sched.c 233 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. #ifdef CONFIG_USER_SCHED
  282. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  283. #else /* !CONFIG_USER_SCHED */
  284. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  285. #endif /* CONFIG_USER_SCHED */
  286. /*
  287. * A weight of 0 or 1 can cause arithmetics problems.
  288. * A weight of a cfs_rq is the sum of weights of which entities
  289. * are queued on this cfs_rq, so a weight of a entity should not be
  290. * too large, so as the shares value of a task group.
  291. * (The default weight is 1024 - so there's no practical
  292. * limitation from this.)
  293. */
  294. #define MIN_SHARES 2
  295. #define MAX_SHARES (1UL << 18)
  296. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  297. #endif
  298. /* Default task group.
  299. * Every task in system belong to this group at bootup.
  300. */
  301. struct task_group init_task_group;
  302. /* return group to which a task belongs */
  303. static inline struct task_group *task_group(struct task_struct *p)
  304. {
  305. struct task_group *tg;
  306. #ifdef CONFIG_USER_SCHED
  307. rcu_read_lock();
  308. tg = __task_cred(p)->user->tg;
  309. rcu_read_unlock();
  310. #elif defined(CONFIG_CGROUP_SCHED)
  311. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  312. struct task_group, css);
  313. #else
  314. tg = &init_task_group;
  315. #endif
  316. return tg;
  317. }
  318. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  319. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  320. {
  321. #ifdef CONFIG_FAIR_GROUP_SCHED
  322. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  323. p->se.parent = task_group(p)->se[cpu];
  324. #endif
  325. #ifdef CONFIG_RT_GROUP_SCHED
  326. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  327. p->rt.parent = task_group(p)->rt_se[cpu];
  328. #endif
  329. }
  330. #else
  331. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  332. static inline struct task_group *task_group(struct task_struct *p)
  333. {
  334. return NULL;
  335. }
  336. #endif /* CONFIG_GROUP_SCHED */
  337. /* CFS-related fields in a runqueue */
  338. struct cfs_rq {
  339. struct load_weight load;
  340. unsigned long nr_running;
  341. u64 exec_clock;
  342. u64 min_vruntime;
  343. struct rb_root tasks_timeline;
  344. struct rb_node *rb_leftmost;
  345. struct list_head tasks;
  346. struct list_head *balance_iterator;
  347. /*
  348. * 'curr' points to currently running entity on this cfs_rq.
  349. * It is set to NULL otherwise (i.e when none are currently running).
  350. */
  351. struct sched_entity *curr, *next, *last;
  352. unsigned int nr_spread_over;
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  355. /*
  356. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  357. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  358. * (like users, containers etc.)
  359. *
  360. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  361. * list is used during load balance.
  362. */
  363. struct list_head leaf_cfs_rq_list;
  364. struct task_group *tg; /* group that "owns" this runqueue */
  365. #ifdef CONFIG_SMP
  366. /*
  367. * the part of load.weight contributed by tasks
  368. */
  369. unsigned long task_weight;
  370. /*
  371. * h_load = weight * f(tg)
  372. *
  373. * Where f(tg) is the recursive weight fraction assigned to
  374. * this group.
  375. */
  376. unsigned long h_load;
  377. /*
  378. * this cpu's part of tg->shares
  379. */
  380. unsigned long shares;
  381. /*
  382. * load.weight at the time we set shares
  383. */
  384. unsigned long rq_weight;
  385. #endif
  386. #endif
  387. };
  388. /* Real-Time classes' related field in a runqueue: */
  389. struct rt_rq {
  390. struct rt_prio_array active;
  391. unsigned long rt_nr_running;
  392. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  393. int highest_prio; /* highest queued rt task prio */
  394. #endif
  395. #ifdef CONFIG_SMP
  396. unsigned long rt_nr_migratory;
  397. int overloaded;
  398. #endif
  399. int rt_throttled;
  400. u64 rt_time;
  401. u64 rt_runtime;
  402. /* Nests inside the rq lock: */
  403. spinlock_t rt_runtime_lock;
  404. #ifdef CONFIG_RT_GROUP_SCHED
  405. unsigned long rt_nr_boosted;
  406. struct rq *rq;
  407. struct list_head leaf_rt_rq_list;
  408. struct task_group *tg;
  409. struct sched_rt_entity *rt_se;
  410. #endif
  411. };
  412. #ifdef CONFIG_SMP
  413. /*
  414. * We add the notion of a root-domain which will be used to define per-domain
  415. * variables. Each exclusive cpuset essentially defines an island domain by
  416. * fully partitioning the member cpus from any other cpuset. Whenever a new
  417. * exclusive cpuset is created, we also create and attach a new root-domain
  418. * object.
  419. *
  420. */
  421. struct root_domain {
  422. atomic_t refcount;
  423. cpumask_var_t span;
  424. cpumask_var_t online;
  425. /*
  426. * The "RT overload" flag: it gets set if a CPU has more than
  427. * one runnable RT task.
  428. */
  429. cpumask_var_t rto_mask;
  430. atomic_t rto_count;
  431. #ifdef CONFIG_SMP
  432. struct cpupri cpupri;
  433. #endif
  434. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  435. /*
  436. * Preferred wake up cpu nominated by sched_mc balance that will be
  437. * used when most cpus are idle in the system indicating overall very
  438. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  439. */
  440. unsigned int sched_mc_preferred_wakeup_cpu;
  441. #endif
  442. };
  443. /*
  444. * By default the system creates a single root-domain with all cpus as
  445. * members (mimicking the global state we have today).
  446. */
  447. static struct root_domain def_root_domain;
  448. #endif
  449. /*
  450. * This is the main, per-CPU runqueue data structure.
  451. *
  452. * Locking rule: those places that want to lock multiple runqueues
  453. * (such as the load balancing or the thread migration code), lock
  454. * acquire operations must be ordered by ascending &runqueue.
  455. */
  456. struct rq {
  457. /* runqueue lock: */
  458. spinlock_t lock;
  459. /*
  460. * nr_running and cpu_load should be in the same cacheline because
  461. * remote CPUs use both these fields when doing load calculation.
  462. */
  463. unsigned long nr_running;
  464. #define CPU_LOAD_IDX_MAX 5
  465. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  466. unsigned char idle_at_tick;
  467. #ifdef CONFIG_NO_HZ
  468. unsigned long last_tick_seen;
  469. unsigned char in_nohz_recently;
  470. #endif
  471. /* capture load from *all* tasks on this cpu: */
  472. struct load_weight load;
  473. unsigned long nr_load_updates;
  474. u64 nr_switches;
  475. struct cfs_rq cfs;
  476. struct rt_rq rt;
  477. #ifdef CONFIG_FAIR_GROUP_SCHED
  478. /* list of leaf cfs_rq on this cpu: */
  479. struct list_head leaf_cfs_rq_list;
  480. #endif
  481. #ifdef CONFIG_RT_GROUP_SCHED
  482. struct list_head leaf_rt_rq_list;
  483. #endif
  484. /*
  485. * This is part of a global counter where only the total sum
  486. * over all CPUs matters. A task can increase this counter on
  487. * one CPU and if it got migrated afterwards it may decrease
  488. * it on another CPU. Always updated under the runqueue lock:
  489. */
  490. unsigned long nr_uninterruptible;
  491. struct task_struct *curr, *idle;
  492. unsigned long next_balance;
  493. struct mm_struct *prev_mm;
  494. u64 clock;
  495. atomic_t nr_iowait;
  496. #ifdef CONFIG_SMP
  497. struct root_domain *rd;
  498. struct sched_domain *sd;
  499. /* For active balancing */
  500. int active_balance;
  501. int push_cpu;
  502. /* cpu of this runqueue: */
  503. int cpu;
  504. int online;
  505. unsigned long avg_load_per_task;
  506. struct task_struct *migration_thread;
  507. struct list_head migration_queue;
  508. #endif
  509. #ifdef CONFIG_SCHED_HRTICK
  510. #ifdef CONFIG_SMP
  511. int hrtick_csd_pending;
  512. struct call_single_data hrtick_csd;
  513. #endif
  514. struct hrtimer hrtick_timer;
  515. #endif
  516. #ifdef CONFIG_SCHEDSTATS
  517. /* latency stats */
  518. struct sched_info rq_sched_info;
  519. unsigned long long rq_cpu_time;
  520. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  521. /* sys_sched_yield() stats */
  522. unsigned int yld_exp_empty;
  523. unsigned int yld_act_empty;
  524. unsigned int yld_both_empty;
  525. unsigned int yld_count;
  526. /* schedule() stats */
  527. unsigned int sched_switch;
  528. unsigned int sched_count;
  529. unsigned int sched_goidle;
  530. /* try_to_wake_up() stats */
  531. unsigned int ttwu_count;
  532. unsigned int ttwu_local;
  533. /* BKL stats */
  534. unsigned int bkl_count;
  535. #endif
  536. };
  537. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  538. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  539. {
  540. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  541. }
  542. static inline int cpu_of(struct rq *rq)
  543. {
  544. #ifdef CONFIG_SMP
  545. return rq->cpu;
  546. #else
  547. return 0;
  548. #endif
  549. }
  550. /*
  551. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  552. * See detach_destroy_domains: synchronize_sched for details.
  553. *
  554. * The domain tree of any CPU may only be accessed from within
  555. * preempt-disabled sections.
  556. */
  557. #define for_each_domain(cpu, __sd) \
  558. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  559. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  560. #define this_rq() (&__get_cpu_var(runqueues))
  561. #define task_rq(p) cpu_rq(task_cpu(p))
  562. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  563. inline void update_rq_clock(struct rq *rq)
  564. {
  565. rq->clock = sched_clock_cpu(cpu_of(rq));
  566. }
  567. /*
  568. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  569. */
  570. #ifdef CONFIG_SCHED_DEBUG
  571. # define const_debug __read_mostly
  572. #else
  573. # define const_debug static const
  574. #endif
  575. /**
  576. * runqueue_is_locked
  577. *
  578. * Returns true if the current cpu runqueue is locked.
  579. * This interface allows printk to be called with the runqueue lock
  580. * held and know whether or not it is OK to wake up the klogd.
  581. */
  582. int runqueue_is_locked(void)
  583. {
  584. int cpu = get_cpu();
  585. struct rq *rq = cpu_rq(cpu);
  586. int ret;
  587. ret = spin_is_locked(&rq->lock);
  588. put_cpu();
  589. return ret;
  590. }
  591. /*
  592. * Debugging: various feature bits
  593. */
  594. #define SCHED_FEAT(name, enabled) \
  595. __SCHED_FEAT_##name ,
  596. enum {
  597. #include "sched_features.h"
  598. };
  599. #undef SCHED_FEAT
  600. #define SCHED_FEAT(name, enabled) \
  601. (1UL << __SCHED_FEAT_##name) * enabled |
  602. const_debug unsigned int sysctl_sched_features =
  603. #include "sched_features.h"
  604. 0;
  605. #undef SCHED_FEAT
  606. #ifdef CONFIG_SCHED_DEBUG
  607. #define SCHED_FEAT(name, enabled) \
  608. #name ,
  609. static __read_mostly char *sched_feat_names[] = {
  610. #include "sched_features.h"
  611. NULL
  612. };
  613. #undef SCHED_FEAT
  614. static int sched_feat_show(struct seq_file *m, void *v)
  615. {
  616. int i;
  617. for (i = 0; sched_feat_names[i]; i++) {
  618. if (!(sysctl_sched_features & (1UL << i)))
  619. seq_puts(m, "NO_");
  620. seq_printf(m, "%s ", sched_feat_names[i]);
  621. }
  622. seq_puts(m, "\n");
  623. return 0;
  624. }
  625. static ssize_t
  626. sched_feat_write(struct file *filp, const char __user *ubuf,
  627. size_t cnt, loff_t *ppos)
  628. {
  629. char buf[64];
  630. char *cmp = buf;
  631. int neg = 0;
  632. int i;
  633. if (cnt > 63)
  634. cnt = 63;
  635. if (copy_from_user(&buf, ubuf, cnt))
  636. return -EFAULT;
  637. buf[cnt] = 0;
  638. if (strncmp(buf, "NO_", 3) == 0) {
  639. neg = 1;
  640. cmp += 3;
  641. }
  642. for (i = 0; sched_feat_names[i]; i++) {
  643. int len = strlen(sched_feat_names[i]);
  644. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  645. if (neg)
  646. sysctl_sched_features &= ~(1UL << i);
  647. else
  648. sysctl_sched_features |= (1UL << i);
  649. break;
  650. }
  651. }
  652. if (!sched_feat_names[i])
  653. return -EINVAL;
  654. filp->f_pos += cnt;
  655. return cnt;
  656. }
  657. static int sched_feat_open(struct inode *inode, struct file *filp)
  658. {
  659. return single_open(filp, sched_feat_show, NULL);
  660. }
  661. static struct file_operations sched_feat_fops = {
  662. .open = sched_feat_open,
  663. .write = sched_feat_write,
  664. .read = seq_read,
  665. .llseek = seq_lseek,
  666. .release = single_release,
  667. };
  668. static __init int sched_init_debug(void)
  669. {
  670. debugfs_create_file("sched_features", 0644, NULL, NULL,
  671. &sched_feat_fops);
  672. return 0;
  673. }
  674. late_initcall(sched_init_debug);
  675. #endif
  676. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  677. /*
  678. * Number of tasks to iterate in a single balance run.
  679. * Limited because this is done with IRQs disabled.
  680. */
  681. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  682. /*
  683. * ratelimit for updating the group shares.
  684. * default: 0.25ms
  685. */
  686. unsigned int sysctl_sched_shares_ratelimit = 250000;
  687. /*
  688. * Inject some fuzzyness into changing the per-cpu group shares
  689. * this avoids remote rq-locks at the expense of fairness.
  690. * default: 4
  691. */
  692. unsigned int sysctl_sched_shares_thresh = 4;
  693. /*
  694. * period over which we measure -rt task cpu usage in us.
  695. * default: 1s
  696. */
  697. unsigned int sysctl_sched_rt_period = 1000000;
  698. static __read_mostly int scheduler_running;
  699. /*
  700. * part of the period that we allow rt tasks to run in us.
  701. * default: 0.95s
  702. */
  703. int sysctl_sched_rt_runtime = 950000;
  704. static inline u64 global_rt_period(void)
  705. {
  706. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  707. }
  708. static inline u64 global_rt_runtime(void)
  709. {
  710. if (sysctl_sched_rt_runtime < 0)
  711. return RUNTIME_INF;
  712. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  713. }
  714. #ifndef prepare_arch_switch
  715. # define prepare_arch_switch(next) do { } while (0)
  716. #endif
  717. #ifndef finish_arch_switch
  718. # define finish_arch_switch(prev) do { } while (0)
  719. #endif
  720. static inline int task_current(struct rq *rq, struct task_struct *p)
  721. {
  722. return rq->curr == p;
  723. }
  724. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  725. static inline int task_running(struct rq *rq, struct task_struct *p)
  726. {
  727. return task_current(rq, p);
  728. }
  729. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  730. {
  731. }
  732. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  733. {
  734. #ifdef CONFIG_DEBUG_SPINLOCK
  735. /* this is a valid case when another task releases the spinlock */
  736. rq->lock.owner = current;
  737. #endif
  738. /*
  739. * If we are tracking spinlock dependencies then we have to
  740. * fix up the runqueue lock - which gets 'carried over' from
  741. * prev into current:
  742. */
  743. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  744. spin_unlock_irq(&rq->lock);
  745. }
  746. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  747. static inline int task_running(struct rq *rq, struct task_struct *p)
  748. {
  749. #ifdef CONFIG_SMP
  750. return p->oncpu;
  751. #else
  752. return task_current(rq, p);
  753. #endif
  754. }
  755. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  756. {
  757. #ifdef CONFIG_SMP
  758. /*
  759. * We can optimise this out completely for !SMP, because the
  760. * SMP rebalancing from interrupt is the only thing that cares
  761. * here.
  762. */
  763. next->oncpu = 1;
  764. #endif
  765. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  766. spin_unlock_irq(&rq->lock);
  767. #else
  768. spin_unlock(&rq->lock);
  769. #endif
  770. }
  771. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  772. {
  773. #ifdef CONFIG_SMP
  774. /*
  775. * After ->oncpu is cleared, the task can be moved to a different CPU.
  776. * We must ensure this doesn't happen until the switch is completely
  777. * finished.
  778. */
  779. smp_wmb();
  780. prev->oncpu = 0;
  781. #endif
  782. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  783. local_irq_enable();
  784. #endif
  785. }
  786. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  787. /*
  788. * __task_rq_lock - lock the runqueue a given task resides on.
  789. * Must be called interrupts disabled.
  790. */
  791. static inline struct rq *__task_rq_lock(struct task_struct *p)
  792. __acquires(rq->lock)
  793. {
  794. for (;;) {
  795. struct rq *rq = task_rq(p);
  796. spin_lock(&rq->lock);
  797. if (likely(rq == task_rq(p)))
  798. return rq;
  799. spin_unlock(&rq->lock);
  800. }
  801. }
  802. /*
  803. * task_rq_lock - lock the runqueue a given task resides on and disable
  804. * interrupts. Note the ordering: we can safely lookup the task_rq without
  805. * explicitly disabling preemption.
  806. */
  807. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  808. __acquires(rq->lock)
  809. {
  810. struct rq *rq;
  811. for (;;) {
  812. local_irq_save(*flags);
  813. rq = task_rq(p);
  814. spin_lock(&rq->lock);
  815. if (likely(rq == task_rq(p)))
  816. return rq;
  817. spin_unlock_irqrestore(&rq->lock, *flags);
  818. }
  819. }
  820. void curr_rq_lock_irq_save(unsigned long *flags)
  821. __acquires(rq->lock)
  822. {
  823. struct rq *rq;
  824. local_irq_save(*flags);
  825. rq = cpu_rq(smp_processor_id());
  826. spin_lock(&rq->lock);
  827. }
  828. void curr_rq_unlock_irq_restore(unsigned long *flags)
  829. __releases(rq->lock)
  830. {
  831. struct rq *rq;
  832. rq = cpu_rq(smp_processor_id());
  833. spin_unlock(&rq->lock);
  834. local_irq_restore(*flags);
  835. }
  836. void task_rq_unlock_wait(struct task_struct *p)
  837. {
  838. struct rq *rq = task_rq(p);
  839. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  840. spin_unlock_wait(&rq->lock);
  841. }
  842. static void __task_rq_unlock(struct rq *rq)
  843. __releases(rq->lock)
  844. {
  845. spin_unlock(&rq->lock);
  846. }
  847. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  848. __releases(rq->lock)
  849. {
  850. spin_unlock_irqrestore(&rq->lock, *flags);
  851. }
  852. /*
  853. * this_rq_lock - lock this runqueue and disable interrupts.
  854. */
  855. static struct rq *this_rq_lock(void)
  856. __acquires(rq->lock)
  857. {
  858. struct rq *rq;
  859. local_irq_disable();
  860. rq = this_rq();
  861. spin_lock(&rq->lock);
  862. return rq;
  863. }
  864. #ifdef CONFIG_SCHED_HRTICK
  865. /*
  866. * Use HR-timers to deliver accurate preemption points.
  867. *
  868. * Its all a bit involved since we cannot program an hrt while holding the
  869. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  870. * reschedule event.
  871. *
  872. * When we get rescheduled we reprogram the hrtick_timer outside of the
  873. * rq->lock.
  874. */
  875. /*
  876. * Use hrtick when:
  877. * - enabled by features
  878. * - hrtimer is actually high res
  879. */
  880. static inline int hrtick_enabled(struct rq *rq)
  881. {
  882. if (!sched_feat(HRTICK))
  883. return 0;
  884. if (!cpu_active(cpu_of(rq)))
  885. return 0;
  886. return hrtimer_is_hres_active(&rq->hrtick_timer);
  887. }
  888. static void hrtick_clear(struct rq *rq)
  889. {
  890. if (hrtimer_active(&rq->hrtick_timer))
  891. hrtimer_cancel(&rq->hrtick_timer);
  892. }
  893. /*
  894. * High-resolution timer tick.
  895. * Runs from hardirq context with interrupts disabled.
  896. */
  897. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  898. {
  899. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  900. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  901. spin_lock(&rq->lock);
  902. update_rq_clock(rq);
  903. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  904. spin_unlock(&rq->lock);
  905. return HRTIMER_NORESTART;
  906. }
  907. #ifdef CONFIG_SMP
  908. /*
  909. * called from hardirq (IPI) context
  910. */
  911. static void __hrtick_start(void *arg)
  912. {
  913. struct rq *rq = arg;
  914. spin_lock(&rq->lock);
  915. hrtimer_restart(&rq->hrtick_timer);
  916. rq->hrtick_csd_pending = 0;
  917. spin_unlock(&rq->lock);
  918. }
  919. /*
  920. * Called to set the hrtick timer state.
  921. *
  922. * called with rq->lock held and irqs disabled
  923. */
  924. static void hrtick_start(struct rq *rq, u64 delay)
  925. {
  926. struct hrtimer *timer = &rq->hrtick_timer;
  927. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  928. hrtimer_set_expires(timer, time);
  929. if (rq == this_rq()) {
  930. hrtimer_restart(timer);
  931. } else if (!rq->hrtick_csd_pending) {
  932. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  933. rq->hrtick_csd_pending = 1;
  934. }
  935. }
  936. static int
  937. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  938. {
  939. int cpu = (int)(long)hcpu;
  940. switch (action) {
  941. case CPU_UP_CANCELED:
  942. case CPU_UP_CANCELED_FROZEN:
  943. case CPU_DOWN_PREPARE:
  944. case CPU_DOWN_PREPARE_FROZEN:
  945. case CPU_DEAD:
  946. case CPU_DEAD_FROZEN:
  947. hrtick_clear(cpu_rq(cpu));
  948. return NOTIFY_OK;
  949. }
  950. return NOTIFY_DONE;
  951. }
  952. static __init void init_hrtick(void)
  953. {
  954. hotcpu_notifier(hotplug_hrtick, 0);
  955. }
  956. #else
  957. /*
  958. * Called to set the hrtick timer state.
  959. *
  960. * called with rq->lock held and irqs disabled
  961. */
  962. static void hrtick_start(struct rq *rq, u64 delay)
  963. {
  964. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  965. }
  966. static inline void init_hrtick(void)
  967. {
  968. }
  969. #endif /* CONFIG_SMP */
  970. static void init_rq_hrtick(struct rq *rq)
  971. {
  972. #ifdef CONFIG_SMP
  973. rq->hrtick_csd_pending = 0;
  974. rq->hrtick_csd.flags = 0;
  975. rq->hrtick_csd.func = __hrtick_start;
  976. rq->hrtick_csd.info = rq;
  977. #endif
  978. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  979. rq->hrtick_timer.function = hrtick;
  980. }
  981. #else /* CONFIG_SCHED_HRTICK */
  982. static inline void hrtick_clear(struct rq *rq)
  983. {
  984. }
  985. static inline void init_rq_hrtick(struct rq *rq)
  986. {
  987. }
  988. static inline void init_hrtick(void)
  989. {
  990. }
  991. #endif /* CONFIG_SCHED_HRTICK */
  992. /*
  993. * resched_task - mark a task 'to be rescheduled now'.
  994. *
  995. * On UP this means the setting of the need_resched flag, on SMP it
  996. * might also involve a cross-CPU call to trigger the scheduler on
  997. * the target CPU.
  998. */
  999. #ifdef CONFIG_SMP
  1000. #ifndef tsk_is_polling
  1001. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1002. #endif
  1003. static void resched_task(struct task_struct *p)
  1004. {
  1005. int cpu;
  1006. assert_spin_locked(&task_rq(p)->lock);
  1007. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  1008. return;
  1009. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  1010. cpu = task_cpu(p);
  1011. if (cpu == smp_processor_id())
  1012. return;
  1013. /* NEED_RESCHED must be visible before we test polling */
  1014. smp_mb();
  1015. if (!tsk_is_polling(p))
  1016. smp_send_reschedule(cpu);
  1017. }
  1018. static void resched_cpu(int cpu)
  1019. {
  1020. struct rq *rq = cpu_rq(cpu);
  1021. unsigned long flags;
  1022. if (!spin_trylock_irqsave(&rq->lock, flags))
  1023. return;
  1024. resched_task(cpu_curr(cpu));
  1025. spin_unlock_irqrestore(&rq->lock, flags);
  1026. }
  1027. #ifdef CONFIG_NO_HZ
  1028. /*
  1029. * When add_timer_on() enqueues a timer into the timer wheel of an
  1030. * idle CPU then this timer might expire before the next timer event
  1031. * which is scheduled to wake up that CPU. In case of a completely
  1032. * idle system the next event might even be infinite time into the
  1033. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1034. * leaves the inner idle loop so the newly added timer is taken into
  1035. * account when the CPU goes back to idle and evaluates the timer
  1036. * wheel for the next timer event.
  1037. */
  1038. void wake_up_idle_cpu(int cpu)
  1039. {
  1040. struct rq *rq = cpu_rq(cpu);
  1041. if (cpu == smp_processor_id())
  1042. return;
  1043. /*
  1044. * This is safe, as this function is called with the timer
  1045. * wheel base lock of (cpu) held. When the CPU is on the way
  1046. * to idle and has not yet set rq->curr to idle then it will
  1047. * be serialized on the timer wheel base lock and take the new
  1048. * timer into account automatically.
  1049. */
  1050. if (rq->curr != rq->idle)
  1051. return;
  1052. /*
  1053. * We can set TIF_RESCHED on the idle task of the other CPU
  1054. * lockless. The worst case is that the other CPU runs the
  1055. * idle task through an additional NOOP schedule()
  1056. */
  1057. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1058. /* NEED_RESCHED must be visible before we test polling */
  1059. smp_mb();
  1060. if (!tsk_is_polling(rq->idle))
  1061. smp_send_reschedule(cpu);
  1062. }
  1063. #endif /* CONFIG_NO_HZ */
  1064. #else /* !CONFIG_SMP */
  1065. static void resched_task(struct task_struct *p)
  1066. {
  1067. assert_spin_locked(&task_rq(p)->lock);
  1068. set_tsk_need_resched(p);
  1069. }
  1070. #endif /* CONFIG_SMP */
  1071. #if BITS_PER_LONG == 32
  1072. # define WMULT_CONST (~0UL)
  1073. #else
  1074. # define WMULT_CONST (1UL << 32)
  1075. #endif
  1076. #define WMULT_SHIFT 32
  1077. /*
  1078. * Shift right and round:
  1079. */
  1080. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1081. /*
  1082. * delta *= weight / lw
  1083. */
  1084. static unsigned long
  1085. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1086. struct load_weight *lw)
  1087. {
  1088. u64 tmp;
  1089. if (!lw->inv_weight) {
  1090. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1091. lw->inv_weight = 1;
  1092. else
  1093. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1094. / (lw->weight+1);
  1095. }
  1096. tmp = (u64)delta_exec * weight;
  1097. /*
  1098. * Check whether we'd overflow the 64-bit multiplication:
  1099. */
  1100. if (unlikely(tmp > WMULT_CONST))
  1101. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1102. WMULT_SHIFT/2);
  1103. else
  1104. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1105. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1106. }
  1107. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1108. {
  1109. lw->weight += inc;
  1110. lw->inv_weight = 0;
  1111. }
  1112. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1113. {
  1114. lw->weight -= dec;
  1115. lw->inv_weight = 0;
  1116. }
  1117. /*
  1118. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1119. * of tasks with abnormal "nice" values across CPUs the contribution that
  1120. * each task makes to its run queue's load is weighted according to its
  1121. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1122. * scaled version of the new time slice allocation that they receive on time
  1123. * slice expiry etc.
  1124. */
  1125. #define WEIGHT_IDLEPRIO 3
  1126. #define WMULT_IDLEPRIO 1431655765
  1127. /*
  1128. * Nice levels are multiplicative, with a gentle 10% change for every
  1129. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1130. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1131. * that remained on nice 0.
  1132. *
  1133. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1134. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1135. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1136. * If a task goes up by ~10% and another task goes down by ~10% then
  1137. * the relative distance between them is ~25%.)
  1138. */
  1139. static const int prio_to_weight[40] = {
  1140. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1141. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1142. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1143. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1144. /* 0 */ 1024, 820, 655, 526, 423,
  1145. /* 5 */ 335, 272, 215, 172, 137,
  1146. /* 10 */ 110, 87, 70, 56, 45,
  1147. /* 15 */ 36, 29, 23, 18, 15,
  1148. };
  1149. /*
  1150. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1151. *
  1152. * In cases where the weight does not change often, we can use the
  1153. * precalculated inverse to speed up arithmetics by turning divisions
  1154. * into multiplications:
  1155. */
  1156. static const u32 prio_to_wmult[40] = {
  1157. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1158. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1159. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1160. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1161. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1162. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1163. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1164. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1165. };
  1166. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1167. /*
  1168. * runqueue iterator, to support SMP load-balancing between different
  1169. * scheduling classes, without having to expose their internal data
  1170. * structures to the load-balancing proper:
  1171. */
  1172. struct rq_iterator {
  1173. void *arg;
  1174. struct task_struct *(*start)(void *);
  1175. struct task_struct *(*next)(void *);
  1176. };
  1177. #ifdef CONFIG_SMP
  1178. static unsigned long
  1179. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1180. unsigned long max_load_move, struct sched_domain *sd,
  1181. enum cpu_idle_type idle, int *all_pinned,
  1182. int *this_best_prio, struct rq_iterator *iterator);
  1183. static int
  1184. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1185. struct sched_domain *sd, enum cpu_idle_type idle,
  1186. struct rq_iterator *iterator);
  1187. #endif
  1188. #ifdef CONFIG_CGROUP_CPUACCT
  1189. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1190. #else
  1191. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1192. #endif
  1193. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1194. {
  1195. update_load_add(&rq->load, load);
  1196. }
  1197. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1198. {
  1199. update_load_sub(&rq->load, load);
  1200. }
  1201. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1202. typedef int (*tg_visitor)(struct task_group *, void *);
  1203. /*
  1204. * Iterate the full tree, calling @down when first entering a node and @up when
  1205. * leaving it for the final time.
  1206. */
  1207. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1208. {
  1209. struct task_group *parent, *child;
  1210. int ret;
  1211. rcu_read_lock();
  1212. parent = &root_task_group;
  1213. down:
  1214. ret = (*down)(parent, data);
  1215. if (ret)
  1216. goto out_unlock;
  1217. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1218. parent = child;
  1219. goto down;
  1220. up:
  1221. continue;
  1222. }
  1223. ret = (*up)(parent, data);
  1224. if (ret)
  1225. goto out_unlock;
  1226. child = parent;
  1227. parent = parent->parent;
  1228. if (parent)
  1229. goto up;
  1230. out_unlock:
  1231. rcu_read_unlock();
  1232. return ret;
  1233. }
  1234. static int tg_nop(struct task_group *tg, void *data)
  1235. {
  1236. return 0;
  1237. }
  1238. #endif
  1239. #ifdef CONFIG_SMP
  1240. static unsigned long source_load(int cpu, int type);
  1241. static unsigned long target_load(int cpu, int type);
  1242. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1243. static unsigned long cpu_avg_load_per_task(int cpu)
  1244. {
  1245. struct rq *rq = cpu_rq(cpu);
  1246. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1247. if (nr_running)
  1248. rq->avg_load_per_task = rq->load.weight / nr_running;
  1249. else
  1250. rq->avg_load_per_task = 0;
  1251. return rq->avg_load_per_task;
  1252. }
  1253. #ifdef CONFIG_FAIR_GROUP_SCHED
  1254. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1255. /*
  1256. * Calculate and set the cpu's group shares.
  1257. */
  1258. static void
  1259. update_group_shares_cpu(struct task_group *tg, int cpu,
  1260. unsigned long sd_shares, unsigned long sd_rq_weight)
  1261. {
  1262. unsigned long shares;
  1263. unsigned long rq_weight;
  1264. if (!tg->se[cpu])
  1265. return;
  1266. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1267. /*
  1268. * \Sum shares * rq_weight
  1269. * shares = -----------------------
  1270. * \Sum rq_weight
  1271. *
  1272. */
  1273. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1274. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1275. if (abs(shares - tg->se[cpu]->load.weight) >
  1276. sysctl_sched_shares_thresh) {
  1277. struct rq *rq = cpu_rq(cpu);
  1278. unsigned long flags;
  1279. spin_lock_irqsave(&rq->lock, flags);
  1280. tg->cfs_rq[cpu]->shares = shares;
  1281. __set_se_shares(tg->se[cpu], shares);
  1282. spin_unlock_irqrestore(&rq->lock, flags);
  1283. }
  1284. }
  1285. /*
  1286. * Re-compute the task group their per cpu shares over the given domain.
  1287. * This needs to be done in a bottom-up fashion because the rq weight of a
  1288. * parent group depends on the shares of its child groups.
  1289. */
  1290. static int tg_shares_up(struct task_group *tg, void *data)
  1291. {
  1292. unsigned long weight, rq_weight = 0;
  1293. unsigned long shares = 0;
  1294. struct sched_domain *sd = data;
  1295. int i;
  1296. for_each_cpu(i, sched_domain_span(sd)) {
  1297. /*
  1298. * If there are currently no tasks on the cpu pretend there
  1299. * is one of average load so that when a new task gets to
  1300. * run here it will not get delayed by group starvation.
  1301. */
  1302. weight = tg->cfs_rq[i]->load.weight;
  1303. if (!weight)
  1304. weight = NICE_0_LOAD;
  1305. tg->cfs_rq[i]->rq_weight = weight;
  1306. rq_weight += weight;
  1307. shares += tg->cfs_rq[i]->shares;
  1308. }
  1309. if ((!shares && rq_weight) || shares > tg->shares)
  1310. shares = tg->shares;
  1311. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1312. shares = tg->shares;
  1313. for_each_cpu(i, sched_domain_span(sd))
  1314. update_group_shares_cpu(tg, i, shares, rq_weight);
  1315. return 0;
  1316. }
  1317. /*
  1318. * Compute the cpu's hierarchical load factor for each task group.
  1319. * This needs to be done in a top-down fashion because the load of a child
  1320. * group is a fraction of its parents load.
