spi-pxa2xx.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. * Copyright (C) 2013, Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/ioport.h>
  23. #include <linux/errno.h>
  24. #include <linux/err.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/pxa2xx_spi.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/delay.h>
  31. #include <linux/gpio.h>
  32. #include <linux/slab.h>
  33. #include <linux/clk.h>
  34. #include <linux/pm_runtime.h>
  35. #include <linux/acpi.h>
  36. #include <asm/io.h>
  37. #include <asm/irq.h>
  38. #include <asm/delay.h>
  39. #include "spi-pxa2xx.h"
  40. MODULE_AUTHOR("Stephen Street");
  41. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  42. MODULE_LICENSE("GPL");
  43. MODULE_ALIAS("platform:pxa2xx-spi");
  44. #define MAX_BUSES 3
  45. #define TIMOUT_DFLT 1000
  46. /*
  47. * for testing SSCR1 changes that require SSP restart, basically
  48. * everything except the service and interrupt enables, the pxa270 developer
  49. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50. * list, but the PXA255 dev man says all bits without really meaning the
  51. * service and interrupt enables
  52. */
  53. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59. #define LPSS_RX_THRESH_DFLT 64
  60. #define LPSS_TX_LOTHRESH_DFLT 160
  61. #define LPSS_TX_HITHRESH_DFLT 224
  62. /* Offset from drv_data->lpss_base */
  63. #define SSP_REG 0x0c
  64. #define SPI_CS_CONTROL 0x18
  65. #define SPI_CS_CONTROL_SW_MODE BIT(0)
  66. #define SPI_CS_CONTROL_CS_HIGH BIT(1)
  67. static bool is_lpss_ssp(const struct driver_data *drv_data)
  68. {
  69. return drv_data->ssp_type == LPSS_SSP;
  70. }
  71. /*
  72. * Read and write LPSS SSP private registers. Caller must first check that
  73. * is_lpss_ssp() returns true before these can be called.
  74. */
  75. static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
  76. {
  77. WARN_ON(!drv_data->lpss_base);
  78. return readl(drv_data->lpss_base + offset);
  79. }
  80. static void __lpss_ssp_write_priv(struct driver_data *drv_data,
  81. unsigned offset, u32 value)
  82. {
  83. WARN_ON(!drv_data->lpss_base);
  84. writel(value, drv_data->lpss_base + offset);
  85. }
  86. /*
  87. * lpss_ssp_setup - perform LPSS SSP specific setup
  88. * @drv_data: pointer to the driver private data
  89. *
  90. * Perform LPSS SSP specific setup. This function must be called first if
  91. * one is going to use LPSS SSP private registers.
  92. */
  93. static void lpss_ssp_setup(struct driver_data *drv_data)
  94. {
  95. unsigned offset = 0x400;
  96. u32 value, orig;
  97. if (!is_lpss_ssp(drv_data))
  98. return;
  99. /*
  100. * Perform auto-detection of the LPSS SSP private registers. They
  101. * can be either at 1k or 2k offset from the base address.
  102. */
  103. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  104. value = orig | SPI_CS_CONTROL_SW_MODE;
  105. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  106. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  107. if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
  108. offset = 0x800;
  109. goto detection_done;
  110. }
  111. value &= ~SPI_CS_CONTROL_SW_MODE;
  112. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  113. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  114. if (value != orig) {
  115. offset = 0x800;
  116. goto detection_done;
  117. }
  118. detection_done:
  119. /* Now set the LPSS base */
  120. drv_data->lpss_base = drv_data->ioaddr + offset;
  121. /* Enable software chip select control */
  122. value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
  123. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  124. /* Enable multiblock DMA transfers */
  125. if (drv_data->master_info->enable_dma)
  126. __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
  127. }
  128. static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
  129. {
  130. u32 value;
  131. if (!is_lpss_ssp(drv_data))
  132. return;
  133. value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
  134. if (enable)
  135. value &= ~SPI_CS_CONTROL_CS_HIGH;
  136. else
  137. value |= SPI_CS_CONTROL_CS_HIGH;
  138. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  139. }
  140. static void cs_assert(struct driver_data *drv_data)
  141. {
  142. struct chip_data *chip = drv_data->cur_chip;
  143. if (drv_data->ssp_type == CE4100_SSP) {
  144. write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
  145. return;
  146. }
  147. if (chip->cs_control) {
  148. chip->cs_control(PXA2XX_CS_ASSERT);
  149. return;
  150. }
  151. if (gpio_is_valid(chip->gpio_cs)) {
  152. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  153. return;
  154. }
  155. lpss_ssp_cs_control(drv_data, true);
  156. }
  157. static void cs_deassert(struct driver_data *drv_data)
  158. {
  159. struct chip_data *chip = drv_data->cur_chip;
  160. if (drv_data->ssp_type == CE4100_SSP)
  161. return;
  162. if (chip->cs_control) {
  163. chip->cs_control(PXA2XX_CS_DEASSERT);
  164. return;
  165. }
  166. if (gpio_is_valid(chip->gpio_cs)) {
