kvm_main.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #define CREATE_TRACE_POINTS
  52. #include <trace/events/kvm.h>
  53. MODULE_AUTHOR("Qumranet");
  54. MODULE_LICENSE("GPL");
  55. /*
  56. * Ordering of locks:
  57. *
  58. * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
  59. */
  60. DEFINE_SPINLOCK(kvm_lock);
  61. LIST_HEAD(vm_list);
  62. static cpumask_var_t cpus_hardware_enabled;
  63. struct kmem_cache *kvm_vcpu_cache;
  64. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  65. static __read_mostly struct preempt_ops kvm_preempt_ops;
  66. struct dentry *kvm_debugfs_dir;
  67. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  68. unsigned long arg);
  69. static bool kvm_rebooting;
  70. static bool largepages_enabled = true;
  71. inline int kvm_is_mmio_pfn(pfn_t pfn)
  72. {
  73. if (pfn_valid(pfn)) {
  74. struct page *page = compound_head(pfn_to_page(pfn));
  75. return PageReserved(page);
  76. }
  77. return true;
  78. }
  79. /*
  80. * Switches to specified vcpu, until a matching vcpu_put()
  81. */
  82. void vcpu_load(struct kvm_vcpu *vcpu)
  83. {
  84. int cpu;
  85. mutex_lock(&vcpu->mutex);
  86. cpu = get_cpu();
  87. preempt_notifier_register(&vcpu->preempt_notifier);
  88. kvm_arch_vcpu_load(vcpu, cpu);
  89. put_cpu();
  90. }
  91. void vcpu_put(struct kvm_vcpu *vcpu)
  92. {
  93. preempt_disable();
  94. kvm_arch_vcpu_put(vcpu);
  95. preempt_notifier_unregister(&vcpu->preempt_notifier);
  96. preempt_enable();
  97. mutex_unlock(&vcpu->mutex);
  98. }
  99. static void ack_flush(void *_completed)
  100. {
  101. }
  102. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  103. {
  104. int i, cpu, me;
  105. cpumask_var_t cpus;
  106. bool called = true;
  107. struct kvm_vcpu *vcpu;
  108. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  109. spin_lock(&kvm->requests_lock);
  110. me = smp_processor_id();
  111. kvm_for_each_vcpu(i, vcpu, kvm) {
  112. if (test_and_set_bit(req, &vcpu->requests))
  113. continue;
  114. cpu = vcpu->cpu;
  115. if (cpus != NULL && cpu != -1 && cpu != me)
  116. cpumask_set_cpu(cpu, cpus);
  117. }
  118. if (unlikely(cpus == NULL))
  119. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  120. else if (!cpumask_empty(cpus))
  121. smp_call_function_many(cpus, ack_flush, NULL, 1);
  122. else
  123. called = false;
  124. spin_unlock(&kvm->requests_lock);
  125. free_cpumask_var(cpus);
  126. return called;
  127. }
  128. void kvm_flush_remote_tlbs(struct kvm *kvm)
  129. {
  130. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  131. ++kvm->stat.remote_tlb_flush;
  132. }
  133. void kvm_reload_remote_mmus(struct kvm *kvm)
  134. {
  135. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  136. }
  137. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  138. {
  139. struct page *page;
  140. int r;
  141. mutex_init(&vcpu->mutex);
  142. vcpu->cpu = -1;
  143. vcpu->kvm = kvm;
  144. vcpu->vcpu_id = id;
  145. init_waitqueue_head(&vcpu->wq);
  146. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  147. if (!page) {
  148. r = -ENOMEM;
  149. goto fail;
  150. }
  151. vcpu->run = page_address(page);
  152. r = kvm_arch_vcpu_init(vcpu);
  153. if (r < 0)
  154. goto fail_free_run;
  155. return 0;
  156. fail_free_run:
  157. free_page((unsigned long)vcpu->run);
  158. fail:
  159. return r;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  162. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  163. {
  164. kvm_arch_vcpu_uninit(vcpu);
  165. free_page((unsigned long)vcpu->run);
  166. }
  167. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  168. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  169. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  170. {
  171. return container_of(mn, struct kvm, mmu_notifier);
  172. }
  173. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  174. struct mm_struct *mm,
  175. unsigned long address)
  176. {
  177. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  178. int need_tlb_flush;
  179. /*
  180. * When ->invalidate_page runs, the linux pte has been zapped
  181. * already but the page is still allocated until
  182. * ->invalidate_page returns. So if we increase the sequence
  183. * here the kvm page fault will notice if the spte can't be
  184. * established because the page is going to be freed. If
  185. * instead the kvm page fault establishes the spte before
  186. * ->invalidate_page runs, kvm_unmap_hva will release it
  187. * before returning.
  188. *
  189. * The sequence increase only need to be seen at spin_unlock
  190. * time, and not at spin_lock time.
  191. *
  192. * Increasing the sequence after the spin_unlock would be
  193. * unsafe because the kvm page fault could then establish the
  194. * pte after kvm_unmap_hva returned, without noticing the page
  195. * is going to be freed.
  196. */
  197. spin_lock(&kvm->mmu_lock);
  198. kvm->mmu_notifier_seq++;
  199. need_tlb_flush = kvm_unmap_hva(kvm, address);
  200. spin_unlock(&kvm->mmu_lock);
  201. /* we've to flush the tlb before the pages can be freed */
  202. if (need_tlb_flush)
  203. kvm_flush_remote_tlbs(kvm);
  204. }
  205. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  206. struct mm_struct *mm,
  207. unsigned long address,
  208. pte_t pte)
  209. {
  210. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  211. spin_lock(&kvm->mmu_lock);
  212. kvm->mmu_notifier_seq++;
  213. kvm_set_spte_hva(kvm, address, pte);
  214. spin_unlock(&kvm->mmu_lock);
  215. }
  216. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  217. struct mm_struct *mm,
  218. unsigned long start,
  219. unsigned long end)
  220. {
  221. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  222. int need_tlb_flush = 0;
  223. spin_lock(&kvm->mmu_lock);
  224. /*
  225. * The count increase must become visible at unlock time as no
  226. * spte can be established without taking the mmu_lock and
  227. * count is also read inside the mmu_lock critical section.
  228. */
  229. kvm->mmu_notifier_count++;
  230. for (; start < end; start += PAGE_SIZE)
  231. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  232. spin_unlock(&kvm->mmu_lock);
  233. /* we've to flush the tlb before the pages can be freed */
  234. if (need_tlb_flush)
  235. kvm_flush_remote_tlbs(kvm);
  236. }
  237. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  238. struct mm_struct *mm,
  239. unsigned long start,
  240. unsigned long end)
  241. {
  242. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  243. spin_lock(&kvm->mmu_lock);
  244. /*
  245. * This sequence increase will notify the kvm page fault that
  246. * the page that is going to be mapped in the spte could have
  247. * been freed.