  1321. */
  1322. static int tg_load_down(struct task_group *tg, void *data)
  1323. {
  1324. unsigned long load;
  1325. long cpu = (long)data;
  1326. if (!tg->parent) {
  1327. load = cpu_rq(cpu)->load.weight;
  1328. } else {
  1329. load = tg->parent->cfs_rq[cpu]->h_load;
  1330. load *= tg->cfs_rq[cpu]->shares;
  1331. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1332. }
  1333. tg->cfs_rq[cpu]->h_load = load;
  1334. return 0;
  1335. }
  1336. static void update_shares(struct sched_domain *sd)
  1337. {
  1338. u64 now = cpu_clock(raw_smp_processor_id());
  1339. s64 elapsed = now - sd->last_update;
  1340. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1341. sd->last_update = now;
  1342. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1343. }
  1344. }
  1345. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1346. {
  1347. spin_unlock(&rq->lock);
  1348. update_shares(sd);
  1349. spin_lock(&rq->lock);
  1350. }
  1351. static void update_h_load(long cpu)
  1352. {
  1353. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1354. }
  1355. #else
  1356. static inline void update_shares(struct sched_domain *sd)
  1357. {
  1358. }
  1359. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1360. {
  1361. }
  1362. #endif
  1363. /*
  1364. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1365. */
  1366. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1367. __releases(this_rq->lock)
  1368. __acquires(busiest->lock)
  1369. __acquires(this_rq->lock)
  1370. {
  1371. int ret = 0;
  1372. if (unlikely(!irqs_disabled())) {
  1373. /* printk() doesn't work good under rq->lock */
  1374. spin_unlock(&this_rq->lock);
  1375. BUG_ON(1);
  1376. }
  1377. if (unlikely(!spin_trylock(&busiest->lock))) {
  1378. if (busiest < this_rq) {
  1379. spin_unlock(&this_rq->lock);
  1380. spin_lock(&busiest->lock);
  1381. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1382. ret = 1;
  1383. } else
  1384. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1385. }
  1386. return ret;
  1387. }
  1388. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1389. __releases(busiest->lock)
  1390. {
  1391. spin_unlock(&busiest->lock);
  1392. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1393. }
  1394. #endif
  1395. #ifdef CONFIG_FAIR_GROUP_SCHED
  1396. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1397. {
  1398. #ifdef CONFIG_SMP
  1399. cfs_rq->shares = shares;
  1400. #endif
  1401. }
  1402. #endif
  1403. #include "sched_stats.h"
  1404. #include "sched_idletask.c"
  1405. #include "sched_fair.c"
  1406. #include "sched_rt.c"
  1407. #ifdef CONFIG_SCHED_DEBUG
  1408. # include "sched_debug.c"
  1409. #endif
  1410. #define sched_class_highest (&rt_sched_class)
  1411. #define for_each_class(class) \
  1412. for (class = sched_class_highest; class; class = class->next)
  1413. static void inc_nr_running(struct rq *rq)
  1414. {
  1415. rq->nr_running++;
  1416. }
  1417. static void dec_nr_running(struct rq *rq)
  1418. {
  1419. rq->nr_running--;
  1420. }
  1421. static void set_load_weight(struct task_struct *p)
  1422. {
  1423. if (task_has_rt_policy(p)) {
  1424. p->se.load.weight = prio_to_weight[0] * 2;
  1425. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1426. return;
  1427. }
  1428. /*
  1429. * SCHED_IDLE tasks get minimal weight:
  1430. */
  1431. if (p->policy == SCHED_IDLE) {
  1432. p->se.load.weight = WEIGHT_IDLEPRIO;
  1433. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1434. return;
  1435. }
  1436. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1437. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1438. }
  1439. static void update_avg(u64 *avg, u64 sample)
  1440. {
  1441. s64 diff = sample - *avg;
  1442. *avg += diff >> 3;
  1443. }
  1444. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1445. {
  1446. sched_info_queued(p);
  1447. p->sched_class->enqueue_task(rq, p, wakeup);
  1448. p->se.on_rq = 1;
  1449. }
  1450. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1451. {
  1452. if (sleep && p->se.last_wakeup) {
  1453. update_avg(&p->se.avg_overlap,
  1454. p->se.sum_exec_runtime - p->se.last_wakeup);
  1455. p->se.last_wakeup = 0;
  1456. }
  1457. sched_info_dequeued(p);
  1458. p->sched_class->dequeue_task(rq, p, sleep);
  1459. p->se.on_rq = 0;
  1460. }
  1461. /*
  1462. * __normal_prio - return the priority that is based on the static prio
  1463. */
  1464. static inline int __normal_prio(struct task_struct *p)
  1465. {
  1466. return p->static_prio;
  1467. }
  1468. /*
  1469. * Calculate the expected normal priority: i.e. priority
  1470. * without taking RT-inheritance into account. Might be
  1471. * boosted by interactivity modifiers. Changes upon fork,
  1472. * setprio syscalls, and whenever the interactivity
  1473. * estimator recalculates.
  1474. */
  1475. static inline int normal_prio(struct task_struct *p)
  1476. {
  1477. int prio;
  1478. if (task_has_rt_policy(p))
  1479. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1480. else
  1481. prio = __normal_prio(p);
  1482. return prio;
  1483. }
  1484. /*
  1485. * Calculate the current priority, i.e. the priority
  1486. * taken into account by the scheduler. This value might
  1487. * be boosted by RT tasks, or might be boosted by
  1488. * interactivity modifiers. Will be RT if the task got
  1489. * RT-boosted. If not then it returns p->normal_prio.
  1490. */
  1491. static int effective_prio(struct task_struct *p)
  1492. {
  1493. p->normal_prio = normal_prio(p);
  1494. /*
  1495. * If we are RT tasks or we were boosted to RT priority,
  1496. * keep the priority unchanged. Otherwise, update priority
  1497. * to the normal priority:
  1498. */
  1499. if (!rt_prio(p->prio))
  1500. return p->normal_prio;
  1501. return p->prio;
  1502. }
  1503. /*
  1504. * activate_task - move a task to the runqueue.
  1505. */
  1506. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1507. {
  1508. if (task_contributes_to_load(p))
  1509. rq->nr_uninterruptible--;
  1510. enqueue_task(rq, p, wakeup);
  1511. inc_nr_running(rq);
  1512. }
  1513. /*
  1514. * deactivate_task - remove a task from the runqueue.
  1515. */
  1516. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1517. {
  1518. if (task_contributes_to_load(p))
  1519. rq->nr_uninterruptible++;
  1520. dequeue_task(rq, p, sleep);
  1521. dec_nr_running(rq);
  1522. }
  1523. /**
  1524. * task_curr - is this task currently executing on a CPU?
  1525. * @p: the task in question.
  1526. */
  1527. inline int task_curr(const struct task_struct *p)
  1528. {
  1529. return cpu_curr(task_cpu(p)) == p;
  1530. }
  1531. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1532. {
  1533. set_task_rq(p, cpu);
  1534. #ifdef CONFIG_SMP
  1535. /*
  1536. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1537. * successfuly executed on another CPU. We must ensure that updates of
  1538. * per-task data have been completed by this moment.
  1539. */
  1540. smp_wmb();
  1541. task_thread_info(p)->cpu = cpu;
  1542. #endif
  1543. }
  1544. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1545. const struct sched_class *prev_class,
  1546. int oldprio, int running)
  1547. {
  1548. if (prev_class != p->sched_class) {
  1549. if (prev_class->switched_from)
  1550. prev_class->switched_from(rq, p, running);
  1551. p->sched_class->switched_to(rq, p, running);
  1552. } else
  1553. p->sched_class->prio_changed(rq, p, oldprio, running);
  1554. }
  1555. #ifdef CONFIG_SMP
  1556. /* Used instead of source_load when we know the type == 0 */
  1557. static unsigned long weighted_cpuload(const int cpu)
  1558. {
  1559. return cpu_rq(cpu)->load.weight;
  1560. }
  1561. /*
  1562. * Is this task likely cache-hot:
  1563. */
  1564. static int
  1565. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1566. {
  1567. s64 delta;
  1568. /*
  1569. * Buddy candidates are cache hot:
  1570. */
  1571. if (sched_feat(CACHE_HOT_BUDDY) &&
  1572. (&p->se == cfs_rq_of(&p->se)->next ||
  1573. &p->se == cfs_rq_of(&p->se)->last))
  1574. return 1;
  1575. if (p->sched_class != &fair_sched_class)
  1576. return 0;
  1577. if (sysctl_sched_migration_cost == -1)
  1578. return 1;
  1579. if (sysctl_sched_migration_cost == 0)
  1580. return 0;
  1581. delta = now - p->se.exec_start;
  1582. return delta < (s64)sysctl_sched_migration_cost;
  1583. }
  1584. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1585. {
  1586. int old_cpu = task_cpu(p);
  1587. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1588. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1589. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1590. u64 clock_offset;
  1591. clock_offset = old_rq->clock - new_rq->clock;
  1592. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1593. #ifdef CONFIG_SCHEDSTATS
  1594. if (p->se.wait_start)
  1595. p->se.wait_start -= clock_offset;
  1596. if (p->se.sleep_start)
  1597. p->se.sleep_start -= clock_offset;
  1598. if (p->se.block_start)
  1599. p->se.block_start -= clock_offset;
  1600. #endif
  1601. if (old_cpu != new_cpu) {
  1602. p->se.nr_migrations++;
  1603. #ifdef CONFIG_SCHEDSTATS
  1604. if (task_hot(p, old_rq->clock, NULL))
  1605. schedstat_inc(p, se.nr_forced2_migrations);
  1606. #endif
  1607. }
  1608. p->se.vruntime -= old_cfsrq->min_vruntime -
  1609. new_cfsrq->min_vruntime;
  1610. __set_task_cpu(p, new_cpu);
  1611. }
  1612. struct migration_req {
  1613. struct list_head list;
  1614. struct task_struct *task;
  1615. int dest_cpu;
  1616. struct completion done;
  1617. };
  1618. /*
  1619. * The task's runqueue lock must be held.
  1620. * Returns true if you have to wait for migration thread.
  1621. */
  1622. static int
  1623. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1624. {
  1625. struct rq *rq = task_rq(p);
  1626. /*
  1627. * If the task is not on a runqueue (and not running), then
  1628. * it is sufficient to simply update the task's cpu field.
  1629. */
  1630. if (!p->se.on_rq && !task_running(rq, p)) {
  1631. set_task_cpu(p, dest_cpu);
  1632. return 0;
  1633. }
  1634. init_completion(&req->done);
  1635. req->task = p;
  1636. req->dest_cpu = dest_cpu;
  1637. list_add(&req->list, &rq->migration_queue);
  1638. return 1;
  1639. }
  1640. /*
  1641. * wait_task_inactive - wait for a thread to unschedule.
  1642. *
  1643. * If @match_state is nonzero, it's the @p->state value just checked and
  1644. * not expected to change. If it changes, i.e. @p might have woken up,
  1645. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1646. * we return a positive number (its total switch count). If a second call
  1647. * a short while later returns the same number, the caller can be sure that
  1648. * @p has remained unscheduled the whole time.
  1649. *
  1650. * The caller must ensure that the task *will* unschedule sometime soon,
  1651. * else this function might spin for a *long* time. This function can't
  1652. * be called with interrupts off, or it may introduce deadlock with
  1653. * smp_call_function() if an IPI is sent by the same process we are
  1654. * waiting to become inactive.
  1655. */
  1656. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1657. {
  1658. unsigned long flags;
  1659. int running, on_rq;
  1660. unsigned long ncsw;
  1661. struct rq *rq;
  1662. for (;;) {
  1663. /*
  1664. * We do the initial early heuristics without holding
  1665. * any task-queue locks at all. We'll only try to get
  1666. * the runqueue lock when things look like they will
  1667. * work out!
  1668. */
  1669. rq = task_rq(p);
  1670. /*
  1671. * If the task is actively running on another CPU
  1672. * still, just relax and busy-wait without holding
  1673. * any locks.
  1674. *
  1675. * NOTE! Since we don't hold any locks, it's not
  1676. * even sure that "rq" stays as the right runqueue!
  1677. * But we don't care, since "task_running()" will
  1678. * return false if the runqueue has changed and p
  1679. * is actually now running somewhere else!
  1680. */
  1681. while (task_running(rq, p)) {
  1682. if (match_state && unlikely(p->state != match_state))
  1683. return 0;
  1684. cpu_relax();
  1685. }
  1686. /*
  1687. * Ok, time to look more closely! We need the rq
  1688. * lock now, to be *sure*. If we're wrong, we'll
  1689. * just go back and repeat.
  1690. */
  1691. rq = task_rq_lock(p, &flags);
  1692. trace_sched_wait_task(rq, p);
  1693. running = task_running(rq, p);
  1694. on_rq = p->se.on_rq;
  1695. ncsw = 0;
  1696. if (!match_state || p->state == match_state)
  1697. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1698. task_rq_unlock(rq, &flags);
  1699. /*
  1700. * If it changed from the expected state, bail out now.
  1701. */
  1702. if (unlikely(!ncsw))
  1703. break;
  1704. /*
  1705. * Was it really running after all now that we
  1706. * checked with the proper locks actually held?
  1707. *
  1708. * Oops. Go back and try again..
  1709. */
  1710. if (unlikely(running)) {
  1711. cpu_relax();
  1712. continue;
  1713. }
  1714. /*
  1715. * It's not enough that it's not actively running,
  1716. * it must be off the runqueue _entirely_, and not
  1717. * preempted!
  1718. *
  1719. * So if it wa still runnable (but just not actively
  1720. * running right now), it's preempted, and we should
  1721. * yield - it could be a while.
  1722. */
  1723. if (unlikely(on_rq)) {
  1724. schedule_timeout_uninterruptible(1);
  1725. continue;
  1726. }
  1727. /*
  1728. * Ahh, all good. It wasn't running, and it wasn't
  1729. * runnable, which means that it will never become
  1730. * running in the future either. We're all done!
  1731. */
  1732. break;
  1733. }
  1734. return ncsw;
  1735. }
  1736. /***
  1737. * kick_process - kick a running thread to enter/exit the kernel
  1738. * @p: the to-be-kicked thread
  1739. *
  1740. * Cause a process which is running on another CPU to enter
  1741. * kernel-mode, without any delay. (to get signals handled.)
  1742. *
  1743. * NOTE: this function doesnt have to take the runqueue lock,
  1744. * because all it wants to ensure is that the remote task enters
  1745. * the kernel. If the IPI races and the task has been migrated
  1746. * to another CPU then no harm is done and the purpose has been
  1747. * achieved as well.
  1748. */
  1749. void kick_process(struct task_struct *p)
  1750. {
  1751. int cpu;
  1752. preempt_disable();
  1753. cpu = task_cpu(p);
  1754. if ((cpu != smp_processor_id()) && task_curr(p))
  1755. smp_send_reschedule(cpu);
  1756. preempt_enable();
  1757. }
  1758. /*
  1759. * Return a low guess at the load of a migration-source cpu weighted
  1760. * according to the scheduling class and "nice" value.
  1761. *
  1762. * We want to under-estimate the load of migration sources, to
  1763. * balance conservatively.
  1764. */
  1765. static unsigned long source_load(int cpu, int type)
  1766. {
  1767. struct rq *rq = cpu_rq(cpu);
  1768. unsigned long total = weighted_cpuload(cpu);
  1769. if (type == 0 || !sched_feat(LB_BIAS))
  1770. return total;
  1771. return min(rq->cpu_load[type-1], total);
  1772. }
  1773. /*
  1774. * Return a high guess at the load of a migration-target cpu weighted
  1775. * according to the scheduling class and "nice" value.
  1776. */
  1777. static unsigned long target_load(int cpu, int type)
  1778. {
  1779. struct rq *rq = cpu_rq(cpu);
  1780. unsigned long total = weighted_cpuload(cpu);
  1781. if (type == 0 || !sched_feat(LB_BIAS))
  1782. return total;
  1783. return max(rq->cpu_load[type-1], total);
  1784. }
  1785. /*
  1786. * find_idlest_group finds and returns the least busy CPU group within the
  1787. * domain.
  1788. */
  1789. static struct sched_group *
  1790. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1791. {
  1792. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1793. unsigned long min_load = ULONG_MAX, this_load = 0;
  1794. int load_idx = sd->forkexec_idx;
  1795. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1796. do {
  1797. unsigned long load, avg_load;
  1798. int local_group;
  1799. int i;
  1800. /* Skip over this group if it has no CPUs allowed */
  1801. if (!cpumask_intersects(sched_group_cpus(group),
  1802. &p->cpus_allowed))
  1803. continue;
  1804. local_group = cpumask_test_cpu(this_cpu,
  1805. sched_group_cpus(group));
  1806. /* Tally up the load of all CPUs in the group */
  1807. avg_load = 0;
  1808. for_each_cpu(i, sched_group_cpus(group)) {
  1809. /* Bias balancing toward cpus of our domain */
  1810. if (local_group)
  1811. load = source_load(i, load_idx);
  1812. else
  1813. load = target_load(i, load_idx);
  1814. avg_load += load;
  1815. }
  1816. /* Adjust by relative CPU power of the group */
  1817. avg_load = sg_div_cpu_power(group,
  1818. avg_load * SCHED_LOAD_SCALE);
  1819. if (local_group) {
  1820. this_load = avg_load;
  1821. this = group;
  1822. } else if (avg_load < min_load) {
  1823. min_load = avg_load;
  1824. idlest = group;
  1825. }
  1826. } while (group = group->next, group != sd->groups);
  1827. if (!idlest || 100*this_load < imbalance*min_load)
  1828. return NULL;
  1829. return idlest;
  1830. }
  1831. /*
  1832. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1833. */
  1834. static int
  1835. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1836. {
  1837. unsigned long load, min_load = ULONG_MAX;
  1838. int idlest = -1;
  1839. int i;
  1840. /* Traverse only the allowed CPUs */
  1841. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1842. load = weighted_cpuload(i);
  1843. if (load < min_load || (load == min_load && i == this_cpu)) {
  1844. min_load = load;
  1845. idlest = i;
  1846. }
  1847. }
  1848. return idlest;
  1849. }
  1850. /*
  1851. * sched_balance_self: balance the current task (running on cpu) in domains
  1852. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1853. * SD_BALANCE_EXEC.
  1854. *
  1855. * Balance, ie. select the least loaded group.
  1856. *
  1857. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1858. *
  1859. * preempt must be disabled.
  1860. */
  1861. static int sched_balance_self(int cpu, int flag)
  1862. {
  1863. struct task_struct *t = current;
  1864. struct sched_domain *tmp, *sd = NULL;
  1865. for_each_domain(cpu, tmp) {
  1866. /*
  1867. * If power savings logic is enabled for a domain, stop there.
  1868. */
  1869. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1870. break;
  1871. if (tmp->flags & flag)
  1872. sd = tmp;
  1873. }
  1874. if (sd)
  1875. update_shares(sd);
  1876. while (sd) {
  1877. struct sched_group *group;
  1878. int new_cpu, weight;
  1879. if (!(sd->flags & flag)) {
  1880. sd = sd->child;
  1881. continue;
  1882. }
  1883. group = find_idlest_group(sd, t, cpu);
  1884. if (!group) {
  1885. sd = sd->child;
  1886. continue;
  1887. }
  1888. new_cpu = find_idlest_cpu(group, t, cpu);
  1889. if (new_cpu == -1 || new_cpu == cpu) {
  1890. /* Now try balancing at a lower domain level of cpu */
  1891. sd = sd->child;
  1892. continue;
  1893. }
  1894. /* Now try balancing at a lower domain level of new_cpu */
  1895. cpu = new_cpu;
  1896. weight = cpumask_weight(sched_domain_span(sd));
  1897. sd = NULL;
  1898. for_each_domain(cpu, tmp) {
  1899. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1900. break;
  1901. if (tmp->flags & flag)
  1902. sd = tmp;
  1903. }
  1904. /* while loop will break here if sd == NULL */
  1905. }
  1906. return cpu;
  1907. }
  1908. #endif /* CONFIG_SMP */
  1909. /**
  1910. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1911. * @p: the task to evaluate
  1912. * @func: the function to be called
  1913. * @info: the function call argument
  1914. *
  1915. * Calls the function @func when the task is currently running. This might
  1916. * be on the current CPU, which just calls the function directly
  1917. */
  1918. void task_oncpu_function_call(struct task_struct *p,
  1919. void (*func) (void *info), void *info)
  1920. {
  1921. int cpu;
  1922. preempt_disable();
  1923. cpu = task_cpu(p);
  1924. if (task_curr(p))
  1925. smp_call_function_single(cpu, func, info, 1);
  1926. preempt_enable();
  1927. }
  1928. /***
  1929. * try_to_wake_up - wake up a thread
  1930. * @p: the to-be-woken-up thread
  1931. * @state: the mask of task states that can be woken
  1932. * @sync: do a synchronous wakeup?
  1933. *
  1934. * Put it on the run-queue if it's not already there. The "current"
  1935. * thread is always on the run-queue (except when the actual
  1936. * re-schedule is in progress), and as such you're allowed to do
  1937. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1938. * runnable without the overhead of this.
  1939. *
  1940. * returns failure only if the task is already active.
  1941. */
  1942. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1943. {
  1944. int cpu, orig_cpu, this_cpu, success = 0;
  1945. unsigned long flags;
  1946. long old_state;
  1947. struct rq *rq;
  1948. if (!sched_feat(SYNC_WAKEUPS))
  1949. sync = 0;
  1950. #ifdef CONFIG_SMP
  1951. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1952. struct sched_domain *sd;
  1953. this_cpu = raw_smp_processor_id();
  1954. cpu = task_cpu(p);
  1955. for_each_domain(this_cpu, sd) {
  1956. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1957. update_shares(sd);
  1958. break;
  1959. }
  1960. }
  1961. }
  1962. #endif
  1963. smp_wmb();
  1964. rq = task_rq_lock(p, &flags);
  1965. update_rq_clock(rq);
  1966. old_state = p->state;
  1967. if (!(old_state & state))
  1968. goto out;
  1969. if (p->se.on_rq)
  1970. goto out_running;
  1971. cpu = task_cpu(p);
  1972. orig_cpu = cpu;
  1973. this_cpu = smp_processor_id();
  1974. #ifdef CONFIG_SMP
  1975. if (unlikely(task_running(rq, p)))
  1976. goto out_activate;
  1977. cpu = p->sched_class->select_task_rq(p, sync);
  1978. if (cpu != orig_cpu) {
  1979. set_task_cpu(p, cpu);
  1980. task_rq_unlock(rq, &flags);
  1981. /* might preempt at this point */
  1982. rq = task_rq_lock(p, &flags);
  1983. old_state = p->state;
  1984. if (!(old_state & state))
  1985. goto out;
  1986. if (p->se.on_rq)
  1987. goto out_running;
  1988. this_cpu = smp_processor_id();
  1989. cpu = task_cpu(p);
  1990. }
  1991. #ifdef CONFIG_SCHEDSTATS
  1992. schedstat_inc(rq, ttwu_count);
  1993. if (cpu == this_cpu)
  1994. schedstat_inc(rq, ttwu_local);
  1995. else {
  1996. struct sched_domain *sd;
  1997. for_each_domain(this_cpu, sd) {
  1998. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1999. schedstat_inc(sd, ttwu_wake_remote);
  2000. break;
  2001. }
  2002. }
  2003. }
  2004. #endif /* CONFIG_SCHEDSTATS */
  2005. out_activate:
  2006. #endif /* CONFIG_SMP */
  2007. schedstat_inc(p, se.nr_wakeups);
  2008. if (sync)
  2009. schedstat_inc(p, se.nr_wakeups_sync);
  2010. if (orig_cpu != cpu)
  2011. schedstat_inc(p, se.nr_wakeups_migrate);
  2012. if (cpu == this_cpu)
  2013. schedstat_inc(p, se.nr_wakeups_local);
  2014. else
  2015. schedstat_inc(p, se.nr_wakeups_remote);
  2016. activate_task(rq, p, 1);
  2017. success = 1;
  2018. out_running:
  2019. trace_sched_wakeup(rq, p, success);
  2020. check_preempt_curr(rq, p, sync);
  2021. p->state = TASK_RUNNING;
  2022. #ifdef CONFIG_SMP
  2023. if (p->sched_class->task_wake_up)
  2024. p->sched_class->task_wake_up(rq, p);
  2025. #endif
  2026. out:
  2027. current->se.last_wakeup = current->se.sum_exec_runtime;
  2028. task_rq_unlock(rq, &flags);
  2029. return success;
  2030. }
  2031. int wake_up_process(struct task_struct *p)
  2032. {
  2033. return try_to_wake_up(p, TASK_ALL, 0);
  2034. }
  2035. EXPORT_SYMBOL(wake_up_process);
  2036. int wake_up_state(struct task_struct *p, unsigned int state)
  2037. {
  2038. return try_to_wake_up(p, state, 0);
  2039. }
  2040. /*
  2041. * Perform scheduler related setup for a newly forked process p.
  2042. * p is forked by current.
  2043. *
  2044. * __sched_fork() is basic setup used by init_idle() too:
  2045. */
  2046. static void __sched_fork(struct task_struct *p)
  2047. {
  2048. p->se.exec_start = 0;
  2049. p->se.sum_exec_runtime = 0;
  2050. p->se.prev_sum_exec_runtime = 0;
  2051. p->se.nr_migrations = 0;
  2052. p->se.last_wakeup = 0;
  2053. p->se.avg_overlap = 0;
  2054. #ifdef CONFIG_SCHEDSTATS
  2055. p->se.wait_start = 0;
  2056. p->se.sum_sleep_runtime = 0;
  2057. p->se.sleep_start = 0;
  2058. p->se.block_start = 0;
  2059. p->se.sleep_max = 0;
  2060. p->se.block_max = 0;
  2061. p->se.exec_max = 0;
  2062. p->se.slice_max = 0;
  2063. p->se.wait_max = 0;
  2064. #endif
  2065. INIT_LIST_HEAD(&p->rt.run_list);
  2066. p->se.on_rq = 0;
  2067. INIT_LIST_HEAD(&p->se.group_node);
  2068. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2069. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2070. #endif
  2071. /*
  2072. * We mark the process as running here, but have not actually
  2073. * inserted it onto the runqueue yet. This guarantees that
  2074. * nobody will actually run it, and a signal or other external
  2075. * event cannot wake it up and insert it on the runqueue either.
  2076. */
  2077. p->state = TASK_RUNNING;
  2078. }
  2079. /*
  2080. * fork()/clone()-time setup:
  2081. */
  2082. void sched_fork(struct task_struct *p, int clone_flags)
  2083. {
  2084. int cpu = get_cpu();
  2085. __sched_fork(p);
  2086. #ifdef CONFIG_SMP
  2087. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2088. #endif
  2089. set_task_cpu(p, cpu);
  2090. /*
  2091. * Make sure we do not leak PI boosting priority to the child:
  2092. */
  2093. p->prio = current->normal_prio;
  2094. if (!rt_prio(p->prio))
  2095. p->sched_class = &fair_sched_class;
  2096. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2097. if (likely(sched_info_on()))
  2098. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2099. #endif
  2100. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2101. p->oncpu = 0;
  2102. #endif
  2103. #ifdef CONFIG_PREEMPT
  2104. /* Want to start with kernel preemption disabled. */
  2105. task_thread_info(p)->preempt_count = 1;
  2106. #endif
  2107. put_cpu();
  2108. }
  2109. /*
  2110. * wake_up_new_task - wake up a newly created task for the first time.
  2111. *
  2112. * This function will do some initial scheduler statistics housekeeping
  2113. * that must be done for every newly created context, then puts the task
  2114. * on the runqueue and wakes it.
  2115. */
  2116. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2117. {
  2118. unsigned long flags;
  2119. struct rq *rq;
  2120. rq = task_rq_lock(p, &flags);
  2121. BUG_ON(p->state != TASK_RUNNING);
  2122. update_rq_clock(rq);
  2123. p->prio = effective_prio(p);
  2124. if (!p->sched_class->task_new || !current->se.on_rq) {
  2125. activate_task(rq, p, 0);
  2126. } else {
  2127. /*
  2128. * Let the scheduling class do new task startup
  2129. * management (if any):
  2130. */
  2131. p->sched_class->task_new(rq, p);
  2132. inc_nr_running(rq);
  2133. }
  2134. trace_sched_wakeup_new(rq, p, 1);
  2135. check_preempt_curr(rq, p, 0);
  2136. #ifdef CONFIG_SMP
  2137. if (p->sched_class->task_wake_up)
  2138. p->sched_class->task_wake_up(rq, p);
  2139. #endif
  2140. task_rq_unlock(rq, &flags);
  2141. }
  2142. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2143. /**
  2144. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2145. * @notifier: notifier struct to register
  2146. */
  2147. void preempt_notifier_register(struct preempt_notifier *notifier)
  2148. {
  2149. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2150. }
  2151. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2152. /**
  2153. * preempt_notifier_unregister - no longer interested in preemption notifications
  2154. * @notifier: notifier struct to unregister
  2155. *
  2156. * This is safe to call from within a preemption notifier.
  2157. */
  2158. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2159. {
  2160. hlist_del(&notifier->link);
  2161. }
  2162. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2163. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2164. {
  2165. struct preempt_notifier *notifier;
  2166. struct hlist_node *node;
  2167. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2168. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2169. }
  2170. static void
  2171. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2172. struct task_struct *next)
  2173. {
  2174. struct preempt_notifier *notifier;
  2175. struct hlist_node *node;
  2176. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2177. notifier->ops->sched_out(notifier, next);
  2178. }
  2179. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2180. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2181. {
  2182. }
  2183. static void
  2184. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2185. struct task_struct *next)
  2186. {
  2187. }
  2188. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2189. /**
  2190. * prepare_task_switch - prepare to switch tasks
  2191. * @rq: the runqueue preparing to switch
  2192. * @prev: the current task that is being switched out
  2193. * @next: the task we are going to switch to.
  2194. *
  2195. * This is called with the rq lock held and interrupts off. It must
  2196. * be paired with a subsequent finish_task_switch after the context
  2197. * switch.
  2198. *
  2199. * prepare_task_switch sets up locking and calls architecture specific
  2200. * hooks.
  2201. */
  2202. static inline void
  2203. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2204. struct task_struct *next)
  2205. {
  2206. fire_sched_out_preempt_notifiers(prev, next);
  2207. prepare_lock_switch(rq, next);
  2208. prepare_arch_switch(next);
  2209. }
  2210. /**
  2211. * finish_task_switch - clean up after a task-switch
  2212. * @rq: runqueue associated with task-switch
  2213. * @prev: the thread we just switched away from.
  2214. *
  2215. * finish_task_switch must be called after the context switch, paired
  2216. * with a prepare_task_switch call before the context switch.
  2217. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2218. * and do any other architecture-specific cleanup actions.
  2219. *
  2220. * Note that we may have delayed dropping an mm in context_switch(). If
  2221. * so, we finish that here outside of the runqueue lock. (Doing it
  2222. * with the lock held can cause deadlocks; see schedule() for
  2223. * details.)
  2224. */
  2225. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2226. __releases(rq->lock)
  2227. {
  2228. struct mm_struct *mm = rq->prev_mm;
  2229. long prev_state;
  2230. rq->prev_mm = NULL;
  2231. /*
  2232. * A task struct has one reference for the use as "current".
  2233. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2234. * schedule one last time. The schedule call will never return, and
  2235. * the scheduled task must drop that reference.
  2236. * The test for TASK_DEAD must occur while the runqueue locks are
  2237. * still held, otherwise prev could be scheduled on another cpu, die
  2238. * there before we look at prev->state, and then the reference would
  2239. * be dropped twice.
  2240. * Manfred Spraul <manfred@colorfullife.com>
  2241. */
  2242. prev_state = prev->state;
  2243. finish_arch_switch(prev);
  2244. perf_counter_task_sched_in(current, cpu_of(rq));
  2245. finish_lock_switch(rq, prev);
  2246. #ifdef CONFIG_SMP
  2247. if (current->sched_class->post_schedule)
  2248. current->sched_class->post_schedule(rq);
  2249. #endif
  2250. fire_sched_in_preempt_notifiers(current);
  2251. if (mm)
  2252. mmdrop(mm);
  2253. if (unlikely(prev_state == TASK_DEAD)) {
  2254. /*
  2255. * Remove function-return probe instances associated with this
  2256. * task and put them back on the free list.
  2257. */
  2258. kprobe_flush_task(prev);
  2259. put_task_struct(prev);
  2260. }
  2261. }
  2262. /**
  2263. * schedule_tail - first thing a freshly forked thread must call.
  2264. * @prev: the thread we just switched away from.
  2265. */
  2266. asmlinkage void schedule_tail(struct task_struct *prev)
  2267. __releases(rq->lock)
  2268. {
  2269. struct rq *rq = this_rq();
  2270. finish_task_switch(rq, prev);
  2271. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2272. /* In this case, finish_task_switch does not reenable preemption */
  2273. preempt_enable();
  2274. #endif
  2275. if (current->set_child_tid)
  2276. put_user(task_pid_vnr(current), current->set_child_tid);
  2277. }
  2278. /*
  2279. * context_switch - switch to the new MM and the new
  2280. * thread's register state.
  2281. */
  2282. static inline void
  2283. context_switch(struct rq *rq, struct task_struct *prev,
  2284. struct task_struct *next)
  2285. {
  2286. struct mm_struct *mm, *oldmm;
  2287. prepare_task_switch(rq, prev, next);
  2288. trace_sched_switch(rq, prev, next);
  2289. mm = next->mm;
  2290. oldmm = prev->active_mm;
  2291. /*
  2292. * For paravirt, this is coupled with an exit in switch_to to
  2293. * combine the page table reload and the switch backend into
  2294. * one hypercall.
