KERN_ERR "%s: forced dispatching is broken "
  410. "(nr_sorted=%u), please report this\n",
  411. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  412. }
  413. }
  414. void elv_insert(request_queue_t *q, struct request *rq, int where)
  415. {
  416. struct list_head *pos;
  417. unsigned ordseq;
  418. int unplug_it = 1;
  419. blk_add_trace_rq(q, rq, BLK_TA_INSERT);
  420. rq->q = q;
  421. switch (where) {
  422. case ELEVATOR_INSERT_FRONT:
  423. rq->cmd_flags |= REQ_SOFTBARRIER;
  424. list_add(&rq->queuelist, &q->queue_head);
  425. break;
  426. case ELEVATOR_INSERT_BACK:
  427. rq->cmd_flags |= REQ_SOFTBARRIER;
  428. elv_drain_elevator(q);
  429. list_add_tail(&rq->queuelist, &q->queue_head);
  430. /*
  431. * We kick the queue here for the following reasons.
  432. * - The elevator might have returned NULL previously
  433. * to delay requests and returned them now. As the
  434. * queue wasn't empty before this request, ll_rw_blk
  435. * won't run the queue on return, resulting in hang.
  436. * - Usually, back inserted requests won't be merged
  437. * with anything. There's no point in delaying queue
  438. * processing.
  439. */
  440. blk_remove_plug(q);
  441. q->request_fn(q);
  442. break;
  443. case ELEVATOR_INSERT_SORT:
  444. BUG_ON(!blk_fs_request(rq));
  445. rq->cmd_flags |= REQ_SORTED;
  446. q->nr_sorted++;
  447. if (rq_mergeable(rq)) {
  448. elv_rqhash_add(q, rq);
  449. if (!q->last_merge)
  450. q->last_merge = rq;
  451. }
  452. /*
  453. * Some ioscheds (cfq) run q->request_fn directly, so
  454. * rq cannot be accessed after calling
  455. * elevator_add_req_fn.
  456. */
  457. q->elevator->ops->elevator_add_req_fn(q, rq);
  458. break;
  459. case ELEVATOR_INSERT_REQUEUE:
  460. /*
  461. * If ordered flush isn't in progress, we do front
  462. * insertion; otherwise, requests should be requeued
  463. * in ordseq order.
  464. */
  465. rq->cmd_flags |= REQ_SOFTBARRIER;
  466. if (q->ordseq == 0) {
  467. list_add(&rq->queuelist, &q->queue_head);
  468. break;
  469. }
  470. ordseq = blk_ordered_req_seq(rq);
  471. list_for_each(pos, &q->queue_head) {
  472. struct request *pos_rq = list_entry_rq(pos);
  473. if (ordseq <= blk_ordered_req_seq(pos_rq))
  474. break;
  475. }
  476. list_add_tail(&rq->queuelist, pos);
  477. /*
  478. * most requeues happen because of a busy condition, don't
  479. * force unplug of the queue for that case.
  480. */
  481. unplug_it = 0;
  482. break;
  483. default:
  484. printk(KERN_ERR "%s: bad insertion point %d\n",
  485. __FUNCTION__, where);
  486. BUG();
  487. }
  488. if (unplug_it && blk_queue_plugged(q)) {
  489. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  490. - q->in_flight;
  491. if (nrq >= q->unplug_thresh)
  492. __generic_unplug_device(q);
  493. }
  494. }
  495. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  496. int plug)
  497. {
  498. if (q->ordcolor)
  499. rq->cmd_flags |= REQ_ORDERED_COLOR;
  500. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  501. /*
  502. * toggle ordered color
  503. */
  504. if (blk_barrier_rq(rq))
  505. q->ordcolor ^= 1;
  506. /*
  507. * barriers implicitly indicate back insertion
  508. */
  509. if (where == ELEVATOR_INSERT_SORT)
  510. where = ELEVATOR_INSERT_BACK;
  511. /*
  512. * this request is scheduling boundary, update
  513. * end_sector
  514. */
  515. if (blk_fs_request(rq)) {
  516. q->end_sector = rq_end_sector(rq);
  517. q->boundary_rq = rq;
  518. }
  519. } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  520. where = ELEVATOR_INSERT_BACK;
  521. if (plug)
  522. blk_plug_device(q);
  523. elv_insert(q, rq, where);
  524. }
  525. EXPORT_SYMBOL(__elv_add_request);
  526. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  527. int plug)
  528. {
  529. unsigned long flags;
  530. spin_lock_irqsave(q->queue_lock, flags);
  531. __elv_add_request(q, rq, where, plug);
  532. spin_unlock_irqrestore(q->queue_lock, flags);
  533. }
  534. EXPORT_SYMBOL(elv_add_request);
  535. static inline struct request *__elv_next_request(request_queue_t *q)
  536. {
  537. struct request *rq;
  538. while (1) {
  539. while (!list_empty(&q->queue_head)) {
  540. rq = list_entry_rq(q->queue_head.next);
  541. if (blk_do_ordered(q, &rq))
  542. return rq;
  543. }
  544. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  545. return NULL;
  546. }
  547. }
  548. struct request *elv_next_request(request_queue_t *q)
  549. {
  550. struct request *rq;
  551. int ret;
  552. while ((rq = __elv_next_request(q)) != NULL) {
  553. if (!(rq->cmd_flags & REQ_STARTED)) {
  554. elevator_t *e = q->elevator;
  555. /*
  556. * This is the first time the device driver
  557. * sees this request (possibly after
  558. * requeueing). Notify IO scheduler.