  248. */
  249. kvm->mmu_notifier_seq++;
  250. /*
  251. * The above sequence increase must be visible before the
  252. * below count decrease but both values are read by the kvm
  253. * page fault under mmu_lock spinlock so we don't need to add
  254. * a smb_wmb() here in between the two.
  255. */
  256. kvm->mmu_notifier_count--;
  257. spin_unlock(&kvm->mmu_lock);
  258. BUG_ON(kvm->mmu_notifier_count < 0);
  259. }
  260. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  261. struct mm_struct *mm,
  262. unsigned long address)
  263. {
  264. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  265. int young;
  266. spin_lock(&kvm->mmu_lock);
  267. young = kvm_age_hva(kvm, address);
  268. spin_unlock(&kvm->mmu_lock);
  269. if (young)
  270. kvm_flush_remote_tlbs(kvm);
  271. return young;
  272. }
  273. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  274. struct mm_struct *mm)
  275. {
  276. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  277. kvm_arch_flush_shadow(kvm);
  278. }
  279. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  280. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  281. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  282. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  283. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  284. .change_pte = kvm_mmu_notifier_change_pte,
  285. .release = kvm_mmu_notifier_release,
  286. };
  287. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  288. static struct kvm *kvm_create_vm(void)
  289. {
  290. struct kvm *kvm = kvm_arch_create_vm();
  291. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  292. struct page *page;
  293. #endif
  294. if (IS_ERR(kvm))
  295. goto out;
  296. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  297. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  298. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  299. #endif
  300. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  301. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  302. if (!page) {
  303. kfree(kvm);
  304. return ERR_PTR(-ENOMEM);
  305. }
  306. kvm->coalesced_mmio_ring =
  307. (struct kvm_coalesced_mmio_ring *)page_address(page);
  308. #endif
  309. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  310. {
  311. int err;
  312. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  313. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  314. if (err) {
  315. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  316. put_page(page);
  317. #endif
  318. kfree(kvm);
  319. return ERR_PTR(err);
  320. }
  321. }
  322. #endif
  323. kvm->mm = current->mm;
  324. atomic_inc(&kvm->mm->mm_count);
  325. spin_lock_init(&kvm->mmu_lock);
  326. spin_lock_init(&kvm->requests_lock);
  327. kvm_io_bus_init(&kvm->pio_bus);
  328. kvm_eventfd_init(kvm);
  329. mutex_init(&kvm->lock);
  330. mutex_init(&kvm->irq_lock);
  331. kvm_io_bus_init(&kvm->mmio_bus);
  332. init_rwsem(&kvm->slots_lock);
  333. atomic_set(&kvm->users_count, 1);
  334. spin_lock(&kvm_lock);
  335. list_add(&kvm->vm_list, &vm_list);
  336. spin_unlock(&kvm_lock);
  337. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  338. kvm_coalesced_mmio_init(kvm);
  339. #endif
  340. out:
  341. return kvm;
  342. }
  343. /*
  344. * Free any memory in @free but not in @dont.
  345. */
  346. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  347. struct kvm_memory_slot *dont)
  348. {
  349. int i;
  350. if (!dont || free->rmap != dont->rmap)
  351. vfree(free->rmap);
  352. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  353. vfree(free->dirty_bitmap);
  354. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  355. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  356. vfree(free->lpage_info[i]);
  357. free->lpage_info[i] = NULL;
  358. }
  359. }
  360. free->npages = 0;
  361. free->dirty_bitmap = NULL;
  362. free->rmap = NULL;
  363. }
  364. void kvm_free_physmem(struct kvm *kvm)
  365. {
  366. int i;
  367. for (i = 0; i < kvm->nmemslots; ++i)
  368. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  369. }
  370. static void kvm_destroy_vm(struct kvm *kvm)
  371. {
  372. struct mm_struct *mm = kvm->mm;
  373. kvm_arch_sync_events(kvm);
  374. spin_lock(&kvm_lock);
  375. list_del(&kvm->vm_list);
  376. spin_unlock(&kvm_lock);
  377. kvm_free_irq_routing(kvm);
  378. kvm_io_bus_destroy(&kvm->pio_bus);
  379. kvm_io_bus_destroy(&kvm->mmio_bus);
  380. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  381. if (kvm->coalesced_mmio_ring != NULL)
  382. free_page((unsigned long)kvm->coalesced_mmio_ring);
  383. #endif
  384. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  385. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  386. #else
  387. kvm_arch_flush_shadow(kvm);
  388. #endif
  389. kvm_arch_destroy_vm(kvm);
  390. mmdrop(mm);
  391. }
  392. void kvm_get_kvm(struct kvm *kvm)
  393. {
  394. atomic_inc(&kvm->users_count);
  395. }
  396. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  397. void kvm_put_kvm(struct kvm *kvm)
  398. {
  399. if (atomic_dec_and_test(&kvm->users_count))
  400. kvm_destroy_vm(kvm);
  401. }
  402. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  403. static int kvm_vm_release(struct inode *inode, struct file *filp)
  404. {
  405. struct kvm *kvm = filp->private_data;
  406. kvm_irqfd_release(kvm);
  407. kvm_put_kvm(kvm);
  408. return 0;
  409. }
  410. /*
  411. * Allocate some memory and give it an address in the guest physical address
  412. * space.
  413. *
  414. * Discontiguous memory is allowed, mostly for framebuffers.
  415. *
  416. * Must be called holding mmap_sem for write.
  417. */
  418. int __kvm_set_memory_region(struct kvm *kvm,
  419. struct kvm_userspace_memory_region *mem,
  420. int user_alloc)
  421. {
  422. int r;
  423. gfn_t base_gfn;
  424. unsigned long npages;
  425. unsigned long i;
  426. struct kvm_memory_slot *memslot;
  427. struct kvm_memory_slot old, new;
  428. r = -EINVAL;
  429. /* General sanity checks */
  430. if (mem->memory_size & (PAGE_SIZE - 1))
  431. goto out;
  432. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  433. goto out;
  434. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  435. goto out;
  436. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  437. goto out;
  438. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  439. goto out;
  440. memslot = &kvm->memslots[mem->slot];
  441. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  442. npages = mem->memory_size >> PAGE_SHIFT;
  443. if (!npages)
  444. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  445. new = old = *memslot;
  446. new.base_gfn = base_gfn;
  447. new.npages = npages;
  448. new.flags = mem->flags;
  449. /* Disallow changing a memory slot's size. */
  450. r = -EINVAL;
  451. if (npages && old.npages && npages != old.npages)
  452. goto out_free;
  453. /* Check for overlaps */
  454. r = -EEXIST;
  455. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  456. struct kvm_memory_slot *s = &kvm->memslots[i];
  457. if (s == memslot || !s->npages)
  458. continue;
  459. if (!((base_gfn + npages <= s->base_gfn) ||
  460. (base_gfn >= s->base_gfn + s->npages)))
  461. goto out_free;
  462. }
  463. /* Free page dirty bitmap if unneeded */
  464. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  465. new.dirty_bitmap = NULL;
  466. r = -ENOMEM;
  467. /* Allocate if a slot is being created */
  468. #ifndef CONFIG_S390
  469. if (npages && !new.rmap) {
  470. new.rmap = vmalloc(npages * sizeof(struct page *));
  471. if (!new.rmap)
  472. goto out_free;
  473. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  474. new.user_alloc = user_alloc;
  475. /*
  476. * hva_to_rmmap() serialzies with the mmu_lock and to be
  477. * safe it has to ignore memslots with !user_alloc &&
  478. * !userspace_addr.