  2295. */
  2296. arch_enter_lazy_cpu_mode();
  2297. if (unlikely(!mm)) {
  2298. next->active_mm = oldmm;
  2299. atomic_inc(&oldmm->mm_count);
  2300. enter_lazy_tlb(oldmm, next);
  2301. } else
  2302. switch_mm(oldmm, mm, next);
  2303. if (unlikely(!prev->mm)) {
  2304. prev->active_mm = NULL;
  2305. rq->prev_mm = oldmm;
  2306. }
  2307. /*
  2308. * Since the runqueue lock will be released by the next
  2309. * task (which is an invalid locking op but in the case
  2310. * of the scheduler it's an obvious special-case), so we
  2311. * do an early lockdep release here:
  2312. */
  2313. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2314. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2315. #endif
  2316. /* Here we just switch the register state and the stack. */
  2317. switch_to(prev, next, prev);
  2318. barrier();
  2319. /*
  2320. * this_rq must be evaluated again because prev may have moved
  2321. * CPUs since it called schedule(), thus the 'rq' on its stack
  2322. * frame will be invalid.
  2323. */
  2324. finish_task_switch(this_rq(), prev);
  2325. }
  2326. /*
  2327. * nr_running, nr_uninterruptible and nr_context_switches:
  2328. *
  2329. * externally visible scheduler statistics: current number of runnable
  2330. * threads, current number of uninterruptible-sleeping threads, total
  2331. * number of context switches performed since bootup.
  2332. */
  2333. unsigned long nr_running(void)
  2334. {
  2335. unsigned long i, sum = 0;
  2336. for_each_online_cpu(i)
  2337. sum += cpu_rq(i)->nr_running;
  2338. return sum;
  2339. }
  2340. unsigned long nr_uninterruptible(void)
  2341. {
  2342. unsigned long i, sum = 0;
  2343. for_each_possible_cpu(i)
  2344. sum += cpu_rq(i)->nr_uninterruptible;
  2345. /*
  2346. * Since we read the counters lockless, it might be slightly
  2347. * inaccurate. Do not allow it to go below zero though:
  2348. */
  2349. if (unlikely((long)sum < 0))
  2350. sum = 0;
  2351. return sum;
  2352. }
  2353. unsigned long long nr_context_switches(void)
  2354. {
  2355. int i;
  2356. unsigned long long sum = 0;
  2357. for_each_possible_cpu(i)
  2358. sum += cpu_rq(i)->nr_switches;
  2359. return sum;
  2360. }
  2361. unsigned long nr_iowait(void)
  2362. {
  2363. unsigned long i, sum = 0;
  2364. for_each_possible_cpu(i)
  2365. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2366. return sum;
  2367. }
  2368. unsigned long nr_active(void)
  2369. {
  2370. unsigned long i, running = 0, uninterruptible = 0;
  2371. for_each_online_cpu(i) {
  2372. running += cpu_rq(i)->nr_running;
  2373. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2374. }
  2375. if (unlikely((long)uninterruptible < 0))
  2376. uninterruptible = 0;
  2377. return running + uninterruptible;
  2378. }
  2379. /*
  2380. * Update rq->cpu_load[] statistics. This function is usually called every
  2381. * scheduler tick (TICK_NSEC).
  2382. */
  2383. static void update_cpu_load(struct rq *this_rq)
  2384. {
  2385. unsigned long this_load = this_rq->load.weight;
  2386. int i, scale;
  2387. this_rq->nr_load_updates++;
  2388. /* Update our load: */
  2389. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2390. unsigned long old_load, new_load;
  2391. /* scale is effectively 1 << i now, and >> i divides by scale */
  2392. old_load = this_rq->cpu_load[i];
  2393. new_load = this_load;
  2394. /*
  2395. * Round up the averaging division if load is increasing. This
  2396. * prevents us from getting stuck on 9 if the load is 10, for
  2397. * example.
  2398. */
  2399. if (new_load > old_load)
  2400. new_load += scale-1;
  2401. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2402. }
  2403. }
  2404. #ifdef CONFIG_SMP
  2405. /*
  2406. * double_rq_lock - safely lock two runqueues
  2407. *
  2408. * Note this does not disable interrupts like task_rq_lock,
  2409. * you need to do so manually before calling.
  2410. */
  2411. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2412. __acquires(rq1->lock)
  2413. __acquires(rq2->lock)
  2414. {
  2415. BUG_ON(!irqs_disabled());
  2416. if (rq1 == rq2) {
  2417. spin_lock(&rq1->lock);
  2418. __acquire(rq2->lock); /* Fake it out ;) */
  2419. } else {
  2420. if (rq1 < rq2) {
  2421. spin_lock(&rq1->lock);
  2422. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2423. } else {
  2424. spin_lock(&rq2->lock);
  2425. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2426. }
  2427. }
  2428. update_rq_clock(rq1);
  2429. update_rq_clock(rq2);
  2430. }
  2431. /*
  2432. * double_rq_unlock - safely unlock two runqueues
  2433. *
  2434. * Note this does not restore interrupts like task_rq_unlock,
  2435. * you need to do so manually after calling.
  2436. */
  2437. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2438. __releases(rq1->lock)
  2439. __releases(rq2->lock)
  2440. {
  2441. spin_unlock(&rq1->lock);
  2442. if (rq1 != rq2)
  2443. spin_unlock(&rq2->lock);
  2444. else
  2445. __release(rq2->lock);
  2446. }
  2447. /*
  2448. * If dest_cpu is allowed for this process, migrate the task to it.
  2449. * This is accomplished by forcing the cpu_allowed mask to only
  2450. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2451. * the cpu_allowed mask is restored.
  2452. */
  2453. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2454. {
  2455. struct migration_req req;
  2456. unsigned long flags;
  2457. struct rq *rq;
  2458. rq = task_rq_lock(p, &flags);
  2459. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2460. || unlikely(!cpu_active(dest_cpu)))
  2461. goto out;
  2462. /* force the process onto the specified CPU */
  2463. if (migrate_task(p, dest_cpu, &req)) {
  2464. /* Need to wait for migration thread (might exit: take ref). */
  2465. struct task_struct *mt = rq->migration_thread;
  2466. get_task_struct(mt);
  2467. task_rq_unlock(rq, &flags);
  2468. wake_up_process(mt);
  2469. put_task_struct(mt);
  2470. wait_for_completion(&req.done);
  2471. return;
  2472. }
  2473. out:
  2474. task_rq_unlock(rq, &flags);
  2475. }
  2476. /*
  2477. * sched_exec - execve() is a valuable balancing opportunity, because at
  2478. * this point the task has the smallest effective memory and cache footprint.
  2479. */
  2480. void sched_exec(void)
  2481. {
  2482. int new_cpu, this_cpu = get_cpu();
  2483. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2484. put_cpu();
  2485. if (new_cpu != this_cpu)
  2486. sched_migrate_task(current, new_cpu);
  2487. }
  2488. /*
  2489. * pull_task - move a task from a remote runqueue to the local runqueue.
  2490. * Both runqueues must be locked.
  2491. */
  2492. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2493. struct rq *this_rq, int this_cpu)
  2494. {
  2495. deactivate_task(src_rq, p, 0);
  2496. set_task_cpu(p, this_cpu);
  2497. activate_task(this_rq, p, 0);
  2498. /*
  2499. * Note that idle threads have a prio of MAX_PRIO, for this test
  2500. * to be always true for them.
  2501. */
  2502. check_preempt_curr(this_rq, p, 0);
  2503. }
  2504. /*
  2505. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2506. */
  2507. static
  2508. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2509. struct sched_domain *sd, enum cpu_idle_type idle,
  2510. int *all_pinned)
  2511. {
  2512. /*
  2513. * We do not migrate tasks that are:
  2514. * 1) running (obviously), or
  2515. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2516. * 3) are cache-hot on their current CPU.
  2517. */
  2518. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2519. schedstat_inc(p, se.nr_failed_migrations_affine);
  2520. return 0;
  2521. }
  2522. *all_pinned = 0;
  2523. if (task_running(rq, p)) {
  2524. schedstat_inc(p, se.nr_failed_migrations_running);
  2525. return 0;
  2526. }
  2527. /*
  2528. * Aggressive migration if:
  2529. * 1) task is cache cold, or
  2530. * 2) too many balance attempts have failed.
  2531. */
  2532. if (!task_hot(p, rq->clock, sd) ||
  2533. sd->nr_balance_failed > sd->cache_nice_tries) {
  2534. #ifdef CONFIG_SCHEDSTATS
  2535. if (task_hot(p, rq->clock, sd)) {
  2536. schedstat_inc(sd, lb_hot_gained[idle]);
  2537. schedstat_inc(p, se.nr_forced_migrations);
  2538. }
  2539. #endif
  2540. return 1;
  2541. }
  2542. if (task_hot(p, rq->clock, sd)) {
  2543. schedstat_inc(p, se.nr_failed_migrations_hot);
  2544. return 0;
  2545. }
  2546. return 1;
  2547. }
  2548. static unsigned long
  2549. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2550. unsigned long max_load_move, struct sched_domain *sd,
  2551. enum cpu_idle_type idle, int *all_pinned,
  2552. int *this_best_prio, struct rq_iterator *iterator)
  2553. {
  2554. int loops = 0, pulled = 0, pinned = 0;
  2555. struct task_struct *p;
  2556. long rem_load_move = max_load_move;
  2557. if (max_load_move == 0)
  2558. goto out;
  2559. pinned = 1;
  2560. /*
  2561. * Start the load-balancing iterator:
  2562. */
  2563. p = iterator->start(iterator->arg);
  2564. next:
  2565. if (!p || loops++ > sysctl_sched_nr_migrate)
  2566. goto out;
  2567. if ((p->se.load.weight >> 1) > rem_load_move ||
  2568. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2569. p = iterator->next(iterator->arg);
  2570. goto next;
  2571. }
  2572. pull_task(busiest, p, this_rq, this_cpu);
  2573. pulled++;
  2574. rem_load_move -= p->se.load.weight;
  2575. /*
  2576. * We only want to steal up to the prescribed amount of weighted load.
  2577. */
  2578. if (rem_load_move > 0) {
  2579. if (p->prio < *this_best_prio)
  2580. *this_best_prio = p->prio;
  2581. p = iterator->next(iterator->arg);
  2582. goto next;
  2583. }
  2584. out:
  2585. /*
  2586. * Right now, this is one of only two places pull_task() is called,
  2587. * so we can safely collect pull_task() stats here rather than
  2588. * inside pull_task().
  2589. */
  2590. schedstat_add(sd, lb_gained[idle], pulled);
  2591. if (all_pinned)
  2592. *all_pinned = pinned;
  2593. return max_load_move - rem_load_move;
  2594. }
  2595. /*
  2596. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2597. * this_rq, as part of a balancing operation within domain "sd".
  2598. * Returns 1 if successful and 0 otherwise.
  2599. *
  2600. * Called with both runqueues locked.
  2601. */
  2602. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2603. unsigned long max_load_move,
  2604. struct sched_domain *sd, enum cpu_idle_type idle,
  2605. int *all_pinned)
  2606. {
  2607. const struct sched_class *class = sched_class_highest;
  2608. unsigned long total_load_moved = 0;
  2609. int this_best_prio = this_rq->curr->prio;
  2610. do {
  2611. total_load_moved +=
  2612. class->load_balance(this_rq, this_cpu, busiest,
  2613. max_load_move - total_load_moved,
  2614. sd, idle, all_pinned, &this_best_prio);
  2615. class = class->next;
  2616. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2617. break;
  2618. } while (class && max_load_move > total_load_moved);
  2619. return total_load_moved > 0;
  2620. }
  2621. static int
  2622. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2623. struct sched_domain *sd, enum cpu_idle_type idle,
  2624. struct rq_iterator *iterator)
  2625. {
  2626. struct task_struct *p = iterator->start(iterator->arg);
  2627. int pinned = 0;
  2628. while (p) {
  2629. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2630. pull_task(busiest, p, this_rq, this_cpu);
  2631. /*
  2632. * Right now, this is only the second place pull_task()
  2633. * is called, so we can safely collect pull_task()
  2634. * stats here rather than inside pull_task().
  2635. */
  2636. schedstat_inc(sd, lb_gained[idle]);
  2637. return 1;
  2638. }
  2639. p = iterator->next(iterator->arg);
  2640. }
  2641. return 0;
  2642. }
  2643. /*
  2644. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2645. * part of active balancing operations within "domain".
  2646. * Returns 1 if successful and 0 otherwise.
  2647. *
  2648. * Called with both runqueues locked.
  2649. */
  2650. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2651. struct sched_domain *sd, enum cpu_idle_type idle)
  2652. {
  2653. const struct sched_class *class;
  2654. for (class = sched_class_highest; class; class = class->next)
  2655. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2656. return 1;
  2657. return 0;
  2658. }
  2659. /*
  2660. * find_busiest_group finds and returns the busiest CPU group within the
  2661. * domain. It calculates and returns the amount of weighted load which
  2662. * should be moved to restore balance via the imbalance parameter.
  2663. */
  2664. static struct sched_group *
  2665. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2666. unsigned long *imbalance, enum cpu_idle_type idle,
  2667. int *sd_idle, const struct cpumask *cpus, int *balance)
  2668. {
  2669. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2670. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2671. unsigned long max_pull;
  2672. unsigned long busiest_load_per_task, busiest_nr_running;
  2673. unsigned long this_load_per_task, this_nr_running;
  2674. int load_idx, group_imb = 0;
  2675. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2676. int power_savings_balance = 1;
  2677. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2678. unsigned long min_nr_running = ULONG_MAX;
  2679. struct sched_group *group_min = NULL, *group_leader = NULL;
  2680. #endif
  2681. max_load = this_load = total_load = total_pwr = 0;
  2682. busiest_load_per_task = busiest_nr_running = 0;
  2683. this_load_per_task = this_nr_running = 0;
  2684. if (idle == CPU_NOT_IDLE)
  2685. load_idx = sd->busy_idx;
  2686. else if (idle == CPU_NEWLY_IDLE)
  2687. load_idx = sd->newidle_idx;
  2688. else
  2689. load_idx = sd->idle_idx;
  2690. do {
  2691. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2692. int local_group;
  2693. int i;
  2694. int __group_imb = 0;
  2695. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2696. unsigned long sum_nr_running, sum_weighted_load;
  2697. unsigned long sum_avg_load_per_task;
  2698. unsigned long avg_load_per_task;
  2699. local_group = cpumask_test_cpu(this_cpu,
  2700. sched_group_cpus(group));
  2701. if (local_group)
  2702. balance_cpu = cpumask_first(sched_group_cpus(group));
  2703. /* Tally up the load of all CPUs in the group */
  2704. sum_weighted_load = sum_nr_running = avg_load = 0;
  2705. sum_avg_load_per_task = avg_load_per_task = 0;
  2706. max_cpu_load = 0;
  2707. min_cpu_load = ~0UL;
  2708. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2709. struct rq *rq = cpu_rq(i);
  2710. if (*sd_idle && rq->nr_running)
  2711. *sd_idle = 0;
  2712. /* Bias balancing toward cpus of our domain */
  2713. if (local_group) {
  2714. if (idle_cpu(i) && !first_idle_cpu) {
  2715. first_idle_cpu = 1;
  2716. balance_cpu = i;
  2717. }
  2718. load = target_load(i, load_idx);
  2719. } else {
  2720. load = source_load(i, load_idx);
  2721. if (load > max_cpu_load)
  2722. max_cpu_load = load;
  2723. if (min_cpu_load > load)
  2724. min_cpu_load = load;
  2725. }
  2726. avg_load += load;
  2727. sum_nr_running += rq->nr_running;
  2728. sum_weighted_load += weighted_cpuload(i);
  2729. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2730. }
  2731. /*
  2732. * First idle cpu or the first cpu(busiest) in this sched group
  2733. * is eligible for doing load balancing at this and above
  2734. * domains. In the newly idle case, we will allow all the cpu's
  2735. * to do the newly idle load balance.
  2736. */
  2737. if (idle != CPU_NEWLY_IDLE && local_group &&
  2738. balance_cpu != this_cpu && balance) {
  2739. *balance = 0;
  2740. goto ret;
  2741. }
  2742. total_load += avg_load;
  2743. total_pwr += group->__cpu_power;
  2744. /* Adjust by relative CPU power of the group */
  2745. avg_load = sg_div_cpu_power(group,
  2746. avg_load * SCHED_LOAD_SCALE);
  2747. /*
  2748. * Consider the group unbalanced when the imbalance is larger
  2749. * than the average weight of two tasks.
  2750. *
  2751. * APZ: with cgroup the avg task weight can vary wildly and
  2752. * might not be a suitable number - should we keep a
  2753. * normalized nr_running number somewhere that negates
  2754. * the hierarchy?
  2755. */
  2756. avg_load_per_task = sg_div_cpu_power(group,
  2757. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2758. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2759. __group_imb = 1;
  2760. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2761. if (local_group) {
  2762. this_load = avg_load;
  2763. this = group;
  2764. this_nr_running = sum_nr_running;
  2765. this_load_per_task = sum_weighted_load;
  2766. } else if (avg_load > max_load &&
  2767. (sum_nr_running > group_capacity || __group_imb)) {
  2768. max_load = avg_load;
  2769. busiest = group;
  2770. busiest_nr_running = sum_nr_running;
  2771. busiest_load_per_task = sum_weighted_load;
  2772. group_imb = __group_imb;
  2773. }
  2774. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2775. /*
  2776. * Busy processors will not participate in power savings
  2777. * balance.
  2778. */
  2779. if (idle == CPU_NOT_IDLE ||
  2780. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2781. goto group_next;
  2782. /*
  2783. * If the local group is idle or completely loaded
  2784. * no need to do power savings balance at this domain
  2785. */
  2786. if (local_group && (this_nr_running >= group_capacity ||
  2787. !this_nr_running))
  2788. power_savings_balance = 0;
  2789. /*
  2790. * If a group is already running at full capacity or idle,
  2791. * don't include that group in power savings calculations
  2792. */
  2793. if (!power_savings_balance || sum_nr_running >= group_capacity
  2794. || !sum_nr_running)
  2795. goto group_next;
  2796. /*
  2797. * Calculate the group which has the least non-idle load.
  2798. * This is the group from where we need to pick up the load
  2799. * for saving power
  2800. */
  2801. if ((sum_nr_running < min_nr_running) ||
  2802. (sum_nr_running == min_nr_running &&
  2803. cpumask_first(sched_group_cpus(group)) >
  2804. cpumask_first(sched_group_cpus(group_min)))) {
  2805. group_min = group;
  2806. min_nr_running = sum_nr_running;
  2807. min_load_per_task = sum_weighted_load /
  2808. sum_nr_running;
  2809. }
  2810. /*
  2811. * Calculate the group which is almost near its
  2812. * capacity but still has some space to pick up some load
  2813. * from other group and save more power
  2814. */
  2815. if (sum_nr_running <= group_capacity - 1) {
  2816. if (sum_nr_running > leader_nr_running ||
  2817. (sum_nr_running == leader_nr_running &&
  2818. cpumask_first(sched_group_cpus(group)) <
  2819. cpumask_first(sched_group_cpus(group_leader)))) {
  2820. group_leader = group;
  2821. leader_nr_running = sum_nr_running;
  2822. }
  2823. }
  2824. group_next:
  2825. #endif
  2826. group = group->next;
  2827. } while (group != sd->groups);
  2828. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2829. goto out_balanced;
  2830. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2831. if (this_load >= avg_load ||
  2832. 100*max_load <= sd->imbalance_pct*this_load)
  2833. goto out_balanced;
  2834. busiest_load_per_task /= busiest_nr_running;
  2835. if (group_imb)
  2836. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2837. /*
  2838. * We're trying to get all the cpus to the average_load, so we don't
  2839. * want to push ourselves above the average load, nor do we wish to
  2840. * reduce the max loaded cpu below the average load, as either of these
  2841. * actions would just result in more rebalancing later, and ping-pong
  2842. * tasks around. Thus we look for the minimum possible imbalance.
  2843. * Negative imbalances (*we* are more loaded than anyone else) will
  2844. * be counted as no imbalance for these purposes -- we can't fix that
  2845. * by pulling tasks to us. Be careful of negative numbers as they'll
  2846. * appear as very large values with unsigned longs.
  2847. */
  2848. if (max_load <= busiest_load_per_task)
  2849. goto out_balanced;
  2850. /*
  2851. * In the presence of smp nice balancing, certain scenarios can have
  2852. * max load less than avg load(as we skip the groups at or below
  2853. * its cpu_power, while calculating max_load..)
  2854. */
  2855. if (max_load < avg_load) {
  2856. *imbalance = 0;
  2857. goto small_imbalance;
  2858. }
  2859. /* Don't want to pull so many tasks that a group would go idle */
  2860. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2861. /* How much load to actually move to equalise the imbalance */
  2862. *imbalance = min(max_pull * busiest->__cpu_power,
  2863. (avg_load - this_load) * this->__cpu_power)
  2864. / SCHED_LOAD_SCALE;
  2865. /*
  2866. * if *imbalance is less than the average load per runnable task
  2867. * there is no gaurantee that any tasks will be moved so we'll have
  2868. * a think about bumping its value to force at least one task to be
  2869. * moved
  2870. */
  2871. if (*imbalance < busiest_load_per_task) {
  2872. unsigned long tmp, pwr_now, pwr_move;
  2873. unsigned int imbn;
  2874. small_imbalance:
  2875. pwr_move = pwr_now = 0;
  2876. imbn = 2;
  2877. if (this_nr_running) {
  2878. this_load_per_task /= this_nr_running;
  2879. if (busiest_load_per_task > this_load_per_task)
  2880. imbn = 1;
  2881. } else
  2882. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2883. if (max_load - this_load + busiest_load_per_task >=
  2884. busiest_load_per_task * imbn) {
  2885. *imbalance = busiest_load_per_task;
  2886. return busiest;
  2887. }
  2888. /*
  2889. * OK, we don't have enough imbalance to justify moving tasks,
  2890. * however we may be able to increase total CPU power used by
  2891. * moving them.
  2892. */
  2893. pwr_now += busiest->__cpu_power *
  2894. min(busiest_load_per_task, max_load);
  2895. pwr_now += this->__cpu_power *
  2896. min(this_load_per_task, this_load);
  2897. pwr_now /= SCHED_LOAD_SCALE;
  2898. /* Amount of load we'd subtract */
  2899. tmp = sg_div_cpu_power(busiest,
  2900. busiest_load_per_task * SCHED_LOAD_SCALE);
  2901. if (max_load > tmp)
  2902. pwr_move += busiest->__cpu_power *
  2903. min(busiest_load_per_task, max_load - tmp);
  2904. /* Amount of load we'd add */
  2905. if (max_load * busiest->__cpu_power <
  2906. busiest_load_per_task * SCHED_LOAD_SCALE)
  2907. tmp = sg_div_cpu_power(this,
  2908. max_load * busiest->__cpu_power);
  2909. else
  2910. tmp = sg_div_cpu_power(this,
  2911. busiest_load_per_task * SCHED_LOAD_SCALE);
  2912. pwr_move += this->__cpu_power *
  2913. min(this_load_per_task, this_load + tmp);
  2914. pwr_move /= SCHED_LOAD_SCALE;
  2915. /* Move if we gain throughput */
  2916. if (pwr_move > pwr_now)
  2917. *imbalance = busiest_load_per_task;
  2918. }
  2919. return busiest;
  2920. out_balanced:
  2921. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2922. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2923. goto ret;
  2924. if (this == group_leader && group_leader != group_min) {
  2925. *imbalance = min_load_per_task;
  2926. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2927. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2928. cpumask_first(sched_group_cpus(group_leader));
  2929. }
  2930. return group_min;
  2931. }
  2932. #endif
  2933. ret:
  2934. *imbalance = 0;
  2935. return NULL;
  2936. }
  2937. /*
  2938. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2939. */
  2940. static struct rq *
  2941. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2942. unsigned long imbalance, const struct cpumask *cpus)
  2943. {
  2944. struct rq *busiest = NULL, *rq;
  2945. unsigned long max_load = 0;
  2946. int i;
  2947. for_each_cpu(i, sched_group_cpus(group)) {
  2948. unsigned long wl;
  2949. if (!cpumask_test_cpu(i, cpus))
  2950. continue;
  2951. rq = cpu_rq(i);
  2952. wl = weighted_cpuload(i);
  2953. if (rq->nr_running == 1 && wl > imbalance)
  2954. continue;
  2955. if (wl > max_load) {
  2956. max_load = wl;
  2957. busiest = rq;
  2958. }
  2959. }
  2960. return busiest;
  2961. }
  2962. /*
  2963. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2964. * so long as it is large enough.
  2965. */
  2966. #define MAX_PINNED_INTERVAL 512
  2967. /*
  2968. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2969. * tasks if there is an imbalance.
  2970. */
  2971. static int load_balance(int this_cpu, struct rq *this_rq,
  2972. struct sched_domain *sd, enum cpu_idle_type idle,
  2973. int *balance, struct cpumask *cpus)
  2974. {
  2975. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2976. struct sched_group *group;
  2977. unsigned long imbalance;
  2978. struct rq *busiest;
  2979. unsigned long flags;
  2980. cpumask_setall(cpus);
  2981. /*
  2982. * When power savings policy is enabled for the parent domain, idle
  2983. * sibling can pick up load irrespective of busy siblings. In this case,
  2984. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2985. * portraying it as CPU_NOT_IDLE.
  2986. */
  2987. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2988. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2989. sd_idle = 1;
  2990. schedstat_inc(sd, lb_count[idle]);
  2991. redo:
  2992. update_shares(sd);
  2993. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2994. cpus, balance);
  2995. if (*balance == 0)
  2996. goto out_balanced;
  2997. if (!group) {
  2998. schedstat_inc(sd, lb_nobusyg[idle]);
  2999. goto out_balanced;
  3000. }
  3001. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3002. if (!busiest) {
  3003. schedstat_inc(sd, lb_nobusyq[idle]);
  3004. goto out_balanced;
  3005. }
  3006. BUG_ON(busiest == this_rq);
  3007. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3008. ld_moved = 0;
  3009. if (busiest->nr_running > 1) {
  3010. /*
  3011. * Attempt to move tasks. If find_busiest_group has found
  3012. * an imbalance but busiest->nr_running <= 1, the group is
  3013. * still unbalanced. ld_moved simply stays zero, so it is
  3014. * correctly treated as an imbalance.
  3015. */
  3016. local_irq_save(flags);
  3017. double_rq_lock(this_rq, busiest);
  3018. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3019. imbalance, sd, idle, &all_pinned);
  3020. double_rq_unlock(this_rq, busiest);
  3021. local_irq_restore(flags);
  3022. /*
  3023. * some other cpu did the load balance for us.
  3024. */
  3025. if (ld_moved && this_cpu != smp_processor_id())
  3026. resched_cpu(this_cpu);
  3027. /* All tasks on this runqueue were pinned by CPU affinity */
  3028. if (unlikely(all_pinned)) {
  3029. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3030. if (!cpumask_empty(cpus))
  3031. goto redo;
  3032. goto out_balanced;
  3033. }
  3034. }
  3035. if (!ld_moved) {
  3036. schedstat_inc(sd, lb_failed[idle]);
  3037. sd->nr_balance_failed++;
  3038. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3039. spin_lock_irqsave(&busiest->lock, flags);
  3040. /* don't kick the migration_thread, if the curr
  3041. * task on busiest cpu can't be moved to this_cpu
  3042. */
  3043. if (!cpumask_test_cpu(this_cpu,
  3044. &busiest->curr->cpus_allowed)) {
  3045. spin_unlock_irqrestore(&busiest->lock, flags);
  3046. all_pinned = 1;
  3047. goto out_one_pinned;
  3048. }
  3049. if (!busiest->active_balance) {
  3050. busiest->active_balance = 1;
  3051. busiest->push_cpu = this_cpu;
  3052. active_balance = 1;
  3053. }
  3054. spin_unlock_irqrestore(&busiest->lock, flags);
  3055. if (active_balance)
  3056. wake_up_process(busiest->migration_thread);
  3057. /*
  3058. * We've kicked active balancing, reset the failure
  3059. * counter.
  3060. */
  3061. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3062. }
  3063. } else
  3064. sd->nr_balance_failed = 0;
  3065. if (likely(!active_balance)) {
  3066. /* We were unbalanced, so reset the balancing interval */
  3067. sd->balance_interval = sd->min_interval;
  3068. } else {
  3069. /*
  3070. * If we've begun active balancing, start to back off. This
  3071. * case may not be covered by the all_pinned logic if there
  3072. * is only 1 task on the busy runqueue (because we don't call
  3073. * move_tasks).
  3074. */
  3075. if (sd->balance_interval < sd->max_interval)
  3076. sd->balance_interval *= 2;
  3077. }
  3078. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3079. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3080. ld_moved = -1;
  3081. goto out;
  3082. out_balanced:
  3083. schedstat_inc(sd, lb_balanced[idle]);
  3084. sd->nr_balance_failed = 0;
  3085. out_one_pinned:
  3086. /* tune up the balancing interval */
  3087. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3088. (sd->balance_interval < sd->max_interval))
  3089. sd->balance_interval *= 2;
  3090. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3091. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3092. ld_moved = -1;
  3093. else
  3094. ld_moved = 0;
  3095. out:
  3096. if (ld_moved)
  3097. update_shares(sd);
  3098. return ld_moved;
  3099. }
  3100. /*
  3101. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3102. * tasks if there is an imbalance.
  3103. *
  3104. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3105. * this_rq is locked.
  3106. */
  3107. static int
  3108. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3109. struct cpumask *cpus)
  3110. {
  3111. struct sched_group *group;
  3112. struct rq *busiest = NULL;
  3113. unsigned long imbalance;
  3114. int ld_moved = 0;
  3115. int sd_idle = 0;
  3116. int all_pinned = 0;
  3117. cpumask_setall(cpus);
  3118. /*
  3119. * When power savings policy is enabled for the parent domain, idle
  3120. * sibling can pick up load irrespective of busy siblings. In this case,
  3121. * let the state of idle sibling percolate up as IDLE, instead of
  3122. * portraying it as CPU_NOT_IDLE.
  3123. */
  3124. if (sd->flags & SD_SHARE_CPUPOWER &&
  3125. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3126. sd_idle = 1;
  3127. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3128. redo:
  3129. update_shares_locked(this_rq, sd);
  3130. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3131. &sd_idle, cpus, NULL);
  3132. if (!group) {
  3133. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3134. goto out_balanced;
  3135. }
  3136. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3137. if (!busiest) {
  3138. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3139. goto out_balanced;
  3140. }
  3141. BUG_ON(busiest == this_rq);
  3142. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3143. ld_moved = 0;
  3144. if (busiest->nr_running > 1) {
  3145. /* Attempt to move tasks */
  3146. double_lock_balance(this_rq, busiest);
  3147. /* this_rq->clock is already updated */
  3148. update_rq_clock(busiest);
  3149. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3150. imbalance, sd, CPU_NEWLY_IDLE,
  3151. &all_pinned);
  3152. double_unlock_balance(this_rq, busiest);
  3153. if (unlikely(all_pinned)) {
  3154. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3155. if (!cpumask_empty(cpus))
  3156. goto redo;
  3157. }
  3158. }
  3159. if (!ld_moved) {
  3160. int active_balance = 0;
  3161. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3162. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3163. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3164. return -1;
  3165. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3166. return -1;
  3167. if (sd->nr_balance_failed++ < 2)
  3168. return -1;
  3169. /*
  3170. * The only task running in a non-idle cpu can be moved to this
  3171. * cpu in an attempt to completely freeup the other CPU
  3172. * package. The same method used to move task in load_balance()
  3173. * have been extended for load_balance_newidle() to speedup
  3174. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3175. *
  3176. * The package power saving logic comes from
  3177. * find_busiest_group(). If there are no imbalance, then
  3178. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3179. * f_b_g() will select a group from which a running task may be
  3180. * pulled to this cpu in order to make the other package idle.
  3181. * If there is no opportunity to make a package idle and if
  3182. * there are no imbalance, then f_b_g() will return NULL and no
  3183. * action will be taken in load_balance_newidle().
  3184. *
  3185. * Under normal task pull operation due to imbalance, there
  3186. * will be more than one task in the source run queue and
  3187. * move_tasks() will succeed. ld_moved will be true and this
  3188. * active balance code will not be triggered.
  3189. */
  3190. /* Lock busiest in correct order while this_rq is held */
  3191. double_lock_balance(this_rq, busiest);
  3192. /*
  3193. * don't kick the migration_thread, if the curr
  3194. * task on busiest cpu can't be moved to this_cpu
  3195. */
  3196. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3197. double_unlock_balance(this_rq, busiest);
  3198. all_pinned = 1;
  3199. return ld_moved;
  3200. }
  3201. if (!busiest->active_balance) {
  3202. busiest->active_balance = 1;
  3203. busiest->push_cpu = this_cpu;
  3204. active_balance = 1;
  3205. }
  3206. double_unlock_balance(this_rq, busiest);
  3207. /*
  3208. * Should not call ttwu while holding a rq->lock
  3209. */
  3210. spin_unlock(&this_rq->lock);
  3211. if (active_balance)
  3212. wake_up_process(busiest->migration_thread);
  3213. spin_lock(&this_rq->lock);
  3214. } else
  3215. sd->nr_balance_failed = 0;
  3216. update_shares_locked(this_rq, sd);
  3217. return ld_moved;
  3218. out_balanced:
  3219. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3220. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3221. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3222. return -1;
  3223. sd->nr_balance_failed = 0;
  3224. return 0;
  3225. }
  3226. /*
  3227. * idle_balance is called by schedule() if this_cpu is about to become
  3228. * idle. Attempts to pull tasks from other CPUs.
  3229. */
  3230. static void idle_balance(int this_cpu, struct rq *this_rq)
  3231. {
  3232. struct sched_domain *sd;
  3233. int pulled_task = 0;
  3234. unsigned long next_balance = jiffies + HZ;
  3235. cpumask_var_t tmpmask;
  3236. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3237. return;
  3238. for_each_domain(this_cpu, sd) {
  3239. unsigned long interval;
  3240. if (!(sd->flags & SD_LOAD_BALANCE))
  3241. continue;
  3242. if (sd->flags & SD_BALANCE_NEWIDLE)
  3243. /* If we've pulled tasks over stop searching: */
  3244. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3245. sd, tmpmask);
  3246. interval = msecs_to_jiffies(sd->balance_interval);
  3247. if (time_after(next_balance, sd->last_balance + interval))
  3248. next_balance = sd->last_balance + interval;
  3249. if (pulled_task)
  3250. break;
  3251. }
  3252. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3253. /*
  3254. * We are going idle. next_balance may be set based on
  3255. * a busy processor. So reset next_balance.