  559. */
  560. if (blk_sorted_rq(rq) &&
  561. e->ops->elevator_activate_req_fn)
  562. e->ops->elevator_activate_req_fn(q, rq);
  563. /*
  564. * just mark as started even if we don't start
  565. * it, a request that has been delayed should
  566. * not be passed by new incoming requests
  567. */
  568. rq->cmd_flags |= REQ_STARTED;
  569. blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
  570. }
  571. if (!q->boundary_rq || q->boundary_rq == rq) {
  572. q->end_sector = rq_end_sector(rq);
  573. q->boundary_rq = NULL;
  574. }
  575. if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
  576. break;
  577. ret = q->prep_rq_fn(q, rq);
  578. if (ret == BLKPREP_OK) {
  579. break;
  580. } else if (ret == BLKPREP_DEFER) {
  581. /*
  582. * the request may have been (partially) prepped.
  583. * we need to keep this request in the front to
  584. * avoid resource deadlock. REQ_STARTED will
  585. * prevent other fs requests from passing this one.
  586. */
  587. rq = NULL;
  588. break;
  589. } else if (ret == BLKPREP_KILL) {
  590. int nr_bytes = rq->hard_nr_sectors << 9;
  591. if (!nr_bytes)
  592. nr_bytes = rq->data_len;
  593. blkdev_dequeue_request(rq);
  594. rq->cmd_flags |= REQ_QUIET;
  595. end_that_request_chunk(rq, 0, nr_bytes);
  596. end_that_request_last(rq, 0);
  597. } else {
  598. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  599. ret);
  600. break;
  601. }
  602. }
  603. return rq;
  604. }
  605. EXPORT_SYMBOL(elv_next_request);
  606. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  607. {
  608. BUG_ON(list_empty(&rq->queuelist));
  609. BUG_ON(ELV_ON_HASH(rq));
  610. list_del_init(&rq->queuelist);
  611. /*
  612. * the time frame between a request being removed from the lists
  613. * and to it is freed is accounted as io that is in progress at
  614. * the driver side.
  615. */
  616. if (blk_account_rq(rq))
  617. q->in_flight++;
  618. }
  619. EXPORT_SYMBOL(elv_dequeue_request);
  620. int elv_queue_empty(request_queue_t *q)
  621. {
  622. elevator_t *e = q->elevator;
  623. if (!list_empty(&q->queue_head))
  624. return 0;
  625. if (e->ops->elevator_queue_empty_fn)
  626. return e->ops->elevator_queue_empty_fn(q);
  627. return 1;
  628. }
  629. EXPORT_SYMBOL(elv_queue_empty);
  630. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  631. {
  632. elevator_t *e = q->elevator;
  633. if (e->ops->elevator_latter_req_fn)
  634. return e->ops->elevator_latter_req_fn(q, rq);
  635. return NULL;
  636. }
  637. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  638. {
  639. elevator_t *e = q->elevator;
  640. if (e->ops->elevator_former_req_fn)
  641. return e->ops->elevator_former_req_fn(q, rq);
  642. return NULL;
  643. }
  644. int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
  645. gfp_t gfp_mask)
  646. {
  647. elevator_t *e = q->elevator;
  648. if (e->ops->elevator_set_req_fn)
  649. return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
  650. rq->elevator_private = NULL;
  651. return 0;
  652. }
  653. void elv_put_request(request_queue_t *q, struct request *rq)
  654. {
  655. elevator_t *e = q->elevator;
  656. if (e->ops->elevator_put_req_fn)
  657. e->ops->elevator_put_req_fn(q, rq);
  658. }
  659. int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
  660. {
  661. elevator_t *e = q->elevator;
  662. if (e->ops->elevator_may_queue_fn)
  663. return e->ops->elevator_may_queue_fn(q, rw, bio);
  664. return ELV_MQUEUE_MAY;
  665. }
  666. void elv_completed_request(request_queue_t *q, struct request *rq)
  667. {
  668. elevator_t *e = q->elevator;
  669. /*
  670. * request is released from the driver, io must be done
  671. */
  672. if (blk_account_rq(rq)) {
  673. q->in_flight--;
  674. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  675. e->ops->elevator_completed_req_fn(q, rq);
  676. }
  677. /*
  678. * Check if the queue is waiting for fs requests to be
  679. * drained for flush sequence.