  479. */
  480. if (user_alloc)
  481. new.userspace_addr = mem->userspace_addr;
  482. else
  483. new.userspace_addr = 0;
  484. }
  485. if (!npages)
  486. goto skip_lpage;
  487. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  488. unsigned long ugfn;
  489. unsigned long j;
  490. int lpages;
  491. int level = i + 2;
  492. /* Avoid unused variable warning if no large pages */
  493. (void)level;
  494. if (new.lpage_info[i])
  495. continue;
  496. lpages = 1 + (base_gfn + npages - 1) /
  497. KVM_PAGES_PER_HPAGE(level);
  498. lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
  499. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  500. if (!new.lpage_info[i])
  501. goto out_free;
  502. memset(new.lpage_info[i], 0,
  503. lpages * sizeof(*new.lpage_info[i]));
  504. if (base_gfn % KVM_PAGES_PER_HPAGE(level))
  505. new.lpage_info[i][0].write_count = 1;
  506. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
  507. new.lpage_info[i][lpages - 1].write_count = 1;
  508. ugfn = new.userspace_addr >> PAGE_SHIFT;
  509. /*
  510. * If the gfn and userspace address are not aligned wrt each
  511. * other, or if explicitly asked to, disable large page
  512. * support for this slot
  513. */
  514. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  515. !largepages_enabled)
  516. for (j = 0; j < lpages; ++j)
  517. new.lpage_info[i][j].write_count = 1;
  518. }
  519. skip_lpage:
  520. /* Allocate page dirty bitmap if needed */
  521. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  522. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  523. new.dirty_bitmap = vmalloc(dirty_bytes);
  524. if (!new.dirty_bitmap)
  525. goto out_free;
  526. memset(new.dirty_bitmap, 0, dirty_bytes);
  527. if (old.npages)
  528. kvm_arch_flush_shadow(kvm);
  529. }
  530. #else /* not defined CONFIG_S390 */
  531. new.user_alloc = user_alloc;
  532. if (user_alloc)
  533. new.userspace_addr = mem->userspace_addr;
  534. #endif /* not defined CONFIG_S390 */
  535. if (!npages)
  536. kvm_arch_flush_shadow(kvm);
  537. spin_lock(&kvm->mmu_lock);
  538. if (mem->slot >= kvm->nmemslots)
  539. kvm->nmemslots = mem->slot + 1;
  540. *memslot = new;
  541. spin_unlock(&kvm->mmu_lock);
  542. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  543. if (r) {
  544. spin_lock(&kvm->mmu_lock);
  545. *memslot = old;
  546. spin_unlock(&kvm->mmu_lock);
  547. goto out_free;
  548. }
  549. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  550. /* Slot deletion case: we have to update the current slot */
  551. spin_lock(&kvm->mmu_lock);
  552. if (!npages)
  553. *memslot = old;
  554. spin_unlock(&kvm->mmu_lock);
  555. #ifdef CONFIG_DMAR
  556. /* map the pages in iommu page table */
  557. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  558. if (r)
  559. goto out;
  560. #endif
  561. return 0;
  562. out_free:
  563. kvm_free_physmem_slot(&new, &old);
  564. out:
  565. return r;
  566. }
  567. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  568. int kvm_set_memory_region(struct kvm *kvm,
  569. struct kvm_userspace_memory_region *mem,
  570. int user_alloc)
  571. {
  572. int r;
  573. down_write(&kvm->slots_lock);
  574. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  575. up_write(&kvm->slots_lock);
  576. return r;
  577. }
  578. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  579. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  580. struct
  581. kvm_userspace_memory_region *mem,
  582. int user_alloc)
  583. {
  584. if (mem->slot >= KVM_MEMORY_SLOTS)
  585. return -EINVAL;
  586. return kvm_set_memory_region(kvm, mem, user_alloc);
  587. }
  588. int kvm_get_dirty_log(struct kvm *kvm,
  589. struct kvm_dirty_log *log, int *is_dirty)
  590. {
  591. struct kvm_memory_slot *memslot;
  592. int r, i;
  593. int n;
  594. unsigned long any = 0;
  595. r = -EINVAL;
  596. if (log->slot >= KVM_MEMORY_SLOTS)
  597. goto out;
  598. memslot = &kvm->memslots[log->slot];
  599. r = -ENOENT;
  600. if (!memslot->dirty_bitmap)
  601. goto out;
  602. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  603. for (i = 0; !any && i < n/sizeof(long); ++i)
  604. any = memslot->dirty_bitmap[i];
  605. r = -EFAULT;
  606. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  607. goto out;
  608. if (any)
  609. *is_dirty = 1;
  610. r = 0;
  611. out:
  612. return r;
  613. }
  614. void kvm_disable_largepages(void)
  615. {
  616. largepages_enabled = false;
  617. }
  618. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  619. int is_error_page(struct page *page)
  620. {
  621. return page == bad_page;
  622. }
  623. EXPORT_SYMBOL_GPL(is_error_page);
  624. int is_error_pfn(pfn_t pfn)
  625. {
  626. return pfn == bad_pfn;
  627. }
  628. EXPORT_SYMBOL_GPL(is_error_pfn);
  629. static inline unsigned long bad_hva(void)
  630. {
  631. return PAGE_OFFSET;
  632. }
  633. int kvm_is_error_hva(unsigned long addr)
  634. {
  635. return addr == bad_hva();
  636. }
  637. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  638. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  639. {
  640. int i;
  641. for (i = 0; i < kvm->nmemslots; ++i) {
  642. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  643. if (gfn >= memslot->base_gfn
  644. && gfn < memslot->base_gfn + memslot->npages)
  645. return memslot;
  646. }
  647. return NULL;
  648. }
  649. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  650. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  651. {
  652. gfn = unalias_gfn(kvm, gfn);
  653. return gfn_to_memslot_unaliased(kvm, gfn);
  654. }
  655. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  656. {
  657. int i;
  658. gfn = unalias_gfn(kvm, gfn);
  659. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  660. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  661. if (gfn >= memslot->base_gfn
  662. && gfn < memslot->base_gfn + memslot->npages)
  663. return 1;
  664. }
  665. return 0;
  666. }
  667. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  668. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  669. {
  670. struct kvm_memory_slot *slot;
  671. gfn = unalias_gfn(kvm, gfn);
  672. slot = gfn_to_memslot_unaliased(kvm, gfn);
  673. if (!slot)
  674. return bad_hva();
  675. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  676. }
  677. EXPORT_SYMBOL_GPL(gfn_to_hva);
  678. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  679. {
  680. struct page *page[1];
  681. unsigned long addr;
  682. int npages;
  683. pfn_t pfn;
  684. might_sleep();
  685. addr = gfn_to_hva(kvm, gfn);
  686. if (kvm_is_error_hva(addr)) {
  687. get_page(bad_page);
  688. return page_to_pfn(bad_page);
  689. }
  690. npages = get_user_pages_fast(addr, 1, 1, page);
  691. if (unlikely(npages != 1)) {
  692. struct vm_area_struct *vma;
  693. down_read(&current->mm->mmap_sem);
  694. vma = find_vma(current->mm, addr);
  695. if (vma == NULL || addr < vma->vm_start ||
  696. !(vma->vm_flags & VM_PFNMAP)) {
  697. up_read(&current->mm->mmap_sem);
  698. get_page(bad_page);
  699. return page_to_pfn(bad_page);
  700. }
  701. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  702. up_read(&current->mm->mmap_sem);
  703. BUG_ON(!kvm_is_mmio_pfn(pfn));
  704. } else
  705. pfn = page_to_pfn(page[0]);
  706. return pfn;
  707. }
  708. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  709. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  710. {
  711. pfn_t pfn;