  3256. */
  3257. this_rq->next_balance = next_balance;
  3258. }
  3259. free_cpumask_var(tmpmask);
  3260. }
  3261. /*
  3262. * active_load_balance is run by migration threads. It pushes running tasks
  3263. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3264. * running on each physical CPU where possible, and avoids physical /
  3265. * logical imbalances.
  3266. *
  3267. * Called with busiest_rq locked.
  3268. */
  3269. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3270. {
  3271. int target_cpu = busiest_rq->push_cpu;
  3272. struct sched_domain *sd;
  3273. struct rq *target_rq;
  3274. /* Is there any task to move? */
  3275. if (busiest_rq->nr_running <= 1)
  3276. return;
  3277. target_rq = cpu_rq(target_cpu);
  3278. /*
  3279. * This condition is "impossible", if it occurs
  3280. * we need to fix it. Originally reported by
  3281. * Bjorn Helgaas on a 128-cpu setup.
  3282. */
  3283. BUG_ON(busiest_rq == target_rq);
  3284. /* move a task from busiest_rq to target_rq */
  3285. double_lock_balance(busiest_rq, target_rq);
  3286. update_rq_clock(busiest_rq);
  3287. update_rq_clock(target_rq);
  3288. /* Search for an sd spanning us and the target CPU. */
  3289. for_each_domain(target_cpu, sd) {
  3290. if ((sd->flags & SD_LOAD_BALANCE) &&
  3291. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3292. break;
  3293. }
  3294. if (likely(sd)) {
  3295. schedstat_inc(sd, alb_count);
  3296. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3297. sd, CPU_IDLE))
  3298. schedstat_inc(sd, alb_pushed);
  3299. else
  3300. schedstat_inc(sd, alb_failed);
  3301. }
  3302. double_unlock_balance(busiest_rq, target_rq);
  3303. }
  3304. #ifdef CONFIG_NO_HZ
  3305. static struct {
  3306. atomic_t load_balancer;
  3307. cpumask_var_t cpu_mask;
  3308. } nohz ____cacheline_aligned = {
  3309. .load_balancer = ATOMIC_INIT(-1),
  3310. };
  3311. /*
  3312. * This routine will try to nominate the ilb (idle load balancing)
  3313. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3314. * load balancing on behalf of all those cpus. If all the cpus in the system
  3315. * go into this tickless mode, then there will be no ilb owner (as there is
  3316. * no need for one) and all the cpus will sleep till the next wakeup event
  3317. * arrives...
  3318. *
  3319. * For the ilb owner, tick is not stopped. And this tick will be used
  3320. * for idle load balancing. ilb owner will still be part of
  3321. * nohz.cpu_mask..
  3322. *
  3323. * While stopping the tick, this cpu will become the ilb owner if there
  3324. * is no other owner. And will be the owner till that cpu becomes busy
  3325. * or if all cpus in the system stop their ticks at which point
  3326. * there is no need for ilb owner.
  3327. *
  3328. * When the ilb owner becomes busy, it nominates another owner, during the
  3329. * next busy scheduler_tick()
  3330. */
  3331. int select_nohz_load_balancer(int stop_tick)
  3332. {
  3333. int cpu = smp_processor_id();
  3334. if (stop_tick) {
  3335. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3336. cpu_rq(cpu)->in_nohz_recently = 1;
  3337. /*
  3338. * If we are going offline and still the leader, give up!
  3339. */
  3340. if (!cpu_active(cpu) &&
  3341. atomic_read(&nohz.load_balancer) == cpu) {
  3342. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3343. BUG();
  3344. return 0;
  3345. }
  3346. /* time for ilb owner also to sleep */
  3347. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3348. if (atomic_read(&nohz.load_balancer) == cpu)
  3349. atomic_set(&nohz.load_balancer, -1);
  3350. return 0;
  3351. }
  3352. if (atomic_read(&nohz.load_balancer) == -1) {
  3353. /* make me the ilb owner */
  3354. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3355. return 1;
  3356. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3357. return 1;
  3358. } else {
  3359. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3360. return 0;
  3361. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3362. if (atomic_read(&nohz.load_balancer) == cpu)
  3363. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3364. BUG();
  3365. }
  3366. return 0;
  3367. }
  3368. #endif
  3369. static DEFINE_SPINLOCK(balancing);
  3370. /*
  3371. * It checks each scheduling domain to see if it is due to be balanced,
  3372. * and initiates a balancing operation if so.
  3373. *
  3374. * Balancing parameters are set up in arch_init_sched_domains.
  3375. */
  3376. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3377. {
  3378. int balance = 1;
  3379. struct rq *rq = cpu_rq(cpu);
  3380. unsigned long interval;
  3381. struct sched_domain *sd;
  3382. /* Earliest time when we have to do rebalance again */
  3383. unsigned long next_balance = jiffies + 60*HZ;
  3384. int update_next_balance = 0;
  3385. int need_serialize;
  3386. cpumask_var_t tmp;
  3387. /* Fails alloc? Rebalancing probably not a priority right now. */
  3388. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3389. return;
  3390. for_each_domain(cpu, sd) {
  3391. if (!(sd->flags & SD_LOAD_BALANCE))
  3392. continue;
  3393. interval = sd->balance_interval;
  3394. if (idle != CPU_IDLE)
  3395. interval *= sd->busy_factor;
  3396. /* scale ms to jiffies */
  3397. interval = msecs_to_jiffies(interval);
  3398. if (unlikely(!interval))
  3399. interval = 1;
  3400. if (interval > HZ*NR_CPUS/10)
  3401. interval = HZ*NR_CPUS/10;
  3402. need_serialize = sd->flags & SD_SERIALIZE;
  3403. if (need_serialize) {
  3404. if (!spin_trylock(&balancing))
  3405. goto out;
  3406. }
  3407. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3408. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3409. /*
  3410. * We've pulled tasks over so either we're no
  3411. * longer idle, or one of our SMT siblings is
  3412. * not idle.
  3413. */
  3414. idle = CPU_NOT_IDLE;
  3415. }
  3416. sd->last_balance = jiffies;
  3417. }
  3418. if (need_serialize)
  3419. spin_unlock(&balancing);
  3420. out:
  3421. if (time_after(next_balance, sd->last_balance + interval)) {
  3422. next_balance = sd->last_balance + interval;
  3423. update_next_balance = 1;
  3424. }
  3425. /*
  3426. * Stop the load balance at this level. There is another
  3427. * CPU in our sched group which is doing load balancing more
  3428. * actively.
  3429. */
  3430. if (!balance)
  3431. break;
  3432. }
  3433. /*
  3434. * next_balance will be updated only when there is a need.
  3435. * When the cpu is attached to null domain for ex, it will not be
  3436. * updated.
  3437. */
  3438. if (likely(update_next_balance))
  3439. rq->next_balance = next_balance;
  3440. free_cpumask_var(tmp);
  3441. }
  3442. /*
  3443. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3444. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3445. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3446. */
  3447. static void run_rebalance_domains(struct softirq_action *h)
  3448. {
  3449. int this_cpu = smp_processor_id();
  3450. struct rq *this_rq = cpu_rq(this_cpu);
  3451. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3452. CPU_IDLE : CPU_NOT_IDLE;
  3453. rebalance_domains(this_cpu, idle);
  3454. #ifdef CONFIG_NO_HZ
  3455. /*
  3456. * If this cpu is the owner for idle load balancing, then do the
  3457. * balancing on behalf of the other idle cpus whose ticks are
  3458. * stopped.
  3459. */
  3460. if (this_rq->idle_at_tick &&
  3461. atomic_read(&nohz.load_balancer) == this_cpu) {
  3462. struct rq *rq;
  3463. int balance_cpu;
  3464. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3465. if (balance_cpu == this_cpu)
  3466. continue;
  3467. /*
  3468. * If this cpu gets work to do, stop the load balancing
  3469. * work being done for other cpus. Next load
  3470. * balancing owner will pick it up.
  3471. */
  3472. if (need_resched())
  3473. break;
  3474. rebalance_domains(balance_cpu, CPU_IDLE);
  3475. rq = cpu_rq(balance_cpu);
  3476. if (time_after(this_rq->next_balance, rq->next_balance))
  3477. this_rq->next_balance = rq->next_balance;
  3478. }
  3479. }
  3480. #endif
  3481. }
  3482. /*
  3483. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3484. *
  3485. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3486. * idle load balancing owner or decide to stop the periodic load balancing,
  3487. * if the whole system is idle.
  3488. */
  3489. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3490. {
  3491. #ifdef CONFIG_NO_HZ
  3492. /*
  3493. * If we were in the nohz mode recently and busy at the current
  3494. * scheduler tick, then check if we need to nominate new idle
  3495. * load balancer.
  3496. */
  3497. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3498. rq->in_nohz_recently = 0;
  3499. if (atomic_read(&nohz.load_balancer) == cpu) {
  3500. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3501. atomic_set(&nohz.load_balancer, -1);
  3502. }
  3503. if (atomic_read(&nohz.load_balancer) == -1) {
  3504. /*
  3505. * simple selection for now: Nominate the
  3506. * first cpu in the nohz list to be the next
  3507. * ilb owner.
  3508. *
  3509. * TBD: Traverse the sched domains and nominate
  3510. * the nearest cpu in the nohz.cpu_mask.
  3511. */
  3512. int ilb = cpumask_first(nohz.cpu_mask);
  3513. if (ilb < nr_cpu_ids)
  3514. resched_cpu(ilb);
  3515. }
  3516. }
  3517. /*
  3518. * If this cpu is idle and doing idle load balancing for all the
  3519. * cpus with ticks stopped, is it time for that to stop?
  3520. */
  3521. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3522. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3523. resched_cpu(cpu);
  3524. return;
  3525. }
  3526. /*
  3527. * If this cpu is idle and the idle load balancing is done by
  3528. * someone else, then no need raise the SCHED_SOFTIRQ
  3529. */
  3530. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3531. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3532. return;
  3533. #endif
  3534. if (time_after_eq(jiffies, rq->next_balance))
  3535. raise_softirq(SCHED_SOFTIRQ);
  3536. }
  3537. #else /* CONFIG_SMP */
  3538. /*
  3539. * on UP we do not need to balance between CPUs:
  3540. */
  3541. static inline void idle_balance(int cpu, struct rq *rq)
  3542. {
  3543. }
  3544. #endif
  3545. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3546. EXPORT_PER_CPU_SYMBOL(kstat);
  3547. /*
  3548. * Return any ns on the sched_clock that have not yet been banked in
  3549. * @p in case that task is currently running.
  3550. */
  3551. unsigned long long __task_delta_exec(struct task_struct *p, int update)
  3552. {
  3553. s64 delta_exec;
  3554. struct rq *rq;
  3555. rq = task_rq(p);
  3556. WARN_ON_ONCE(!runqueue_is_locked());
  3557. WARN_ON_ONCE(!task_current(rq, p));
  3558. if (update)
  3559. update_rq_clock(rq);
  3560. delta_exec = rq->clock - p->se.exec_start;
  3561. WARN_ON_ONCE(delta_exec < 0);
  3562. return delta_exec;
  3563. }
  3564. /*
  3565. * Return any ns on the sched_clock that have not yet been banked in
  3566. * @p in case that task is currently running.
  3567. */
  3568. unsigned long long task_delta_exec(struct task_struct *p)
  3569. {
  3570. unsigned long flags;
  3571. struct rq *rq;
  3572. u64 ns = 0;
  3573. rq = task_rq_lock(p, &flags);
  3574. if (task_current(rq, p)) {
  3575. u64 delta_exec;
  3576. update_rq_clock(rq);
  3577. delta_exec = rq->clock - p->se.exec_start;
  3578. if ((s64)delta_exec > 0)
  3579. ns = delta_exec;
  3580. }
  3581. task_rq_unlock(rq, &flags);
  3582. return ns;
  3583. }
  3584. /*
  3585. * Account user cpu time to a process.
  3586. * @p: the process that the cpu time gets accounted to
  3587. * @cputime: the cpu time spent in user space since the last update
  3588. * @cputime_scaled: cputime scaled by cpu frequency
  3589. */
  3590. void account_user_time(struct task_struct *p, cputime_t cputime,
  3591. cputime_t cputime_scaled)
  3592. {
  3593. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3594. cputime64_t tmp;
  3595. /* Add user time to process. */
  3596. p->utime = cputime_add(p->utime, cputime);
  3597. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3598. account_group_user_time(p, cputime);
  3599. /* Add user time to cpustat. */
  3600. tmp = cputime_to_cputime64(cputime);
  3601. if (TASK_NICE(p) > 0)
  3602. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3603. else
  3604. cpustat->user = cputime64_add(cpustat->user, tmp);
  3605. /* Account for user time used */
  3606. acct_update_integrals(p);
  3607. }
  3608. /*
  3609. * Account guest cpu time to a process.
  3610. * @p: the process that the cpu time gets accounted to
  3611. * @cputime: the cpu time spent in virtual machine since the last update
  3612. * @cputime_scaled: cputime scaled by cpu frequency
  3613. */
  3614. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3615. cputime_t cputime_scaled)
  3616. {
  3617. cputime64_t tmp;
  3618. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3619. tmp = cputime_to_cputime64(cputime);
  3620. /* Add guest time to process. */
  3621. p->utime = cputime_add(p->utime, cputime);
  3622. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3623. account_group_user_time(p, cputime);
  3624. p->gtime = cputime_add(p->gtime, cputime);
  3625. /* Add guest time to cpustat. */
  3626. cpustat->user = cputime64_add(cpustat->user, tmp);
  3627. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3628. }
  3629. /*
  3630. * Account system cpu time to a process.
  3631. * @p: the process that the cpu time gets accounted to
  3632. * @hardirq_offset: the offset to subtract from hardirq_count()
  3633. * @cputime: the cpu time spent in kernel space since the last update
  3634. * @cputime_scaled: cputime scaled by cpu frequency
  3635. */
  3636. void account_system_time(struct task_struct *p, int hardirq_offset,
  3637. cputime_t cputime, cputime_t cputime_scaled)
  3638. {
  3639. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3640. cputime64_t tmp;
  3641. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3642. account_guest_time(p, cputime, cputime_scaled);
  3643. return;
  3644. }
  3645. /* Add system time to process. */
  3646. p->stime = cputime_add(p->stime, cputime);
  3647. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3648. account_group_system_time(p, cputime);
  3649. /* Add system time to cpustat. */
  3650. tmp = cputime_to_cputime64(cputime);
  3651. if (hardirq_count() - hardirq_offset)
  3652. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3653. else if (softirq_count())
  3654. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3655. else
  3656. cpustat->system = cputime64_add(cpustat->system, tmp);
  3657. /* Account for system time used */
  3658. acct_update_integrals(p);
  3659. }
  3660. /*
  3661. * Account for involuntary wait time.
  3662. * @steal: the cpu time spent in involuntary wait
  3663. */
  3664. void account_steal_time(cputime_t cputime)
  3665. {
  3666. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3667. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3668. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3669. }
  3670. /*
  3671. * Account for idle time.
  3672. * @cputime: the cpu time spent in idle wait
  3673. */
  3674. void account_idle_time(cputime_t cputime)
  3675. {
  3676. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3677. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3678. struct rq *rq = this_rq();
  3679. if (atomic_read(&rq->nr_iowait) > 0)
  3680. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3681. else
  3682. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3683. }
  3684. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3685. /*
  3686. * Account a single tick of cpu time.
  3687. * @p: the process that the cpu time gets accounted to
  3688. * @user_tick: indicates if the tick is a user or a system tick
  3689. */
  3690. void account_process_tick(struct task_struct *p, int user_tick)
  3691. {
  3692. cputime_t one_jiffy = jiffies_to_cputime(1);
  3693. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  3694. struct rq *rq = this_rq();
  3695. if (user_tick)
  3696. account_user_time(p, one_jiffy, one_jiffy_scaled);
  3697. else if (p != rq->idle)
  3698. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  3699. one_jiffy_scaled);
  3700. else
  3701. account_idle_time(one_jiffy);
  3702. }
  3703. /*
  3704. * Account multiple ticks of steal time.
  3705. * @p: the process from which the cpu time has been stolen
  3706. * @ticks: number of stolen ticks
  3707. */
  3708. void account_steal_ticks(unsigned long ticks)
  3709. {
  3710. account_steal_time(jiffies_to_cputime(ticks));
  3711. }
  3712. /*
  3713. * Account multiple ticks of idle time.
  3714. * @ticks: number of stolen ticks
  3715. */
  3716. void account_idle_ticks(unsigned long ticks)
  3717. {
  3718. account_idle_time(jiffies_to_cputime(ticks));
  3719. }
  3720. #endif
  3721. /*
  3722. * Use precise platform statistics if available:
  3723. */
  3724. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3725. cputime_t task_utime(struct task_struct *p)
  3726. {
  3727. return p->utime;
  3728. }
  3729. cputime_t task_stime(struct task_struct *p)
  3730. {
  3731. return p->stime;
  3732. }
  3733. #else
  3734. cputime_t task_utime(struct task_struct *p)
  3735. {
  3736. clock_t utime = cputime_to_clock_t(p->utime),
  3737. total = utime + cputime_to_clock_t(p->stime);
  3738. u64 temp;
  3739. /*
  3740. * Use CFS's precise accounting:
  3741. */
  3742. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3743. if (total) {
  3744. temp *= utime;
  3745. do_div(temp, total);
  3746. }
  3747. utime = (clock_t)temp;
  3748. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3749. return p->prev_utime;
  3750. }
  3751. cputime_t task_stime(struct task_struct *p)
  3752. {
  3753. clock_t stime;
  3754. /*
  3755. * Use CFS's precise accounting. (we subtract utime from
  3756. * the total, to make sure the total observed by userspace
  3757. * grows monotonically - apps rely on that):
  3758. */
  3759. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3760. cputime_to_clock_t(task_utime(p));
  3761. if (stime >= 0)
  3762. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3763. return p->prev_stime;
  3764. }
  3765. #endif
  3766. inline cputime_t task_gtime(struct task_struct *p)
  3767. {
  3768. return p->gtime;
  3769. }
  3770. /*
  3771. * This function gets called by the timer code, with HZ frequency.
  3772. * We call it with interrupts disabled.
  3773. *
  3774. * It also gets called by the fork code, when changing the parent's
  3775. * timeslices.
  3776. */
  3777. void scheduler_tick(void)
  3778. {
  3779. int cpu = smp_processor_id();
  3780. struct rq *rq = cpu_rq(cpu);
  3781. struct task_struct *curr = rq->curr;
  3782. sched_clock_tick();
  3783. spin_lock(&rq->lock);
  3784. update_rq_clock(rq);
  3785. update_cpu_load(rq);
  3786. curr->sched_class->task_tick(rq, curr, 0);
  3787. perf_counter_task_tick(curr, cpu);
  3788. spin_unlock(&rq->lock);
  3789. #ifdef CONFIG_SMP
  3790. rq->idle_at_tick = idle_cpu(cpu);
  3791. trigger_load_balance(rq, cpu);
  3792. #endif
  3793. }
  3794. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3795. defined(CONFIG_PREEMPT_TRACER))
  3796. static inline unsigned long get_parent_ip(unsigned long addr)
  3797. {
  3798. if (in_lock_functions(addr)) {
  3799. addr = CALLER_ADDR2;
  3800. if (in_lock_functions(addr))
  3801. addr = CALLER_ADDR3;
  3802. }
  3803. return addr;
  3804. }
  3805. void __kprobes add_preempt_count(int val)
  3806. {
  3807. #ifdef CONFIG_DEBUG_PREEMPT
  3808. /*
  3809. * Underflow?
  3810. */
  3811. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3812. return;
  3813. #endif
  3814. preempt_count() += val;
  3815. #ifdef CONFIG_DEBUG_PREEMPT
  3816. /*
  3817. * Spinlock count overflowing soon?
  3818. */
  3819. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3820. PREEMPT_MASK - 10);
  3821. #endif
  3822. if (preempt_count() == val)
  3823. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3824. }
  3825. EXPORT_SYMBOL(add_preempt_count);
  3826. void __kprobes sub_preempt_count(int val)
  3827. {
  3828. #ifdef CONFIG_DEBUG_PREEMPT
  3829. /*
  3830. * Underflow?
  3831. */
  3832. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3833. return;
  3834. /*
  3835. * Is the spinlock portion underflowing?
  3836. */
  3837. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3838. !(preempt_count() & PREEMPT_MASK)))
  3839. return;
  3840. #endif
  3841. if (preempt_count() == val)
  3842. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3843. preempt_count() -= val;
  3844. }
  3845. EXPORT_SYMBOL(sub_preempt_count);
  3846. #endif
  3847. /*
  3848. * Print scheduling while atomic bug:
  3849. */
  3850. static noinline void __schedule_bug(struct task_struct *prev)
  3851. {
  3852. struct pt_regs *regs = get_irq_regs();
  3853. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3854. prev->comm, prev->pid, preempt_count());
  3855. debug_show_held_locks(prev);
  3856. print_modules();
  3857. if (irqs_disabled())
  3858. print_irqtrace_events(prev);
  3859. if (regs)
  3860. show_regs(regs);
  3861. else
  3862. dump_stack();
  3863. }
  3864. /*
  3865. * Various schedule()-time debugging checks and statistics:
  3866. */
  3867. static inline void schedule_debug(struct task_struct *prev)
  3868. {
  3869. /*
  3870. * Test if we are atomic. Since do_exit() needs to call into
  3871. * schedule() atomically, we ignore that path for now.
  3872. * Otherwise, whine if we are scheduling when we should not be.
  3873. */
  3874. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3875. __schedule_bug(prev);
  3876. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3877. schedstat_inc(this_rq(), sched_count);
  3878. #ifdef CONFIG_SCHEDSTATS
  3879. if (unlikely(prev->lock_depth >= 0)) {
  3880. schedstat_inc(this_rq(), bkl_count);
  3881. schedstat_inc(prev, sched_info.bkl_count);
  3882. }
  3883. #endif
  3884. }
  3885. /*
  3886. * Pick up the highest-prio task:
  3887. */
  3888. static inline struct task_struct *
  3889. pick_next_task(struct rq *rq, struct task_struct *prev)
  3890. {
  3891. const struct sched_class *class;
  3892. struct task_struct *p;
  3893. /*
  3894. * Optimization: we know that if all tasks are in
  3895. * the fair class we can call that function directly:
  3896. */
  3897. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3898. p = fair_sched_class.pick_next_task(rq);
  3899. if (likely(p))
  3900. return p;
  3901. }
  3902. class = sched_class_highest;
  3903. for ( ; ; ) {
  3904. p = class->pick_next_task(rq);
  3905. if (p)
  3906. return p;
  3907. /*
  3908. * Will never be NULL as the idle class always
  3909. * returns a non-NULL p:
  3910. */
  3911. class = class->next;
  3912. }
  3913. }
  3914. /*
  3915. * schedule() is the main scheduler function.
  3916. */
  3917. asmlinkage void __sched schedule(void)
  3918. {
  3919. struct task_struct *prev, *next;
  3920. unsigned long *switch_count;
  3921. struct rq *rq;
  3922. int cpu;
  3923. need_resched:
  3924. preempt_disable();
  3925. cpu = smp_processor_id();
  3926. rq = cpu_rq(cpu);
  3927. rcu_qsctr_inc(cpu);
  3928. prev = rq->curr;
  3929. switch_count = &prev->nivcsw;
  3930. release_kernel_lock(prev);
  3931. need_resched_nonpreemptible:
  3932. schedule_debug(prev);
  3933. if (sched_feat(HRTICK))
  3934. hrtick_clear(rq);
  3935. spin_lock_irq(&rq->lock);
  3936. update_rq_clock(rq);
  3937. clear_tsk_need_resched(prev);
  3938. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3939. if (unlikely(signal_pending_state(prev->state, prev)))
  3940. prev->state = TASK_RUNNING;
  3941. else
  3942. deactivate_task(rq, prev, 1);
  3943. switch_count = &prev->nvcsw;
  3944. }
  3945. #ifdef CONFIG_SMP
  3946. if (prev->sched_class->pre_schedule)
  3947. prev->sched_class->pre_schedule(rq, prev);
  3948. #endif
  3949. if (unlikely(!rq->nr_running))
  3950. idle_balance(cpu, rq);
  3951. prev->sched_class->put_prev_task(rq, prev);
  3952. next = pick_next_task(rq, prev);
  3953. if (likely(prev != next)) {
  3954. sched_info_switch(prev, next);
  3955. perf_counter_task_sched_out(prev, cpu);
  3956. rq->nr_switches++;
  3957. rq->curr = next;
  3958. ++*switch_count;
  3959. context_switch(rq, prev, next); /* unlocks the rq */
  3960. /*
  3961. * the context switch might have flipped the stack from under
  3962. * us, hence refresh the local variables.
  3963. */
  3964. cpu = smp_processor_id();
  3965. rq = cpu_rq(cpu);
  3966. } else
  3967. spin_unlock_irq(&rq->lock);
  3968. if (unlikely(reacquire_kernel_lock(current) < 0))
  3969. goto need_resched_nonpreemptible;
  3970. preempt_enable_no_resched();
  3971. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3972. goto need_resched;
  3973. }
  3974. EXPORT_SYMBOL(schedule);
  3975. #ifdef CONFIG_PREEMPT
  3976. /*
  3977. * this is the entry point to schedule() from in-kernel preemption
  3978. * off of preempt_enable. Kernel preemptions off return from interrupt
  3979. * occur there and call schedule directly.
  3980. */
  3981. asmlinkage void __sched preempt_schedule(void)
  3982. {
  3983. struct thread_info *ti = current_thread_info();
  3984. /*
  3985. * If there is a non-zero preempt_count or interrupts are disabled,
  3986. * we do not want to preempt the current task. Just return..
  3987. */
  3988. if (likely(ti->preempt_count || irqs_disabled()))
  3989. return;
  3990. do {
  3991. add_preempt_count(PREEMPT_ACTIVE);
  3992. schedule();
  3993. sub_preempt_count(PREEMPT_ACTIVE);
  3994. /*
  3995. * Check again in case we missed a preemption opportunity
  3996. * between schedule and now.
  3997. */
  3998. barrier();
  3999. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4000. }
  4001. EXPORT_SYMBOL(preempt_schedule);
  4002. /*
  4003. * this is the entry point to schedule() from kernel preemption
  4004. * off of irq context.
  4005. * Note, that this is called and return with irqs disabled. This will
  4006. * protect us against recursive calling from irq.
  4007. */
  4008. asmlinkage void __sched preempt_schedule_irq(void)
  4009. {
  4010. struct thread_info *ti = current_thread_info();
  4011. /* Catch callers which need to be fixed */
  4012. BUG_ON(ti->preempt_count || !irqs_disabled());
  4013. do {
  4014. add_preempt_count(PREEMPT_ACTIVE);
  4015. local_irq_enable();
  4016. schedule();
  4017. local_irq_disable();
  4018. sub_preempt_count(PREEMPT_ACTIVE);
  4019. /*
  4020. * Check again in case we missed a preemption opportunity
  4021. * between schedule and now.
  4022. */
  4023. barrier();
  4024. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4025. }
  4026. #endif /* CONFIG_PREEMPT */
  4027. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4028. void *key)
  4029. {
  4030. return try_to_wake_up(curr->private, mode, sync);
  4031. }
  4032. EXPORT_SYMBOL(default_wake_function);
  4033. /*
  4034. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4035. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4036. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4037. *
  4038. * There are circumstances in which we can try to wake a task which has already
  4039. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4040. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4041. */
  4042. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4043. int nr_exclusive, int sync, void *key)
  4044. {
  4045. wait_queue_t *curr, *next;
  4046. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4047. unsigned flags = curr->flags;
  4048. if (curr->func(curr, mode, sync, key) &&
  4049. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4050. break;
  4051. }
  4052. }
  4053. /**
  4054. * __wake_up - wake up threads blocked on a waitqueue.
  4055. * @q: the waitqueue
  4056. * @mode: which threads
  4057. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4058. * @key: is directly passed to the wakeup function
  4059. */
  4060. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4061. int nr_exclusive, void *key)
  4062. {
  4063. unsigned long flags;
  4064. spin_lock_irqsave(&q->lock, flags);
  4065. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4066. spin_unlock_irqrestore(&q->lock, flags);
  4067. }
  4068. EXPORT_SYMBOL(__wake_up);
  4069. /*
  4070. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4071. */
  4072. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4073. {
  4074. __wake_up_common(q, mode, 1, 0, NULL);
  4075. }
  4076. /**
  4077. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4078. * @q: the waitqueue
  4079. * @mode: which threads
  4080. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4081. *
  4082. * The sync wakeup differs that the waker knows that it will schedule
  4083. * away soon, so while the target thread will be woken up, it will not
  4084. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4085. * with each other. This can prevent needless bouncing between CPUs.
  4086. *
  4087. * On UP it can prevent extra preemption.
  4088. */
  4089. void
  4090. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4091. {
  4092. unsigned long flags;
  4093. int sync = 1;
  4094. if (unlikely(!q))
  4095. return;
  4096. if (unlikely(!nr_exclusive))
  4097. sync = 0;
  4098. spin_lock_irqsave(&q->lock, flags);
  4099. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4100. spin_unlock_irqrestore(&q->lock, flags);
  4101. }
  4102. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4103. /**
  4104. * complete: - signals a single thread waiting on this completion
  4105. * @x: holds the state of this particular completion
  4106. *
  4107. * This will wake up a single thread waiting on this completion. Threads will be
  4108. * awakened in the same order in which they were queued.
  4109. *
  4110. * See also complete_all(), wait_for_completion() and related routines.
  4111. */
  4112. void complete(struct completion *x)
  4113. {
  4114. unsigned long flags;
  4115. spin_lock_irqsave(&x->wait.lock, flags);
  4116. x->done++;
  4117. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4118. spin_unlock_irqrestore(&x->wait.lock, flags);
  4119. }
  4120. EXPORT_SYMBOL(complete);
  4121. /**
  4122. * complete_all: - signals all threads waiting on this completion
  4123. * @x: holds the state of this particular completion
  4124. *
  4125. * This will wake up all threads waiting on this particular completion event.
  4126. */
  4127. void complete_all(struct completion *x)
  4128. {
  4129. unsigned long flags;
  4130. spin_lock_irqsave(&x->wait.lock, flags);
  4131. x->done += UINT_MAX/2;
  4132. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4133. spin_unlock_irqrestore(&x->wait.lock, flags);
  4134. }
  4135. EXPORT_SYMBOL(complete_all);
  4136. static inline long __sched
  4137. do_wait_for_common(struct completion *x, long timeout, int state)
  4138. {
  4139. if (!x->done) {
  4140. DECLARE_WAITQUEUE(wait, current);
  4141. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4142. __add_wait_queue_tail(&x->wait, &wait);
  4143. do {
  4144. if (signal_pending_state(state, current)) {
  4145. timeout = -ERESTARTSYS;
  4146. break;
  4147. }
  4148. __set_current_state(state);
  4149. spin_unlock_irq(&x->wait.lock);
  4150. timeout = schedule_timeout(timeout);
  4151. spin_lock_irq(&x->wait.lock);
  4152. } while (!x->done && timeout);
  4153. __remove_wait_queue(&x->wait, &wait);
  4154. if (!x->done)
  4155. return timeout;
  4156. }
  4157. x->done--;
  4158. return timeout ?: 1;
  4159. }
  4160. static long __sched
  4161. wait_for_common(struct completion *x, long timeout, int state)
  4162. {
  4163. might_sleep();
  4164. spin_lock_irq(&x->wait.lock);
  4165. timeout = do_wait_for_common(x, timeout, state);
  4166. spin_unlock_irq(&x->wait.lock);
  4167. return timeout;
  4168. }
  4169. /**
  4170. * wait_for_completion: - waits for completion of a task
  4171. * @x: holds the state of this particular completion
  4172. *
  4173. * This waits to be signaled for completion of a specific task. It is NOT
  4174. * interruptible and there is no timeout.
  4175. *
  4176. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4177. * and interrupt capability. Also see complete().
  4178. */
  4179. void __sched wait_for_completion(struct completion *x)
  4180. {
  4181. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4182. }
  4183. EXPORT_SYMBOL(wait_for_completion);
  4184. /**
  4185. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4186. * @x: holds the state of this particular completion
  4187. * @timeout: timeout value in jiffies
  4188. *
  4189. * This waits for either a completion of a specific task to be signaled or for a
  4190. * specified timeout to expire. The timeout is in jiffies. It is not
  4191. * interruptible.
  4192. */
  4193. unsigned long __sched
  4194. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4195. {
  4196. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4197. }
  4198. EXPORT_SYMBOL(wait_for_completion_timeout);
  4199. /**
  4200. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4201. * @x: holds the state of this particular completion
  4202. *
  4203. * This waits for completion of a specific task to be signaled. It is
  4204. * interruptible.
  4205. */
  4206. int __sched wait_for_completion_interruptible(struct completion *x)
  4207. {
  4208. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4209. if (t == -ERESTARTSYS)
  4210. return t;
  4211. return 0;
  4212. }
  4213. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4214. /**
  4215. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4216. * @x: holds the state of this particular completion
  4217. * @timeout: timeout value in jiffies
  4218. *
  4219. * This waits for either a completion of a specific task to be signaled or for a
  4220. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4221. */
  4222. unsigned long __sched
  4223. wait_for_completion_interruptible_timeout(struct completion *x,
  4224. unsigned long timeout)
  4225. {
  4226. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4227. }
  4228. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4229. /**
  4230. * wait_for_completion_killable: - waits for completion of a task (killable)
  4231. * @x: holds the state of this particular completion
  4232. *
  4233. * This waits to be signaled for completion of a specific task. It can be
  4234. * interrupted by a kill signal.
  4235. */
  4236. int __sched wait_for_completion_killable(struct completion *x)
  4237. {
  4238. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4239. if (t == -ERESTARTSYS)
  4240. return t;
  4241. return 0;
  4242. }
  4243. EXPORT_SYMBOL(wait_for_completion_killable);
  4244. /**
  4245. * try_wait_for_completion - try to decrement a completion without blocking
  4246. * @x: completion structure
  4247. *
  4248. * Returns: 0 if a decrement cannot be done without blocking
  4249. * 1 if a decrement succeeded.
