raid0.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. /*
  2. raid0.c : Multiple Devices driver for Linux
  3. Copyright (C) 1994-96 Marc ZYNGIER
  4. <zyngier@ufr-info-p7.ibp.fr> or
  5. <maz@gloups.fdn.fr>
  6. Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
  7. RAID-0 management functions.
  8. This program is free software; you can redistribute it and/or modify
  9. it under the terms of the GNU General Public License as published by
  10. the Free Software Foundation; either version 2, or (at your option)
  11. any later version.
  12. You should have received a copy of the GNU General Public License
  13. (for example /usr/src/linux/COPYING); if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/blkdev.h>
  17. #include <linux/raid/md_k.h>
  18. #include <linux/seq_file.h>
  19. #include "raid0.h"
  20. static void raid0_unplug(struct request_queue *q)
  21. {
  22. mddev_t *mddev = q->queuedata;
  23. raid0_conf_t *conf = mddev_to_conf(mddev);
  24. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  25. int i;
  26. for (i=0; i<mddev->raid_disks; i++) {
  27. struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
  28. blk_unplug(r_queue);
  29. }
  30. }
  31. static int raid0_congested(void *data, int bits)
  32. {
  33. mddev_t *mddev = data;
  34. raid0_conf_t *conf = mddev_to_conf(mddev);
  35. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  36. int i, ret = 0;
  37. for (i = 0; i < mddev->raid_disks && !ret ; i++) {
  38. struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
  39. ret |= bdi_congested(&q->backing_dev_info, bits);
  40. }
  41. return ret;
  42. }
  43. static int create_strip_zones (mddev_t *mddev)
  44. {
  45. int i, c, j;
  46. sector_t current_start, curr_zone_start;
  47. sector_t min_spacing;
  48. raid0_conf_t *conf = mddev_to_conf(mddev);
  49. mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
  50. struct strip_zone *zone;
  51. int cnt;
  52. char b[BDEVNAME_SIZE];
  53. /*
  54. * The number of 'same size groups'
  55. */
  56. conf->nr_strip_zones = 0;
  57. list_for_each_entry(rdev1, &mddev->disks, same_set) {
  58. printk(KERN_INFO "raid0: looking at %s\n",
  59. bdevname(rdev1->bdev,b));
  60. c = 0;
  61. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  62. printk(KERN_INFO "raid0: comparing %s(%llu)",
  63. bdevname(rdev1->bdev,b),
  64. (unsigned long long)rdev1->size);
  65. printk(KERN_INFO " with %s(%llu)\n",
  66. bdevname(rdev2->bdev,b),
  67. (unsigned long long)rdev2->size);
  68. if (rdev2 == rdev1) {
  69. printk(KERN_INFO "raid0: END\n");
  70. break;
  71. }
  72. if (rdev2->size == rdev1->size)
  73. {
  74. /*
  75. * Not unique, don't count it as a new
  76. * group
  77. */
  78. printk(KERN_INFO "raid0: EQUAL\n");
  79. c = 1;
  80. break;
  81. }
  82. printk(KERN_INFO "raid0: NOT EQUAL\n");
  83. }
  84. if (!c) {
  85. printk(KERN_INFO "raid0: ==> UNIQUE\n");
  86. conf->nr_strip_zones++;
  87. printk(KERN_INFO "raid0: %d zones\n",
  88. conf->nr_strip_zones);
  89. }
  90. }
  91. printk(KERN_INFO "raid0: FINAL %d zones\n", conf->nr_strip_zones);
  92. conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
  93. conf->nr_strip_zones, GFP_KERNEL);
  94. if (!conf->strip_zone)
  95. return 1;
  96. conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
  97. conf->nr_strip_zones*mddev->raid_disks,
  98. GFP_KERNEL);
  99. if (!conf->devlist)
  100. return 1;
  101. /* The first zone must contain all devices, so here we check that
  102. * there is a proper alignment of slots to devices and find them all
  103. */
  104. zone = &conf->strip_zone[0];
  105. cnt = 0;
  106. smallest = NULL;
  107. zone->dev = conf->devlist;
  108. list_for_each_entry(rdev1, &mddev->disks, same_set) {
  109. int j = rdev1->raid_disk;
  110. if (j < 0 || j >= mddev->raid_disks) {
  111. printk(KERN_ERR "raid0: bad disk number %d - "
  112. "aborting!\n", j);
  113. goto abort;
  114. }
  115. if (zone->dev[j]) {
  116. printk(KERN_ERR "raid0: multiple devices for %d - "
  117. "aborting!\n", j);
  118. goto abort;
  119. }
  120. zone->dev[j] = rdev1;
  121. blk_queue_stack_limits(mddev->queue,
  122. rdev1->bdev->bd_disk->queue);
  123. /* as we don't honour merge_bvec_fn, we must never risk
  124. * violating it, so limit ->max_sector to one PAGE, as
  125. * a one page request is never in violation.