  167. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  168. return;
  169. }
  170. lpss_ssp_cs_control(drv_data, false);
  171. }
  172. int pxa2xx_spi_flush(struct driver_data *drv_data)
  173. {
  174. unsigned long limit = loops_per_jiffy << 1;
  175. void __iomem *reg = drv_data->ioaddr;
  176. do {
  177. while (read_SSSR(reg) & SSSR_RNE) {
  178. read_SSDR(reg);
  179. }
  180. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  181. write_SSSR_CS(drv_data, SSSR_ROR);
  182. return limit;
  183. }
  184. static int null_writer(struct driver_data *drv_data)
  185. {
  186. void __iomem *reg = drv_data->ioaddr;
  187. u8 n_bytes = drv_data->n_bytes;
  188. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  189. || (drv_data->tx == drv_data->tx_end))
  190. return 0;
  191. write_SSDR(0, reg);
  192. drv_data->tx += n_bytes;
  193. return 1;
  194. }
  195. static int null_reader(struct driver_data *drv_data)
  196. {
  197. void __iomem *reg = drv_data->ioaddr;
  198. u8 n_bytes = drv_data->n_bytes;
  199. while ((read_SSSR(reg) & SSSR_RNE)
  200. && (drv_data->rx < drv_data->rx_end)) {
  201. read_SSDR(reg);
  202. drv_data->rx += n_bytes;
  203. }
  204. return drv_data->rx == drv_data->rx_end;
  205. }
  206. static int u8_writer(struct driver_data *drv_data)
  207. {
  208. void __iomem *reg = drv_data->ioaddr;
  209. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  210. || (drv_data->tx == drv_data->tx_end))
  211. return 0;
  212. write_SSDR(*(u8 *)(drv_data->tx), reg);
  213. ++drv_data->tx;
  214. return 1;
  215. }
  216. static int u8_reader(struct driver_data *drv_data)
  217. {
  218. void __iomem *reg = drv_data->ioaddr;
  219. while ((read_SSSR(reg) & SSSR_RNE)
  220. && (drv_data->rx < drv_data->rx_end)) {
  221. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  222. ++drv_data->rx;
  223. }
  224. return drv_data->rx == drv_data->rx_end;
  225. }
  226. static int u16_writer(struct driver_data *drv_data)
  227. {
  228. void __iomem *reg = drv_data->ioaddr;
  229. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  230. || (drv_data->tx == drv_data->tx_end))
  231. return 0;
  232. write_SSDR(*(u16 *)(drv_data->tx), reg);
  233. drv_data->tx += 2;
  234. return 1;
  235. }
  236. static int u16_reader(struct driver_data *drv_data)
  237. {
  238. void __iomem *reg = drv_data->ioaddr;
  239. while ((read_SSSR(reg) & SSSR_RNE)
  240. && (drv_data->rx < drv_data->rx_end)) {
  241. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  242. drv_data->rx += 2;
  243. }
  244. return drv_data->rx == drv_data->rx_end;
  245. }
  246. static int u32_writer(struct driver_data *drv_data)
  247. {
  248. void __iomem *reg = drv_data->ioaddr;
  249. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  250. || (drv_data->tx == drv_data->tx_end))
  251. return 0;
  252. write_SSDR(*(u32 *)(drv_data->tx), reg);
  253. drv_data->tx += 4;
  254. return 1;
  255. }
  256. static int u32_reader(struct driver_data *drv_data)
  257. {
  258. void __iomem *reg = drv_data->ioaddr;
  259. while ((read_SSSR(reg) & SSSR_RNE)
  260. && (drv_data->rx < drv_data->rx_end)) {
  261. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  262. drv_data->rx += 4;
  263. }
  264. return drv_data->rx == drv_data->rx_end;
  265. }
  266. void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
  267. {
  268. struct spi_message *msg = drv_data->cur_msg;
  269. struct spi_transfer *trans = drv_data->cur_transfer;
  270. /* Move to next transfer */
  271. if (trans->transfer_list.next != &msg->transfers) {
  272. drv_data->cur_transfer =
  273. list_entry(trans->transfer_list.next,
  274. struct spi_transfer,
  275. transfer_list);
  276. return RUNNING_STATE;
  277. } else
  278. return DONE_STATE;
  279. }
  280. /* caller already set message->status; dma and pio irqs are blocked */
  281. static void giveback(struct driver_data *drv_data)
  282. {
  283. struct spi_transfer* last_transfer;
  284. struct spi_message *msg;
  285. msg = drv_data->cur_msg;
  286. drv_data->cur_msg = NULL;
  287. drv_data->cur_transfer = NULL;
  288. last_transfer = list_entry(msg->transfers.prev,
  289. struct spi_transfer,
  290. transfer_list);
  291. /* Delay if requested before any change in chip select */
  292. if (last_transfer->delay_usecs)
  293. udelay(last_transfer->delay_usecs);
  294. /* Drop chip select UNLESS cs_change is true or we are returning
  295. * a message with an error, or next message is for another chip
  296. */
  297. if (!last_transfer->cs_change)
  298. cs_deassert(drv_data);
  299. else {
  300. struct spi_message *next_msg;
  301. /* Holding of cs was hinted, but we need to make sure
  302. * the next message is for the same chip. Don't waste
  303. * time with the following tests unless this was hinted.
  304. *
  305. * We cannot postpone this until pump_messages, because
  306. * after calling msg->complete (below) the driver that
  307. * sent the current message could be unloaded, which
  308. * could invalidate the cs_control() callback...
