ctatc.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include "cttimer.h"
  25. #include <linux/delay.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define DAIONUM 7
  31. #define MAX_MULTI_CHN 8
  32. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  33. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  34. | ((IEC958_AES1_CON_MIXER \
  35. | IEC958_AES1_CON_ORIGINAL) << 8) \
  36. | (0x10 << 16) \
  37. | ((IEC958_AES3_CON_FS_48000) << 24))
  38. static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
  39. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  42. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  43. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
  44. "UAA", CTUAA),
  45. { } /* terminator */
  46. };
  47. static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
  48. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  49. "SB0760", CTSB0760),
  50. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  51. "SB0880", CTSB0880),
  52. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  53. "SB0880", CTSB0880),
  54. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  55. "SB0880", CTSB0880),
  56. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
  57. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
  58. CTHENDRIX),
  59. { } /* terminator */
  60. };
  61. static const char *ct_subsys_name[NUM_CTCARDS] = {
  62. /* 20k1 models */
  63. [CTSB055X] = "SB055x",
  64. [CTSB073X] = "SB073x",
  65. [CTUAA] = "UAA",
  66. [CT20K1_UNKNOWN] = "Unknown",
  67. /* 20k2 models */
  68. [CTSB0760] = "SB076x",
  69. [CTHENDRIX] = "Hendrix",
  70. [CTSB0880] = "SB0880",
  71. [CT20K2_UNKNOWN] = "Unknown",
  72. };
  73. static struct {
  74. int (*create)(struct ct_atc *atc,
  75. enum CTALSADEVS device, const char *device_name);
  76. int (*destroy)(void *alsa_dev);
  77. const char *public_name;
  78. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  79. [FRONT] = { .create = ct_alsa_pcm_create,
  80. .destroy = NULL,
  81. .public_name = "Front/WaveIn"},
  82. [SURROUND] = { .create = ct_alsa_pcm_create,
  83. .destroy = NULL,
  84. .public_name = "Surround"},
  85. [CLFE] = { .create = ct_alsa_pcm_create,
  86. .destroy = NULL,
  87. .public_name = "Center/LFE"},
  88. [SIDE] = { .create = ct_alsa_pcm_create,
  89. .destroy = NULL,
  90. .public_name = "Side"},
  91. [IEC958] = { .create = ct_alsa_pcm_create,
  92. .destroy = NULL,
  93. .public_name = "IEC958 Non-audio"},
  94. [MIXER] = { .create = ct_alsa_mix_create,
  95. .destroy = NULL,
  96. .public_name = "Mixer"}
  97. };
  98. typedef int (*create_t)(void *, void **);
  99. typedef int (*destroy_t)(void *);
  100. static struct {
  101. int (*create)(void *hw, void **rmgr);
  102. int (*destroy)(void *mgr);
  103. } rsc_mgr_funcs[NUM_RSCTYP] = {
  104. [SRC] = { .create = (create_t)src_mgr_create,
  105. .destroy = (destroy_t)src_mgr_destroy },
  106. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  107. .destroy = (destroy_t)srcimp_mgr_destroy },
  108. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  109. .destroy = (destroy_t)amixer_mgr_destroy },
  110. [SUM] = { .create = (create_t)sum_mgr_create,
  111. .destroy = (destroy_t)sum_mgr_destroy },
  112. [DAIO] = { .create = (create_t)daio_mgr_create,
  113. .destroy = (destroy_t)daio_mgr_destroy }
  114. };
  115. static int
  116. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  117. /* *
  118. * Only mono and interleaved modes are supported now.
  119. * Always allocates a contiguous channel block.