  712. pfn = gfn_to_pfn(kvm, gfn);
  713. if (!kvm_is_mmio_pfn(pfn))
  714. return pfn_to_page(pfn);
  715. WARN_ON(kvm_is_mmio_pfn(pfn));
  716. get_page(bad_page);
  717. return bad_page;
  718. }
  719. EXPORT_SYMBOL_GPL(gfn_to_page);
  720. void kvm_release_page_clean(struct page *page)
  721. {
  722. kvm_release_pfn_clean(page_to_pfn(page));
  723. }
  724. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  725. void kvm_release_pfn_clean(pfn_t pfn)
  726. {
  727. if (!kvm_is_mmio_pfn(pfn))
  728. put_page(pfn_to_page(pfn));
  729. }
  730. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  731. void kvm_release_page_dirty(struct page *page)
  732. {
  733. kvm_release_pfn_dirty(page_to_pfn(page));
  734. }
  735. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  736. void kvm_release_pfn_dirty(pfn_t pfn)
  737. {
  738. kvm_set_pfn_dirty(pfn);
  739. kvm_release_pfn_clean(pfn);
  740. }
  741. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  742. void kvm_set_page_dirty(struct page *page)
  743. {
  744. kvm_set_pfn_dirty(page_to_pfn(page));
  745. }
  746. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  747. void kvm_set_pfn_dirty(pfn_t pfn)
  748. {
  749. if (!kvm_is_mmio_pfn(pfn)) {
  750. struct page *page = pfn_to_page(pfn);
  751. if (!PageReserved(page))
  752. SetPageDirty(page);
  753. }
  754. }
  755. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  756. void kvm_set_pfn_accessed(pfn_t pfn)
  757. {
  758. if (!kvm_is_mmio_pfn(pfn))
  759. mark_page_accessed(pfn_to_page(pfn));
  760. }
  761. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  762. void kvm_get_pfn(pfn_t pfn)
  763. {
  764. if (!kvm_is_mmio_pfn(pfn))
  765. get_page(pfn_to_page(pfn));
  766. }
  767. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  768. static int next_segment(unsigned long len, int offset)
  769. {
  770. if (len > PAGE_SIZE - offset)
  771. return PAGE_SIZE - offset;
  772. else
  773. return len;
  774. }
  775. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  776. int len)
  777. {
  778. int r;
  779. unsigned long addr;
  780. addr = gfn_to_hva(kvm, gfn);
  781. if (kvm_is_error_hva(addr))
  782. return -EFAULT;
  783. r = copy_from_user(data, (void __user *)addr + offset, len);
  784. if (r)
  785. return -EFAULT;
  786. return 0;
  787. }
  788. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  789. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  790. {
  791. gfn_t gfn = gpa >> PAGE_SHIFT;
  792. int seg;
  793. int offset = offset_in_page(gpa);
  794. int ret;
  795. while ((seg = next_segment(len, offset)) != 0) {
  796. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  797. if (ret < 0)
  798. return ret;
  799. offset = 0;
  800. len -= seg;
  801. data += seg;
  802. ++gfn;
  803. }
  804. return 0;
  805. }
  806. EXPORT_SYMBOL_GPL(kvm_read_guest);
  807. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  808. unsigned long len)
  809. {
  810. int r;
  811. unsigned long addr;
  812. gfn_t gfn = gpa >> PAGE_SHIFT;
  813. int offset = offset_in_page(gpa);
  814. addr = gfn_to_hva(kvm, gfn);
  815. if (kvm_is_error_hva(addr))
  816. return -EFAULT;
  817. pagefault_disable();
  818. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  819. pagefault_enable();
  820. if (r)
  821. return -EFAULT;
  822. return 0;
  823. }
  824. EXPORT_SYMBOL(kvm_read_guest_atomic);
  825. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  826. int offset, int len)
  827. {
  828. int r;
  829. unsigned long addr;
  830. addr = gfn_to_hva(kvm, gfn);
  831. if (kvm_is_error_hva(addr))
  832. return -EFAULT;
  833. r = copy_to_user((void __user *)addr + offset, data, len);
  834. if (r)
  835. return -EFAULT;
  836. mark_page_dirty(kvm, gfn);
  837. return 0;
  838. }
  839. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  840. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  841. unsigned long len)
  842. {
  843. gfn_t gfn = gpa >> PAGE_SHIFT;
  844. int seg;
  845. int offset = offset_in_page(gpa);
  846. int ret;
  847. while ((seg = next_segment(len, offset)) != 0) {
  848. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  849. if (ret < 0)
  850. return ret;
  851. offset = 0;
  852. len -= seg;
  853. data += seg;
  854. ++gfn;
  855. }
  856. return 0;
  857. }
  858. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  859. {
  860. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  861. }
  862. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  863. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  864. {
  865. gfn_t gfn = gpa >> PAGE_SHIFT;
  866. int seg;
  867. int offset = offset_in_page(gpa);
  868. int ret;
  869. while ((seg = next_segment(len, offset)) != 0) {
  870. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  871. if (ret < 0)
  872. return ret;
  873. offset = 0;
  874. len -= seg;
  875. ++gfn;
  876. }
  877. return 0;
  878. }
  879. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  880. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  881. {
  882. struct kvm_memory_slot *memslot;
  883. gfn = unalias_gfn(kvm, gfn);
  884. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  885. if (memslot && memslot->dirty_bitmap) {
  886. unsigned long rel_gfn = gfn - memslot->base_gfn;
  887. /* avoid RMW */
  888. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  889. set_bit(rel_gfn, memslot->dirty_bitmap);
  890. }
  891. }
  892. /*
  893. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  894. */
  895. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  896. {
  897. DEFINE_WAIT(wait);
  898. for (;;) {
  899. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  900. if (kvm_arch_vcpu_runnable(vcpu)) {
  901. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  902. break;
  903. }
  904. if (kvm_cpu_has_pending_timer(vcpu))
  905. break;
  906. if (signal_pending(current))
  907. break;
  908. schedule();
  909. }
  910. finish_wait(&vcpu->wq, &wait);
  911. }
  912. void kvm_resched(struct kvm_vcpu *vcpu)
  913. {
  914. if (!need_resched())
  915. return;
  916. cond_resched();
  917. }
  918. EXPORT_SYMBOL_GPL(kvm_resched);
  919. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  920. {
  921. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  922. struct page *page;
  923. if (vmf->pgoff == 0)
  924. page = virt_to_page(vcpu->run);
  925. #ifdef CONFIG_X86
  926. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  927. page = virt_to_page(vcpu->arch.pio_data);
  928. #endif
  929. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  930. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  931. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  932. #endif
  933. else
  934. return VM_FAULT_SIGBUS;
  935. get_page(page);
  936. vmf->page = page;
  937. return 0;
  938. }
  939. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  940. .fault = kvm_vcpu_fault,
  941. };
  942. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  943. {
  944. vma->vm_ops = &kvm_vcpu_vm_ops;
  945. return 0;
  946. }
  947. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  948. {
  949. struct kvm_vcpu *vcpu = filp->private_data;
  950. kvm_put_kvm(vcpu->kvm);
  951. return 0;
  952. }
  953. static struct file_operations kvm_vcpu_fops = {
  954. .release = kvm_vcpu_release,
  955. .unlocked_ioctl = kvm_vcpu_ioctl,
  956. .compat_ioctl = kvm_vcpu_ioctl,
  957. .mmap = kvm_vcpu_mmap,
  958. };
  959. /*
  960. * Allocates an inode for the vcpu.