  309. */
  310. /* get a pointer to the next message, if any */
  311. next_msg = spi_get_next_queued_message(drv_data->master);
  312. /* see if the next and current messages point
  313. * to the same chip
  314. */
  315. if (next_msg && next_msg->spi != msg->spi)
  316. next_msg = NULL;
  317. if (!next_msg || msg->state == ERROR_STATE)
  318. cs_deassert(drv_data);
  319. }
  320. spi_finalize_current_message(drv_data->master);
  321. drv_data->cur_chip = NULL;
  322. }
  323. static void reset_sccr1(struct driver_data *drv_data)
  324. {
  325. void __iomem *reg = drv_data->ioaddr;
  326. struct chip_data *chip = drv_data->cur_chip;
  327. u32 sccr1_reg;
  328. sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
  329. sccr1_reg &= ~SSCR1_RFT;
  330. sccr1_reg |= chip->threshold;
  331. write_SSCR1(sccr1_reg, reg);
  332. }
  333. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  334. {
  335. void __iomem *reg = drv_data->ioaddr;
  336. /* Stop and reset SSP */
  337. write_SSSR_CS(drv_data, drv_data->clear_sr);
  338. reset_sccr1(drv_data);
  339. if (!pxa25x_ssp_comp(drv_data))
  340. write_SSTO(0, reg);
  341. pxa2xx_spi_flush(drv_data);
  342. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  343. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  344. drv_data->cur_msg->state = ERROR_STATE;
  345. tasklet_schedule(&drv_data->pump_transfers);
  346. }
  347. static void int_transfer_complete(struct driver_data *drv_data)
  348. {
  349. void __iomem *reg = drv_data->ioaddr;
  350. /* Stop SSP */
  351. write_SSSR_CS(drv_data, drv_data->clear_sr);
  352. reset_sccr1(drv_data);
  353. if (!pxa25x_ssp_comp(drv_data))
  354. write_SSTO(0, reg);
  355. /* Update total byte transferred return count actual bytes read */
  356. drv_data->cur_msg->actual_length += drv_data->len -
  357. (drv_data->rx_end - drv_data->rx);
  358. /* Transfer delays and chip select release are
  359. * handled in pump_transfers or giveback
  360. */
  361. /* Move to next transfer */
  362. drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
  363. /* Schedule transfer tasklet */
  364. tasklet_schedule(&drv_data->pump_transfers);
  365. }
  366. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  367. {
  368. void __iomem *reg = drv_data->ioaddr;
  369. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  370. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  371. u32 irq_status = read_SSSR(reg) & irq_mask;
  372. if (irq_status & SSSR_ROR) {
  373. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  374. return IRQ_HANDLED;
  375. }
  376. if (irq_status & SSSR_TINT) {
  377. write_SSSR(SSSR_TINT, reg);
  378. if (drv_data->read(drv_data)) {
  379. int_transfer_complete(drv_data);
  380. return IRQ_HANDLED;
  381. }
  382. }
  383. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  384. do {
  385. if (drv_data->read(drv_data)) {
  386. int_transfer_complete(drv_data);
  387. return IRQ_HANDLED;
  388. }
  389. } while (drv_data->write(drv_data));
  390. if (drv_data->read(drv_data)) {
  391. int_transfer_complete(drv_data);
  392. return IRQ_HANDLED;
  393. }
  394. if (drv_data->tx == drv_data->tx_end) {
  395. u32 bytes_left;
  396. u32 sccr1_reg;
  397. sccr1_reg = read_SSCR1(reg);
  398. sccr1_reg &= ~SSCR1_TIE;
  399. /*
  400. * PXA25x_SSP has no timeout, set up rx threshould for the
  401. * remaining RX bytes.
  402. */
  403. if (pxa25x_ssp_comp(drv_data)) {
  404. sccr1_reg &= ~SSCR1_RFT;
  405. bytes_left = drv_data->rx_end - drv_data->rx;
  406. switch (drv_data->n_bytes) {
  407. case 4:
  408. bytes_left >>= 1;
  409. case 2:
  410. bytes_left >>= 1;
  411. }
  412. if (bytes_left > RX_THRESH_DFLT)
  413. bytes_left = RX_THRESH_DFLT;
  414. sccr1_reg |= SSCR1_RxTresh(bytes_left);
  415. }
  416. write_SSCR1(sccr1_reg, reg);
  417. }
  418. /* We did something */
  419. return IRQ_HANDLED;
  420. }
  421. static irqreturn_t ssp_int(int irq, void *dev_id)
  422. {
  423. struct driver_data *drv_data = dev_id;
  424. void __iomem *reg = drv_data->ioaddr;
  425. u32 sccr1_reg;
  426. u32 mask = drv_data->mask_sr;
  427. u32 status;
  428. /*
  429. * The IRQ might be shared with other peripherals so we must first
  430. * check that are we RPM suspended or not. If we are we assume that
  431. * the IRQ was not for us (we shouldn't be RPM suspended when the
  432. * interrupt is enabled).