  680. */
  681. if (unlikely(q->ordseq)) {
  682. struct request *first_rq = list_entry_rq(q->queue_head.next);
  683. if (q->in_flight == 0 &&
  684. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  685. blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
  686. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  687. q->request_fn(q);
  688. }
  689. }
  690. }
  691. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  692. static ssize_t
  693. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  694. {
  695. elevator_t *e = container_of(kobj, elevator_t, kobj);
  696. struct elv_fs_entry *entry = to_elv(attr);
  697. ssize_t error;
  698. if (!entry->show)
  699. return -EIO;
  700. mutex_lock(&e->sysfs_lock);
  701. error = e->ops ? entry->show(e, page) : -ENOENT;
  702. mutex_unlock(&e->sysfs_lock);
  703. return error;
  704. }
  705. static ssize_t
  706. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  707. const char *page, size_t length)
  708. {
  709. elevator_t *e = container_of(kobj, elevator_t, kobj);
  710. struct elv_fs_entry *entry = to_elv(attr);
  711. ssize_t error;
  712. if (!entry->store)
  713. return -EIO;
  714. mutex_lock(&e->sysfs_lock);
  715. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  716. mutex_unlock(&e->sysfs_lock);
  717. return error;
  718. }
  719. static struct sysfs_ops elv_sysfs_ops = {
  720. .show = elv_attr_show,
  721. .store = elv_attr_store,
  722. };
  723. static struct kobj_type elv_ktype = {
  724. .sysfs_ops = &elv_sysfs_ops,
  725. .release = elevator_release,
  726. };
  727. int elv_register_queue(struct request_queue *q)
  728. {
  729. elevator_t *e = q->elevator;
  730. int error;
  731. e->kobj.parent = &q->kobj;
  732. error = kobject_add(&e->kobj);
  733. if (!error) {
  734. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  735. if (attr) {
  736. while (attr->attr.name) {
  737. if (sysfs_create_file(&e->kobj, &attr->attr))
  738. break;
  739. attr++;
  740. }
  741. }
  742. kobject_uevent(&e->kobj, KOBJ_ADD);
  743. }
  744. return error;
  745. }
  746. static void __elv_unregister_queue(elevator_t *e)
  747. {
  748. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  749. kobject_del(&e->kobj);
  750. }
  751. void elv_unregister_queue(struct request_queue *q)
  752. {
  753. if (q)
  754. __elv_unregister_queue(q->elevator);
  755. }
  756. int elv_register(struct elevator_type *e)
  757. {
  758. spin_lock_irq(&elv_list_lock);
  759. BUG_ON(elevator_find(e->elevator_name));
  760. list_add_tail(&e->list, &elv_list);
  761. spin_unlock_irq(&elv_list_lock);
  762. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  763. if (!strcmp(e->elevator_name, chosen_elevator) ||
  764. (!*chosen_elevator &&
  765. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  766. printk(" (default)");
  767. printk("\n");
  768. return 0;
  769. }
  770. EXPORT_SYMBOL_GPL(elv_register);
  771. void elv_unregister(struct elevator_type *e)
  772. {
  773. struct task_struct *g, *p;
  774. /*
  775. * Iterate every thread in the process to remove the io contexts.