  961. */
  962. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  963. {
  964. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  965. }
  966. /*
  967. * Creates some virtual cpus. Good luck creating more than one.
  968. */
  969. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  970. {
  971. int r;
  972. struct kvm_vcpu *vcpu, *v;
  973. vcpu = kvm_arch_vcpu_create(kvm, id);
  974. if (IS_ERR(vcpu))
  975. return PTR_ERR(vcpu);
  976. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  977. r = kvm_arch_vcpu_setup(vcpu);
  978. if (r)
  979. return r;
  980. mutex_lock(&kvm->lock);
  981. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  982. r = -EINVAL;
  983. goto vcpu_destroy;
  984. }
  985. kvm_for_each_vcpu(r, v, kvm)
  986. if (v->vcpu_id == id) {
  987. r = -EEXIST;
  988. goto vcpu_destroy;
  989. }
  990. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  991. /* Now it's all set up, let userspace reach it */
  992. kvm_get_kvm(kvm);
  993. r = create_vcpu_fd(vcpu);
  994. if (r < 0) {
  995. kvm_put_kvm(kvm);
  996. goto vcpu_destroy;
  997. }
  998. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  999. smp_wmb();
  1000. atomic_inc(&kvm->online_vcpus);
  1001. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1002. if (kvm->bsp_vcpu_id == id)
  1003. kvm->bsp_vcpu = vcpu;
  1004. #endif
  1005. mutex_unlock(&kvm->lock);
  1006. return r;
  1007. vcpu_destroy:
  1008. mutex_unlock(&kvm->lock);
  1009. kvm_arch_vcpu_destroy(vcpu);
  1010. return r;
  1011. }
  1012. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1013. {
  1014. if (sigset) {
  1015. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1016. vcpu->sigset_active = 1;
  1017. vcpu->sigset = *sigset;
  1018. } else
  1019. vcpu->sigset_active = 0;
  1020. return 0;
  1021. }
  1022. static long kvm_vcpu_ioctl(struct file *filp,
  1023. unsigned int ioctl, unsigned long arg)
  1024. {
  1025. struct kvm_vcpu *vcpu = filp->private_data;
  1026. void __user *argp = (void __user *)arg;
  1027. int r;
  1028. struct kvm_fpu *fpu = NULL;
  1029. struct kvm_sregs *kvm_sregs = NULL;
  1030. if (vcpu->kvm->mm != current->mm)
  1031. return -EIO;
  1032. switch (ioctl) {
  1033. case KVM_RUN:
  1034. r = -EINVAL;
  1035. if (arg)
  1036. goto out;
  1037. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1038. break;
  1039. case KVM_GET_REGS: {
  1040. struct kvm_regs *kvm_regs;
  1041. r = -ENOMEM;
  1042. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1043. if (!kvm_regs)
  1044. goto out;
  1045. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1046. if (r)
  1047. goto out_free1;
  1048. r = -EFAULT;
  1049. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1050. goto out_free1;
  1051. r = 0;
  1052. out_free1:
  1053. kfree(kvm_regs);
  1054. break;
  1055. }
  1056. case KVM_SET_REGS: {
  1057. struct kvm_regs *kvm_regs;
  1058. r = -ENOMEM;
  1059. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1060. if (!kvm_regs)
  1061. goto out;
  1062. r = -EFAULT;
  1063. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1064. goto out_free2;
  1065. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1066. if (r)
  1067. goto out_free2;
  1068. r = 0;
  1069. out_free2:
  1070. kfree(kvm_regs);
  1071. break;
  1072. }
  1073. case KVM_GET_SREGS: {
  1074. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1075. r = -ENOMEM;
  1076. if (!kvm_sregs)
  1077. goto out;
  1078. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1079. if (r)
  1080. goto out;
  1081. r = -EFAULT;
  1082. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1083. goto out;
  1084. r = 0;
  1085. break;
  1086. }
  1087. case KVM_SET_SREGS: {
  1088. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1089. r = -ENOMEM;
  1090. if (!kvm_sregs)
  1091. goto out;
  1092. r = -EFAULT;
  1093. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1094. goto out;
  1095. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1096. if (r)
  1097. goto out;
  1098. r = 0;
  1099. break;
  1100. }
  1101. case KVM_GET_MP_STATE: {
  1102. struct kvm_mp_state mp_state;
  1103. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1104. if (r)
  1105. goto out;
  1106. r = -EFAULT;
  1107. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1108. goto out;
  1109. r = 0;
  1110. break;
  1111. }
  1112. case KVM_SET_MP_STATE: {
  1113. struct kvm_mp_state mp_state;
  1114. r = -EFAULT;
  1115. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1116. goto out;
  1117. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1118. if (r)
  1119. goto out;
  1120. r = 0;
  1121. break;
  1122. }
  1123. case KVM_TRANSLATE: {
  1124. struct kvm_translation tr;
  1125. r = -EFAULT;
  1126. if (copy_from_user(&tr, argp, sizeof tr))
  1127. goto out;
  1128. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1129. if (r)
  1130. goto out;
  1131. r = -EFAULT;
  1132. if (copy_to_user(argp, &tr, sizeof tr))
  1133. goto out;
  1134. r = 0;
  1135. break;
  1136. }
  1137. case KVM_SET_GUEST_DEBUG: {
  1138. struct kvm_guest_debug dbg;
  1139. r = -EFAULT;
  1140. if (copy_from_user(&dbg, argp, sizeof dbg))
  1141. goto out;
  1142. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1143. if (r)
  1144. goto out;
  1145. r = 0;
  1146. break;
  1147. }
  1148. case KVM_SET_SIGNAL_MASK: {
  1149. struct kvm_signal_mask __user *sigmask_arg = argp;
  1150. struct kvm_signal_mask kvm_sigmask;
  1151. sigset_t sigset, *p;
  1152. p = NULL;
  1153. if (argp) {
  1154. r = -EFAULT;
  1155. if (copy_from_user(&kvm_sigmask, argp,
  1156. sizeof kvm_sigmask))
  1157. goto out;
  1158. r = -EINVAL;
  1159. if (kvm_sigmask.len != sizeof sigset)
  1160. goto out;
  1161. r = -EFAULT;
  1162. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1163. sizeof sigset))
  1164. goto out;
  1165. p = &sigset;