  433. */
  434. if (pm_runtime_suspended(&drv_data->pdev->dev))
  435. return IRQ_NONE;
  436. sccr1_reg = read_SSCR1(reg);
  437. status = read_SSSR(reg);
  438. /* Ignore possible writes if we don't need to write */
  439. if (!(sccr1_reg & SSCR1_TIE))
  440. mask &= ~SSSR_TFS;
  441. if (!(status & mask))
  442. return IRQ_NONE;
  443. if (!drv_data->cur_msg) {
  444. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  445. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  446. if (!pxa25x_ssp_comp(drv_data))
  447. write_SSTO(0, reg);
  448. write_SSSR_CS(drv_data, drv_data->clear_sr);
  449. dev_err(&drv_data->pdev->dev, "bad message state "
  450. "in interrupt handler\n");
  451. /* Never fail */
  452. return IRQ_HANDLED;
  453. }
  454. return drv_data->transfer_handler(drv_data);
  455. }
  456. static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
  457. {
  458. unsigned long ssp_clk = drv_data->max_clk_rate;
  459. const struct ssp_device *ssp = drv_data->ssp;
  460. rate = min_t(int, ssp_clk, rate);
  461. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  462. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  463. else
  464. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  465. }
  466. static void pump_transfers(unsigned long data)
  467. {
  468. struct driver_data *drv_data = (struct driver_data *)data;
  469. struct spi_message *message = NULL;
  470. struct spi_transfer *transfer = NULL;
  471. struct spi_transfer *previous = NULL;
  472. struct chip_data *chip = NULL;
  473. void __iomem *reg = drv_data->ioaddr;
  474. u32 clk_div = 0;
  475. u8 bits = 0;
  476. u32 speed = 0;
  477. u32 cr0;
  478. u32 cr1;
  479. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  480. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  481. /* Get current state information */
  482. message = drv_data->cur_msg;
  483. transfer = drv_data->cur_transfer;
  484. chip = drv_data->cur_chip;
  485. /* Handle for abort */
  486. if (message->state == ERROR_STATE) {
  487. message->status = -EIO;
  488. giveback(drv_data);
  489. return;
  490. }
  491. /* Handle end of message */
  492. if (message->state == DONE_STATE) {
  493. message->status = 0;
  494. giveback(drv_data);
  495. return;
  496. }
  497. /* Delay if requested at end of transfer before CS change */
  498. if (message->state == RUNNING_STATE) {
  499. previous = list_entry(transfer->transfer_list.prev,
  500. struct spi_transfer,
  501. transfer_list);
  502. if (previous->delay_usecs)
  503. udelay(previous->delay_usecs);
  504. /* Drop chip select only if cs_change is requested */
  505. if (previous->cs_change)
  506. cs_deassert(drv_data);
  507. }
  508. /* Check if we can DMA this transfer */
  509. if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
  510. /* reject already-mapped transfers; PIO won't always work */
  511. if (message->is_dma_mapped
  512. || transfer->rx_dma || transfer->tx_dma) {
  513. dev_err(&drv_data->pdev->dev,
  514. "pump_transfers: mapped transfer length "
  515. "of %u is greater than %d\n",
  516. transfer->len, MAX_DMA_LEN);
  517. message->status = -EINVAL;
  518. giveback(drv_data);
  519. return;
  520. }
  521. /* warn ... we force this to PIO mode */
  522. if (printk_ratelimit())
  523. dev_warn(&message->spi->dev, "pump_transfers: "
  524. "DMA disabled for transfer length %ld "
  525. "greater than %d\n",
  526. (long)drv_data->len, MAX_DMA_LEN);
  527. }
  528. /* Setup the transfer state based on the type of transfer */
  529. if (pxa2xx_spi_flush(drv_data) == 0) {
  530. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  531. message->status = -EIO;
  532. giveback(drv_data);
  533. return;
  534. }
  535. drv_data->n_bytes = chip->n_bytes;
  536. drv_data->tx = (void *)transfer->tx_buf;
  537. drv_data->tx_end = drv_data->tx + transfer->len;
  538. drv_data->rx = transfer->rx_buf;
  539. drv_data->rx_end = drv_data->rx + transfer->len;
  540. drv_data->rx_dma = transfer->rx_dma;
  541. drv_data->tx_dma = transfer->tx_dma;
  542. drv_data->len = transfer->len;
  543. drv_data->write = drv_data->tx ? chip->write : null_writer;
  544. drv_data->read = drv_data->rx ? chip->read : null_reader;
  545. /* Change speed and bit per word on a per transfer */
  546. cr0 = chip->cr0;
  547. if (transfer->speed_hz || transfer->bits_per_word) {
  548. bits = chip->bits_per_word;
  549. speed = chip->speed_hz;
  550. if (transfer->speed_hz)
  551. speed = transfer->speed_hz;
  552. if (transfer->bits_per_word)
  553. bits = transfer->bits_per_word;
  554. clk_div = ssp_get_clk_div(drv_data, speed);
  555. if (bits <= 8) {
  556. drv_data->n_bytes = 1;
  557. drv_data->read = drv_data->read != null_reader ?
  558. u8_reader : null_reader;
  559. drv_data->write = drv_data->write != null_writer ?
  560. u8_writer : null_writer;
  561. } else if (bits <= 16) {
  562. drv_data->n_bytes = 2;
  563. drv_data->read = drv_data->read != null_reader ?
  564. u16_reader : null_reader;
  565. drv_data->write = drv_data->write != null_writer ?
  566. u16_writer : null_writer;
  567. } else if (bits <= 32) {
  568. drv_data->n_bytes = 4;
  569. drv_data->read = drv_data->read != null_reader ?
  570. u32_reader : null_reader;
  571. drv_data->write = drv_data->write != null_writer ?