  776. */
  777. if (e->ops.trim) {
  778. read_lock(&tasklist_lock);
  779. do_each_thread(g, p) {
  780. task_lock(p);
  781. if (p->io_context)
  782. e->ops.trim(p->io_context);
  783. task_unlock(p);
  784. } while_each_thread(g, p);
  785. read_unlock(&tasklist_lock);
  786. }
  787. spin_lock_irq(&elv_list_lock);
  788. list_del_init(&e->list);
  789. spin_unlock_irq(&elv_list_lock);
  790. }
  791. EXPORT_SYMBOL_GPL(elv_unregister);
  792. /*
  793. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  794. * we don't free the old io scheduler, before we have allocated what we
  795. * need for the new one. this way we have a chance of going back to the old
  796. * one, if the new one fails init for some reason.
  797. */
  798. static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  799. {
  800. elevator_t *old_elevator, *e;
  801. void *data;
  802. /*
  803. * Allocate new elevator
  804. */
  805. e = elevator_alloc(new_e);
  806. if (!e)
  807. return 0;
  808. data = elevator_init_queue(q, e);
  809. if (!data) {
  810. kobject_put(&e->kobj);
  811. return 0;
  812. }
  813. /*
  814. * Turn on BYPASS and drain all requests w/ elevator private data
  815. */
  816. spin_lock_irq(q->queue_lock);
  817. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  818. elv_drain_elevator(q);
  819. while (q->rq.elvpriv) {
  820. blk_remove_plug(q);
  821. q->request_fn(q);
  822. spin_unlock_irq(q->queue_lock);
  823. msleep(10);
  824. spin_lock_irq(q->queue_lock);
  825. elv_drain_elevator(q);
  826. }
  827. /*
  828. * Remember old elevator.
  829. */
  830. old_elevator = q->elevator;
  831. /*
  832. * attach and start new elevator
  833. */
  834. elevator_attach(q, e, data);
  835. spin_unlock_irq(q->queue_lock);
  836. __elv_unregister_queue(old_elevator);
  837. if (elv_register_queue(q))
  838. goto fail_register;
  839. /*
  840. * finally exit old elevator and turn off BYPASS.
  841. */
  842. elevator_exit(old_elevator);
  843. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  844. return 1;
  845. fail_register:
  846. /*
  847. * switch failed, exit the new io scheduler and reattach the old
  848. * one again (along with re-adding the sysfs dir)
  849. */
  850. elevator_exit(e);
  851. q->elevator = old_elevator;
  852. elv_register_queue(q);
  853. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  854. return 0;
  855. }
  856. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  857. {
  858. char elevator_name[ELV_NAME_MAX];
  859. size_t len;
  860. struct elevator_type *e;
  861. elevator_name[sizeof(elevator_name) - 1] = '\0';
  862. strncpy(elevator_name, name, sizeof(elevator_name) - 1);
  863. len = strlen(elevator_name);
  864. if (len && elevator_name[len - 1] == '\n')
  865. elevator_name[len - 1] = '\0';
  866. e = elevator_get(elevator_name);
  867. if (!e) {
  868. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  869. return -EINVAL;
  870. }
  871. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  872. elevator_put(e);
  873. return count;
  874. }
  875. if (!elevator_switch(q, e))
  876. printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
  877. return count;
  878. }
  879. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  880. {
  881. elevator_t *e = q->elevator;
  882. struct elevator_type *elv = e->elevator_type;
  883. struct list_head *entry;
  884. int len = 0;
  885. spin_lock_irq(q->queue_lock);
  886. list_for_each(entry, &elv_list) {
  887. struct elevator_type *__e;
  888. __e = list_entry(entry, struct elevator_type, list);
  889. if (!strcmp(elv->elevator_name, __e->elevator_name))
  890. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  891. else
  892. len += sprintf(name+len, "%s ", __e->elevator_name);
  893. }
  894. spin_unlock_irq(q->queue_lock);
  895. len += sprintf(len+name, "\n");
  896. return len;
  897. }
  898. struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
  899. {
  900. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  901. if (rbprev)
  902. return rb_entry_rq(rbprev);
  903. return NULL;
  904. }
  905. EXPORT_SYMBOL(elv_rb_former_request);
  906. struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
  907. {
  908. struct rb_node *rbnext = rb_next(&rq->rb_node);
  909. if (rbnext)
  910. return rb_entry_rq(rbnext);
  911. return NULL;
  912. }
  913. EXPORT_SYMBOL(elv_rb_latter_request);