  4250. *
  4251. * If a completion is being used as a counting completion,
  4252. * attempt to decrement the counter without blocking. This
  4253. * enables us to avoid waiting if the resource the completion
  4254. * is protecting is not available.
  4255. */
  4256. bool try_wait_for_completion(struct completion *x)
  4257. {
  4258. int ret = 1;
  4259. spin_lock_irq(&x->wait.lock);
  4260. if (!x->done)
  4261. ret = 0;
  4262. else
  4263. x->done--;
  4264. spin_unlock_irq(&x->wait.lock);
  4265. return ret;
  4266. }
  4267. EXPORT_SYMBOL(try_wait_for_completion);
  4268. /**
  4269. * completion_done - Test to see if a completion has any waiters
  4270. * @x: completion structure
  4271. *
  4272. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4273. * 1 if there are no waiters.
  4274. *
  4275. */
  4276. bool completion_done(struct completion *x)
  4277. {
  4278. int ret = 1;
  4279. spin_lock_irq(&x->wait.lock);
  4280. if (!x->done)
  4281. ret = 0;
  4282. spin_unlock_irq(&x->wait.lock);
  4283. return ret;
  4284. }
  4285. EXPORT_SYMBOL(completion_done);
  4286. static long __sched
  4287. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4288. {
  4289. unsigned long flags;
  4290. wait_queue_t wait;
  4291. init_waitqueue_entry(&wait, current);
  4292. __set_current_state(state);
  4293. spin_lock_irqsave(&q->lock, flags);
  4294. __add_wait_queue(q, &wait);
  4295. spin_unlock(&q->lock);
  4296. timeout = schedule_timeout(timeout);
  4297. spin_lock_irq(&q->lock);
  4298. __remove_wait_queue(q, &wait);
  4299. spin_unlock_irqrestore(&q->lock, flags);
  4300. return timeout;
  4301. }
  4302. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4303. {
  4304. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4305. }
  4306. EXPORT_SYMBOL(interruptible_sleep_on);
  4307. long __sched
  4308. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4309. {
  4310. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4311. }
  4312. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4313. void __sched sleep_on(wait_queue_head_t *q)
  4314. {
  4315. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4316. }
  4317. EXPORT_SYMBOL(sleep_on);
  4318. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4319. {
  4320. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4321. }
  4322. EXPORT_SYMBOL(sleep_on_timeout);
  4323. #ifdef CONFIG_RT_MUTEXES
  4324. /*
  4325. * rt_mutex_setprio - set the current priority of a task
  4326. * @p: task
  4327. * @prio: prio value (kernel-internal form)
  4328. *
  4329. * This function changes the 'effective' priority of a task. It does
  4330. * not touch ->normal_prio like __setscheduler().
  4331. *
  4332. * Used by the rt_mutex code to implement priority inheritance logic.
  4333. */
  4334. void rt_mutex_setprio(struct task_struct *p, int prio)
  4335. {
  4336. unsigned long flags;
  4337. int oldprio, on_rq, running;
  4338. struct rq *rq;
  4339. const struct sched_class *prev_class = p->sched_class;
  4340. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4341. rq = task_rq_lock(p, &flags);
  4342. update_rq_clock(rq);
  4343. oldprio = p->prio;
  4344. on_rq = p->se.on_rq;
  4345. running = task_current(rq, p);
  4346. if (on_rq)
  4347. dequeue_task(rq, p, 0);
  4348. if (running)
  4349. p->sched_class->put_prev_task(rq, p);
  4350. if (rt_prio(prio))
  4351. p->sched_class = &rt_sched_class;
  4352. else
  4353. p->sched_class = &fair_sched_class;
  4354. p->prio = prio;
  4355. if (running)
  4356. p->sched_class->set_curr_task(rq);
  4357. if (on_rq) {
  4358. enqueue_task(rq, p, 0);
  4359. check_class_changed(rq, p, prev_class, oldprio, running);
  4360. }
  4361. task_rq_unlock(rq, &flags);
  4362. }
  4363. #endif
  4364. void set_user_nice(struct task_struct *p, long nice)
  4365. {
  4366. int old_prio, delta, on_rq;
  4367. unsigned long flags;
  4368. struct rq *rq;
  4369. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4370. return;
  4371. /*
  4372. * We have to be careful, if called from sys_setpriority(),
  4373. * the task might be in the middle of scheduling on another CPU.
  4374. */
  4375. rq = task_rq_lock(p, &flags);
  4376. update_rq_clock(rq);
  4377. /*
  4378. * The RT priorities are set via sched_setscheduler(), but we still
  4379. * allow the 'normal' nice value to be set - but as expected
  4380. * it wont have any effect on scheduling until the task is
  4381. * SCHED_FIFO/SCHED_RR:
  4382. */
  4383. if (task_has_rt_policy(p)) {
  4384. p->static_prio = NICE_TO_PRIO(nice);
  4385. goto out_unlock;
  4386. }
  4387. on_rq = p->se.on_rq;
  4388. if (on_rq)
  4389. dequeue_task(rq, p, 0);
  4390. p->static_prio = NICE_TO_PRIO(nice);
  4391. set_load_weight(p);
  4392. old_prio = p->prio;
  4393. p->prio = effective_prio(p);
  4394. delta = p->prio - old_prio;
  4395. if (on_rq) {
  4396. enqueue_task(rq, p, 0);
  4397. /*
  4398. * If the task increased its priority or is running and
  4399. * lowered its priority, then reschedule its CPU:
  4400. */
  4401. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4402. resched_task(rq->curr);
  4403. }
  4404. out_unlock:
  4405. task_rq_unlock(rq, &flags);
  4406. }
  4407. EXPORT_SYMBOL(set_user_nice);
  4408. /*
  4409. * can_nice - check if a task can reduce its nice value
  4410. * @p: task
  4411. * @nice: nice value
  4412. */
  4413. int can_nice(const struct task_struct *p, const int nice)
  4414. {
  4415. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4416. int nice_rlim = 20 - nice;
  4417. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4418. capable(CAP_SYS_NICE));
  4419. }
  4420. #ifdef __ARCH_WANT_SYS_NICE
  4421. /*
  4422. * sys_nice - change the priority of the current process.
  4423. * @increment: priority increment
  4424. *
  4425. * sys_setpriority is a more generic, but much slower function that
  4426. * does similar things.
  4427. */
  4428. SYSCALL_DEFINE1(nice, int, increment)
  4429. {
  4430. long nice, retval;
  4431. /*
  4432. * Setpriority might change our priority at the same moment.
  4433. * We don't have to worry. Conceptually one call occurs first
  4434. * and we have a single winner.
  4435. */
  4436. if (increment < -40)
  4437. increment = -40;
  4438. if (increment > 40)
  4439. increment = 40;
  4440. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4441. if (nice < -20)
  4442. nice = -20;
  4443. if (nice > 19)
  4444. nice = 19;
  4445. if (increment < 0 && !can_nice(current, nice))
  4446. return -EPERM;
  4447. retval = security_task_setnice(current, nice);
  4448. if (retval)
  4449. return retval;
  4450. set_user_nice(current, nice);
  4451. return 0;
  4452. }
  4453. #endif
  4454. /**
  4455. * task_prio - return the priority value of a given task.
  4456. * @p: the task in question.
  4457. *
  4458. * This is the priority value as seen by users in /proc.
  4459. * RT tasks are offset by -200. Normal tasks are centered
  4460. * around 0, value goes from -16 to +15.
  4461. */
  4462. int task_prio(const struct task_struct *p)
  4463. {
  4464. return p->prio - MAX_RT_PRIO;
  4465. }
  4466. /**
  4467. * task_nice - return the nice value of a given task.
  4468. * @p: the task in question.
  4469. */
  4470. int task_nice(const struct task_struct *p)
  4471. {
  4472. return TASK_NICE(p);
  4473. }
  4474. EXPORT_SYMBOL(task_nice);
  4475. /**
  4476. * idle_cpu - is a given cpu idle currently?
  4477. * @cpu: the processor in question.
  4478. */
  4479. int idle_cpu(int cpu)
  4480. {
  4481. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4482. }
  4483. /**
  4484. * idle_task - return the idle task for a given cpu.
  4485. * @cpu: the processor in question.
  4486. */
  4487. struct task_struct *idle_task(int cpu)
  4488. {
  4489. return cpu_rq(cpu)->idle;
  4490. }
  4491. /**
  4492. * find_process_by_pid - find a process with a matching PID value.
  4493. * @pid: the pid in question.
  4494. */
  4495. static struct task_struct *find_process_by_pid(pid_t pid)
  4496. {
  4497. return pid ? find_task_by_vpid(pid) : current;
  4498. }
  4499. /* Actually do priority change: must hold rq lock. */
  4500. static void
  4501. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4502. {
  4503. BUG_ON(p->se.on_rq);
  4504. p->policy = policy;
  4505. switch (p->policy) {
  4506. case SCHED_NORMAL:
  4507. case SCHED_BATCH:
  4508. case SCHED_IDLE:
  4509. p->sched_class = &fair_sched_class;
  4510. break;
  4511. case SCHED_FIFO:
  4512. case SCHED_RR:
  4513. p->sched_class = &rt_sched_class;
  4514. break;
  4515. }
  4516. p->rt_priority = prio;
  4517. p->normal_prio = normal_prio(p);
  4518. /* we are holding p->pi_lock already */
  4519. p->prio = rt_mutex_getprio(p);
  4520. set_load_weight(p);
  4521. }
  4522. /*
  4523. * check the target process has a UID that matches the current process's
  4524. */
  4525. static bool check_same_owner(struct task_struct *p)
  4526. {
  4527. const struct cred *cred = current_cred(), *pcred;
  4528. bool match;
  4529. rcu_read_lock();
  4530. pcred = __task_cred(p);
  4531. match = (cred->euid == pcred->euid ||
  4532. cred->euid == pcred->uid);
  4533. rcu_read_unlock();
  4534. return match;
  4535. }
  4536. static int __sched_setscheduler(struct task_struct *p, int policy,
  4537. struct sched_param *param, bool user)
  4538. {
  4539. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4540. unsigned long flags;
  4541. const struct sched_class *prev_class = p->sched_class;
  4542. struct rq *rq;
  4543. /* may grab non-irq protected spin_locks */
  4544. BUG_ON(in_interrupt());
  4545. recheck:
  4546. /* double check policy once rq lock held */
  4547. if (policy < 0)
  4548. policy = oldpolicy = p->policy;
  4549. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4550. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4551. policy != SCHED_IDLE)
  4552. return -EINVAL;
  4553. /*
  4554. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4555. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4556. * SCHED_BATCH and SCHED_IDLE is 0.
  4557. */
  4558. if (param->sched_priority < 0 ||
  4559. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4560. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4561. return -EINVAL;
  4562. if (rt_policy(policy) != (param->sched_priority != 0))
  4563. return -EINVAL;
  4564. /*
  4565. * Allow unprivileged RT tasks to decrease priority:
  4566. */
  4567. if (user && !capable(CAP_SYS_NICE)) {
  4568. if (rt_policy(policy)) {
  4569. unsigned long rlim_rtprio;
  4570. if (!lock_task_sighand(p, &flags))
  4571. return -ESRCH;
  4572. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4573. unlock_task_sighand(p, &flags);
  4574. /* can't set/change the rt policy */
  4575. if (policy != p->policy && !rlim_rtprio)
  4576. return -EPERM;
  4577. /* can't increase priority */
  4578. if (param->sched_priority > p->rt_priority &&
  4579. param->sched_priority > rlim_rtprio)
  4580. return -EPERM;
  4581. }
  4582. /*
  4583. * Like positive nice levels, dont allow tasks to
  4584. * move out of SCHED_IDLE either:
  4585. */
  4586. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4587. return -EPERM;
  4588. /* can't change other user's priorities */
  4589. if (!check_same_owner(p))
  4590. return -EPERM;
  4591. }
  4592. if (user) {
  4593. #ifdef CONFIG_RT_GROUP_SCHED
  4594. /*
  4595. * Do not allow realtime tasks into groups that have no runtime
  4596. * assigned.
  4597. */
  4598. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4599. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4600. return -EPERM;
  4601. #endif
  4602. retval = security_task_setscheduler(p, policy, param);
  4603. if (retval)
  4604. return retval;
  4605. }
  4606. /*
  4607. * make sure no PI-waiters arrive (or leave) while we are
  4608. * changing the priority of the task:
  4609. */
  4610. spin_lock_irqsave(&p->pi_lock, flags);
  4611. /*
  4612. * To be able to change p->policy safely, the apropriate
  4613. * runqueue lock must be held.
  4614. */
  4615. rq = __task_rq_lock(p);
  4616. /* recheck policy now with rq lock held */
  4617. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4618. policy = oldpolicy = -1;
  4619. __task_rq_unlock(rq);
  4620. spin_unlock_irqrestore(&p->pi_lock, flags);
  4621. goto recheck;
  4622. }
  4623. update_rq_clock(rq);
  4624. on_rq = p->se.on_rq;
  4625. running = task_current(rq, p);
  4626. if (on_rq)
  4627. deactivate_task(rq, p, 0);
  4628. if (running)
  4629. p->sched_class->put_prev_task(rq, p);
  4630. oldprio = p->prio;
  4631. __setscheduler(rq, p, policy, param->sched_priority);
  4632. if (running)
  4633. p->sched_class->set_curr_task(rq);
  4634. if (on_rq) {
  4635. activate_task(rq, p, 0);
  4636. check_class_changed(rq, p, prev_class, oldprio, running);
  4637. }
  4638. __task_rq_unlock(rq);
  4639. spin_unlock_irqrestore(&p->pi_lock, flags);
  4640. rt_mutex_adjust_pi(p);
  4641. return 0;
  4642. }
  4643. /**
  4644. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4645. * @p: the task in question.
  4646. * @policy: new policy.
  4647. * @param: structure containing the new RT priority.
  4648. *
  4649. * NOTE that the task may be already dead.
  4650. */
  4651. int sched_setscheduler(struct task_struct *p, int policy,
  4652. struct sched_param *param)
  4653. {
  4654. return __sched_setscheduler(p, policy, param, true);
  4655. }
  4656. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4657. /**
  4658. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4659. * @p: the task in question.
  4660. * @policy: new policy.
  4661. * @param: structure containing the new RT priority.
  4662. *
  4663. * Just like sched_setscheduler, only don't bother checking if the
  4664. * current context has permission. For example, this is needed in
  4665. * stop_machine(): we create temporary high priority worker threads,
  4666. * but our caller might not have that capability.
  4667. */
  4668. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4669. struct sched_param *param)
  4670. {
  4671. return __sched_setscheduler(p, policy, param, false);
  4672. }
  4673. static int
  4674. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4675. {
  4676. struct sched_param lparam;
  4677. struct task_struct *p;
  4678. int retval;
  4679. if (!param || pid < 0)
  4680. return -EINVAL;
  4681. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4682. return -EFAULT;
  4683. rcu_read_lock();
  4684. retval = -ESRCH;
  4685. p = find_process_by_pid(pid);
  4686. if (p != NULL)
  4687. retval = sched_setscheduler(p, policy, &lparam);
  4688. rcu_read_unlock();
  4689. return retval;
  4690. }
  4691. /**
  4692. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4693. * @pid: the pid in question.
  4694. * @policy: new policy.
  4695. * @param: structure containing the new RT priority.
  4696. */
  4697. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4698. struct sched_param __user *, param)
  4699. {
  4700. /* negative values for policy are not valid */
  4701. if (policy < 0)
  4702. return -EINVAL;
  4703. return do_sched_setscheduler(pid, policy, param);
  4704. }
  4705. /**
  4706. * sys_sched_setparam - set/change the RT priority of a thread
  4707. * @pid: the pid in question.
  4708. * @param: structure containing the new RT priority.
  4709. */
  4710. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4711. {
  4712. return do_sched_setscheduler(pid, -1, param);
  4713. }
  4714. /**
  4715. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4716. * @pid: the pid in question.
  4717. */
  4718. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4719. {
  4720. struct task_struct *p;
  4721. int retval;
  4722. if (pid < 0)
  4723. return -EINVAL;
  4724. retval = -ESRCH;
  4725. read_lock(&tasklist_lock);
  4726. p = find_process_by_pid(pid);
  4727. if (p) {
  4728. retval = security_task_getscheduler(p);
  4729. if (!retval)
  4730. retval = p->policy;
  4731. }
  4732. read_unlock(&tasklist_lock);
  4733. return retval;
  4734. }
  4735. /**
  4736. * sys_sched_getscheduler - get the RT priority of a thread
  4737. * @pid: the pid in question.
  4738. * @param: structure containing the RT priority.
  4739. */
  4740. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4741. {
  4742. struct sched_param lp;
  4743. struct task_struct *p;
  4744. int retval;
  4745. if (!param || pid < 0)
  4746. return -EINVAL;
  4747. read_lock(&tasklist_lock);
  4748. p = find_process_by_pid(pid);
  4749. retval = -ESRCH;
  4750. if (!p)
  4751. goto out_unlock;
  4752. retval = security_task_getscheduler(p);
  4753. if (retval)
  4754. goto out_unlock;
  4755. lp.sched_priority = p->rt_priority;
  4756. read_unlock(&tasklist_lock);
  4757. /*
  4758. * This one might sleep, we cannot do it with a spinlock held ...
  4759. */
  4760. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4761. return retval;
  4762. out_unlock:
  4763. read_unlock(&tasklist_lock);
  4764. return retval;
  4765. }
  4766. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4767. {
  4768. cpumask_var_t cpus_allowed, new_mask;
  4769. struct task_struct *p;
  4770. int retval;
  4771. get_online_cpus();
  4772. read_lock(&tasklist_lock);
  4773. p = find_process_by_pid(pid);
  4774. if (!p) {
  4775. read_unlock(&tasklist_lock);
  4776. put_online_cpus();
  4777. return -ESRCH;
  4778. }
  4779. /*
  4780. * It is not safe to call set_cpus_allowed with the
  4781. * tasklist_lock held. We will bump the task_struct's
  4782. * usage count and then drop tasklist_lock.
  4783. */
  4784. get_task_struct(p);
  4785. read_unlock(&tasklist_lock);
  4786. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4787. retval = -ENOMEM;
  4788. goto out_put_task;
  4789. }
  4790. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4791. retval = -ENOMEM;
  4792. goto out_free_cpus_allowed;
  4793. }
  4794. retval = -EPERM;
  4795. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4796. goto out_unlock;
  4797. retval = security_task_setscheduler(p, 0, NULL);
  4798. if (retval)
  4799. goto out_unlock;
  4800. cpuset_cpus_allowed(p, cpus_allowed);
  4801. cpumask_and(new_mask, in_mask, cpus_allowed);
  4802. again:
  4803. retval = set_cpus_allowed_ptr(p, new_mask);
  4804. if (!retval) {
  4805. cpuset_cpus_allowed(p, cpus_allowed);
  4806. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4807. /*
  4808. * We must have raced with a concurrent cpuset
  4809. * update. Just reset the cpus_allowed to the
  4810. * cpuset's cpus_allowed
  4811. */
  4812. cpumask_copy(new_mask, cpus_allowed);
  4813. goto again;
  4814. }
  4815. }
  4816. out_unlock:
  4817. free_cpumask_var(new_mask);
  4818. out_free_cpus_allowed:
  4819. free_cpumask_var(cpus_allowed);
  4820. out_put_task:
  4821. put_task_struct(p);
  4822. put_online_cpus();
  4823. return retval;
  4824. }
  4825. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4826. struct cpumask *new_mask)
  4827. {
  4828. if (len < cpumask_size())
  4829. cpumask_clear(new_mask);
  4830. else if (len > cpumask_size())
  4831. len = cpumask_size();
  4832. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4833. }
  4834. /**
  4835. * sys_sched_setaffinity - set the cpu affinity of a process
  4836. * @pid: pid of the process
  4837. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4838. * @user_mask_ptr: user-space pointer to the new cpu mask
  4839. */
  4840. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4841. unsigned long __user *, user_mask_ptr)
  4842. {
  4843. cpumask_var_t new_mask;
  4844. int retval;
  4845. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4846. return -ENOMEM;
  4847. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4848. if (retval == 0)
  4849. retval = sched_setaffinity(pid, new_mask);
  4850. free_cpumask_var(new_mask);
  4851. return retval;
  4852. }
  4853. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4854. {
  4855. struct task_struct *p;
  4856. int retval;
  4857. get_online_cpus();
  4858. read_lock(&tasklist_lock);
  4859. retval = -ESRCH;
  4860. p = find_process_by_pid(pid);
  4861. if (!p)
  4862. goto out_unlock;
  4863. retval = security_task_getscheduler(p);
  4864. if (retval)
  4865. goto out_unlock;
  4866. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4867. out_unlock:
  4868. read_unlock(&tasklist_lock);
  4869. put_online_cpus();
  4870. return retval;
  4871. }
  4872. /**
  4873. * sys_sched_getaffinity - get the cpu affinity of a process
  4874. * @pid: pid of the process
  4875. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4876. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4877. */
  4878. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4879. unsigned long __user *, user_mask_ptr)
  4880. {
  4881. int ret;
  4882. cpumask_var_t mask;
  4883. if (len < cpumask_size())
  4884. return -EINVAL;
  4885. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4886. return -ENOMEM;
  4887. ret = sched_getaffinity(pid, mask);
  4888. if (ret == 0) {
  4889. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4890. ret = -EFAULT;
  4891. else
  4892. ret = cpumask_size();
  4893. }
  4894. free_cpumask_var(mask);
  4895. return ret;
  4896. }
  4897. /**
  4898. * sys_sched_yield - yield the current processor to other threads.
  4899. *
  4900. * This function yields the current CPU to other tasks. If there are no
  4901. * other threads running on this CPU then this function will return.
  4902. */
  4903. SYSCALL_DEFINE0(sched_yield)
  4904. {
  4905. struct rq *rq = this_rq_lock();
  4906. schedstat_inc(rq, yld_count);
  4907. current->sched_class->yield_task(rq);
  4908. /*
  4909. * Since we are going to call schedule() anyway, there's
  4910. * no need to preempt or enable interrupts:
  4911. */
  4912. __release(rq->lock);
  4913. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4914. _raw_spin_unlock(&rq->lock);
  4915. preempt_enable_no_resched();
  4916. schedule();
  4917. return 0;
  4918. }
  4919. static void __cond_resched(void)
  4920. {
  4921. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4922. __might_sleep(__FILE__, __LINE__);
  4923. #endif
  4924. /*
  4925. * The BKS might be reacquired before we have dropped
  4926. * PREEMPT_ACTIVE, which could trigger a second
  4927. * cond_resched() call.
  4928. */
  4929. do {
  4930. add_preempt_count(PREEMPT_ACTIVE);
  4931. schedule();
  4932. sub_preempt_count(PREEMPT_ACTIVE);
  4933. } while (need_resched());
  4934. }
  4935. int __sched _cond_resched(void)
  4936. {
  4937. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4938. system_state == SYSTEM_RUNNING) {
  4939. __cond_resched();
  4940. return 1;
  4941. }
  4942. return 0;
  4943. }
  4944. EXPORT_SYMBOL(_cond_resched);
  4945. /*
  4946. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4947. * call schedule, and on return reacquire the lock.
  4948. *
  4949. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4950. * operations here to prevent schedule() from being called twice (once via
  4951. * spin_unlock(), once by hand).
  4952. */
  4953. int cond_resched_lock(spinlock_t *lock)
  4954. {
  4955. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4956. int ret = 0;
  4957. if (spin_needbreak(lock) || resched) {
  4958. spin_unlock(lock);
  4959. if (resched && need_resched())
  4960. __cond_resched();
  4961. else
  4962. cpu_relax();
  4963. ret = 1;
  4964. spin_lock(lock);
  4965. }
  4966. return ret;
  4967. }
  4968. EXPORT_SYMBOL(cond_resched_lock);
  4969. int __sched cond_resched_softirq(void)
  4970. {
  4971. BUG_ON(!in_softirq());
  4972. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4973. local_bh_enable();
  4974. __cond_resched();
  4975. local_bh_disable();
  4976. return 1;
  4977. }
  4978. return 0;
  4979. }
  4980. EXPORT_SYMBOL(cond_resched_softirq);
  4981. /**
  4982. * yield - yield the current processor to other threads.
  4983. *
  4984. * This is a shortcut for kernel-space yielding - it marks the
  4985. * thread runnable and calls sys_sched_yield().
  4986. */
  4987. void __sched yield(void)
  4988. {
  4989. set_current_state(TASK_RUNNING);
  4990. sys_sched_yield();
  4991. }
  4992. EXPORT_SYMBOL(yield);
  4993. /*
  4994. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4995. * that process accounting knows that this is a task in IO wait state.
  4996. *
  4997. * But don't do that if it is a deliberate, throttling IO wait (this task
  4998. * has set its backing_dev_info: the queue against which it should throttle)
  4999. */
  5000. void __sched io_schedule(void)
  5001. {
  5002. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5003. delayacct_blkio_start();
  5004. atomic_inc(&rq->nr_iowait);
  5005. schedule();
  5006. atomic_dec(&rq->nr_iowait);
  5007. delayacct_blkio_end();
  5008. }
  5009. EXPORT_SYMBOL(io_schedule);
  5010. long __sched io_schedule_timeout(long timeout)
  5011. {
  5012. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5013. long ret;
  5014. delayacct_blkio_start();
  5015. atomic_inc(&rq->nr_iowait);
  5016. ret = schedule_timeout(timeout);
  5017. atomic_dec(&rq->nr_iowait);
  5018. delayacct_blkio_end();
  5019. return ret;
  5020. }
  5021. /**
  5022. * sys_sched_get_priority_max - return maximum RT priority.
  5023. * @policy: scheduling class.
  5024. *
  5025. * this syscall returns the maximum rt_priority that can be used
  5026. * by a given scheduling class.
  5027. */
  5028. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5029. {
  5030. int ret = -EINVAL;
  5031. switch (policy) {
  5032. case SCHED_FIFO:
  5033. case SCHED_RR:
  5034. ret = MAX_USER_RT_PRIO-1;
  5035. break;
  5036. case SCHED_NORMAL:
  5037. case SCHED_BATCH:
  5038. case SCHED_IDLE:
  5039. ret = 0;
  5040. break;
  5041. }
  5042. return ret;
  5043. }
  5044. /**
  5045. * sys_sched_get_priority_min - return minimum RT priority.
  5046. * @policy: scheduling class.
  5047. *
  5048. * this syscall returns the minimum rt_priority that can be used
  5049. * by a given scheduling class.
  5050. */
  5051. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5052. {
  5053. int ret = -EINVAL;
  5054. switch (policy) {
  5055. case SCHED_FIFO:
  5056. case SCHED_RR:
  5057. ret = 1;
  5058. break;
  5059. case SCHED_NORMAL:
  5060. case SCHED_BATCH:
  5061. case SCHED_IDLE:
  5062. ret = 0;
  5063. }
  5064. return ret;
  5065. }
  5066. /**
  5067. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5068. * @pid: pid of the process.
  5069. * @interval: userspace pointer to the timeslice value.
  5070. *
  5071. * this syscall writes the default timeslice value of a given process
  5072. * into the user-space timespec buffer. A value of '0' means infinity.
  5073. */
  5074. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5075. struct timespec __user *, interval)
  5076. {
  5077. struct task_struct *p;
  5078. unsigned int time_slice;
  5079. int retval;
  5080. struct timespec t;
  5081. if (pid < 0)
  5082. return -EINVAL;
  5083. retval = -ESRCH;
  5084. read_lock(&tasklist_lock);
  5085. p = find_process_by_pid(pid);
  5086. if (!p)
  5087. goto out_unlock;
  5088. retval = security_task_getscheduler(p);
  5089. if (retval)
  5090. goto out_unlock;
  5091. /*
  5092. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5093. * tasks that are on an otherwise idle runqueue:
  5094. */
  5095. time_slice = 0;
  5096. if (p->policy == SCHED_RR) {
  5097. time_slice = DEF_TIMESLICE;
  5098. } else if (p->policy != SCHED_FIFO) {
  5099. struct sched_entity *se = &p->se;
  5100. unsigned long flags;
  5101. struct rq *rq;
  5102. rq = task_rq_lock(p, &flags);
  5103. if (rq->cfs.load.weight)
  5104. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5105. task_rq_unlock(rq, &flags);
  5106. }
  5107. read_unlock(&tasklist_lock);
  5108. jiffies_to_timespec(time_slice, &t);
  5109. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5110. return retval;
  5111. out_unlock:
  5112. read_unlock(&tasklist_lock);
  5113. return retval;
  5114. }
  5115. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5116. void sched_show_task(struct task_struct *p)
  5117. {
  5118. unsigned long free = 0;
  5119. unsigned state;
  5120. state = p->state ? __ffs(p->state) + 1 : 0;
  5121. printk(KERN_INFO "%-13.13s %c", p->comm,
  5122. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5123. #if BITS_PER_LONG == 32
  5124. if (state == TASK_RUNNING)
  5125. printk(KERN_CONT " running ");
  5126. else
  5127. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5128. #else
  5129. if (state == TASK_RUNNING)
  5130. printk(KERN_CONT " running task ");
  5131. else
  5132. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5133. #endif
  5134. #ifdef CONFIG_DEBUG_STACK_USAGE
  5135. free = stack_not_used(p);
  5136. #endif
  5137. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5138. task_pid_nr(p), task_pid_nr(p->real_parent));
  5139. show_stack(p, NULL);
  5140. }
  5141. void show_state_filter(unsigned long state_filter)
  5142. {
  5143. struct task_struct *g, *p;
  5144. #if BITS_PER_LONG == 32
  5145. printk(KERN_INFO
  5146. " task PC stack pid father\n");
  5147. #else
  5148. printk(KERN_INFO
  5149. " task PC stack pid father\n");
  5150. #endif
  5151. read_lock(&tasklist_lock);
  5152. do_each_thread(g, p) {
  5153. /*
  5154. * reset the NMI-timeout, listing all files on a slow
  5155. * console might take alot of time:
  5156. */
  5157. touch_nmi_watchdog();
  5158. if (!state_filter || (p->state & state_filter))
  5159. sched_show_task(p);
  5160. } while_each_thread(g, p);
  5161. touch_all_softlockup_watchdogs();
  5162. #ifdef CONFIG_SCHED_DEBUG
  5163. sysrq_sched_debug_show();
  5164. #endif
  5165. read_unlock(&tasklist_lock);
  5166. /*
  5167. * Only show locks if all tasks are dumped:
  5168. */
  5169. if (state_filter == -1)
  5170. debug_show_all_locks();
  5171. }
  5172. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5173. {
  5174. idle->sched_class = &idle_sched_class;
  5175. }
  5176. /**
  5177. * init_idle - set up an idle thread for a given CPU
  5178. * @idle: task in question
  5179. * @cpu: cpu the idle task belongs to
  5180. *
  5181. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5182. * flag, to make booting more robust.
  5183. */
  5184. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5185. {
  5186. struct rq *rq = cpu_rq(cpu);
  5187. unsigned long flags;
  5188. spin_lock_irqsave(&rq->lock, flags);
  5189. __sched_fork(idle);
  5190. idle->se.exec_start = sched_clock();
  5191. idle->prio = idle->normal_prio = MAX_PRIO;
  5192. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5193. __set_task_cpu(idle, cpu);
  5194. rq->curr = rq->idle = idle;
  5195. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5196. idle->oncpu = 1;
  5197. #endif
  5198. spin_unlock_irqrestore(&rq->lock, flags);
  5199. /* Set the preempt count _outside_ the spinlocks! */
  5200. #if defined(CONFIG_PREEMPT)
  5201. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5202. #else
  5203. task_thread_info(idle)->preempt_count = 0;
  5204. #endif
  5205. /*
  5206. * The idle tasks have their own, simple scheduling class:
  5207. */
  5208. idle->sched_class = &idle_sched_class;
  5209. ftrace_graph_init_task(idle);
  5210. }
  5211. /*
  5212. * In a system that switches off the HZ timer nohz_cpu_mask
  5213. * indicates which cpus entered this state. This is used
  5214. * in the rcu update to wait only for active cpus. For system
  5215. * which do not switch off the HZ timer nohz_cpu_mask should
  5216. * always be CPU_BITS_NONE.
  5217. */
  5218. cpumask_var_t nohz_cpu_mask;
  5219. /*
  5220. * Increase the granularity value when there are more CPUs,
  5221. * because with more CPUs the 'effective latency' as visible
  5222. * to users decreases. But the relationship is not linear,
  5223. * so pick a second-best guess by going with the log2 of the
  5224. * number of CPUs.
  5225. *
  5226. * This idea comes from the SD scheduler of Con Kolivas:
  5227. */
  5228. static inline void sched_init_granularity(void)
  5229. {
  5230. unsigned int factor = 1 + ilog2(num_online_cpus());
  5231. const unsigned long limit = 200000000;
  5232. sysctl_sched_min_granularity *= factor;
  5233. if (sysctl_sched_min_granularity > limit)
  5234. sysctl_sched_min_granularity = limit;
  5235. sysctl_sched_latency *= factor;
  5236. if (sysctl_sched_latency > limit)
  5237. sysctl_sched_latency = limit;
  5238. sysctl_sched_wakeup_granularity *= factor;
  5239. sysctl_sched_shares_ratelimit *= factor;
  5240. }
  5241. #ifdef CONFIG_SMP
  5242. /*
  5243. * This is how migration works:
  5244. *
  5245. * 1) we queue a struct migration_req structure in the source CPU's
  5246. * runqueue and wake up that CPU's migration thread.
  5247. * 2) we down() the locked semaphore => thread blocks.
  5248. * 3) migration thread wakes up (implicitly it forces the migrated
  5249. * thread off the CPU)
  5250. * 4) it gets the migration request and checks whether the migrated
  5251. * task is still in the wrong runqueue.
  5252. * 5) if it's in the wrong runqueue then the migration thread removes
  5253. * it and puts it into the right queue.