  572. u32_writer : null_writer;
  573. }
  574. /* if bits/word is changed in dma mode, then must check the
  575. * thresholds and burst also */
  576. if (chip->enable_dma) {
  577. if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
  578. message->spi,
  579. bits, &dma_burst,
  580. &dma_thresh))
  581. if (printk_ratelimit())
  582. dev_warn(&message->spi->dev,
  583. "pump_transfers: "
  584. "DMA burst size reduced to "
  585. "match bits_per_word\n");
  586. }
  587. cr0 = clk_div
  588. | SSCR0_Motorola
  589. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  590. | SSCR0_SSE
  591. | (bits > 16 ? SSCR0_EDSS : 0);
  592. }
  593. message->state = RUNNING_STATE;
  594. drv_data->dma_mapped = 0;
  595. if (pxa2xx_spi_dma_is_possible(drv_data->len))
  596. drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
  597. if (drv_data->dma_mapped) {
  598. /* Ensure we have the correct interrupt handler */
  599. drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
  600. pxa2xx_spi_dma_prepare(drv_data, dma_burst);
  601. /* Clear status and start DMA engine */
  602. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  603. write_SSSR(drv_data->clear_sr, reg);
  604. pxa2xx_spi_dma_start(drv_data);
  605. } else {
  606. /* Ensure we have the correct interrupt handler */
  607. drv_data->transfer_handler = interrupt_transfer;
  608. /* Clear status */
  609. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  610. write_SSSR_CS(drv_data, drv_data->clear_sr);
  611. }
  612. if (is_lpss_ssp(drv_data)) {
  613. if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
  614. write_SSIRF(chip->lpss_rx_threshold, reg);
  615. if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
  616. write_SSITF(chip->lpss_tx_threshold, reg);
  617. }
  618. /* see if we need to reload the config registers */
  619. if ((read_SSCR0(reg) != cr0)
  620. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  621. (cr1 & SSCR1_CHANGE_MASK)) {
  622. /* stop the SSP, and update the other bits */
  623. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  624. if (!pxa25x_ssp_comp(drv_data))
  625. write_SSTO(chip->timeout, reg);
  626. /* first set CR1 without interrupt and service enables */
  627. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  628. /* restart the SSP */
  629. write_SSCR0(cr0, reg);
  630. } else {
  631. if (!pxa25x_ssp_comp(drv_data))
  632. write_SSTO(chip->timeout, reg);
  633. }
  634. cs_assert(drv_data);
  635. /* after chip select, release the data by enabling service
  636. * requests and interrupts, without changing any mode bits */
  637. write_SSCR1(cr1, reg);
  638. }
  639. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  640. struct spi_message *msg)
  641. {
  642. struct driver_data *drv_data = spi_master_get_devdata(master);
  643. drv_data->cur_msg = msg;
  644. /* Initial message state*/
  645. drv_data->cur_msg->state = START_STATE;
  646. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  647. struct spi_transfer,
  648. transfer_list);
  649. /* prepare to setup the SSP, in pump_transfers, using the per
  650. * chip configuration */
  651. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  652. /* Mark as busy and launch transfers */
  653. tasklet_schedule(&drv_data->pump_transfers);
  654. return 0;
  655. }
  656. static int pxa2xx_spi_prepare_transfer(struct spi_master *master)
  657. {
  658. struct driver_data *drv_data = spi_master_get_devdata(master);
  659. pm_runtime_get_sync(&drv_data->pdev->dev);
  660. return 0;
  661. }
  662. static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
  663. {
  664. struct driver_data *drv_data = spi_master_get_devdata(master);
  665. /* Disable the SSP now */
  666. write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
  667. drv_data->ioaddr);
  668. pm_runtime_mark_last_busy(&drv_data->pdev->dev);
  669. pm_runtime_put_autosuspend(&drv_data->pdev->dev);
  670. return 0;
  671. }
  672. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  673. struct pxa2xx_spi_chip *chip_info)
  674. {
  675. int err = 0;
  676. if (chip == NULL || chip_info == NULL)
  677. return 0;
  678. /* NOTE: setup() can be called multiple times, possibly with
  679. * different chip_info, release previously requested GPIO
  680. */
  681. if (gpio_is_valid(chip->gpio_cs))
  682. gpio_free(chip->gpio_cs);
  683. /* If (*cs_control) is provided, ignore GPIO chip select */
  684. if (chip_info->cs_control) {
  685. chip->cs_control = chip_info->cs_control;
  686. return 0;
  687. }
  688. if (gpio_is_valid(chip_info->gpio_cs)) {
  689. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  690. if (err) {
  691. dev_err(&spi->dev, "failed to request chip select "
  692. "GPIO%d\n", chip_info->gpio_cs);
  693. return err;
  694. }
  695. chip->gpio_cs = chip_info->gpio_cs;
  696. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  697. err = gpio_direction_output(chip->gpio_cs,
  698. !chip->gpio_cs_inverted);
  699. }
  700. return err;
  701. }
  702. static int setup(struct spi_device *spi)
  703. {
  704. struct pxa2xx_spi_chip *chip_info = NULL;
  705. struct chip_data *chip;
  706. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  707. unsigned int clk_div;
  708. uint tx_thres, tx_hi_thres, rx_thres;
  709. if (is_lpss_ssp(drv_data)) {
  710. tx_thres = LPSS_TX_LOTHRESH_DFLT;
  711. tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
  712. rx_thres = LPSS_RX_THRESH_DFLT;
  713. } else {
  714. tx_thres = TX_THRESH_DFLT;
  715. tx_hi_thres = 0;
  716. rx_thres = RX_THRESH_DFLT;
  717. }
  718. if (!pxa25x_ssp_comp(drv_data)
  719. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  720. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  721. "b/w not 4-32 for type non-PXA25x_SSP\n",
  722. drv_data->ssp_type, spi->bits_per_word);
  723. return -EINVAL;
  724. } else if (pxa25x_ssp_comp(drv_data)
  725. && (spi->bits_per_word < 4
  726. || spi->bits_per_word > 16)) {
  727. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  728. "b/w not 4-16 for type PXA25x_SSP\n",
  729. drv_data->ssp_type, spi->bits_per_word);
  730. return -EINVAL;
  731. }
  732. /* Only alloc on first setup */
  733. chip = spi_get_ctldata(spi);
  734. if (!chip) {
  735. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  736. if (!chip) {
  737. dev_err(&spi->dev,
  738. "failed setup: can't allocate chip data\n");
  739. return -ENOMEM;
  740. }
  741. if (drv_data->ssp_type == CE4100_SSP) {
  742. if (spi->chip_select > 4) {
  743. dev_err(&spi->dev, "failed setup: "
  744. "cs number must not be > 4.\n");
  745. kfree(chip);
  746. return -EINVAL;
  747. }
  748. chip->frm = spi->chip_select;
  749. } else
  750. chip->gpio_cs = -1;
  751. chip->enable_dma = 0;
  752. chip->timeout = TIMOUT_DFLT;
  753. }
  754. /* protocol drivers may change the chip settings, so...