  1166. }
  1167. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1168. break;
  1169. }
  1170. case KVM_GET_FPU: {
  1171. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1172. r = -ENOMEM;
  1173. if (!fpu)
  1174. goto out;
  1175. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1176. if (r)
  1177. goto out;
  1178. r = -EFAULT;
  1179. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1180. goto out;
  1181. r = 0;
  1182. break;
  1183. }
  1184. case KVM_SET_FPU: {
  1185. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1186. r = -ENOMEM;
  1187. if (!fpu)
  1188. goto out;
  1189. r = -EFAULT;
  1190. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1191. goto out;
  1192. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1193. if (r)
  1194. goto out;
  1195. r = 0;
  1196. break;
  1197. }
  1198. default:
  1199. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1200. }
  1201. out:
  1202. kfree(fpu);
  1203. kfree(kvm_sregs);
  1204. return r;
  1205. }
  1206. static long kvm_vm_ioctl(struct file *filp,
  1207. unsigned int ioctl, unsigned long arg)
  1208. {
  1209. struct kvm *kvm = filp->private_data;
  1210. void __user *argp = (void __user *)arg;
  1211. int r;
  1212. if (kvm->mm != current->mm)
  1213. return -EIO;
  1214. switch (ioctl) {
  1215. case KVM_CREATE_VCPU:
  1216. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1217. if (r < 0)
  1218. goto out;
  1219. break;
  1220. case KVM_SET_USER_MEMORY_REGION: {
  1221. struct kvm_userspace_memory_region kvm_userspace_mem;
  1222. r = -EFAULT;
  1223. if (copy_from_user(&kvm_userspace_mem, argp,
  1224. sizeof kvm_userspace_mem))
  1225. goto out;
  1226. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1227. if (r)
  1228. goto out;
  1229. break;
  1230. }
  1231. case KVM_GET_DIRTY_LOG: {
  1232. struct kvm_dirty_log log;
  1233. r = -EFAULT;
  1234. if (copy_from_user(&log, argp, sizeof log))
  1235. goto out;
  1236. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1237. if (r)
  1238. goto out;
  1239. break;
  1240. }
  1241. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1242. case KVM_REGISTER_COALESCED_MMIO: {
  1243. struct kvm_coalesced_mmio_zone zone;
  1244. r = -EFAULT;
  1245. if (copy_from_user(&zone, argp, sizeof zone))
  1246. goto out;
  1247. r = -ENXIO;
  1248. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1249. if (r)
  1250. goto out;
  1251. r = 0;
  1252. break;
  1253. }
  1254. case KVM_UNREGISTER_COALESCED_MMIO: {
  1255. struct kvm_coalesced_mmio_zone zone;
  1256. r = -EFAULT;
  1257. if (copy_from_user(&zone, argp, sizeof zone))
  1258. goto out;
  1259. r = -ENXIO;
  1260. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1261. if (r)
  1262. goto out;
  1263. r = 0;
  1264. break;
  1265. }
  1266. #endif
  1267. case KVM_IRQFD: {
  1268. struct kvm_irqfd data;
  1269. r = -EFAULT;
  1270. if (copy_from_user(&data, argp, sizeof data))
  1271. goto out;
  1272. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1273. break;
  1274. }
  1275. case KVM_IOEVENTFD: {
  1276. struct kvm_ioeventfd data;
  1277. r = -EFAULT;
  1278. if (copy_from_user(&data, argp, sizeof data))
  1279. goto out;
  1280. r = kvm_ioeventfd(kvm, &data);
  1281. break;
  1282. }
  1283. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1284. case KVM_SET_BOOT_CPU_ID:
  1285. r = 0;
  1286. mutex_lock(&kvm->lock);
  1287. if (atomic_read(&kvm->online_vcpus) != 0)
  1288. r = -EBUSY;
  1289. else
  1290. kvm->bsp_vcpu_id = arg;
  1291. mutex_unlock(&kvm->lock);
  1292. break;
  1293. #endif
  1294. default:
  1295. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1296. if (r == -ENOTTY)
  1297. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1298. }
  1299. out:
  1300. return r;
  1301. }
  1302. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1303. {
  1304. struct page *page[1];
  1305. unsigned long addr;
  1306. int npages;
  1307. gfn_t gfn = vmf->pgoff;
  1308. struct kvm *kvm = vma->vm_file->private_data;
  1309. addr = gfn_to_hva(kvm, gfn);
  1310. if (kvm_is_error_hva(addr))
  1311. return VM_FAULT_SIGBUS;
  1312. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1313. NULL);
  1314. if (unlikely(npages != 1))
  1315. return VM_FAULT_SIGBUS;
  1316. vmf->page = page[0];
  1317. return 0;
  1318. }
  1319. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1320. .fault = kvm_vm_fault,
  1321. };
  1322. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1323. {
  1324. vma->vm_ops = &kvm_vm_vm_ops;
  1325. return 0;
  1326. }
  1327. static struct file_operations kvm_vm_fops = {
  1328. .release = kvm_vm_release,
  1329. .unlocked_ioctl = kvm_vm_ioctl,
  1330. .compat_ioctl = kvm_vm_ioctl,
  1331. .mmap = kvm_vm_mmap,
  1332. };
  1333. static int kvm_dev_ioctl_create_vm(void)
  1334. {
  1335. int fd;
  1336. struct kvm *kvm;
  1337. kvm = kvm_create_vm();
  1338. if (IS_ERR(kvm))
  1339. return PTR_ERR(kvm);
  1340. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1341. if (fd < 0)
  1342. kvm_put_kvm(kvm);
  1343. return fd;
  1344. }
  1345. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1346. {
  1347. switch (arg) {
  1348. case KVM_CAP_USER_MEMORY:
  1349. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1350. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1351. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1352. case KVM_CAP_SET_BOOT_CPU_ID:
  1353. #endif
  1354. return 1;
  1355. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1356. case KVM_CAP_IRQ_ROUTING:
  1357. return KVM_MAX_IRQ_ROUTES;
  1358. #endif
  1359. default:
  1360. break;
  1361. }
  1362. return kvm_dev_ioctl_check_extension(arg);
  1363. }
  1364. static long kvm_dev_ioctl(struct file *filp,
  1365. unsigned int ioctl, unsigned long arg)
  1366. {
  1367. long r = -EINVAL;
  1368. switch (ioctl) {