  5254. * 6) migration thread up()s the semaphore.
  5255. * 7) we wake up and the migration is done.
  5256. */
  5257. /*
  5258. * Change a given task's CPU affinity. Migrate the thread to a
  5259. * proper CPU and schedule it away if the CPU it's executing on
  5260. * is removed from the allowed bitmask.
  5261. *
  5262. * NOTE: the caller must have a valid reference to the task, the
  5263. * task must not exit() & deallocate itself prematurely. The
  5264. * call is not atomic; no spinlocks may be held.
  5265. */
  5266. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5267. {
  5268. struct migration_req req;
  5269. unsigned long flags;
  5270. struct rq *rq;
  5271. int ret = 0;
  5272. rq = task_rq_lock(p, &flags);
  5273. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5274. ret = -EINVAL;
  5275. goto out;
  5276. }
  5277. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5278. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5279. ret = -EINVAL;
  5280. goto out;
  5281. }
  5282. if (p->sched_class->set_cpus_allowed)
  5283. p->sched_class->set_cpus_allowed(p, new_mask);
  5284. else {
  5285. cpumask_copy(&p->cpus_allowed, new_mask);
  5286. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5287. }
  5288. /* Can the task run on the task's current CPU? If so, we're done */
  5289. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5290. goto out;
  5291. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5292. /* Need help from migration thread: drop lock and wait. */
  5293. task_rq_unlock(rq, &flags);
  5294. wake_up_process(rq->migration_thread);
  5295. wait_for_completion(&req.done);
  5296. tlb_migrate_finish(p->mm);
  5297. return 0;
  5298. }
  5299. out:
  5300. task_rq_unlock(rq, &flags);
  5301. return ret;
  5302. }
  5303. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5304. /*
  5305. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5306. * this because either it can't run here any more (set_cpus_allowed()
  5307. * away from this CPU, or CPU going down), or because we're
  5308. * attempting to rebalance this task on exec (sched_exec).
  5309. *
  5310. * So we race with normal scheduler movements, but that's OK, as long
  5311. * as the task is no longer on this CPU.
  5312. *
  5313. * Returns non-zero if task was successfully migrated.
  5314. */
  5315. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5316. {
  5317. struct rq *rq_dest, *rq_src;
  5318. int ret = 0, on_rq;
  5319. if (unlikely(!cpu_active(dest_cpu)))
  5320. return ret;
  5321. rq_src = cpu_rq(src_cpu);
  5322. rq_dest = cpu_rq(dest_cpu);
  5323. double_rq_lock(rq_src, rq_dest);
  5324. /* Already moved. */
  5325. if (task_cpu(p) != src_cpu)
  5326. goto done;
  5327. /* Affinity changed (again). */
  5328. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5329. goto fail;
  5330. on_rq = p->se.on_rq;
  5331. if (on_rq)
  5332. deactivate_task(rq_src, p, 0);
  5333. set_task_cpu(p, dest_cpu);
  5334. if (on_rq) {
  5335. activate_task(rq_dest, p, 0);
  5336. check_preempt_curr(rq_dest, p, 0);
  5337. }
  5338. done:
  5339. ret = 1;
  5340. fail:
  5341. double_rq_unlock(rq_src, rq_dest);
  5342. return ret;
  5343. }
  5344. /*
  5345. * migration_thread - this is a highprio system thread that performs
  5346. * thread migration by bumping thread off CPU then 'pushing' onto
  5347. * another runqueue.
  5348. */
  5349. static int migration_thread(void *data)
  5350. {
  5351. int cpu = (long)data;
  5352. struct rq *rq;
  5353. rq = cpu_rq(cpu);
  5354. BUG_ON(rq->migration_thread != current);
  5355. set_current_state(TASK_INTERRUPTIBLE);
  5356. while (!kthread_should_stop()) {
  5357. struct migration_req *req;
  5358. struct list_head *head;
  5359. spin_lock_irq(&rq->lock);
  5360. if (cpu_is_offline(cpu)) {
  5361. spin_unlock_irq(&rq->lock);
  5362. goto wait_to_die;
  5363. }
  5364. if (rq->active_balance) {
  5365. active_load_balance(rq, cpu);
  5366. rq->active_balance = 0;
  5367. }
  5368. head = &rq->migration_queue;
  5369. if (list_empty(head)) {
  5370. spin_unlock_irq(&rq->lock);
  5371. schedule();
  5372. set_current_state(TASK_INTERRUPTIBLE);
  5373. continue;
  5374. }
  5375. req = list_entry(head->next, struct migration_req, list);
  5376. list_del_init(head->next);
  5377. spin_unlock(&rq->lock);
  5378. __migrate_task(req->task, cpu, req->dest_cpu);
  5379. local_irq_enable();
  5380. complete(&req->done);
  5381. }
  5382. __set_current_state(TASK_RUNNING);
  5383. return 0;
  5384. wait_to_die:
  5385. /* Wait for kthread_stop */
  5386. set_current_state(TASK_INTERRUPTIBLE);
  5387. while (!kthread_should_stop()) {
  5388. schedule();
  5389. set_current_state(TASK_INTERRUPTIBLE);
  5390. }
  5391. __set_current_state(TASK_RUNNING);
  5392. return 0;
  5393. }
  5394. #ifdef CONFIG_HOTPLUG_CPU
  5395. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5396. {
  5397. int ret;
  5398. local_irq_disable();
  5399. ret = __migrate_task(p, src_cpu, dest_cpu);
  5400. local_irq_enable();
  5401. return ret;
  5402. }
  5403. /*
  5404. * Figure out where task on dead CPU should go, use force if necessary.
  5405. */
  5406. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5407. {
  5408. int dest_cpu;
  5409. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5410. again:
  5411. /* Look for allowed, online CPU in same node. */
  5412. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5413. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5414. goto move;
  5415. /* Any allowed, online CPU? */
  5416. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5417. if (dest_cpu < nr_cpu_ids)
  5418. goto move;
  5419. /* No more Mr. Nice Guy. */
  5420. if (dest_cpu >= nr_cpu_ids) {
  5421. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5422. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5423. /*
  5424. * Don't tell them about moving exiting tasks or
  5425. * kernel threads (both mm NULL), since they never
  5426. * leave kernel.
  5427. */
  5428. if (p->mm && printk_ratelimit()) {
  5429. printk(KERN_INFO "process %d (%s) no "
  5430. "longer affine to cpu%d\n",
  5431. task_pid_nr(p), p->comm, dead_cpu);
  5432. }
  5433. }
  5434. move:
  5435. /* It can have affinity changed while we were choosing. */
  5436. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5437. goto again;
  5438. }
  5439. /*
  5440. * While a dead CPU has no uninterruptible tasks queued at this point,
  5441. * it might still have a nonzero ->nr_uninterruptible counter, because
  5442. * for performance reasons the counter is not stricly tracking tasks to
  5443. * their home CPUs. So we just add the counter to another CPU's counter,
  5444. * to keep the global sum constant after CPU-down:
  5445. */
  5446. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5447. {
  5448. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5449. unsigned long flags;
  5450. local_irq_save(flags);
  5451. double_rq_lock(rq_src, rq_dest);
  5452. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5453. rq_src->nr_uninterruptible = 0;
  5454. double_rq_unlock(rq_src, rq_dest);
  5455. local_irq_restore(flags);
  5456. }
  5457. /* Run through task list and migrate tasks from the dead cpu. */
  5458. static void migrate_live_tasks(int src_cpu)
  5459. {
  5460. struct task_struct *p, *t;
  5461. read_lock(&tasklist_lock);
  5462. do_each_thread(t, p) {
  5463. if (p == current)
  5464. continue;
  5465. if (task_cpu(p) == src_cpu)
  5466. move_task_off_dead_cpu(src_cpu, p);
  5467. } while_each_thread(t, p);
  5468. read_unlock(&tasklist_lock);
  5469. }
  5470. /*
  5471. * Schedules idle task to be the next runnable task on current CPU.
  5472. * It does so by boosting its priority to highest possible.
  5473. * Used by CPU offline code.
  5474. */
  5475. void sched_idle_next(void)
  5476. {
  5477. int this_cpu = smp_processor_id();
  5478. struct rq *rq = cpu_rq(this_cpu);
  5479. struct task_struct *p = rq->idle;
  5480. unsigned long flags;
  5481. /* cpu has to be offline */
  5482. BUG_ON(cpu_online(this_cpu));
  5483. /*
  5484. * Strictly not necessary since rest of the CPUs are stopped by now
  5485. * and interrupts disabled on the current cpu.
  5486. */
  5487. spin_lock_irqsave(&rq->lock, flags);
  5488. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5489. update_rq_clock(rq);
  5490. activate_task(rq, p, 0);
  5491. spin_unlock_irqrestore(&rq->lock, flags);
  5492. }
  5493. /*
  5494. * Ensures that the idle task is using init_mm right before its cpu goes
  5495. * offline.
  5496. */
  5497. void idle_task_exit(void)
  5498. {
  5499. struct mm_struct *mm = current->active_mm;
  5500. BUG_ON(cpu_online(smp_processor_id()));
  5501. if (mm != &init_mm)
  5502. switch_mm(mm, &init_mm, current);
  5503. mmdrop(mm);
  5504. }
  5505. /* called under rq->lock with disabled interrupts */
  5506. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5507. {
  5508. struct rq *rq = cpu_rq(dead_cpu);
  5509. /* Must be exiting, otherwise would be on tasklist. */
  5510. BUG_ON(!p->exit_state);
  5511. /* Cannot have done final schedule yet: would have vanished. */
  5512. BUG_ON(p->state == TASK_DEAD);
  5513. get_task_struct(p);
  5514. /*
  5515. * Drop lock around migration; if someone else moves it,
  5516. * that's OK. No task can be added to this CPU, so iteration is
  5517. * fine.
  5518. */
  5519. spin_unlock_irq(&rq->lock);
  5520. move_task_off_dead_cpu(dead_cpu, p);
  5521. spin_lock_irq(&rq->lock);
  5522. put_task_struct(p);
  5523. }
  5524. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5525. static void migrate_dead_tasks(unsigned int dead_cpu)
  5526. {
  5527. struct rq *rq = cpu_rq(dead_cpu);
  5528. struct task_struct *next;
  5529. for ( ; ; ) {
  5530. if (!rq->nr_running)
  5531. break;
  5532. update_rq_clock(rq);
  5533. next = pick_next_task(rq, rq->curr);
  5534. if (!next)
  5535. break;
  5536. next->sched_class->put_prev_task(rq, next);
  5537. migrate_dead(dead_cpu, next);
  5538. }
  5539. }
  5540. #endif /* CONFIG_HOTPLUG_CPU */
  5541. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5542. static struct ctl_table sd_ctl_dir[] = {
  5543. {
  5544. .procname = "sched_domain",
  5545. .mode = 0555,
  5546. },
  5547. {0, },
  5548. };
  5549. static struct ctl_table sd_ctl_root[] = {
  5550. {
  5551. .ctl_name = CTL_KERN,
  5552. .procname = "kernel",
  5553. .mode = 0555,
  5554. .child = sd_ctl_dir,
  5555. },
  5556. {0, },
  5557. };
  5558. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5559. {
  5560. struct ctl_table *entry =
  5561. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5562. return entry;
  5563. }
  5564. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5565. {
  5566. struct ctl_table *entry;
  5567. /*
  5568. * In the intermediate directories, both the child directory and
  5569. * procname are dynamically allocated and could fail but the mode
  5570. * will always be set. In the lowest directory the names are
  5571. * static strings and all have proc handlers.
  5572. */
  5573. for (entry = *tablep; entry->mode; entry++) {
  5574. if (entry->child)
  5575. sd_free_ctl_entry(&entry->child);
  5576. if (entry->proc_handler == NULL)
  5577. kfree(entry->procname);
  5578. }
  5579. kfree(*tablep);
  5580. *tablep = NULL;
  5581. }
  5582. static void
  5583. set_table_entry(struct ctl_table *entry,
  5584. const char *procname, void *data, int maxlen,
  5585. mode_t mode, proc_handler *proc_handler)
  5586. {
  5587. entry->procname = procname;
  5588. entry->data = data;
  5589. entry->maxlen = maxlen;
  5590. entry->mode = mode;
  5591. entry->proc_handler = proc_handler;
  5592. }
  5593. static struct ctl_table *
  5594. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5595. {
  5596. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5597. if (table == NULL)
  5598. return NULL;
  5599. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5600. sizeof(long), 0644, proc_doulongvec_minmax);
  5601. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5602. sizeof(long), 0644, proc_doulongvec_minmax);
  5603. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5604. sizeof(int), 0644, proc_dointvec_minmax);
  5605. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5606. sizeof(int), 0644, proc_dointvec_minmax);
  5607. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5608. sizeof(int), 0644, proc_dointvec_minmax);
  5609. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5610. sizeof(int), 0644, proc_dointvec_minmax);
  5611. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5612. sizeof(int), 0644, proc_dointvec_minmax);
  5613. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5614. sizeof(int), 0644, proc_dointvec_minmax);
  5615. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5616. sizeof(int), 0644, proc_dointvec_minmax);
  5617. set_table_entry(&table[9], "cache_nice_tries",
  5618. &sd->cache_nice_tries,
  5619. sizeof(int), 0644, proc_dointvec_minmax);
  5620. set_table_entry(&table[10], "flags", &sd->flags,
  5621. sizeof(int), 0644, proc_dointvec_minmax);
  5622. set_table_entry(&table[11], "name", sd->name,
  5623. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5624. /* &table[12] is terminator */
  5625. return table;
  5626. }
  5627. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5628. {
  5629. struct ctl_table *entry, *table;
  5630. struct sched_domain *sd;
  5631. int domain_num = 0, i;
  5632. char buf[32];
  5633. for_each_domain(cpu, sd)
  5634. domain_num++;
  5635. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5636. if (table == NULL)
  5637. return NULL;
  5638. i = 0;
  5639. for_each_domain(cpu, sd) {
  5640. snprintf(buf, 32, "domain%d", i);
  5641. entry->procname = kstrdup(buf, GFP_KERNEL);
  5642. entry->mode = 0555;
  5643. entry->child = sd_alloc_ctl_domain_table(sd);
  5644. entry++;
  5645. i++;
  5646. }
  5647. return table;
  5648. }
  5649. static struct ctl_table_header *sd_sysctl_header;
  5650. static void register_sched_domain_sysctl(void)
  5651. {
  5652. int i, cpu_num = num_online_cpus();
  5653. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5654. char buf[32];
  5655. WARN_ON(sd_ctl_dir[0].child);
  5656. sd_ctl_dir[0].child = entry;
  5657. if (entry == NULL)
  5658. return;
  5659. for_each_online_cpu(i) {
  5660. snprintf(buf, 32, "cpu%d", i);
  5661. entry->procname = kstrdup(buf, GFP_KERNEL);
  5662. entry->mode = 0555;
  5663. entry->child = sd_alloc_ctl_cpu_table(i);
  5664. entry++;
  5665. }
  5666. WARN_ON(sd_sysctl_header);
  5667. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5668. }
  5669. /* may be called multiple times per register */
  5670. static void unregister_sched_domain_sysctl(void)
  5671. {
  5672. if (sd_sysctl_header)
  5673. unregister_sysctl_table(sd_sysctl_header);
  5674. sd_sysctl_header = NULL;
  5675. if (sd_ctl_dir[0].child)
  5676. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5677. }
  5678. #else
  5679. static void register_sched_domain_sysctl(void)
  5680. {
  5681. }
  5682. static void unregister_sched_domain_sysctl(void)
  5683. {
  5684. }
  5685. #endif
  5686. static void set_rq_online(struct rq *rq)
  5687. {
  5688. if (!rq->online) {
  5689. const struct sched_class *class;
  5690. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5691. rq->online = 1;
  5692. for_each_class(class) {
  5693. if (class->rq_online)
  5694. class->rq_online(rq);
  5695. }
  5696. }
  5697. }
  5698. static void set_rq_offline(struct rq *rq)
  5699. {
  5700. if (rq->online) {
  5701. const struct sched_class *class;
  5702. for_each_class(class) {
  5703. if (class->rq_offline)
  5704. class->rq_offline(rq);
  5705. }
  5706. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5707. rq->online = 0;
  5708. }
  5709. }
  5710. /*
  5711. * migration_call - callback that gets triggered when a CPU is added.
  5712. * Here we can start up the necessary migration thread for the new CPU.
  5713. */
  5714. static int __cpuinit
  5715. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5716. {
  5717. struct task_struct *p;
  5718. int cpu = (long)hcpu;
  5719. unsigned long flags;
  5720. struct rq *rq;
  5721. switch (action) {
  5722. case CPU_UP_PREPARE:
  5723. case CPU_UP_PREPARE_FROZEN:
  5724. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5725. if (IS_ERR(p))
  5726. return NOTIFY_BAD;
  5727. kthread_bind(p, cpu);
  5728. /* Must be high prio: stop_machine expects to yield to it. */
  5729. rq = task_rq_lock(p, &flags);
  5730. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5731. task_rq_unlock(rq, &flags);
  5732. cpu_rq(cpu)->migration_thread = p;
  5733. break;
  5734. case CPU_ONLINE:
  5735. case CPU_ONLINE_FROZEN:
  5736. /* Strictly unnecessary, as first user will wake it. */
  5737. wake_up_process(cpu_rq(cpu)->migration_thread);
  5738. /* Update our root-domain */
  5739. rq = cpu_rq(cpu);
  5740. spin_lock_irqsave(&rq->lock, flags);
  5741. if (rq->rd) {
  5742. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5743. set_rq_online(rq);
  5744. }
  5745. spin_unlock_irqrestore(&rq->lock, flags);
  5746. break;
  5747. #ifdef CONFIG_HOTPLUG_CPU
  5748. case CPU_UP_CANCELED:
  5749. case CPU_UP_CANCELED_FROZEN:
  5750. if (!cpu_rq(cpu)->migration_thread)
  5751. break;
  5752. /* Unbind it from offline cpu so it can run. Fall thru. */
  5753. kthread_bind(cpu_rq(cpu)->migration_thread,
  5754. cpumask_any(cpu_online_mask));
  5755. kthread_stop(cpu_rq(cpu)->migration_thread);
  5756. cpu_rq(cpu)->migration_thread = NULL;
  5757. break;
  5758. case CPU_DEAD:
  5759. case CPU_DEAD_FROZEN:
  5760. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5761. migrate_live_tasks(cpu);
  5762. rq = cpu_rq(cpu);
  5763. kthread_stop(rq->migration_thread);
  5764. rq->migration_thread = NULL;
  5765. /* Idle task back to normal (off runqueue, low prio) */
  5766. spin_lock_irq(&rq->lock);
  5767. update_rq_clock(rq);
  5768. deactivate_task(rq, rq->idle, 0);
  5769. rq->idle->static_prio = MAX_PRIO;
  5770. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5771. rq->idle->sched_class = &idle_sched_class;
  5772. migrate_dead_tasks(cpu);
  5773. spin_unlock_irq(&rq->lock);
  5774. cpuset_unlock();
  5775. migrate_nr_uninterruptible(rq);
  5776. BUG_ON(rq->nr_running != 0);
  5777. /*
  5778. * No need to migrate the tasks: it was best-effort if
  5779. * they didn't take sched_hotcpu_mutex. Just wake up
  5780. * the requestors.
  5781. */
  5782. spin_lock_irq(&rq->lock);
  5783. while (!list_empty(&rq->migration_queue)) {
  5784. struct migration_req *req;
  5785. req = list_entry(rq->migration_queue.next,
  5786. struct migration_req, list);
  5787. list_del_init(&req->list);
  5788. spin_unlock_irq(&rq->lock);
  5789. complete(&req->done);
  5790. spin_lock_irq(&rq->lock);
  5791. }
  5792. spin_unlock_irq(&rq->lock);
  5793. break;
  5794. case CPU_DYING:
  5795. case CPU_DYING_FROZEN:
  5796. /* Update our root-domain */
  5797. rq = cpu_rq(cpu);
  5798. spin_lock_irqsave(&rq->lock, flags);
  5799. if (rq->rd) {
  5800. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5801. set_rq_offline(rq);
  5802. }
  5803. spin_unlock_irqrestore(&rq->lock, flags);
  5804. break;
  5805. #endif
  5806. }
  5807. return NOTIFY_OK;
  5808. }
  5809. /* Register at highest priority so that task migration (migrate_all_tasks)
  5810. * happens before everything else.
  5811. */
  5812. static struct notifier_block __cpuinitdata migration_notifier = {
  5813. .notifier_call = migration_call,
  5814. .priority = 10
  5815. };
  5816. static int __init migration_init(void)
  5817. {
  5818. void *cpu = (void *)(long)smp_processor_id();
  5819. int err;
  5820. /* Start one for the boot CPU: */
  5821. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5822. BUG_ON(err == NOTIFY_BAD);
  5823. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5824. register_cpu_notifier(&migration_notifier);
  5825. return err;
  5826. }
  5827. early_initcall(migration_init);
  5828. #endif
  5829. #ifdef CONFIG_SMP
  5830. #ifdef CONFIG_SCHED_DEBUG
  5831. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5832. struct cpumask *groupmask)
  5833. {
  5834. struct sched_group *group = sd->groups;
  5835. char str[256];
  5836. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5837. cpumask_clear(groupmask);
  5838. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5839. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5840. printk("does not load-balance\n");
  5841. if (sd->parent)
  5842. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5843. " has parent");
  5844. return -1;
  5845. }
  5846. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5847. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5848. printk(KERN_ERR "ERROR: domain->span does not contain "
  5849. "CPU%d\n", cpu);
  5850. }
  5851. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5852. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5853. " CPU%d\n", cpu);
  5854. }
  5855. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5856. do {
  5857. if (!group) {
  5858. printk("\n");
  5859. printk(KERN_ERR "ERROR: group is NULL\n");
  5860. break;
  5861. }
  5862. if (!group->__cpu_power) {
  5863. printk(KERN_CONT "\n");
  5864. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5865. "set\n");
  5866. break;
  5867. }
  5868. if (!cpumask_weight(sched_group_cpus(group))) {
  5869. printk(KERN_CONT "\n");
  5870. printk(KERN_ERR "ERROR: empty group\n");
  5871. break;
  5872. }
  5873. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5874. printk(KERN_CONT "\n");
  5875. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5876. break;
  5877. }
  5878. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5879. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5880. printk(KERN_CONT " %s", str);
  5881. group = group->next;
  5882. } while (group != sd->groups);
  5883. printk(KERN_CONT "\n");
  5884. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5885. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5886. if (sd->parent &&
  5887. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5888. printk(KERN_ERR "ERROR: parent span is not a superset "
  5889. "of domain->span\n");
  5890. return 0;
  5891. }
  5892. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5893. {
  5894. cpumask_var_t groupmask;
  5895. int level = 0;
  5896. if (!sd) {
  5897. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5898. return;
  5899. }
  5900. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5901. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5902. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5903. return;
  5904. }
  5905. for (;;) {
  5906. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5907. break;
  5908. level++;
  5909. sd = sd->parent;
  5910. if (!sd)
  5911. break;
  5912. }
  5913. free_cpumask_var(groupmask);
  5914. }
  5915. #else /* !CONFIG_SCHED_DEBUG */
  5916. # define sched_domain_debug(sd, cpu) do { } while (0)
  5917. #endif /* CONFIG_SCHED_DEBUG */
  5918. static int sd_degenerate(struct sched_domain *sd)
  5919. {
  5920. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5921. return 1;
  5922. /* Following flags need at least 2 groups */
  5923. if (sd->flags & (SD_LOAD_BALANCE |
  5924. SD_BALANCE_NEWIDLE |
  5925. SD_BALANCE_FORK |
  5926. SD_BALANCE_EXEC |
  5927. SD_SHARE_CPUPOWER |
  5928. SD_SHARE_PKG_RESOURCES)) {
  5929. if (sd->groups != sd->groups->next)
  5930. return 0;
  5931. }
  5932. /* Following flags don't use groups */
  5933. if (sd->flags & (SD_WAKE_IDLE |
  5934. SD_WAKE_AFFINE |
  5935. SD_WAKE_BALANCE))
  5936. return 0;
  5937. return 1;
  5938. }
  5939. static int
  5940. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5941. {
  5942. unsigned long cflags = sd->flags, pflags = parent->flags;
  5943. if (sd_degenerate(parent))
  5944. return 1;
  5945. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5946. return 0;
  5947. /* Does parent contain flags not in child? */
  5948. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5949. if (cflags & SD_WAKE_AFFINE)
  5950. pflags &= ~SD_WAKE_BALANCE;
  5951. /* Flags needing groups don't count if only 1 group in parent */
  5952. if (parent->groups == parent->groups->next) {
  5953. pflags &= ~(SD_LOAD_BALANCE |
  5954. SD_BALANCE_NEWIDLE |
  5955. SD_BALANCE_FORK |
  5956. SD_BALANCE_EXEC |
  5957. SD_SHARE_CPUPOWER |
  5958. SD_SHARE_PKG_RESOURCES);
  5959. if (nr_node_ids == 1)
  5960. pflags &= ~SD_SERIALIZE;
  5961. }
  5962. if (~cflags & pflags)
  5963. return 0;
  5964. return 1;
  5965. }
  5966. static void free_rootdomain(struct root_domain *rd)
  5967. {
  5968. cpupri_cleanup(&rd->cpupri);
  5969. free_cpumask_var(rd->rto_mask);
  5970. free_cpumask_var(rd->online);
  5971. free_cpumask_var(rd->span);
  5972. kfree(rd);
  5973. }
  5974. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5975. {
  5976. unsigned long flags;
  5977. spin_lock_irqsave(&rq->lock, flags);
  5978. if (rq->rd) {
  5979. struct root_domain *old_rd = rq->rd;
  5980. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5981. set_rq_offline(rq);
  5982. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5983. if (atomic_dec_and_test(&old_rd->refcount))
  5984. free_rootdomain(old_rd);
  5985. }
  5986. atomic_inc(&rd->refcount);
  5987. rq->rd = rd;
  5988. cpumask_set_cpu(rq->cpu, rd->span);
  5989. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  5990. set_rq_online(rq);
  5991. spin_unlock_irqrestore(&rq->lock, flags);
  5992. }
  5993. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  5994. {
  5995. memset(rd, 0, sizeof(*rd));
  5996. if (bootmem) {
  5997. alloc_bootmem_cpumask_var(&def_root_domain.span);
  5998. alloc_bootmem_cpumask_var(&def_root_domain.online);
  5999. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6000. cpupri_init(&rd->cpupri, true);
  6001. return 0;
  6002. }
  6003. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6004. goto out;
  6005. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6006. goto free_span;
  6007. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6008. goto free_online;
  6009. if (cpupri_init(&rd->cpupri, false) != 0)
  6010. goto free_rto_mask;
  6011. return 0;
  6012. free_rto_mask:
  6013. free_cpumask_var(rd->rto_mask);
  6014. free_online:
  6015. free_cpumask_var(rd->online);
  6016. free_span:
  6017. free_cpumask_var(rd->span);
  6018. out:
  6019. return -ENOMEM;
  6020. }
  6021. static void init_defrootdomain(void)
  6022. {
  6023. init_rootdomain(&def_root_domain, true);
  6024. atomic_set(&def_root_domain.refcount, 1);
  6025. }
  6026. static struct root_domain *alloc_rootdomain(void)
  6027. {
  6028. struct root_domain *rd;
  6029. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6030. if (!rd)
  6031. return NULL;
  6032. if (init_rootdomain(rd, false) != 0) {
  6033. kfree(rd);
  6034. return NULL;
  6035. }
  6036. return rd;
  6037. }
  6038. /*
  6039. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6040. * hold the hotplug lock.
  6041. */
  6042. static void
  6043. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6044. {
  6045. struct rq *rq = cpu_rq(cpu);
  6046. struct sched_domain *tmp;
  6047. /* Remove the sched domains which do not contribute to scheduling. */
  6048. for (tmp = sd; tmp; ) {
  6049. struct sched_domain *parent = tmp->parent;
  6050. if (!parent)
  6051. break;
  6052. if (sd_parent_degenerate(tmp, parent)) {
  6053. tmp->parent = parent->parent;
  6054. if (parent->parent)
  6055. parent->parent->child = tmp;
  6056. } else
  6057. tmp = tmp->parent;
  6058. }
  6059. if (sd && sd_degenerate(sd)) {
  6060. sd = sd->parent;
  6061. if (sd)
  6062. sd->child = NULL;
  6063. }
  6064. sched_domain_debug(sd, cpu);
  6065. rq_attach_root(rq, rd);
  6066. rcu_assign_pointer(rq->sd, sd);
  6067. }
  6068. /* cpus with isolated domains */
  6069. static cpumask_var_t cpu_isolated_map;
  6070. /* Setup the mask of cpus configured for isolated domains */
  6071. static int __init isolated_cpu_setup(char *str)
  6072. {
  6073. cpulist_parse(str, cpu_isolated_map);
  6074. return 1;
  6075. }
  6076. __setup("isolcpus=", isolated_cpu_setup);
  6077. /*
  6078. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6079. * to a function which identifies what group(along with sched group) a CPU
  6080. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6081. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6082. *
  6083. * init_sched_build_groups will build a circular linked list of the groups
  6084. * covered by the given span, and will set each group's ->cpumask correctly,
  6085. * and ->cpu_power to 0.
  6086. */
  6087. static void
  6088. init_sched_build_groups(const struct cpumask *span,
  6089. const struct cpumask *cpu_map,
  6090. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6091. struct sched_group **sg,
  6092. struct cpumask *tmpmask),
  6093. struct cpumask *covered, struct cpumask *tmpmask)
  6094. {
  6095. struct sched_group *first = NULL, *last = NULL;
  6096. int i;
  6097. cpumask_clear(covered);
  6098. for_each_cpu(i, span) {
  6099. struct sched_group *sg;
  6100. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6101. int j;
  6102. if (cpumask_test_cpu(i, covered))
  6103. continue;
  6104. cpumask_clear(sched_group_cpus(sg));
  6105. sg->__cpu_power = 0;
  6106. for_each_cpu(j, span) {
  6107. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6108. continue;
  6109. cpumask_set_cpu(j, covered);
  6110. cpumask_set_cpu(j, sched_group_cpus(sg));
  6111. }
  6112. if (!first)
  6113. first = sg;
  6114. if (last)
  6115. last->next = sg;
  6116. last = sg;
  6117. }
  6118. last->next = first;
  6119. }
  6120. #define SD_NODES_PER_DOMAIN 16
  6121. #ifdef CONFIG_NUMA
  6122. /**
  6123. * find_next_best_node - find the next node to include in a sched_domain
  6124. * @node: node whose sched_domain we're building
  6125. * @used_nodes: nodes already in the sched_domain
  6126. *
  6127. * Find the next node to include in a given scheduling domain. Simply
  6128. * finds the closest node not already in the @used_nodes map.
  6129. *
  6130. * Should use nodemask_t.
  6131. */
  6132. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6133. {
  6134. int i, n, val, min_val, best_node = 0;
  6135. min_val = INT_MAX;
  6136. for (i = 0; i < nr_node_ids; i++) {
  6137. /* Start at @node */
  6138. n = (node + i) % nr_node_ids;
  6139. if (!nr_cpus_node(n))
  6140. continue;
  6141. /* Skip already used nodes */
  6142. if (node_isset(n, *used_nodes))
  6143. continue;
  6144. /* Simple min distance search */
  6145. val = node_distance(node, n);
  6146. if (val < min_val) {
  6147. min_val = val;
  6148. best_node = n;
  6149. }
  6150. }
  6151. node_set(best_node, *used_nodes);
  6152. return best_node;
  6153. }
  6154. /**
  6155. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6156. * @node: node whose cpumask we're constructing
  6157. * @span: resulting cpumask
  6158. *
  6159. * Given a node, construct a good cpumask for its sched_domain to span. It
  6160. * should be one that prevents unnecessary balancing, but also spreads tasks
  6161. * out optimally.
  6162. */
  6163. static void sched_domain_node_span(int node, struct cpumask *span)
  6164. {
  6165. nodemask_t used_nodes;
  6166. int i;
  6167. cpumask_clear(span);
  6168. nodes_clear(used_nodes);
  6169. cpumask_or(span, span, cpumask_of_node(node));
  6170. node_set(node, used_nodes);
  6171. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6172. int next_node = find_next_best_node(node, &used_nodes);
  6173. cpumask_or(span, span, cpumask_of_node(next_node));
  6174. }
  6175. }
  6176. #endif /* CONFIG_NUMA */
  6177. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6178. /*
  6179. * The cpus mask in sched_group and sched_domain hangs off the end.
  6180. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6181. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6182. */
  6183. struct static_sched_group {
  6184. struct sched_group sg;
  6185. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6186. };
  6187. struct static_sched_domain {
  6188. struct sched_domain sd;
  6189. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6190. };
  6191. /*
  6192. * SMT sched-domains:
  6193. */
  6194. #ifdef CONFIG_SCHED_SMT
  6195. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6196. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6197. static int
  6198. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6199. struct sched_group **sg, struct cpumask *unused)
  6200. {
  6201. if (sg)
  6202. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6203. return cpu;
  6204. }
  6205. #endif /* CONFIG_SCHED_SMT */
  6206. /*
  6207. * multi-core sched-domains:
  6208. */
  6209. #ifdef CONFIG_SCHED_MC
  6210. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6211. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6212. #endif /* CONFIG_SCHED_MC */
  6213. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6214. static int
  6215. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6216. struct sched_group **sg, struct cpumask *mask)
  6217. {
  6218. int group;
  6219. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6220. group = cpumask_first(mask);
  6221. if (sg)
  6222. *sg = &per_cpu(sched_group_core, group).sg;
  6223. return group;
  6224. }
  6225. #elif defined(CONFIG_SCHED_MC)
  6226. static int
  6227. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6228. struct sched_group **sg, struct cpumask *unused)
  6229. {
  6230. if (sg)
  6231. *sg = &per_cpu(sched_group_core, cpu).sg;
  6232. return cpu;
  6233. }
  6234. #endif
  6235. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6236. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6237. static int
  6238. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6239. struct sched_group **sg, struct cpumask *mask)
  6240. {
  6241. int group;
  6242. #ifdef CONFIG_SCHED_MC
  6243. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6244. group = cpumask_first(mask);
  6245. #elif defined(CONFIG_SCHED_SMT)
  6246. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6247. group = cpumask_first(mask);
  6248. #else
  6249. group = cpu;
  6250. #endif
  6251. if (sg)
  6252. *sg = &per_cpu(sched_group_phys, group).sg;
  6253. return group;
  6254. }
  6255. #ifdef CONFIG_NUMA
  6256. /*
  6257. * The init_sched_build_groups can't handle what we want to do with node
  6258. * groups, so roll our own. Now each node has its own list of groups which
  6259. * gets dynamically allocated.