  755. * if chip_info exists, use it */
  756. chip_info = spi->controller_data;
  757. /* chip_info isn't always needed */
  758. chip->cr1 = 0;
  759. if (chip_info) {
  760. if (chip_info->timeout)
  761. chip->timeout = chip_info->timeout;
  762. if (chip_info->tx_threshold)
  763. tx_thres = chip_info->tx_threshold;
  764. if (chip_info->tx_hi_threshold)
  765. tx_hi_thres = chip_info->tx_hi_threshold;
  766. if (chip_info->rx_threshold)
  767. rx_thres = chip_info->rx_threshold;
  768. chip->enable_dma = drv_data->master_info->enable_dma;
  769. chip->dma_threshold = 0;
  770. if (chip_info->enable_loopback)
  771. chip->cr1 = SSCR1_LBM;
  772. } else if (ACPI_HANDLE(&spi->dev)) {
  773. /*
  774. * Slave devices enumerated from ACPI namespace don't
  775. * usually have chip_info but we still might want to use
  776. * DMA with them.
  777. */
  778. chip->enable_dma = drv_data->master_info->enable_dma;
  779. }
  780. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  781. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  782. chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
  783. chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
  784. | SSITF_TxHiThresh(tx_hi_thres);
  785. /* set dma burst and threshold outside of chip_info path so that if
  786. * chip_info goes away after setting chip->enable_dma, the
  787. * burst and threshold can still respond to changes in bits_per_word */
  788. if (chip->enable_dma) {
  789. /* set up legal burst and threshold for dma */
  790. if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
  791. spi->bits_per_word,
  792. &chip->dma_burst_size,
  793. &chip->dma_threshold)) {
  794. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  795. "to match bits_per_word\n");
  796. }
  797. }
  798. clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
  799. chip->speed_hz = spi->max_speed_hz;
  800. chip->cr0 = clk_div
  801. | SSCR0_Motorola
  802. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  803. spi->bits_per_word - 16 : spi->bits_per_word)
  804. | SSCR0_SSE
  805. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  806. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  807. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  808. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  809. if (spi->mode & SPI_LOOP)
  810. chip->cr1 |= SSCR1_LBM;
  811. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  812. if (!pxa25x_ssp_comp(drv_data))
  813. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  814. drv_data->max_clk_rate
  815. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  816. chip->enable_dma ? "DMA" : "PIO");
  817. else
  818. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  819. drv_data->max_clk_rate / 2
  820. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  821. chip->enable_dma ? "DMA" : "PIO");
  822. if (spi->bits_per_word <= 8) {
  823. chip->n_bytes = 1;
  824. chip->read = u8_reader;
  825. chip->write = u8_writer;
  826. } else if (spi->bits_per_word <= 16) {
  827. chip->n_bytes = 2;
  828. chip->read = u16_reader;
  829. chip->write = u16_writer;
  830. } else if (spi->bits_per_word <= 32) {
  831. chip->cr0 |= SSCR0_EDSS;
  832. chip->n_bytes = 4;
  833. chip->read = u32_reader;
  834. chip->write = u32_writer;
  835. } else {
  836. dev_err(&spi->dev, "invalid wordsize\n");
  837. return -ENODEV;
  838. }
  839. chip->bits_per_word = spi->bits_per_word;
  840. spi_set_ctldata(spi, chip);
  841. if (drv_data->ssp_type == CE4100_SSP)
  842. return 0;
  843. return setup_cs(spi, chip, chip_info);
  844. }
  845. static void cleanup(struct spi_device *spi)
  846. {
  847. struct chip_data *chip = spi_get_ctldata(spi);
  848. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  849. if (!chip)
  850. return;
  851. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  852. gpio_free(chip->gpio_cs);
  853. kfree(chip);
  854. }
  855. #ifdef CONFIG_ACPI
  856. static int pxa2xx_spi_acpi_add_dma(struct acpi_resource *res, void *data)
  857. {
  858. struct pxa2xx_spi_master *pdata = data;
  859. if (res->type == ACPI_RESOURCE_TYPE_FIXED_DMA) {
  860. const struct acpi_resource_fixed_dma *dma;
  861. dma = &res->data.fixed_dma;
  862. if (pdata->tx_slave_id < 0) {
  863. pdata->tx_slave_id = dma->request_lines;
  864. pdata->tx_chan_id = dma->channels;
  865. } else if (pdata->rx_slave_id < 0) {
  866. pdata->rx_slave_id = dma->request_lines;
  867. pdata->rx_chan_id = dma->channels;
  868. }
  869. }
  870. /* Tell the ACPI core to skip this resource */
  871. return 1;
  872. }
  873. static struct pxa2xx_spi_master *
  874. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  875. {
  876. struct pxa2xx_spi_master *pdata;
  877. struct list_head resource_list;
  878. struct acpi_device *adev;
  879. struct ssp_device *ssp;
  880. struct resource *res;