  1369. case KVM_GET_API_VERSION:
  1370. r = -EINVAL;
  1371. if (arg)
  1372. goto out;
  1373. r = KVM_API_VERSION;
  1374. break;
  1375. case KVM_CREATE_VM:
  1376. r = -EINVAL;
  1377. if (arg)
  1378. goto out;
  1379. r = kvm_dev_ioctl_create_vm();
  1380. break;
  1381. case KVM_CHECK_EXTENSION:
  1382. r = kvm_dev_ioctl_check_extension_generic(arg);
  1383. break;
  1384. case KVM_GET_VCPU_MMAP_SIZE:
  1385. r = -EINVAL;
  1386. if (arg)
  1387. goto out;
  1388. r = PAGE_SIZE; /* struct kvm_run */
  1389. #ifdef CONFIG_X86
  1390. r += PAGE_SIZE; /* pio data page */
  1391. #endif
  1392. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1393. r += PAGE_SIZE; /* coalesced mmio ring page */
  1394. #endif
  1395. break;
  1396. case KVM_TRACE_ENABLE:
  1397. case KVM_TRACE_PAUSE:
  1398. case KVM_TRACE_DISABLE:
  1399. r = -EOPNOTSUPP;
  1400. break;
  1401. default:
  1402. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1403. }
  1404. out:
  1405. return r;
  1406. }
  1407. static struct file_operations kvm_chardev_ops = {
  1408. .unlocked_ioctl = kvm_dev_ioctl,
  1409. .compat_ioctl = kvm_dev_ioctl,
  1410. };
  1411. static struct miscdevice kvm_dev = {
  1412. KVM_MINOR,
  1413. "kvm",
  1414. &kvm_chardev_ops,
  1415. };
  1416. static void hardware_enable(void *junk)
  1417. {
  1418. int cpu = raw_smp_processor_id();
  1419. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1420. return;
  1421. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1422. kvm_arch_hardware_enable(NULL);
  1423. }
  1424. static void hardware_disable(void *junk)
  1425. {
  1426. int cpu = raw_smp_processor_id();
  1427. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1428. return;
  1429. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1430. kvm_arch_hardware_disable(NULL);
  1431. }
  1432. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1433. void *v)
  1434. {
  1435. int cpu = (long)v;
  1436. val &= ~CPU_TASKS_FROZEN;
  1437. switch (val) {
  1438. case CPU_DYING:
  1439. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1440. cpu);
  1441. hardware_disable(NULL);
  1442. break;
  1443. case CPU_UP_CANCELED:
  1444. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1445. cpu);
  1446. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1447. break;
  1448. case CPU_ONLINE:
  1449. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1450. cpu);
  1451. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1452. break;
  1453. }
  1454. return NOTIFY_OK;
  1455. }
  1456. asmlinkage void kvm_handle_fault_on_reboot(void)
  1457. {
  1458. if (kvm_rebooting)
  1459. /* spin while reset goes on */
  1460. while (true)
  1461. ;
  1462. /* Fault while not rebooting. We want the trace. */
  1463. BUG();
  1464. }
  1465. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1466. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1467. void *v)
  1468. {
  1469. /*
  1470. * Some (well, at least mine) BIOSes hang on reboot if
  1471. * in vmx root mode.
  1472. *
  1473. * And Intel TXT required VMX off for all cpu when system shutdown.
  1474. */
  1475. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1476. kvm_rebooting = true;
  1477. on_each_cpu(hardware_disable, NULL, 1);
  1478. return NOTIFY_OK;
  1479. }
  1480. static struct notifier_block kvm_reboot_notifier = {
  1481. .notifier_call = kvm_reboot,
  1482. .priority = 0,
  1483. };
  1484. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1485. {
  1486. memset(bus, 0, sizeof(*bus));
  1487. }
  1488. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1489. {
  1490. int i;
  1491. for (i = 0; i < bus->dev_count; i++) {
  1492. struct kvm_io_device *pos = bus->devs[i];
  1493. kvm_iodevice_destructor(pos);
  1494. }
  1495. }
  1496. /* kvm_io_bus_write - called under kvm->slots_lock */
  1497. int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
  1498. int len, const void *val)
  1499. {
  1500. int i;
  1501. for (i = 0; i < bus->dev_count; i++)
  1502. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1503. return 0;
  1504. return -EOPNOTSUPP;
  1505. }
  1506. /* kvm_io_bus_read - called under kvm->slots_lock */
  1507. int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
  1508. {
  1509. int i;
  1510. for (i = 0; i < bus->dev_count; i++)
  1511. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1512. return 0;
  1513. return -EOPNOTSUPP;
  1514. }
  1515. int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
  1516. struct kvm_io_device *dev)
  1517. {
  1518. int ret;
  1519. down_write(&kvm->slots_lock);
  1520. ret = __kvm_io_bus_register_dev(bus, dev);
  1521. up_write(&kvm->slots_lock);
  1522. return ret;
  1523. }
  1524. /* An unlocked version. Caller must have write lock on slots_lock. */
  1525. int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
  1526. struct kvm_io_device *dev)
  1527. {
  1528. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1529. return -ENOSPC;
  1530. bus->devs[bus->dev_count++] = dev;
  1531. return 0;
  1532. }
  1533. void kvm_io_bus_unregister_dev(struct kvm *kvm,
  1534. struct kvm_io_bus *bus,
  1535. struct kvm_io_device *dev)
  1536. {
  1537. down_write(&kvm->slots_lock);
  1538. __kvm_io_bus_unregister_dev(bus, dev);
  1539. up_write(&kvm->slots_lock);
  1540. }
  1541. /* An unlocked version. Caller must have write lock on slots_lock. */
  1542. void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
  1543. struct kvm_io_device *dev)
  1544. {
  1545. int i;
  1546. for (i = 0; i < bus->dev_count; i++)
  1547. if (bus->devs[i] == dev) {
  1548. bus->devs[i] = bus->devs[--bus->dev_count];
  1549. break;
  1550. }
  1551. }
  1552. static struct notifier_block kvm_cpu_notifier = {
  1553. .notifier_call = kvm_cpu_hotplug,
  1554. .priority = 20, /* must be > scheduler priority */