  126. */
  127. if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
  128. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  129. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  130. if (!smallest || (rdev1->size <smallest->size))
  131. smallest = rdev1;
  132. cnt++;
  133. }
  134. if (cnt != mddev->raid_disks) {
  135. printk(KERN_ERR "raid0: too few disks (%d of %d) - "
  136. "aborting!\n", cnt, mddev->raid_disks);
  137. goto abort;
  138. }
  139. zone->nb_dev = cnt;
  140. zone->sectors = smallest->size * cnt * 2;
  141. zone->zone_start = 0;
  142. current_start = smallest->size * 2;
  143. curr_zone_start = zone->sectors;
  144. /* now do the other zones */
  145. for (i = 1; i < conf->nr_strip_zones; i++)
  146. {
  147. zone = conf->strip_zone + i;
  148. zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
  149. printk(KERN_INFO "raid0: zone %d\n", i);
  150. zone->dev_start = current_start;
  151. smallest = NULL;
  152. c = 0;
  153. for (j=0; j<cnt; j++) {
  154. char b[BDEVNAME_SIZE];
  155. rdev = conf->strip_zone[0].dev[j];
  156. printk(KERN_INFO "raid0: checking %s ...",
  157. bdevname(rdev->bdev, b));
  158. if (rdev->size > current_start / 2) {
  159. printk(KERN_INFO " contained as device %d\n",
  160. c);
  161. zone->dev[c] = rdev;
  162. c++;
  163. if (!smallest || (rdev->size <smallest->size)) {
  164. smallest = rdev;
  165. printk(KERN_INFO " (%llu) is smallest!.\n",
  166. (unsigned long long)rdev->size);
  167. }
  168. } else
  169. printk(KERN_INFO " nope.\n");
  170. }
  171. zone->nb_dev = c;
  172. zone->sectors = (smallest->size * 2 - current_start) * c;
  173. printk(KERN_INFO "raid0: zone->nb_dev: %d, sectors: %llu\n",
  174. zone->nb_dev, (unsigned long long)zone->sectors);
  175. zone->zone_start = curr_zone_start;
  176. curr_zone_start += zone->sectors;
  177. current_start = smallest->size * 2;
  178. printk(KERN_INFO "raid0: current zone start: %llu\n",
  179. (unsigned long long)current_start);
  180. }
  181. /* Now find appropriate hash spacing.
  182. * We want a number which causes most hash entries to cover
  183. * at most two strips, but the hash table must be at most
  184. * 1 PAGE. We choose the smallest strip, or contiguous collection
  185. * of strips, that has big enough size. We never consider the last
  186. * strip though as it's size has no bearing on the efficacy of the hash
  187. * table.
  188. */
  189. conf->spacing = curr_zone_start;
  190. min_spacing = curr_zone_start;
  191. sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
  192. for (i=0; i < conf->nr_strip_zones-1; i++) {
  193. sector_t s = 0;
  194. for (j = i; j < conf->nr_strip_zones - 1 &&
  195. s < min_spacing; j++)
  196. s += conf->strip_zone[j].sectors;
  197. if (s >= min_spacing && s < conf->spacing)
  198. conf->spacing = s;
  199. }
  200. mddev->queue->unplug_fn = raid0_unplug;
  201. mddev->queue->backing_dev_info.congested_fn = raid0_congested;
  202. mddev->queue->backing_dev_info.congested_data = mddev;
  203. printk(KERN_INFO "raid0: done.\n");
  204. return 0;
  205. abort:
  206. return 1;
  207. }
  208. /**
  209. * raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
  210. * @q: request queue
  211. * @bvm: properties of new bio
  212. * @biovec: the request that could be merged to it.