  881. int devid;
  882. if (!ACPI_HANDLE(&pdev->dev) ||
  883. acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  884. return NULL;
  885. pdata = devm_kzalloc(&pdev->dev, sizeof(*ssp), GFP_KERNEL);
  886. if (!pdata) {
  887. dev_err(&pdev->dev,
  888. "failed to allocate memory for platform data\n");
  889. return NULL;
  890. }
  891. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  892. if (!res)
  893. return NULL;
  894. ssp = &pdata->ssp;
  895. ssp->phys_base = res->start;
  896. ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
  897. if (IS_ERR(ssp->mmio_base))
  898. return PTR_ERR(ssp->mmio_base);
  899. ssp->clk = devm_clk_get(&pdev->dev, NULL);
  900. ssp->irq = platform_get_irq(pdev, 0);
  901. ssp->type = LPSS_SSP;
  902. ssp->pdev = pdev;
  903. ssp->port_id = -1;
  904. if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
  905. ssp->port_id = devid;
  906. pdata->num_chipselect = 1;
  907. pdata->rx_slave_id = -1;
  908. pdata->tx_slave_id = -1;
  909. INIT_LIST_HEAD(&resource_list);
  910. acpi_dev_get_resources(adev, &resource_list, pxa2xx_spi_acpi_add_dma,
  911. pdata);
  912. acpi_dev_free_resource_list(&resource_list);
  913. pdata->enable_dma = pdata->rx_slave_id >= 0 && pdata->tx_slave_id >= 0;
  914. return pdata;
  915. }
  916. static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
  917. { "INT33C0", 0 },
  918. { "INT33C1", 0 },
  919. { },
  920. };
  921. MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
  922. #else
  923. static inline struct pxa2xx_spi_master *
  924. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  925. {
  926. return NULL;
  927. }
  928. #endif
  929. static int pxa2xx_spi_probe(struct platform_device *pdev)
  930. {
  931. struct device *dev = &pdev->dev;
  932. struct pxa2xx_spi_master *platform_info;
  933. struct spi_master *master;
  934. struct driver_data *drv_data;
  935. struct ssp_device *ssp;
  936. int status;
  937. platform_info = dev_get_platdata(dev);
  938. if (!platform_info) {
  939. platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
  940. if (!platform_info) {
  941. dev_err(&pdev->dev, "missing platform data\n");
  942. return -ENODEV;
  943. }
  944. }
  945. ssp = pxa_ssp_request(pdev->id, pdev->name);
  946. if (!ssp)
  947. ssp = &platform_info->ssp;
  948. if (!ssp->mmio_base) {
  949. dev_err(&pdev->dev, "failed to get ssp\n");
  950. return -ENODEV;
  951. }
  952. /* Allocate master with space for drv_data and null dma buffer */
  953. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  954. if (!master) {
  955. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  956. pxa_ssp_free(ssp);
  957. return -ENOMEM;
  958. }
  959. drv_data = spi_master_get_devdata(master);
  960. drv_data->master = master;
  961. drv_data->master_info = platform_info;
  962. drv_data->pdev = pdev;
  963. drv_data->ssp = ssp;
  964. master->dev.parent = &pdev->dev;
  965. master->dev.of_node = pdev->dev.of_node;
  966. /* the spi->mode bits understood by this driver: */
  967. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  968. master->bus_num = ssp->port_id;
  969. master->num_chipselect = platform_info->num_chipselect;
  970. master->dma_alignment = DMA_ALIGNMENT;
  971. master->cleanup = cleanup;
  972. master->setup = setup;
  973. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  974. master->prepare_transfer_hardware = pxa2xx_spi_prepare_transfer;
  975. master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
  976. drv_data->ssp_type = ssp->type;
  977. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  978. drv_data->ioaddr = ssp->mmio_base;
  979. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  980. if (pxa25x_ssp_comp(drv_data)) {
  981. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  982. drv_data->dma_cr1 = 0;
  983. drv_data->clear_sr = SSSR_ROR;
  984. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  985. } else {
  986. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  987. drv_data->dma_cr1 = DEFAULT_DMA_CR1;
  988. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  989. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  990. }
  991. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  992. drv_data);
  993. if (status < 0) {
  994. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  995. goto out_error_master_alloc;
  996. }
  997. /* Setup DMA if requested */
  998. drv_data->tx_channel = -1;
  999. drv_data->rx_channel = -1;
  1000. if (platform_info->enable_dma) {
  1001. status = pxa2xx_spi_dma_setup(drv_data);
  1002. if (status) {
  1003. dev_warn(dev, "failed to setup DMA, using PIO\n");
  1004. platform_info->enable_dma = false;
  1005. }
  1006. }
  1007. /* Enable SOC clock */
  1008. clk_prepare_enable(ssp->clk);
  1009. drv_data->max_clk_rate = clk_get_rate(ssp->clk);
  1010. /* Load default SSP configuration */