  6260. */
  6261. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6262. static struct sched_group ***sched_group_nodes_bycpu;
  6263. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6264. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6265. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6266. struct sched_group **sg,
  6267. struct cpumask *nodemask)
  6268. {
  6269. int group;
  6270. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6271. group = cpumask_first(nodemask);
  6272. if (sg)
  6273. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6274. return group;
  6275. }
  6276. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6277. {
  6278. struct sched_group *sg = group_head;
  6279. int j;
  6280. if (!sg)
  6281. return;
  6282. do {
  6283. for_each_cpu(j, sched_group_cpus(sg)) {
  6284. struct sched_domain *sd;
  6285. sd = &per_cpu(phys_domains, j).sd;
  6286. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6287. /*
  6288. * Only add "power" once for each
  6289. * physical package.
  6290. */
  6291. continue;
  6292. }
  6293. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6294. }
  6295. sg = sg->next;
  6296. } while (sg != group_head);
  6297. }
  6298. #endif /* CONFIG_NUMA */
  6299. #ifdef CONFIG_NUMA
  6300. /* Free memory allocated for various sched_group structures */
  6301. static void free_sched_groups(const struct cpumask *cpu_map,
  6302. struct cpumask *nodemask)
  6303. {
  6304. int cpu, i;
  6305. for_each_cpu(cpu, cpu_map) {
  6306. struct sched_group **sched_group_nodes
  6307. = sched_group_nodes_bycpu[cpu];
  6308. if (!sched_group_nodes)
  6309. continue;
  6310. for (i = 0; i < nr_node_ids; i++) {
  6311. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6312. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6313. if (cpumask_empty(nodemask))
  6314. continue;
  6315. if (sg == NULL)
  6316. continue;
  6317. sg = sg->next;
  6318. next_sg:
  6319. oldsg = sg;
  6320. sg = sg->next;
  6321. kfree(oldsg);
  6322. if (oldsg != sched_group_nodes[i])
  6323. goto next_sg;
  6324. }
  6325. kfree(sched_group_nodes);
  6326. sched_group_nodes_bycpu[cpu] = NULL;
  6327. }
  6328. }
  6329. #else /* !CONFIG_NUMA */
  6330. static void free_sched_groups(const struct cpumask *cpu_map,
  6331. struct cpumask *nodemask)
  6332. {
  6333. }
  6334. #endif /* CONFIG_NUMA */
  6335. /*
  6336. * Initialize sched groups cpu_power.
  6337. *
  6338. * cpu_power indicates the capacity of sched group, which is used while
  6339. * distributing the load between different sched groups in a sched domain.
  6340. * Typically cpu_power for all the groups in a sched domain will be same unless
  6341. * there are asymmetries in the topology. If there are asymmetries, group
  6342. * having more cpu_power will pickup more load compared to the group having
  6343. * less cpu_power.
  6344. *
  6345. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6346. * the maximum number of tasks a group can handle in the presence of other idle
  6347. * or lightly loaded groups in the same sched domain.
  6348. */
  6349. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6350. {
  6351. struct sched_domain *child;
  6352. struct sched_group *group;
  6353. WARN_ON(!sd || !sd->groups);
  6354. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6355. return;
  6356. child = sd->child;
  6357. sd->groups->__cpu_power = 0;
  6358. /*
  6359. * For perf policy, if the groups in child domain share resources
  6360. * (for example cores sharing some portions of the cache hierarchy
  6361. * or SMT), then set this domain groups cpu_power such that each group
  6362. * can handle only one task, when there are other idle groups in the
  6363. * same sched domain.
  6364. */
  6365. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6366. (child->flags &
  6367. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6368. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6369. return;
  6370. }
  6371. /*
  6372. * add cpu_power of each child group to this groups cpu_power
  6373. */
  6374. group = child->groups;
  6375. do {
  6376. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6377. group = group->next;
  6378. } while (group != child->groups);
  6379. }
  6380. /*
  6381. * Initializers for schedule domains
  6382. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6383. */
  6384. #ifdef CONFIG_SCHED_DEBUG
  6385. # define SD_INIT_NAME(sd, type) sd->name = #type
  6386. #else
  6387. # define SD_INIT_NAME(sd, type) do { } while (0)
  6388. #endif
  6389. #define SD_INIT(sd, type) sd_init_##type(sd)
  6390. #define SD_INIT_FUNC(type) \
  6391. static noinline void sd_init_##type(struct sched_domain *sd) \
  6392. { \
  6393. memset(sd, 0, sizeof(*sd)); \
  6394. *sd = SD_##type##_INIT; \
  6395. sd->level = SD_LV_##type; \
  6396. SD_INIT_NAME(sd, type); \
  6397. }
  6398. SD_INIT_FUNC(CPU)
  6399. #ifdef CONFIG_NUMA
  6400. SD_INIT_FUNC(ALLNODES)
  6401. SD_INIT_FUNC(NODE)
  6402. #endif
  6403. #ifdef CONFIG_SCHED_SMT
  6404. SD_INIT_FUNC(SIBLING)
  6405. #endif
  6406. #ifdef CONFIG_SCHED_MC
  6407. SD_INIT_FUNC(MC)
  6408. #endif
  6409. static int default_relax_domain_level = -1;
  6410. static int __init setup_relax_domain_level(char *str)
  6411. {
  6412. unsigned long val;
  6413. val = simple_strtoul(str, NULL, 0);
  6414. if (val < SD_LV_MAX)
  6415. default_relax_domain_level = val;
  6416. return 1;
  6417. }
  6418. __setup("relax_domain_level=", setup_relax_domain_level);
  6419. static void set_domain_attribute(struct sched_domain *sd,
  6420. struct sched_domain_attr *attr)
  6421. {
  6422. int request;
  6423. if (!attr || attr->relax_domain_level < 0) {
  6424. if (default_relax_domain_level < 0)
  6425. return;
  6426. else
  6427. request = default_relax_domain_level;
  6428. } else
  6429. request = attr->relax_domain_level;
  6430. if (request < sd->level) {
  6431. /* turn off idle balance on this domain */
  6432. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6433. } else {
  6434. /* turn on idle balance on this domain */
  6435. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6436. }
  6437. }
  6438. /*
  6439. * Build sched domains for a given set of cpus and attach the sched domains
  6440. * to the individual cpus
  6441. */
  6442. static int __build_sched_domains(const struct cpumask *cpu_map,
  6443. struct sched_domain_attr *attr)
  6444. {
  6445. int i, err = -ENOMEM;
  6446. struct root_domain *rd;
  6447. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6448. tmpmask;
  6449. #ifdef CONFIG_NUMA
  6450. cpumask_var_t domainspan, covered, notcovered;
  6451. struct sched_group **sched_group_nodes = NULL;
  6452. int sd_allnodes = 0;
  6453. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6454. goto out;
  6455. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6456. goto free_domainspan;
  6457. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6458. goto free_covered;
  6459. #endif
  6460. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6461. goto free_notcovered;
  6462. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6463. goto free_nodemask;
  6464. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6465. goto free_this_sibling_map;
  6466. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6467. goto free_this_core_map;
  6468. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6469. goto free_send_covered;
  6470. #ifdef CONFIG_NUMA
  6471. /*
  6472. * Allocate the per-node list of sched groups
  6473. */
  6474. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6475. GFP_KERNEL);
  6476. if (!sched_group_nodes) {
  6477. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6478. goto free_tmpmask;
  6479. }
  6480. #endif
  6481. rd = alloc_rootdomain();
  6482. if (!rd) {
  6483. printk(KERN_WARNING "Cannot alloc root domain\n");
  6484. goto free_sched_groups;
  6485. }
  6486. #ifdef CONFIG_NUMA
  6487. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6488. #endif
  6489. /*
  6490. * Set up domains for cpus specified by the cpu_map.
  6491. */
  6492. for_each_cpu(i, cpu_map) {
  6493. struct sched_domain *sd = NULL, *p;
  6494. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6495. #ifdef CONFIG_NUMA
  6496. if (cpumask_weight(cpu_map) >
  6497. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6498. sd = &per_cpu(allnodes_domains, i).sd;
  6499. SD_INIT(sd, ALLNODES);
  6500. set_domain_attribute(sd, attr);
  6501. cpumask_copy(sched_domain_span(sd), cpu_map);
  6502. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6503. p = sd;
  6504. sd_allnodes = 1;
  6505. } else
  6506. p = NULL;
  6507. sd = &per_cpu(node_domains, i).sd;
  6508. SD_INIT(sd, NODE);
  6509. set_domain_attribute(sd, attr);
  6510. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6511. sd->parent = p;
  6512. if (p)
  6513. p->child = sd;
  6514. cpumask_and(sched_domain_span(sd),
  6515. sched_domain_span(sd), cpu_map);
  6516. #endif
  6517. p = sd;
  6518. sd = &per_cpu(phys_domains, i).sd;
  6519. SD_INIT(sd, CPU);
  6520. set_domain_attribute(sd, attr);
  6521. cpumask_copy(sched_domain_span(sd), nodemask);
  6522. sd->parent = p;
  6523. if (p)
  6524. p->child = sd;
  6525. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6526. #ifdef CONFIG_SCHED_MC
  6527. p = sd;
  6528. sd = &per_cpu(core_domains, i).sd;
  6529. SD_INIT(sd, MC);
  6530. set_domain_attribute(sd, attr);
  6531. cpumask_and(sched_domain_span(sd), cpu_map,
  6532. cpu_coregroup_mask(i));
  6533. sd->parent = p;
  6534. p->child = sd;
  6535. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6536. #endif
  6537. #ifdef CONFIG_SCHED_SMT
  6538. p = sd;
  6539. sd = &per_cpu(cpu_domains, i).sd;
  6540. SD_INIT(sd, SIBLING);
  6541. set_domain_attribute(sd, attr);
  6542. cpumask_and(sched_domain_span(sd),
  6543. &per_cpu(cpu_sibling_map, i), cpu_map);
  6544. sd->parent = p;
  6545. p->child = sd;
  6546. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6547. #endif
  6548. }
  6549. #ifdef CONFIG_SCHED_SMT
  6550. /* Set up CPU (sibling) groups */
  6551. for_each_cpu(i, cpu_map) {
  6552. cpumask_and(this_sibling_map,
  6553. &per_cpu(cpu_sibling_map, i), cpu_map);
  6554. if (i != cpumask_first(this_sibling_map))
  6555. continue;
  6556. init_sched_build_groups(this_sibling_map, cpu_map,
  6557. &cpu_to_cpu_group,
  6558. send_covered, tmpmask);
  6559. }
  6560. #endif
  6561. #ifdef CONFIG_SCHED_MC
  6562. /* Set up multi-core groups */
  6563. for_each_cpu(i, cpu_map) {
  6564. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6565. if (i != cpumask_first(this_core_map))
  6566. continue;
  6567. init_sched_build_groups(this_core_map, cpu_map,
  6568. &cpu_to_core_group,
  6569. send_covered, tmpmask);
  6570. }
  6571. #endif
  6572. /* Set up physical groups */
  6573. for (i = 0; i < nr_node_ids; i++) {
  6574. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6575. if (cpumask_empty(nodemask))
  6576. continue;
  6577. init_sched_build_groups(nodemask, cpu_map,
  6578. &cpu_to_phys_group,
  6579. send_covered, tmpmask);
  6580. }
  6581. #ifdef CONFIG_NUMA
  6582. /* Set up node groups */
  6583. if (sd_allnodes) {
  6584. init_sched_build_groups(cpu_map, cpu_map,
  6585. &cpu_to_allnodes_group,
  6586. send_covered, tmpmask);
  6587. }
  6588. for (i = 0; i < nr_node_ids; i++) {
  6589. /* Set up node groups */
  6590. struct sched_group *sg, *prev;
  6591. int j;
  6592. cpumask_clear(covered);
  6593. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6594. if (cpumask_empty(nodemask)) {
  6595. sched_group_nodes[i] = NULL;
  6596. continue;
  6597. }
  6598. sched_domain_node_span(i, domainspan);
  6599. cpumask_and(domainspan, domainspan, cpu_map);
  6600. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6601. GFP_KERNEL, i);
  6602. if (!sg) {
  6603. printk(KERN_WARNING "Can not alloc domain group for "
  6604. "node %d\n", i);
  6605. goto error;
  6606. }
  6607. sched_group_nodes[i] = sg;
  6608. for_each_cpu(j, nodemask) {
  6609. struct sched_domain *sd;
  6610. sd = &per_cpu(node_domains, j).sd;
  6611. sd->groups = sg;
  6612. }
  6613. sg->__cpu_power = 0;
  6614. cpumask_copy(sched_group_cpus(sg), nodemask);
  6615. sg->next = sg;
  6616. cpumask_or(covered, covered, nodemask);
  6617. prev = sg;
  6618. for (j = 0; j < nr_node_ids; j++) {
  6619. int n = (i + j) % nr_node_ids;
  6620. cpumask_complement(notcovered, covered);
  6621. cpumask_and(tmpmask, notcovered, cpu_map);
  6622. cpumask_and(tmpmask, tmpmask, domainspan);
  6623. if (cpumask_empty(tmpmask))
  6624. break;
  6625. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  6626. if (cpumask_empty(tmpmask))
  6627. continue;
  6628. sg = kmalloc_node(sizeof(struct sched_group) +
  6629. cpumask_size(),
  6630. GFP_KERNEL, i);
  6631. if (!sg) {
  6632. printk(KERN_WARNING
  6633. "Can not alloc domain group for node %d\n", j);
  6634. goto error;
  6635. }
  6636. sg->__cpu_power = 0;
  6637. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6638. sg->next = prev->next;
  6639. cpumask_or(covered, covered, tmpmask);
  6640. prev->next = sg;
  6641. prev = sg;
  6642. }
  6643. }
  6644. #endif
  6645. /* Calculate CPU power for physical packages and nodes */
  6646. #ifdef CONFIG_SCHED_SMT
  6647. for_each_cpu(i, cpu_map) {
  6648. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  6649. init_sched_groups_power(i, sd);
  6650. }
  6651. #endif
  6652. #ifdef CONFIG_SCHED_MC
  6653. for_each_cpu(i, cpu_map) {
  6654. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  6655. init_sched_groups_power(i, sd);
  6656. }
  6657. #endif
  6658. for_each_cpu(i, cpu_map) {
  6659. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  6660. init_sched_groups_power(i, sd);
  6661. }
  6662. #ifdef CONFIG_NUMA
  6663. for (i = 0; i < nr_node_ids; i++)
  6664. init_numa_sched_groups_power(sched_group_nodes[i]);
  6665. if (sd_allnodes) {
  6666. struct sched_group *sg;
  6667. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6668. tmpmask);
  6669. init_numa_sched_groups_power(sg);
  6670. }
  6671. #endif
  6672. /* Attach the domains */
  6673. for_each_cpu(i, cpu_map) {
  6674. struct sched_domain *sd;
  6675. #ifdef CONFIG_SCHED_SMT
  6676. sd = &per_cpu(cpu_domains, i).sd;
  6677. #elif defined(CONFIG_SCHED_MC)
  6678. sd = &per_cpu(core_domains, i).sd;
  6679. #else
  6680. sd = &per_cpu(phys_domains, i).sd;
  6681. #endif
  6682. cpu_attach_domain(sd, rd, i);
  6683. }
  6684. err = 0;
  6685. free_tmpmask:
  6686. free_cpumask_var(tmpmask);
  6687. free_send_covered:
  6688. free_cpumask_var(send_covered);
  6689. free_this_core_map:
  6690. free_cpumask_var(this_core_map);
  6691. free_this_sibling_map:
  6692. free_cpumask_var(this_sibling_map);
  6693. free_nodemask:
  6694. free_cpumask_var(nodemask);
  6695. free_notcovered:
  6696. #ifdef CONFIG_NUMA
  6697. free_cpumask_var(notcovered);
  6698. free_covered:
  6699. free_cpumask_var(covered);
  6700. free_domainspan:
  6701. free_cpumask_var(domainspan);
  6702. out:
  6703. #endif
  6704. return err;
  6705. free_sched_groups:
  6706. #ifdef CONFIG_NUMA
  6707. kfree(sched_group_nodes);
  6708. #endif
  6709. goto free_tmpmask;
  6710. #ifdef CONFIG_NUMA
  6711. error:
  6712. free_sched_groups(cpu_map, tmpmask);
  6713. free_rootdomain(rd);
  6714. goto free_tmpmask;
  6715. #endif
  6716. }
  6717. static int build_sched_domains(const struct cpumask *cpu_map)
  6718. {
  6719. return __build_sched_domains(cpu_map, NULL);
  6720. }
  6721. static struct cpumask *doms_cur; /* current sched domains */
  6722. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6723. static struct sched_domain_attr *dattr_cur;
  6724. /* attribues of custom domains in 'doms_cur' */
  6725. /*
  6726. * Special case: If a kmalloc of a doms_cur partition (array of
  6727. * cpumask) fails, then fallback to a single sched domain,
  6728. * as determined by the single cpumask fallback_doms.
  6729. */
  6730. static cpumask_var_t fallback_doms;
  6731. /*
  6732. * arch_update_cpu_topology lets virtualized architectures update the
  6733. * cpu core maps. It is supposed to return 1 if the topology changed
  6734. * or 0 if it stayed the same.
  6735. */
  6736. int __attribute__((weak)) arch_update_cpu_topology(void)
  6737. {
  6738. return 0;
  6739. }
  6740. /*
  6741. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6742. * For now this just excludes isolated cpus, but could be used to
  6743. * exclude other special cases in the future.
  6744. */
  6745. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6746. {
  6747. int err;
  6748. arch_update_cpu_topology();
  6749. ndoms_cur = 1;
  6750. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  6751. if (!doms_cur)
  6752. doms_cur = fallback_doms;
  6753. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  6754. dattr_cur = NULL;
  6755. err = build_sched_domains(doms_cur);
  6756. register_sched_domain_sysctl();
  6757. return err;
  6758. }
  6759. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6760. struct cpumask *tmpmask)
  6761. {
  6762. free_sched_groups(cpu_map, tmpmask);
  6763. }
  6764. /*
  6765. * Detach sched domains from a group of cpus specified in cpu_map
  6766. * These cpus will now be attached to the NULL domain
  6767. */
  6768. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6769. {
  6770. /* Save because hotplug lock held. */
  6771. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6772. int i;
  6773. for_each_cpu(i, cpu_map)
  6774. cpu_attach_domain(NULL, &def_root_domain, i);
  6775. synchronize_sched();
  6776. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6777. }
  6778. /* handle null as "default" */
  6779. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6780. struct sched_domain_attr *new, int idx_new)
  6781. {
  6782. struct sched_domain_attr tmp;
  6783. /* fast path */
  6784. if (!new && !cur)
  6785. return 1;
  6786. tmp = SD_ATTR_INIT;
  6787. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6788. new ? (new + idx_new) : &tmp,
  6789. sizeof(struct sched_domain_attr));
  6790. }
  6791. /*
  6792. * Partition sched domains as specified by the 'ndoms_new'
  6793. * cpumasks in the array doms_new[] of cpumasks. This compares
  6794. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6795. * It destroys each deleted domain and builds each new domain.
  6796. *
  6797. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  6798. * The masks don't intersect (don't overlap.) We should setup one
  6799. * sched domain for each mask. CPUs not in any of the cpumasks will
  6800. * not be load balanced. If the same cpumask appears both in the
  6801. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6802. * it as it is.
  6803. *
  6804. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6805. * ownership of it and will kfree it when done with it. If the caller
  6806. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6807. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6808. * the single partition 'fallback_doms', it also forces the domains
  6809. * to be rebuilt.
  6810. *
  6811. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6812. * ndoms_new == 0 is a special case for destroying existing domains,
  6813. * and it will not create the default domain.
  6814. *
  6815. * Call with hotplug lock held
  6816. */
  6817. /* FIXME: Change to struct cpumask *doms_new[] */
  6818. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  6819. struct sched_domain_attr *dattr_new)
  6820. {
  6821. int i, j, n;
  6822. int new_topology;
  6823. mutex_lock(&sched_domains_mutex);
  6824. /* always unregister in case we don't destroy any domains */
  6825. unregister_sched_domain_sysctl();
  6826. /* Let architecture update cpu core mappings. */
  6827. new_topology = arch_update_cpu_topology();
  6828. n = doms_new ? ndoms_new : 0;
  6829. /* Destroy deleted domains */
  6830. for (i = 0; i < ndoms_cur; i++) {
  6831. for (j = 0; j < n && !new_topology; j++) {
  6832. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  6833. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6834. goto match1;
  6835. }
  6836. /* no match - a current sched domain not in new doms_new[] */
  6837. detach_destroy_domains(doms_cur + i);
  6838. match1:
  6839. ;
  6840. }
  6841. if (doms_new == NULL) {
  6842. ndoms_cur = 0;
  6843. doms_new = fallback_doms;
  6844. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  6845. WARN_ON_ONCE(dattr_new);
  6846. }
  6847. /* Build new domains */
  6848. for (i = 0; i < ndoms_new; i++) {
  6849. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6850. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  6851. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6852. goto match2;
  6853. }
  6854. /* no match - add a new doms_new */
  6855. __build_sched_domains(doms_new + i,
  6856. dattr_new ? dattr_new + i : NULL);
  6857. match2:
  6858. ;
  6859. }
  6860. /* Remember the new sched domains */
  6861. if (doms_cur != fallback_doms)
  6862. kfree(doms_cur);
  6863. kfree(dattr_cur); /* kfree(NULL) is safe */
  6864. doms_cur = doms_new;
  6865. dattr_cur = dattr_new;
  6866. ndoms_cur = ndoms_new;
  6867. register_sched_domain_sysctl();
  6868. mutex_unlock(&sched_domains_mutex);
  6869. }
  6870. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6871. static void arch_reinit_sched_domains(void)
  6872. {
  6873. get_online_cpus();
  6874. /* Destroy domains first to force the rebuild */
  6875. partition_sched_domains(0, NULL, NULL);
  6876. rebuild_sched_domains();
  6877. put_online_cpus();
  6878. }
  6879. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6880. {
  6881. unsigned int level = 0;
  6882. if (sscanf(buf, "%u", &level) != 1)
  6883. return -EINVAL;
  6884. /*
  6885. * level is always be positive so don't check for
  6886. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6887. * What happens on 0 or 1 byte write,
  6888. * need to check for count as well?
  6889. */
  6890. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6891. return -EINVAL;
  6892. if (smt)
  6893. sched_smt_power_savings = level;
  6894. else
  6895. sched_mc_power_savings = level;
  6896. arch_reinit_sched_domains();
  6897. return count;
  6898. }
  6899. #ifdef CONFIG_SCHED_MC
  6900. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6901. char *page)
  6902. {
  6903. return sprintf(page, "%u\n", sched_mc_power_savings);
  6904. }
  6905. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6906. const char *buf, size_t count)
  6907. {
  6908. return sched_power_savings_store(buf, count, 0);
  6909. }
  6910. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6911. sched_mc_power_savings_show,
  6912. sched_mc_power_savings_store);
  6913. #endif
  6914. #ifdef CONFIG_SCHED_SMT
  6915. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6916. char *page)
  6917. {
  6918. return sprintf(page, "%u\n", sched_smt_power_savings);
  6919. }
  6920. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6921. const char *buf, size_t count)
  6922. {
  6923. return sched_power_savings_store(buf, count, 1);
  6924. }
  6925. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6926. sched_smt_power_savings_show,
  6927. sched_smt_power_savings_store);
  6928. #endif
  6929. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6930. {
  6931. int err = 0;
  6932. #ifdef CONFIG_SCHED_SMT
  6933. if (smt_capable())
  6934. err = sysfs_create_file(&cls->kset.kobj,
  6935. &attr_sched_smt_power_savings.attr);
  6936. #endif
  6937. #ifdef CONFIG_SCHED_MC
  6938. if (!err && mc_capable())
  6939. err = sysfs_create_file(&cls->kset.kobj,
  6940. &attr_sched_mc_power_savings.attr);
  6941. #endif
  6942. return err;
  6943. }
  6944. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6945. #ifndef CONFIG_CPUSETS
  6946. /*
  6947. * Add online and remove offline CPUs from the scheduler domains.
  6948. * When cpusets are enabled they take over this function.
  6949. */
  6950. static int update_sched_domains(struct notifier_block *nfb,
  6951. unsigned long action, void *hcpu)
  6952. {
  6953. switch (action) {
  6954. case CPU_ONLINE:
  6955. case CPU_ONLINE_FROZEN:
  6956. case CPU_DEAD:
  6957. case CPU_DEAD_FROZEN:
  6958. partition_sched_domains(1, NULL, NULL);
  6959. return NOTIFY_OK;
  6960. default:
  6961. return NOTIFY_DONE;
  6962. }
  6963. }
  6964. #endif
  6965. static int update_runtime(struct notifier_block *nfb,
  6966. unsigned long action, void *hcpu)
  6967. {
  6968. int cpu = (int)(long)hcpu;
  6969. switch (action) {
  6970. case CPU_DOWN_PREPARE:
  6971. case CPU_DOWN_PREPARE_FROZEN:
  6972. disable_runtime(cpu_rq(cpu));
  6973. return NOTIFY_OK;
  6974. case CPU_DOWN_FAILED:
  6975. case CPU_DOWN_FAILED_FROZEN:
  6976. case CPU_ONLINE:
  6977. case CPU_ONLINE_FROZEN:
  6978. enable_runtime(cpu_rq(cpu));
  6979. return NOTIFY_OK;
  6980. default:
  6981. return NOTIFY_DONE;
  6982. }
  6983. }
  6984. void __init sched_init_smp(void)
  6985. {
  6986. cpumask_var_t non_isolated_cpus;
  6987. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6988. #if defined(CONFIG_NUMA)
  6989. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6990. GFP_KERNEL);
  6991. BUG_ON(sched_group_nodes_bycpu == NULL);
  6992. #endif
  6993. get_online_cpus();
  6994. mutex_lock(&sched_domains_mutex);
  6995. arch_init_sched_domains(cpu_online_mask);
  6996. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6997. if (cpumask_empty(non_isolated_cpus))
  6998. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6999. mutex_unlock(&sched_domains_mutex);
  7000. put_online_cpus();
  7001. #ifndef CONFIG_CPUSETS
  7002. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7003. hotcpu_notifier(update_sched_domains, 0);
  7004. #endif
  7005. /* RT runtime code needs to handle some hotplug events */
  7006. hotcpu_notifier(update_runtime, 0);
  7007. init_hrtick();
  7008. /* Move init over to a non-isolated CPU */
  7009. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7010. BUG();
  7011. sched_init_granularity();
  7012. free_cpumask_var(non_isolated_cpus);
  7013. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7014. init_sched_rt_class();
  7015. }
  7016. #else
  7017. void __init sched_init_smp(void)
  7018. {
  7019. sched_init_granularity();
  7020. }
  7021. #endif /* CONFIG_SMP */
  7022. int in_sched_functions(unsigned long addr)
  7023. {
  7024. return in_lock_functions(addr) ||
  7025. (addr >= (unsigned long)__sched_text_start
  7026. && addr < (unsigned long)__sched_text_end);
  7027. }
  7028. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7029. {
  7030. cfs_rq->tasks_timeline = RB_ROOT;
  7031. INIT_LIST_HEAD(&cfs_rq->tasks);
  7032. #ifdef CONFIG_FAIR_GROUP_SCHED
  7033. cfs_rq->rq = rq;
  7034. #endif
  7035. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7036. }
  7037. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7038. {
  7039. struct rt_prio_array *array;
  7040. int i;
  7041. array = &rt_rq->active;
  7042. for (i = 0; i < MAX_RT_PRIO; i++) {
  7043. INIT_LIST_HEAD(array->queue + i);
  7044. __clear_bit(i, array->bitmap);
  7045. }
  7046. /* delimiter for bitsearch: */
  7047. __set_bit(MAX_RT_PRIO, array->bitmap);
  7048. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7049. rt_rq->highest_prio = MAX_RT_PRIO;
  7050. #endif
  7051. #ifdef CONFIG_SMP
  7052. rt_rq->rt_nr_migratory = 0;
  7053. rt_rq->overloaded = 0;
  7054. #endif
  7055. rt_rq->rt_time = 0;
  7056. rt_rq->rt_throttled = 0;
  7057. rt_rq->rt_runtime = 0;
  7058. spin_lock_init(&rt_rq->rt_runtime_lock);
  7059. #ifdef CONFIG_RT_GROUP_SCHED
  7060. rt_rq->rt_nr_boosted = 0;
  7061. rt_rq->rq = rq;
  7062. #endif
  7063. }
  7064. #ifdef CONFIG_FAIR_GROUP_SCHED
  7065. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7066. struct sched_entity *se, int cpu, int add,
  7067. struct sched_entity *parent)
  7068. {
  7069. struct rq *rq = cpu_rq(cpu);
  7070. tg->cfs_rq[cpu] = cfs_rq;
  7071. init_cfs_rq(cfs_rq, rq);
  7072. cfs_rq->tg = tg;
  7073. if (add)
  7074. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7075. tg->se[cpu] = se;
  7076. /* se could be NULL for init_task_group */
  7077. if (!se)
  7078. return;
  7079. if (!parent)
  7080. se->cfs_rq = &rq->cfs;
  7081. else
  7082. se->cfs_rq = parent->my_q;
  7083. se->my_q = cfs_rq;
  7084. se->load.weight = tg->shares;
  7085. se->load.inv_weight = 0;
  7086. se->parent = parent;
  7087. }
  7088. #endif
  7089. #ifdef CONFIG_RT_GROUP_SCHED
  7090. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7091. struct sched_rt_entity *rt_se, int cpu, int add,
  7092. struct sched_rt_entity *parent)
  7093. {
  7094. struct rq *rq = cpu_rq(cpu);
  7095. tg->rt_rq[cpu] = rt_rq;
  7096. init_rt_rq(rt_rq, rq);
  7097. rt_rq->tg = tg;
  7098. rt_rq->rt_se = rt_se;
  7099. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7100. if (add)
  7101. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7102. tg->rt_se[cpu] = rt_se;
  7103. if (!rt_se)
  7104. return;
  7105. if (!parent)
  7106. rt_se->rt_rq = &rq->rt;
  7107. else
  7108. rt_se->rt_rq = parent->my_q;
  7109. rt_se->my_q = rt_rq;
  7110. rt_se->parent = parent;
  7111. INIT_LIST_HEAD(&rt_se->run_list);
  7112. }
  7113. #endif
  7114. void __init sched_init(void)
  7115. {
  7116. int i, j;
  7117. unsigned long alloc_size = 0, ptr;
  7118. #ifdef CONFIG_FAIR_GROUP_SCHED
  7119. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7120. #endif
  7121. #ifdef CONFIG_RT_GROUP_SCHED
  7122. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7123. #endif
  7124. #ifdef CONFIG_USER_SCHED
  7125. alloc_size *= 2;
  7126. #endif
  7127. /*
  7128. * As sched_init() is called before page_alloc is setup,
  7129. * we use alloc_bootmem().
  7130. */
  7131. if (alloc_size) {
  7132. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7133. #ifdef CONFIG_FAIR_GROUP_SCHED
  7134. init_task_group.se = (struct sched_entity **)ptr;
  7135. ptr += nr_cpu_ids * sizeof(void **);
  7136. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7137. ptr += nr_cpu_ids * sizeof(void **);
  7138. #ifdef CONFIG_USER_SCHED
  7139. root_task_group.se = (struct sched_entity **)ptr;
  7140. ptr += nr_cpu_ids * sizeof(void **);
  7141. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7142. ptr += nr_cpu_ids * sizeof(void **);
  7143. #endif /* CONFIG_USER_SCHED */
  7144. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7145. #ifdef CONFIG_RT_GROUP_SCHED
  7146. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7147. ptr += nr_cpu_ids * sizeof(void **);
  7148. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7149. ptr += nr_cpu_ids * sizeof(void **);
  7150. #ifdef CONFIG_USER_SCHED
  7151. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7152. ptr += nr_cpu_ids * sizeof(void **);
  7153. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7154. ptr += nr_cpu_ids * sizeof(void **);
  7155. #endif /* CONFIG_USER_SCHED */
  7156. #endif /* CONFIG_RT_GROUP_SCHED */
  7157. }
  7158. #ifdef CONFIG_SMP
  7159. init_defrootdomain();
  7160. #endif
  7161. init_rt_bandwidth(&def_rt_bandwidth,
  7162. global_rt_period(), global_rt_runtime());
  7163. #ifdef CONFIG_RT_GROUP_SCHED
  7164. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7165. global_rt_period(), global_rt_runtime());
  7166. #ifdef CONFIG_USER_SCHED
  7167. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7168. global_rt_period(), RUNTIME_INF);
  7169. #endif /* CONFIG_USER_SCHED */
  7170. #endif /* CONFIG_RT_GROUP_SCHED */
  7171. #ifdef CONFIG_GROUP_SCHED
  7172. list_add(&init_task_group.list, &task_groups);
  7173. INIT_LIST_HEAD(&init_task_group.children);
  7174. #ifdef CONFIG_USER_SCHED
  7175. INIT_LIST_HEAD(&root_task_group.children);
  7176. init_task_group.parent = &root_task_group;
  7177. list_add(&init_task_group.siblings, &root_task_group.children);
  7178. #endif /* CONFIG_USER_SCHED */
  7179. #endif /* CONFIG_GROUP_SCHED */
  7180. for_each_possible_cpu(i) {
  7181. struct rq *rq;
  7182. rq = cpu_rq(i);
  7183. spin_lock_init(&rq->lock);
  7184. rq->nr_running = 0;
  7185. init_cfs_rq(&rq->cfs, rq);
  7186. init_rt_rq(&rq->rt, rq);
  7187. #ifdef CONFIG_FAIR_GROUP_SCHED
  7188. init_task_group.shares = init_task_group_load;
  7189. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7190. #ifdef CONFIG_CGROUP_SCHED
  7191. /*
  7192. * How much cpu bandwidth does init_task_group get?