  213. *
  214. * Return amount of bytes we can accept at this offset
  215. */
  216. static int raid0_mergeable_bvec(struct request_queue *q,
  217. struct bvec_merge_data *bvm,
  218. struct bio_vec *biovec)
  219. {
  220. mddev_t *mddev = q->queuedata;
  221. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  222. int max;
  223. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  224. unsigned int bio_sectors = bvm->bi_size >> 9;
  225. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  226. if (max < 0) max = 0; /* bio_add cannot handle a negative return */
  227. if (max <= biovec->bv_len && bio_sectors == 0)
  228. return biovec->bv_len;
  229. else
  230. return max;
  231. }
  232. static int raid0_run (mddev_t *mddev)
  233. {
  234. unsigned cur=0, i=0, nb_zone;
  235. s64 sectors;
  236. raid0_conf_t *conf;
  237. mdk_rdev_t *rdev;
  238. if (mddev->chunk_size == 0) {
  239. printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
  240. return -EINVAL;
  241. }
  242. printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
  243. mdname(mddev),
  244. mddev->chunk_size >> 9,
  245. (mddev->chunk_size>>1)-1);
  246. blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
  247. blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
  248. mddev->queue->queue_lock = &mddev->queue->__queue_lock;
  249. conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
  250. if (!conf)
  251. goto out;
  252. mddev->private = (void *)conf;
  253. conf->strip_zone = NULL;
  254. conf->devlist = NULL;
  255. if (create_strip_zones (mddev))
  256. goto out_free_conf;
  257. /* calculate array device size */
  258. mddev->array_sectors = 0;
  259. list_for_each_entry(rdev, &mddev->disks, same_set)
  260. mddev->array_sectors += rdev->size * 2;
  261. printk(KERN_INFO "raid0 : md_size is %llu sectors.\n",
  262. (unsigned long long)mddev->array_sectors);
  263. printk(KERN_INFO "raid0 : conf->spacing is %llu sectors.\n",
  264. (unsigned long long)conf->spacing);
  265. {
  266. sector_t s = mddev->array_sectors;
  267. sector_t space = conf->spacing;
  268. int round;
  269. conf->sector_shift = 0;
  270. if (sizeof(sector_t) > sizeof(u32)) {
  271. /*shift down space and s so that sector_div will work */
  272. while (space > (sector_t) (~(u32)0)) {
  273. s >>= 1;
  274. space >>= 1;
  275. s += 1; /* force round-up */
  276. conf->sector_shift++;
  277. }
  278. }
  279. round = sector_div(s, (u32)space) ? 1 : 0;
  280. nb_zone = s + round;
  281. }
  282. printk(KERN_INFO "raid0 : nb_zone is %d.\n", nb_zone);
  283. printk(KERN_INFO "raid0 : Allocating %zu bytes for hash.\n",
  284. nb_zone*sizeof(struct strip_zone*));
  285. conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
  286. if (!conf->hash_table)
  287. goto out_free_conf;
  288. sectors = conf->strip_zone[cur].sectors;
  289. conf->hash_table[0] = conf->strip_zone + cur;
  290. for (i=1; i< nb_zone; i++) {
  291. while (sectors <= conf->spacing) {
  292. cur++;
  293. sectors += conf->strip_zone[cur].sectors;
  294. }
  295. sectors -= conf->spacing;
  296. conf->hash_table[i] = conf->strip_zone + cur;
  297. }
  298. if (conf->sector_shift) {
  299. conf->spacing >>= conf->sector_shift;
  300. /* round spacing up so when we divide by it, we
  301. * err on the side of too-low, which is safest
  302. */
  303. conf->spacing++;
  304. }
  305. /* calculate the max read-ahead size.
  306. * For read-ahead of large files to be effective, we need to
  307. * readahead at least twice a whole stripe. i.e. number of devices
  308. * multiplied by chunk size times 2.
  309. * If an individual device has an ra_pages greater than the
  310. * chunk size, then we will not drive that device as hard as it
  311. * wants. We consider this a configuration error: a larger
  312. * chunksize should be used in that case.
  313. */
  314. {
  315. int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
  316. if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
  317. mddev->queue->backing_dev_info.ra_pages = 2* stripe;
  318. }
  319. blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
  320. return 0;
  321. out_free_conf:
  322. kfree(conf->strip_zone);
  323. kfree(conf->devlist);
  324. kfree(conf);
  325. mddev->private = NULL;
  326. out:
  327. return -ENOMEM;
  328. }
  329. static int raid0_stop (mddev_t *mddev)
  330. {
  331. raid0_conf_t *conf = mddev_to_conf(mddev);
  332. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  333. kfree(conf->hash_table);
  334. conf->hash_table = NULL;
  335. kfree(conf->strip_zone);
  336. conf->strip_zone = NULL;
  337. kfree(conf);
  338. mddev->private = NULL;
  339. return 0;
  340. }
  341. static int raid0_make_request (struct request_queue *q, struct bio *bio)
  342. {
  343. mddev_t *mddev = q->queuedata;
  344. unsigned int sect_in_chunk, chunksect_bits, chunk_sects;
  345. raid0_conf_t *conf = mddev_to_conf(mddev);
  346. struct strip_zone *zone;
  347. mdk_rdev_t *tmp_dev;
  348. sector_t chunk;
  349. sector_t sector, rsect;
  350. const int rw = bio_data_dir(bio);
  351. int cpu;
  352. if (unlikely(bio_barrier(bio))) {
  353. bio_endio(bio, -EOPNOTSUPP);
  354. return 0;
  355. }
  356. cpu = part_stat_lock();
  357. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  358. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
  359. bio_sectors(bio));
  360. part_stat_unlock();
  361. chunk_sects = mddev->chunk_size >> 9;
  362. chunksect_bits = ffz(~chunk_sects);
  363. sector = bio->bi_sector;
  364. if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
  365. struct bio_pair *bp;
  366. /* Sanity check -- queue functions should prevent this happening */
  367. if (bio->bi_vcnt != 1 ||
  368. bio->bi_idx != 0)
  369. goto bad_map;
  370. /* This is a one page bio that upper layers
  371. * refuse to split for us, so we need to split it.