  1011. write_SSCR0(0, drv_data->ioaddr);
  1012. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1013. SSCR1_TxTresh(TX_THRESH_DFLT),
  1014. drv_data->ioaddr);
  1015. write_SSCR0(SSCR0_SCR(2)
  1016. | SSCR0_Motorola
  1017. | SSCR0_DataSize(8),
  1018. drv_data->ioaddr);
  1019. if (!pxa25x_ssp_comp(drv_data))
  1020. write_SSTO(0, drv_data->ioaddr);
  1021. write_SSPSP(0, drv_data->ioaddr);
  1022. lpss_ssp_setup(drv_data);
  1023. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  1024. (unsigned long)drv_data);
  1025. /* Register with the SPI framework */
  1026. platform_set_drvdata(pdev, drv_data);
  1027. status = spi_register_master(master);
  1028. if (status != 0) {
  1029. dev_err(&pdev->dev, "problem registering spi master\n");
  1030. goto out_error_clock_enabled;
  1031. }
  1032. pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
  1033. pm_runtime_use_autosuspend(&pdev->dev);
  1034. pm_runtime_set_active(&pdev->dev);
  1035. pm_runtime_enable(&pdev->dev);
  1036. return status;
  1037. out_error_clock_enabled:
  1038. clk_disable_unprepare(ssp->clk);
  1039. pxa2xx_spi_dma_release(drv_data);
  1040. free_irq(ssp->irq, drv_data);
  1041. out_error_master_alloc:
  1042. spi_master_put(master);
  1043. pxa_ssp_free(ssp);
  1044. return status;
  1045. }
  1046. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1047. {
  1048. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1049. struct ssp_device *ssp;
  1050. if (!drv_data)
  1051. return 0;
  1052. ssp = drv_data->ssp;
  1053. pm_runtime_get_sync(&pdev->dev);
  1054. /* Disable the SSP at the peripheral and SOC level */
  1055. write_SSCR0(0, drv_data->ioaddr);
  1056. clk_disable_unprepare(ssp->clk);
  1057. /* Release DMA */
  1058. if (drv_data->master_info->enable_dma)
  1059. pxa2xx_spi_dma_release(drv_data);
  1060. pm_runtime_put_noidle(&pdev->dev);
  1061. pm_runtime_disable(&pdev->dev);
  1062. /* Release IRQ */
  1063. free_irq(ssp->irq, drv_data);
  1064. /* Release SSP */
  1065. pxa_ssp_free(ssp);
  1066. /* Disconnect from the SPI framework */
  1067. spi_unregister_master(drv_data->master);
  1068. /* Prevent double remove */
  1069. platform_set_drvdata(pdev, NULL);
  1070. return 0;
  1071. }
  1072. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1073. {
  1074. int status = 0;
  1075. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1076. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1077. }
  1078. #ifdef CONFIG_PM
  1079. static int pxa2xx_spi_suspend(struct device *dev)
  1080. {
  1081. struct driver_data *drv_data = dev_get_drvdata(dev);
  1082. struct ssp_device *ssp = drv_data->ssp;
  1083. int status = 0;
  1084. status = spi_master_suspend(drv_data->master);
  1085. if (status != 0)
  1086. return status;
  1087. write_SSCR0(0, drv_data->ioaddr);
  1088. clk_disable_unprepare(ssp->clk);
  1089. return 0;
  1090. }
  1091. static int pxa2xx_spi_resume(struct device *dev)
  1092. {
  1093. struct driver_data *drv_data = dev_get_drvdata(dev);
  1094. struct ssp_device *ssp = drv_data->ssp;
  1095. int status = 0;
  1096. pxa2xx_spi_dma_resume(drv_data);
  1097. /* Enable the SSP clock */
  1098. clk_prepare_enable(ssp->clk);
  1099. /* Start the queue running */
  1100. status = spi_master_resume(drv_data->master);
  1101. if (status != 0) {
  1102. dev_err(dev, "problem starting queue (%d)\n", status);
  1103. return status;
  1104. }
  1105. return 0;
  1106. }
  1107. #endif
  1108. #ifdef CONFIG_PM_RUNTIME
  1109. static int pxa2xx_spi_runtime_suspend(struct device *dev)
  1110. {
  1111. struct driver_data *drv_data = dev_get_drvdata(dev);
  1112. clk_disable_unprepare(drv_data->ssp->clk);
  1113. return 0;
  1114. }
  1115. static int pxa2xx_spi_runtime_resume(struct device *dev)
  1116. {
  1117. struct driver_data *drv_data = dev_get_drvdata(dev);
  1118. clk_prepare_enable(drv_data->ssp->clk);
  1119. return 0;
  1120. }
  1121. #endif
  1122. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1123. SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
  1124. SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
  1125. pxa2xx_spi_runtime_resume, NULL)
  1126. };
  1127. static struct platform_driver driver = {
  1128. .driver = {
  1129. .name = "pxa2xx-spi",
  1130. .owner = THIS_MODULE,
  1131. .pm = &pxa2xx_spi_pm_ops,
  1132. .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
  1133. },
  1134. .probe = pxa2xx_spi_probe,
  1135. .remove = pxa2xx_spi_remove,
  1136. .shutdown = pxa2xx_spi_shutdown,
  1137. };
  1138. static int __init pxa2xx_spi_init(void)
  1139. {
  1140. return platform_driver_register(&driver);
  1141. }
  1142. subsys_initcall(pxa2xx_spi_init);
  1143. static void __exit pxa2xx_spi_exit(void)
  1144. {
  1145. platform_driver_unregister(&driver);
  1146. }
  1147. module_exit(pxa2xx_spi_exit);