  1555. };
  1556. static int vm_stat_get(void *_offset, u64 *val)
  1557. {
  1558. unsigned offset = (long)_offset;
  1559. struct kvm *kvm;
  1560. *val = 0;
  1561. spin_lock(&kvm_lock);
  1562. list_for_each_entry(kvm, &vm_list, vm_list)
  1563. *val += *(u32 *)((void *)kvm + offset);
  1564. spin_unlock(&kvm_lock);
  1565. return 0;
  1566. }
  1567. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1568. static int vcpu_stat_get(void *_offset, u64 *val)
  1569. {
  1570. unsigned offset = (long)_offset;
  1571. struct kvm *kvm;
  1572. struct kvm_vcpu *vcpu;
  1573. int i;
  1574. *val = 0;
  1575. spin_lock(&kvm_lock);
  1576. list_for_each_entry(kvm, &vm_list, vm_list)
  1577. kvm_for_each_vcpu(i, vcpu, kvm)
  1578. *val += *(u32 *)((void *)vcpu + offset);
  1579. spin_unlock(&kvm_lock);
  1580. return 0;
  1581. }
  1582. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1583. static const struct file_operations *stat_fops[] = {
  1584. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1585. [KVM_STAT_VM] = &vm_stat_fops,
  1586. };
  1587. static void kvm_init_debug(void)
  1588. {
  1589. struct kvm_stats_debugfs_item *p;
  1590. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1591. for (p = debugfs_entries; p->name; ++p)
  1592. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1593. (void *)(long)p->offset,
  1594. stat_fops[p->kind]);
  1595. }
  1596. static void kvm_exit_debug(void)
  1597. {
  1598. struct kvm_stats_debugfs_item *p;
  1599. for (p = debugfs_entries; p->name; ++p)
  1600. debugfs_remove(p->dentry);
  1601. debugfs_remove(kvm_debugfs_dir);
  1602. }
  1603. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1604. {
  1605. hardware_disable(NULL);
  1606. return 0;
  1607. }
  1608. static int kvm_resume(struct sys_device *dev)
  1609. {
  1610. hardware_enable(NULL);
  1611. return 0;
  1612. }
  1613. static struct sysdev_class kvm_sysdev_class = {
  1614. .name = "kvm",
  1615. .suspend = kvm_suspend,
  1616. .resume = kvm_resume,
  1617. };
  1618. static struct sys_device kvm_sysdev = {
  1619. .id = 0,
  1620. .cls = &kvm_sysdev_class,
  1621. };
  1622. struct page *bad_page;
  1623. pfn_t bad_pfn;
  1624. static inline
  1625. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1626. {
  1627. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1628. }
  1629. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1630. {
  1631. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1632. kvm_arch_vcpu_load(vcpu, cpu);
  1633. }
  1634. static void kvm_sched_out(struct preempt_notifier *pn,
  1635. struct task_struct *next)
  1636. {
  1637. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1638. kvm_arch_vcpu_put(vcpu);
  1639. }
  1640. int kvm_init(void *opaque, unsigned int vcpu_size,
  1641. struct module *module)
  1642. {
  1643. int r;
  1644. int cpu;
  1645. r = kvm_arch_init(opaque);
  1646. if (r)
  1647. goto out_fail;
  1648. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1649. if (bad_page == NULL) {
  1650. r = -ENOMEM;
  1651. goto out;
  1652. }
  1653. bad_pfn = page_to_pfn(bad_page);
  1654. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  1655. r = -ENOMEM;
  1656. goto out_free_0;
  1657. }
  1658. r = kvm_arch_hardware_setup();
  1659. if (r < 0)
  1660. goto out_free_0a;
  1661. for_each_online_cpu(cpu) {
  1662. smp_call_function_single(cpu,
  1663. kvm_arch_check_processor_compat,
  1664. &r, 1);
  1665. if (r < 0)
  1666. goto out_free_1;
  1667. }
  1668. on_each_cpu(hardware_enable, NULL, 1);
  1669. r = register_cpu_notifier(&kvm_cpu_notifier);
  1670. if (r)
  1671. goto out_free_2;
  1672. register_reboot_notifier(&kvm_reboot_notifier);
  1673. r = sysdev_class_register(&kvm_sysdev_class);
  1674. if (r)
  1675. goto out_free_3;
  1676. r = sysdev_register(&kvm_sysdev);
  1677. if (r)
  1678. goto out_free_4;
  1679. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1680. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1681. __alignof__(struct kvm_vcpu),
  1682. 0, NULL);
  1683. if (!kvm_vcpu_cache) {
  1684. r = -ENOMEM;
  1685. goto out_free_5;
  1686. }
  1687. kvm_chardev_ops.owner = module;
  1688. kvm_vm_fops.owner = module;
  1689. kvm_vcpu_fops.owner = module;
  1690. r = misc_register(&kvm_dev);
  1691. if (r) {
  1692. printk(KERN_ERR "kvm: misc device register failed\n");
  1693. goto out_free;
  1694. }
  1695. kvm_preempt_ops.sched_in = kvm_sched_in;
  1696. kvm_preempt_ops.sched_out = kvm_sched_out;
  1697. kvm_init_debug();
  1698. return 0;
  1699. out_free:
  1700. kmem_cache_destroy(kvm_vcpu_cache);
  1701. out_free_5:
  1702. sysdev_unregister(&kvm_sysdev);
  1703. out_free_4:
  1704. sysdev_class_unregister(&kvm_sysdev_class);
  1705. out_free_3:
  1706. unregister_reboot_notifier(&kvm_reboot_notifier);
  1707. unregister_cpu_notifier(&kvm_cpu_notifier);
  1708. out_free_2:
  1709. on_each_cpu(hardware_disable, NULL, 1);
  1710. out_free_1:
  1711. kvm_arch_hardware_unsetup();
  1712. out_free_0a:
  1713. free_cpumask_var(cpus_hardware_enabled);
  1714. out_free_0:
  1715. __free_page(bad_page);
  1716. out:
  1717. kvm_arch_exit();
  1718. out_fail:
  1719. return r;
  1720. }
  1721. EXPORT_SYMBOL_GPL(kvm_init);
  1722. void kvm_exit(void)
  1723. {
  1724. tracepoint_synchronize_unregister();
  1725. kvm_exit_debug();
  1726. misc_deregister(&kvm_dev);
  1727. kmem_cache_destroy(kvm_vcpu_cache);
  1728. sysdev_unregister(&kvm_sysdev);
  1729. sysdev_class_unregister(&kvm_sysdev_class);
  1730. unregister_reboot_notifier(&kvm_reboot_notifier);
  1731. unregister_cpu_notifier(&kvm_cpu_notifier);
  1732. on_each_cpu(hardware_disable, NULL, 1);
  1733. kvm_arch_hardware_unsetup();
  1734. kvm_arch_exit();
  1735. free_cpumask_var(cpus_hardware_enabled);
  1736. __free_page(bad_page);
  1737. }
  1738. EXPORT_SYMBOL_GPL(kvm_exit);