  372. */
  373. bp = bio_split(bio, chunk_sects - (bio->bi_sector & (chunk_sects - 1)));
  374. if (raid0_make_request(q, &bp->bio1))
  375. generic_make_request(&bp->bio1);
  376. if (raid0_make_request(q, &bp->bio2))
  377. generic_make_request(&bp->bio2);
  378. bio_pair_release(bp);
  379. return 0;
  380. }
  381. {
  382. sector_t x = sector >> conf->sector_shift;
  383. sector_div(x, (u32)conf->spacing);
  384. zone = conf->hash_table[x];
  385. }
  386. while (sector >= zone->zone_start + zone->sectors)
  387. zone++;
  388. sect_in_chunk = bio->bi_sector & (chunk_sects - 1);
  389. {
  390. sector_t x = (sector - zone->zone_start) >> chunksect_bits;
  391. sector_div(x, zone->nb_dev);
  392. chunk = x;
  393. x = sector >> chunksect_bits;
  394. tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
  395. }
  396. rsect = (chunk << chunksect_bits) + zone->dev_start + sect_in_chunk;
  397. bio->bi_bdev = tmp_dev->bdev;
  398. bio->bi_sector = rsect + tmp_dev->data_offset;
  399. /*
  400. * Let the main block layer submit the IO and resolve recursion:
  401. */
  402. return 1;
  403. bad_map:
  404. printk("raid0_make_request bug: can't convert block across chunks"
  405. " or bigger than %dk %llu %d\n", chunk_sects / 2,
  406. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  407. bio_io_error(bio);
  408. return 0;
  409. }
  410. static void raid0_status (struct seq_file *seq, mddev_t *mddev)
  411. {
  412. #undef MD_DEBUG
  413. #ifdef MD_DEBUG
  414. int j, k, h;
  415. char b[BDEVNAME_SIZE];
  416. raid0_conf_t *conf = mddev_to_conf(mddev);
  417. h = 0;
  418. for (j = 0; j < conf->nr_strip_zones; j++) {
  419. seq_printf(seq, " z%d", j);
  420. if (conf->hash_table[h] == conf->strip_zone+j)
  421. seq_printf(seq, "(h%d)", h++);
  422. seq_printf(seq, "=[");
  423. for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
  424. seq_printf(seq, "%s/", bdevname(
  425. conf->strip_zone[j].dev[k]->bdev,b));
  426. seq_printf(seq, "] zs=%d ds=%d s=%d\n",
  427. conf->strip_zone[j].zone_start,
  428. conf->strip_zone[j].dev_start,
  429. conf->strip_zone[j].sectors);
  430. }
  431. #endif
  432. seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
  433. return;
  434. }
  435. static struct mdk_personality raid0_personality=
  436. {
  437. .name = "raid0",
  438. .level = 0,
  439. .owner = THIS_MODULE,
  440. .make_request = raid0_make_request,
  441. .run = raid0_run,
  442. .stop = raid0_stop,
  443. .status = raid0_status,
  444. };
  445. static int __init raid0_init (void)
  446. {
  447. return register_md_personality (&raid0_personality);
  448. }
  449. static void raid0_exit (void)
  450. {
  451. unregister_md_personality (&raid0_personality);
  452. }
  453. module_init(raid0_init);
  454. module_exit(raid0_exit);
  455. MODULE_LICENSE("GPL");
  456. MODULE_ALIAS("md-personality-2"); /* RAID0 */
  457. MODULE_ALIAS("md-raid0");
  458. MODULE_ALIAS("md-level-0");