  7193. *
  7194. * In case of task-groups formed thr' the cgroup filesystem, it
  7195. * gets 100% of the cpu resources in the system. This overall
  7196. * system cpu resource is divided among the tasks of
  7197. * init_task_group and its child task-groups in a fair manner,
  7198. * based on each entity's (task or task-group's) weight
  7199. * (se->load.weight).
  7200. *
  7201. * In other words, if init_task_group has 10 tasks of weight
  7202. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7203. * then A0's share of the cpu resource is:
  7204. *
  7205. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7206. *
  7207. * We achieve this by letting init_task_group's tasks sit
  7208. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7209. */
  7210. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7211. #elif defined CONFIG_USER_SCHED
  7212. root_task_group.shares = NICE_0_LOAD;
  7213. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7214. /*
  7215. * In case of task-groups formed thr' the user id of tasks,
  7216. * init_task_group represents tasks belonging to root user.
  7217. * Hence it forms a sibling of all subsequent groups formed.
  7218. * In this case, init_task_group gets only a fraction of overall
  7219. * system cpu resource, based on the weight assigned to root
  7220. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7221. * by letting tasks of init_task_group sit in a separate cfs_rq
  7222. * (init_cfs_rq) and having one entity represent this group of
  7223. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7224. */
  7225. init_tg_cfs_entry(&init_task_group,
  7226. &per_cpu(init_cfs_rq, i),
  7227. &per_cpu(init_sched_entity, i), i, 1,
  7228. root_task_group.se[i]);
  7229. #endif
  7230. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7231. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7232. #ifdef CONFIG_RT_GROUP_SCHED
  7233. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7234. #ifdef CONFIG_CGROUP_SCHED
  7235. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7236. #elif defined CONFIG_USER_SCHED
  7237. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7238. init_tg_rt_entry(&init_task_group,
  7239. &per_cpu(init_rt_rq, i),
  7240. &per_cpu(init_sched_rt_entity, i), i, 1,
  7241. root_task_group.rt_se[i]);
  7242. #endif
  7243. #endif
  7244. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7245. rq->cpu_load[j] = 0;
  7246. #ifdef CONFIG_SMP
  7247. rq->sd = NULL;
  7248. rq->rd = NULL;
  7249. rq->active_balance = 0;
  7250. rq->next_balance = jiffies;
  7251. rq->push_cpu = 0;
  7252. rq->cpu = i;
  7253. rq->online = 0;
  7254. rq->migration_thread = NULL;
  7255. INIT_LIST_HEAD(&rq->migration_queue);
  7256. rq_attach_root(rq, &def_root_domain);
  7257. #endif
  7258. init_rq_hrtick(rq);
  7259. atomic_set(&rq->nr_iowait, 0);
  7260. }
  7261. set_load_weight(&init_task);
  7262. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7263. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7264. #endif
  7265. #ifdef CONFIG_SMP
  7266. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7267. #endif
  7268. #ifdef CONFIG_RT_MUTEXES
  7269. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7270. #endif
  7271. /*
  7272. * The boot idle thread does lazy MMU switching as well:
  7273. */
  7274. atomic_inc(&init_mm.mm_count);
  7275. enter_lazy_tlb(&init_mm, current);
  7276. /*
  7277. * Make us the idle thread. Technically, schedule() should not be
  7278. * called from this thread, however somewhere below it might be,
  7279. * but because we are the idle thread, we just pick up running again
  7280. * when this runqueue becomes "idle".
  7281. */
  7282. init_idle(current, smp_processor_id());
  7283. /*
  7284. * During early bootup we pretend to be a normal task:
  7285. */
  7286. current->sched_class = &fair_sched_class;
  7287. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7288. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7289. #ifdef CONFIG_SMP
  7290. #ifdef CONFIG_NO_HZ
  7291. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7292. #endif
  7293. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7294. #endif /* SMP */
  7295. scheduler_running = 1;
  7296. }
  7297. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7298. void __might_sleep(char *file, int line)
  7299. {
  7300. #ifdef in_atomic
  7301. static unsigned long prev_jiffy; /* ratelimiting */
  7302. if ((!in_atomic() && !irqs_disabled()) ||
  7303. system_state != SYSTEM_RUNNING || oops_in_progress)
  7304. return;
  7305. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7306. return;
  7307. prev_jiffy = jiffies;
  7308. printk(KERN_ERR
  7309. "BUG: sleeping function called from invalid context at %s:%d\n",
  7310. file, line);
  7311. printk(KERN_ERR
  7312. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7313. in_atomic(), irqs_disabled(),
  7314. current->pid, current->comm);
  7315. debug_show_held_locks(current);
  7316. if (irqs_disabled())
  7317. print_irqtrace_events(current);
  7318. dump_stack();
  7319. #endif
  7320. }
  7321. EXPORT_SYMBOL(__might_sleep);
  7322. #endif
  7323. #ifdef CONFIG_MAGIC_SYSRQ
  7324. static void normalize_task(struct rq *rq, struct task_struct *p)
  7325. {
  7326. int on_rq;
  7327. update_rq_clock(rq);
  7328. on_rq = p->se.on_rq;
  7329. if (on_rq)
  7330. deactivate_task(rq, p, 0);
  7331. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7332. if (on_rq) {
  7333. activate_task(rq, p, 0);
  7334. resched_task(rq->curr);
  7335. }
  7336. }
  7337. void normalize_rt_tasks(void)
  7338. {
  7339. struct task_struct *g, *p;
  7340. unsigned long flags;
  7341. struct rq *rq;
  7342. read_lock_irqsave(&tasklist_lock, flags);
  7343. do_each_thread(g, p) {
  7344. /*
  7345. * Only normalize user tasks:
  7346. */
  7347. if (!p->mm)
  7348. continue;
  7349. p->se.exec_start = 0;
  7350. #ifdef CONFIG_SCHEDSTATS
  7351. p->se.wait_start = 0;
  7352. p->se.sleep_start = 0;
  7353. p->se.block_start = 0;
  7354. #endif
  7355. if (!rt_task(p)) {
  7356. /*
  7357. * Renice negative nice level userspace
  7358. * tasks back to 0:
  7359. */
  7360. if (TASK_NICE(p) < 0 && p->mm)
  7361. set_user_nice(p, 0);
  7362. continue;
  7363. }
  7364. spin_lock(&p->pi_lock);
  7365. rq = __task_rq_lock(p);
  7366. normalize_task(rq, p);
  7367. __task_rq_unlock(rq);
  7368. spin_unlock(&p->pi_lock);
  7369. } while_each_thread(g, p);
  7370. read_unlock_irqrestore(&tasklist_lock, flags);
  7371. }
  7372. #endif /* CONFIG_MAGIC_SYSRQ */
  7373. #ifdef CONFIG_IA64
  7374. /*
  7375. * These functions are only useful for the IA64 MCA handling.
  7376. *
  7377. * They can only be called when the whole system has been
  7378. * stopped - every CPU needs to be quiescent, and no scheduling
  7379. * activity can take place. Using them for anything else would
  7380. * be a serious bug, and as a result, they aren't even visible
  7381. * under any other configuration.
  7382. */
  7383. /**
  7384. * curr_task - return the current task for a given cpu.
  7385. * @cpu: the processor in question.
  7386. *
  7387. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7388. */
  7389. struct task_struct *curr_task(int cpu)
  7390. {
  7391. return cpu_curr(cpu);
  7392. }
  7393. /**
  7394. * set_curr_task - set the current task for a given cpu.
  7395. * @cpu: the processor in question.
  7396. * @p: the task pointer to set.
  7397. *
  7398. * Description: This function must only be used when non-maskable interrupts
  7399. * are serviced on a separate stack. It allows the architecture to switch the
  7400. * notion of the current task on a cpu in a non-blocking manner. This function
  7401. * must be called with all CPU's synchronized, and interrupts disabled, the
  7402. * and caller must save the original value of the current task (see
  7403. * curr_task() above) and restore that value before reenabling interrupts and
  7404. * re-starting the system.
  7405. *
  7406. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7407. */
  7408. void set_curr_task(int cpu, struct task_struct *p)
  7409. {
  7410. cpu_curr(cpu) = p;
  7411. }
  7412. #endif
  7413. #ifdef CONFIG_FAIR_GROUP_SCHED
  7414. static void free_fair_sched_group(struct task_group *tg)
  7415. {
  7416. int i;
  7417. for_each_possible_cpu(i) {
  7418. if (tg->cfs_rq)
  7419. kfree(tg->cfs_rq[i]);
  7420. if (tg->se)
  7421. kfree(tg->se[i]);
  7422. }
  7423. kfree(tg->cfs_rq);
  7424. kfree(tg->se);
  7425. }
  7426. static
  7427. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7428. {
  7429. struct cfs_rq *cfs_rq;
  7430. struct sched_entity *se;
  7431. struct rq *rq;
  7432. int i;
  7433. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7434. if (!tg->cfs_rq)
  7435. goto err;
  7436. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7437. if (!tg->se)
  7438. goto err;
  7439. tg->shares = NICE_0_LOAD;
  7440. for_each_possible_cpu(i) {
  7441. rq = cpu_rq(i);
  7442. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7443. GFP_KERNEL, cpu_to_node(i));
  7444. if (!cfs_rq)
  7445. goto err;
  7446. se = kzalloc_node(sizeof(struct sched_entity),
  7447. GFP_KERNEL, cpu_to_node(i));
  7448. if (!se)
  7449. goto err;
  7450. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7451. }
  7452. return 1;
  7453. err:
  7454. return 0;
  7455. }
  7456. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7457. {
  7458. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7459. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7460. }
  7461. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7462. {
  7463. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7464. }
  7465. #else /* !CONFG_FAIR_GROUP_SCHED */
  7466. static inline void free_fair_sched_group(struct task_group *tg)
  7467. {
  7468. }
  7469. static inline
  7470. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7471. {
  7472. return 1;
  7473. }
  7474. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7475. {
  7476. }
  7477. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7478. {
  7479. }
  7480. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7481. #ifdef CONFIG_RT_GROUP_SCHED
  7482. static void free_rt_sched_group(struct task_group *tg)
  7483. {
  7484. int i;
  7485. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7486. for_each_possible_cpu(i) {
  7487. if (tg->rt_rq)
  7488. kfree(tg->rt_rq[i]);
  7489. if (tg->rt_se)
  7490. kfree(tg->rt_se[i]);
  7491. }
  7492. kfree(tg->rt_rq);
  7493. kfree(tg->rt_se);
  7494. }
  7495. static
  7496. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7497. {
  7498. struct rt_rq *rt_rq;
  7499. struct sched_rt_entity *rt_se;
  7500. struct rq *rq;
  7501. int i;
  7502. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7503. if (!tg->rt_rq)
  7504. goto err;
  7505. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7506. if (!tg->rt_se)
  7507. goto err;
  7508. init_rt_bandwidth(&tg->rt_bandwidth,
  7509. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7510. for_each_possible_cpu(i) {
  7511. rq = cpu_rq(i);
  7512. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7513. GFP_KERNEL, cpu_to_node(i));
  7514. if (!rt_rq)
  7515. goto err;
  7516. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7517. GFP_KERNEL, cpu_to_node(i));
  7518. if (!rt_se)
  7519. goto err;
  7520. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7521. }
  7522. return 1;
  7523. err:
  7524. return 0;
  7525. }
  7526. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7527. {
  7528. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7529. &cpu_rq(cpu)->leaf_rt_rq_list);
  7530. }
  7531. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7532. {
  7533. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7534. }
  7535. #else /* !CONFIG_RT_GROUP_SCHED */
  7536. static inline void free_rt_sched_group(struct task_group *tg)
  7537. {
  7538. }
  7539. static inline
  7540. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7541. {
  7542. return 1;
  7543. }
  7544. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7545. {
  7546. }
  7547. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7548. {
  7549. }
  7550. #endif /* CONFIG_RT_GROUP_SCHED */
  7551. #ifdef CONFIG_GROUP_SCHED
  7552. static void free_sched_group(struct task_group *tg)
  7553. {
  7554. free_fair_sched_group(tg);
  7555. free_rt_sched_group(tg);
  7556. kfree(tg);
  7557. }
  7558. /* allocate runqueue etc for a new task group */
  7559. struct task_group *sched_create_group(struct task_group *parent)
  7560. {
  7561. struct task_group *tg;
  7562. unsigned long flags;
  7563. int i;
  7564. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7565. if (!tg)
  7566. return ERR_PTR(-ENOMEM);
  7567. if (!alloc_fair_sched_group(tg, parent))
  7568. goto err;
  7569. if (!alloc_rt_sched_group(tg, parent))
  7570. goto err;
  7571. spin_lock_irqsave(&task_group_lock, flags);
  7572. for_each_possible_cpu(i) {
  7573. register_fair_sched_group(tg, i);
  7574. register_rt_sched_group(tg, i);
  7575. }
  7576. list_add_rcu(&tg->list, &task_groups);
  7577. WARN_ON(!parent); /* root should already exist */
  7578. tg->parent = parent;
  7579. INIT_LIST_HEAD(&tg->children);
  7580. list_add_rcu(&tg->siblings, &parent->children);
  7581. spin_unlock_irqrestore(&task_group_lock, flags);
  7582. return tg;
  7583. err:
  7584. free_sched_group(tg);
  7585. return ERR_PTR(-ENOMEM);
  7586. }
  7587. /* rcu callback to free various structures associated with a task group */
  7588. static void free_sched_group_rcu(struct rcu_head *rhp)
  7589. {
  7590. /* now it should be safe to free those cfs_rqs */
  7591. free_sched_group(container_of(rhp, struct task_group, rcu));
  7592. }
  7593. /* Destroy runqueue etc associated with a task group */
  7594. void sched_destroy_group(struct task_group *tg)
  7595. {
  7596. unsigned long flags;
  7597. int i;
  7598. spin_lock_irqsave(&task_group_lock, flags);
  7599. for_each_possible_cpu(i) {
  7600. unregister_fair_sched_group(tg, i);
  7601. unregister_rt_sched_group(tg, i);
  7602. }
  7603. list_del_rcu(&tg->list);
  7604. list_del_rcu(&tg->siblings);
  7605. spin_unlock_irqrestore(&task_group_lock, flags);
  7606. /* wait for possible concurrent references to cfs_rqs complete */
  7607. call_rcu(&tg->rcu, free_sched_group_rcu);
  7608. }
  7609. /* change task's runqueue when it moves between groups.
  7610. * The caller of this function should have put the task in its new group
  7611. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7612. * reflect its new group.
  7613. */
  7614. void sched_move_task(struct task_struct *tsk)
  7615. {
  7616. int on_rq, running;
  7617. unsigned long flags;
  7618. struct rq *rq;
  7619. rq = task_rq_lock(tsk, &flags);
  7620. update_rq_clock(rq);
  7621. running = task_current(rq, tsk);
  7622. on_rq = tsk->se.on_rq;
  7623. if (on_rq)
  7624. dequeue_task(rq, tsk, 0);
  7625. if (unlikely(running))
  7626. tsk->sched_class->put_prev_task(rq, tsk);
  7627. set_task_rq(tsk, task_cpu(tsk));
  7628. #ifdef CONFIG_FAIR_GROUP_SCHED
  7629. if (tsk->sched_class->moved_group)
  7630. tsk->sched_class->moved_group(tsk);
  7631. #endif
  7632. if (unlikely(running))
  7633. tsk->sched_class->set_curr_task(rq);
  7634. if (on_rq)
  7635. enqueue_task(rq, tsk, 0);
  7636. task_rq_unlock(rq, &flags);
  7637. }
  7638. #endif /* CONFIG_GROUP_SCHED */
  7639. #ifdef CONFIG_FAIR_GROUP_SCHED
  7640. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7641. {
  7642. struct cfs_rq *cfs_rq = se->cfs_rq;
  7643. int on_rq;
  7644. on_rq = se->on_rq;
  7645. if (on_rq)
  7646. dequeue_entity(cfs_rq, se, 0);
  7647. se->load.weight = shares;
  7648. se->load.inv_weight = 0;
  7649. if (on_rq)
  7650. enqueue_entity(cfs_rq, se, 0);
  7651. }
  7652. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7653. {
  7654. struct cfs_rq *cfs_rq = se->cfs_rq;
  7655. struct rq *rq = cfs_rq->rq;
  7656. unsigned long flags;
  7657. spin_lock_irqsave(&rq->lock, flags);
  7658. __set_se_shares(se, shares);
  7659. spin_unlock_irqrestore(&rq->lock, flags);
  7660. }
  7661. static DEFINE_MUTEX(shares_mutex);
  7662. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7663. {
  7664. int i;
  7665. unsigned long flags;
  7666. /*
  7667. * We can't change the weight of the root cgroup.
  7668. */
  7669. if (!tg->se[0])
  7670. return -EINVAL;
  7671. if (shares < MIN_SHARES)
  7672. shares = MIN_SHARES;
  7673. else if (shares > MAX_SHARES)
  7674. shares = MAX_SHARES;
  7675. mutex_lock(&shares_mutex);
  7676. if (tg->shares == shares)
  7677. goto done;
  7678. spin_lock_irqsave(&task_group_lock, flags);
  7679. for_each_possible_cpu(i)
  7680. unregister_fair_sched_group(tg, i);
  7681. list_del_rcu(&tg->siblings);
  7682. spin_unlock_irqrestore(&task_group_lock, flags);
  7683. /* wait for any ongoing reference to this group to finish */
  7684. synchronize_sched();
  7685. /*
  7686. * Now we are free to modify the group's share on each cpu
  7687. * w/o tripping rebalance_share or load_balance_fair.
  7688. */
  7689. tg->shares = shares;
  7690. for_each_possible_cpu(i) {
  7691. /*
  7692. * force a rebalance
  7693. */
  7694. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7695. set_se_shares(tg->se[i], shares);
  7696. }
  7697. /*
  7698. * Enable load balance activity on this group, by inserting it back on
  7699. * each cpu's rq->leaf_cfs_rq_list.
  7700. */
  7701. spin_lock_irqsave(&task_group_lock, flags);
  7702. for_each_possible_cpu(i)
  7703. register_fair_sched_group(tg, i);
  7704. list_add_rcu(&tg->siblings, &tg->parent->children);
  7705. spin_unlock_irqrestore(&task_group_lock, flags);
  7706. done:
  7707. mutex_unlock(&shares_mutex);
  7708. return 0;
  7709. }
  7710. unsigned long sched_group_shares(struct task_group *tg)
  7711. {
  7712. return tg->shares;
  7713. }
  7714. #endif
  7715. #ifdef CONFIG_RT_GROUP_SCHED
  7716. /*
  7717. * Ensure that the real time constraints are schedulable.
  7718. */
  7719. static DEFINE_MUTEX(rt_constraints_mutex);
  7720. static unsigned long to_ratio(u64 period, u64 runtime)
  7721. {
  7722. if (runtime == RUNTIME_INF)
  7723. return 1ULL << 20;
  7724. return div64_u64(runtime << 20, period);
  7725. }
  7726. /* Must be called with tasklist_lock held */
  7727. static inline int tg_has_rt_tasks(struct task_group *tg)
  7728. {
  7729. struct task_struct *g, *p;
  7730. do_each_thread(g, p) {
  7731. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7732. return 1;
  7733. } while_each_thread(g, p);
  7734. return 0;
  7735. }
  7736. struct rt_schedulable_data {
  7737. struct task_group *tg;
  7738. u64 rt_period;
  7739. u64 rt_runtime;
  7740. };
  7741. static int tg_schedulable(struct task_group *tg, void *data)
  7742. {
  7743. struct rt_schedulable_data *d = data;
  7744. struct task_group *child;
  7745. unsigned long total, sum = 0;
  7746. u64 period, runtime;
  7747. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7748. runtime = tg->rt_bandwidth.rt_runtime;
  7749. if (tg == d->tg) {
  7750. period = d->rt_period;
  7751. runtime = d->rt_runtime;
  7752. }
  7753. #ifdef CONFIG_USER_SCHED
  7754. if (tg == &root_task_group) {
  7755. period = global_rt_period();
  7756. runtime = global_rt_runtime();
  7757. }
  7758. #endif
  7759. /*
  7760. * Cannot have more runtime than the period.
  7761. */
  7762. if (runtime > period && runtime != RUNTIME_INF)
  7763. return -EINVAL;
  7764. /*
  7765. * Ensure we don't starve existing RT tasks.
  7766. */
  7767. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7768. return -EBUSY;
  7769. total = to_ratio(period, runtime);
  7770. /*
  7771. * Nobody can have more than the global setting allows.
  7772. */
  7773. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7774. return -EINVAL;
  7775. /*
  7776. * The sum of our children's runtime should not exceed our own.
  7777. */
  7778. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7779. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7780. runtime = child->rt_bandwidth.rt_runtime;
  7781. if (child == d->tg) {
  7782. period = d->rt_period;
  7783. runtime = d->rt_runtime;
  7784. }
  7785. sum += to_ratio(period, runtime);
  7786. }
  7787. if (sum > total)
  7788. return -EINVAL;
  7789. return 0;
  7790. }
  7791. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7792. {
  7793. struct rt_schedulable_data data = {
  7794. .tg = tg,
  7795. .rt_period = period,
  7796. .rt_runtime = runtime,
  7797. };
  7798. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7799. }
  7800. static int tg_set_bandwidth(struct task_group *tg,
  7801. u64 rt_period, u64 rt_runtime)
  7802. {
  7803. int i, err = 0;
  7804. mutex_lock(&rt_constraints_mutex);
  7805. read_lock(&tasklist_lock);
  7806. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7807. if (err)
  7808. goto unlock;
  7809. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7810. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7811. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7812. for_each_possible_cpu(i) {
  7813. struct rt_rq *rt_rq = tg->rt_rq[i];
  7814. spin_lock(&rt_rq->rt_runtime_lock);
  7815. rt_rq->rt_runtime = rt_runtime;
  7816. spin_unlock(&rt_rq->rt_runtime_lock);
  7817. }
  7818. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7819. unlock:
  7820. read_unlock(&tasklist_lock);
  7821. mutex_unlock(&rt_constraints_mutex);
  7822. return err;
  7823. }
  7824. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7825. {
  7826. u64 rt_runtime, rt_period;
  7827. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7828. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7829. if (rt_runtime_us < 0)
  7830. rt_runtime = RUNTIME_INF;
  7831. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7832. }
  7833. long sched_group_rt_runtime(struct task_group *tg)
  7834. {
  7835. u64 rt_runtime_us;
  7836. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7837. return -1;
  7838. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7839. do_div(rt_runtime_us, NSEC_PER_USEC);
  7840. return rt_runtime_us;
  7841. }
  7842. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7843. {
  7844. u64 rt_runtime, rt_period;
  7845. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7846. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7847. if (rt_period == 0)
  7848. return -EINVAL;
  7849. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7850. }
  7851. long sched_group_rt_period(struct task_group *tg)
  7852. {
  7853. u64 rt_period_us;
  7854. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7855. do_div(rt_period_us, NSEC_PER_USEC);
  7856. return rt_period_us;
  7857. }
  7858. static int sched_rt_global_constraints(void)
  7859. {
  7860. u64 runtime, period;
  7861. int ret = 0;
  7862. if (sysctl_sched_rt_period <= 0)
  7863. return -EINVAL;
  7864. runtime = global_rt_runtime();
  7865. period = global_rt_period();
  7866. /*
  7867. * Sanity check on the sysctl variables.
  7868. */
  7869. if (runtime > period && runtime != RUNTIME_INF)
  7870. return -EINVAL;
  7871. mutex_lock(&rt_constraints_mutex);
  7872. read_lock(&tasklist_lock);
  7873. ret = __rt_schedulable(NULL, 0, 0);
  7874. read_unlock(&tasklist_lock);
  7875. mutex_unlock(&rt_constraints_mutex);
  7876. return ret;
  7877. }
  7878. #else /* !CONFIG_RT_GROUP_SCHED */
  7879. static int sched_rt_global_constraints(void)
  7880. {
  7881. unsigned long flags;
  7882. int i;
  7883. if (sysctl_sched_rt_period <= 0)
  7884. return -EINVAL;
  7885. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7886. for_each_possible_cpu(i) {
  7887. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7888. spin_lock(&rt_rq->rt_runtime_lock);
  7889. rt_rq->rt_runtime = global_rt_runtime();
  7890. spin_unlock(&rt_rq->rt_runtime_lock);
  7891. }
  7892. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7893. return 0;
  7894. }
  7895. #endif /* CONFIG_RT_GROUP_SCHED */
  7896. int sched_rt_handler(struct ctl_table *table, int write,
  7897. struct file *filp, void __user *buffer, size_t *lenp,
  7898. loff_t *ppos)
  7899. {
  7900. int ret;
  7901. int old_period, old_runtime;
  7902. static DEFINE_MUTEX(mutex);
  7903. mutex_lock(&mutex);
  7904. old_period = sysctl_sched_rt_period;
  7905. old_runtime = sysctl_sched_rt_runtime;
  7906. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7907. if (!ret && write) {
  7908. ret = sched_rt_global_constraints();
  7909. if (ret) {
  7910. sysctl_sched_rt_period = old_period;
  7911. sysctl_sched_rt_runtime = old_runtime;
  7912. } else {
  7913. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7914. def_rt_bandwidth.rt_period =
  7915. ns_to_ktime(global_rt_period());
  7916. }
  7917. }
  7918. mutex_unlock(&mutex);
  7919. return ret;
  7920. }
  7921. #ifdef CONFIG_CGROUP_SCHED
  7922. /* return corresponding task_group object of a cgroup */
  7923. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7924. {
  7925. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7926. struct task_group, css);
  7927. }
  7928. static struct cgroup_subsys_state *
  7929. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7930. {
  7931. struct task_group *tg, *parent;
  7932. if (!cgrp->parent) {
  7933. /* This is early initialization for the top cgroup */
  7934. return &init_task_group.css;
  7935. }
  7936. parent = cgroup_tg(cgrp->parent);
  7937. tg = sched_create_group(parent);
  7938. if (IS_ERR(tg))
  7939. return ERR_PTR(-ENOMEM);
  7940. return &tg->css;
  7941. }
  7942. static void
  7943. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7944. {
  7945. struct task_group *tg = cgroup_tg(cgrp);
  7946. sched_destroy_group(tg);
  7947. }
  7948. static int
  7949. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7950. struct task_struct *tsk)
  7951. {
  7952. #ifdef CONFIG_RT_GROUP_SCHED
  7953. /* Don't accept realtime tasks when there is no way for them to run */
  7954. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7955. return -EINVAL;
  7956. #else
  7957. /* We don't support RT-tasks being in separate groups */
  7958. if (tsk->sched_class != &fair_sched_class)
  7959. return -EINVAL;
  7960. #endif
  7961. return 0;
  7962. }
  7963. static void
  7964. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7965. struct cgroup *old_cont, struct task_struct *tsk)
  7966. {
  7967. sched_move_task(tsk);
  7968. }
  7969. #ifdef CONFIG_FAIR_GROUP_SCHED
  7970. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7971. u64 shareval)
  7972. {
  7973. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7974. }
  7975. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7976. {
  7977. struct task_group *tg = cgroup_tg(cgrp);
  7978. return (u64) tg->shares;
  7979. }
  7980. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7981. #ifdef CONFIG_RT_GROUP_SCHED
  7982. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7983. s64 val)
  7984. {
  7985. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7986. }
  7987. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7988. {
  7989. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7990. }
  7991. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7992. u64 rt_period_us)
  7993. {
  7994. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7995. }
  7996. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7997. {
  7998. return sched_group_rt_period(cgroup_tg(cgrp));
  7999. }
  8000. #endif /* CONFIG_RT_GROUP_SCHED */
  8001. static struct cftype cpu_files[] = {
  8002. #ifdef CONFIG_FAIR_GROUP_SCHED
  8003. {
  8004. .name = "shares",
  8005. .read_u64 = cpu_shares_read_u64,
  8006. .write_u64 = cpu_shares_write_u64,
  8007. },
  8008. #endif
  8009. #ifdef CONFIG_RT_GROUP_SCHED
  8010. {
  8011. .name = "rt_runtime_us",
  8012. .read_s64 = cpu_rt_runtime_read,
  8013. .write_s64 = cpu_rt_runtime_write,
  8014. },
  8015. {
  8016. .name = "rt_period_us",
  8017. .read_u64 = cpu_rt_period_read_uint,
  8018. .write_u64 = cpu_rt_period_write_uint,
  8019. },
  8020. #endif
  8021. };
  8022. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8023. {
  8024. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8025. }
  8026. struct cgroup_subsys cpu_cgroup_subsys = {
  8027. .name = "cpu",
  8028. .create = cpu_cgroup_create,
  8029. .destroy = cpu_cgroup_destroy,
  8030. .can_attach = cpu_cgroup_can_attach,
  8031. .attach = cpu_cgroup_attach,
  8032. .populate = cpu_cgroup_populate,
  8033. .subsys_id = cpu_cgroup_subsys_id,
  8034. .early_init = 1,
  8035. };
  8036. #endif /* CONFIG_CGROUP_SCHED */
  8037. #ifdef CONFIG_CGROUP_CPUACCT
  8038. /*
  8039. * CPU accounting code for task groups.
  8040. *
  8041. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8042. * (balbir@in.ibm.com).
  8043. */
  8044. /* track cpu usage of a group of tasks and its child groups */
  8045. struct cpuacct {
  8046. struct cgroup_subsys_state css;
  8047. /* cpuusage holds pointer to a u64-type object on every cpu */
  8048. u64 *cpuusage;
  8049. struct cpuacct *parent;
  8050. };
  8051. struct cgroup_subsys cpuacct_subsys;
  8052. /* return cpu accounting group corresponding to this container */
  8053. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8054. {
  8055. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8056. struct cpuacct, css);
  8057. }
  8058. /* return cpu accounting group to which this task belongs */
  8059. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8060. {
  8061. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8062. struct cpuacct, css);
  8063. }
  8064. /* create a new cpu accounting group */
  8065. static struct cgroup_subsys_state *cpuacct_create(
  8066. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8067. {
  8068. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8069. if (!ca)
  8070. return ERR_PTR(-ENOMEM);
  8071. ca->cpuusage = alloc_percpu(u64);
  8072. if (!ca->cpuusage) {
  8073. kfree(ca);
  8074. return ERR_PTR(-ENOMEM);
  8075. }
  8076. if (cgrp->parent)
  8077. ca->parent = cgroup_ca(cgrp->parent);
  8078. return &ca->css;
  8079. }
  8080. /* destroy an existing cpu accounting group */
  8081. static void
  8082. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8083. {
  8084. struct cpuacct *ca = cgroup_ca(cgrp);
  8085. free_percpu(ca->cpuusage);
  8086. kfree(ca);
  8087. }
  8088. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8089. {
  8090. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8091. u64 data;
  8092. #ifndef CONFIG_64BIT
  8093. /*
  8094. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8095. */
  8096. spin_lock_irq(&cpu_rq(cpu)->lock);
  8097. data = *cpuusage;
  8098. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8099. #else
  8100. data = *cpuusage;
  8101. #endif
  8102. return data;
  8103. }
  8104. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8105. {
  8106. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8107. #ifndef CONFIG_64BIT
  8108. /*
  8109. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8110. */
  8111. spin_lock_irq(&cpu_rq(cpu)->lock);
  8112. *cpuusage = val;
  8113. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8114. #else
  8115. *cpuusage = val;
  8116. #endif
  8117. }
  8118. /* return total cpu usage (in nanoseconds) of a group */
  8119. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8120. {
  8121. struct cpuacct *ca = cgroup_ca(cgrp);
  8122. u64 totalcpuusage = 0;
  8123. int i;
  8124. for_each_present_cpu(i)
  8125. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8126. return totalcpuusage;
  8127. }
  8128. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8129. u64 reset)
  8130. {
  8131. struct cpuacct *ca = cgroup_ca(cgrp);
  8132. int err = 0;
  8133. int i;
  8134. if (reset) {
  8135. err = -EINVAL;
  8136. goto out;
  8137. }
  8138. for_each_present_cpu(i)
  8139. cpuacct_cpuusage_write(ca, i, 0);
  8140. out:
  8141. return err;
  8142. }
  8143. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8144. struct seq_file *m)
  8145. {
  8146. struct cpuacct *ca = cgroup_ca(cgroup);
  8147. u64 percpu;
  8148. int i;
  8149. for_each_present_cpu(i) {
  8150. percpu = cpuacct_cpuusage_read(ca, i);
  8151. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8152. }
  8153. seq_printf(m, "\n");
  8154. return 0;
  8155. }
  8156. static struct cftype files[] = {
  8157. {
  8158. .name = "usage",
  8159. .read_u64 = cpuusage_read,
  8160. .write_u64 = cpuusage_write,
  8161. },
  8162. {
  8163. .name = "usage_percpu",
  8164. .read_seq_string = cpuacct_percpu_seq_read,
  8165. },
  8166. };
  8167. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8168. {
  8169. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8170. }
  8171. /*
  8172. * charge this task's execution time to its accounting group.
  8173. *
  8174. * called with rq->lock held.
  8175. */
  8176. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8177. {
  8178. struct cpuacct *ca;
  8179. int cpu;
  8180. if (!cpuacct_subsys.active)
  8181. return;
  8182. cpu = task_cpu(tsk);
  8183. ca = task_ca(tsk);
  8184. for (; ca; ca = ca->parent) {
  8185. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8186. *cpuusage += cputime;
  8187. }
  8188. }
  8189. struct cgroup_subsys cpuacct_subsys = {
  8190. .name = "cpuacct",
  8191. .create = cpuacct_create,
  8192. .destroy = cpuacct_destroy,
  8193. .populate = cpuacct_populate,
  8194. .subsys_id = cpuacct_subsys_id,
  8195. };
  8196. #endif /* CONFIG_CGROUP_CPUACCT */