  120. * */
  121. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  122. {
  123. struct snd_pcm_runtime *runtime;
  124. struct ct_vm *vm;
  125. if (!apcm->substream)
  126. return 0;
  127. runtime = apcm->substream->runtime;
  128. vm = atc->vm;
  129. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  130. if (!apcm->vm_block)
  131. return -ENOENT;
  132. return 0;
  133. }
  134. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  135. {
  136. struct ct_vm *vm;
  137. if (!apcm->vm_block)
  138. return;
  139. vm = atc->vm;
  140. vm->unmap(vm, apcm->vm_block);
  141. apcm->vm_block = NULL;
  142. }
  143. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  144. {
  145. return atc->vm->get_ptp_phys(atc->vm, index);
  146. }
  147. static unsigned int convert_format(snd_pcm_format_t snd_format)
  148. {
  149. switch (snd_format) {
  150. case SNDRV_PCM_FORMAT_U8:
  151. return SRC_SF_U8;
  152. case SNDRV_PCM_FORMAT_S16_LE:
  153. return SRC_SF_S16;
  154. case SNDRV_PCM_FORMAT_S24_3LE:
  155. return SRC_SF_S24;
  156. case SNDRV_PCM_FORMAT_S32_LE:
  157. return SRC_SF_S32;
  158. case SNDRV_PCM_FORMAT_FLOAT_LE:
  159. return SRC_SF_F32;
  160. default:
  161. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  162. snd_format);
  163. return SRC_SF_S16;
  164. }
  165. }
  166. static unsigned int
  167. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  168. {
  169. unsigned int pitch;
  170. int b;
  171. /* get pitch and convert to fixed-point 8.24 format. */
  172. pitch = (input_rate / output_rate) << 24;
  173. input_rate %= output_rate;
  174. input_rate /= 100;
  175. output_rate /= 100;
  176. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  177. b--;
  178. if (b >= 0) {
  179. input_rate <<= (31 - b);
  180. input_rate /= output_rate;
  181. b = 24 - (31 - b);
  182. if (b >= 0)
  183. input_rate <<= b;
  184. else
  185. input_rate >>= -b;
  186. pitch |= input_rate;
  187. }
  188. return pitch;
  189. }
  190. static int select_rom(unsigned int pitch)
  191. {
  192. if (pitch > 0x00428f5c && pitch < 0x01b851ec) {
  193. /* 0.26 <= pitch <= 1.72 */
  194. return 1;
  195. } else if (pitch == 0x01d66666 || pitch == 0x01d66667) {
  196. /* pitch == 1.8375 */
  197. return 2;
  198. } else if (pitch == 0x02000000) {
  199. /* pitch == 2 */
  200. return 3;
  201. } else if (pitch <= 0x08000000) {
  202. /* 0 <= pitch <= 8 */
  203. return 0;
  204. } else {
  205. return -ENOENT;
  206. }
  207. }
  208. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  209. {
  210. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  211. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  212. struct src_desc desc = {0};
  213. struct amixer_desc mix_dsc = {0};
  214. struct src *src;
  215. struct amixer *amixer;
  216. int err;
  217. int n_amixer = apcm->substream->runtime->channels, i = 0;
  218. int device = apcm->substream->pcm->device;
  219. unsigned int pitch;
  220. /* first release old resources */
  221. atc_pcm_release_resources(atc, apcm);
  222. /* Get SRC resource */
  223. desc.multi = apcm->substream->runtime->channels;
  224. desc.msr = atc->msr;
  225. desc.mode = MEMRD;
  226. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  227. if (err)
  228. goto error1;
  229. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  230. (atc->rsr * atc->msr));
  231. src = apcm->src;
  232. src->ops->set_pitch(src, pitch);
  233. src->ops->set_rom(src, select_rom(pitch));
  234. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  235. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  236. /* Get AMIXER resource */
  237. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  238. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  239. if (!apcm->amixers) {
  240. err = -ENOMEM;
  241. goto error1;
  242. }
  243. mix_dsc.msr = atc->msr;
  244. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  245. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  246. (struct amixer **)&apcm->amixers[i]);
  247. if (err)
  248. goto error1;
  249. apcm->n_amixer++;
  250. }
  251. /* Set up device virtual mem map */
  252. err = ct_map_audio_buffer(atc, apcm);
  253. if (err < 0)
  254. goto error1;
  255. /* Connect resources */
  256. src = apcm->src;
  257. for (i = 0; i < n_amixer; i++) {
  258. amixer = apcm->amixers[i];
  259. mutex_lock(&atc->atc_mutex);
  260. amixer->ops->setup(amixer, &src->rsc,
  261. INIT_VOL, atc->pcm[i+device*2]);
  262. mutex_unlock(&atc->atc_mutex);
  263. src = src->ops->next_interleave(src);
  264. if (!src)
  265. src = apcm->src;
  266. }
  267. ct_timer_prepare(apcm->timer);
  268. return 0;
  269. error1:
  270. atc_pcm_release_resources(atc, apcm);
  271. return err;
  272. }
  273. static int
  274. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  275. {
  276. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  277. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  278. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  279. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  280. struct srcimp *srcimp;
  281. int i;
  282. if (apcm->srcimps) {
  283. for (i = 0; i < apcm->n_srcimp; i++) {
  284. srcimp = apcm->srcimps[i];
  285. srcimp->ops->unmap(srcimp);
  286. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  287. apcm->srcimps[i] = NULL;
  288. }
  289. kfree(apcm->srcimps);
  290. apcm->srcimps = NULL;
  291. }
  292. if (apcm->srccs) {
  293. for (i = 0; i < apcm->n_srcc; i++) {
  294. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  295. apcm->srccs[i] = NULL;
  296. }
  297. kfree(apcm->srccs);
  298. apcm->srccs = NULL;
  299. }
  300. if (apcm->amixers) {
  301. for (i = 0; i < apcm->n_amixer; i++) {
  302. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  303. apcm->amixers[i] = NULL;
  304. }
  305. kfree(apcm->amixers);
  306. apcm->amixers = NULL;
  307. }
  308. if (apcm->mono) {
  309. sum_mgr->put_sum(sum_mgr, apcm->mono);
  310. apcm->mono = NULL;
  311. }
  312. if (apcm->src) {
  313. src_mgr->put_src(src_mgr, apcm->src);
  314. apcm->src = NULL;
  315. }
  316. if (apcm->vm_block) {
  317. /* Undo device virtual mem map */
  318. ct_unmap_audio_buffer(atc, apcm);
  319. apcm->vm_block = NULL;
  320. }
  321. return 0;
  322. }
  323. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  324. {
  325. unsigned int max_cisz;
  326. struct src *src = apcm->src;
  327. if (apcm->started)
  328. return 0;
  329. apcm->started = 1;
  330. max_cisz = src->multi * src->rsc.msr;
  331. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  332. src->ops->set_sa(src, apcm->vm_block->addr);
  333. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  334. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  335. src->ops->set_cisz(src, max_cisz);
  336. src->ops->set_bm(src, 1);
  337. src->ops->set_state(src, SRC_STATE_INIT);
  338. src->ops->commit_write(src);
  339. ct_timer_start(apcm->timer);
  340. return 0;
  341. }
  342. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  343. {
  344. struct src *src;
  345. int i;
  346. ct_timer_stop(apcm->timer);
  347. src = apcm->src;
  348. src->ops->set_bm(src, 0);
  349. src->ops->set_state(src, SRC_STATE_OFF);
  350. src->ops->commit_write(src);
  351. if (apcm->srccs) {
  352. for (i = 0; i < apcm->n_srcc; i++) {
  353. src = apcm->srccs[i];
  354. src->ops->set_bm(src, 0);
  355. src->ops->set_state(src, SRC_STATE_OFF);
  356. src->ops->commit_write(src);
  357. }
  358. }
  359. apcm->started = 0;
  360. return 0;
  361. }
  362. static int
  363. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  364. {
  365. struct src *src = apcm->src;
  366. u32 size, max_cisz;
  367. int position;
  368. if (!src)
  369. return 0;
  370. position = src->ops->get_ca(src);
  371. size = apcm->vm_block->size;
  372. max_cisz = src->multi * src->rsc.msr;
  373. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  374. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  375. }
  376. struct src_node_conf_t {
  377. unsigned int pitch;
  378. unsigned int msr:8;
  379. unsigned int mix_msr:8;
  380. unsigned int imp_msr:8;
  381. unsigned int vo:1;
  382. };
  383. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  384. struct src_node_conf_t *conf, int *n_srcc)
  385. {
  386. unsigned int pitch;
  387. /* get pitch and convert to fixed-point 8.24 format. */
  388. pitch = atc_get_pitch((atc->rsr * atc->msr),
  389. apcm->substream->runtime->rate);
  390. *n_srcc = 0;
  391. if (1 == atc->msr) {
  392. *n_srcc = apcm->substream->runtime->channels;
  393. conf[0].pitch = pitch;
  394. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  395. conf[0].vo = 1;
  396. } else if (2 == atc->msr) {
  397. if (0x8000000 < pitch) {
  398. /* Need two-stage SRCs, SRCIMPs and
  399. * AMIXERs for converting format */
  400. conf[0].pitch = (atc->msr << 24);
  401. conf[0].msr = conf[0].mix_msr = 1;
  402. conf[0].imp_msr = atc->msr;
  403. conf[0].vo = 0;
  404. conf[1].pitch = atc_get_pitch(atc->rsr,
  405. apcm->substream->runtime->rate);
  406. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  407. conf[1].vo = 1;
  408. *n_srcc = apcm->substream->runtime->channels * 2;
  409. } else if (0x1000000 < pitch) {
  410. /* Need one-stage SRCs, SRCIMPs and
  411. * AMIXERs for converting format */
  412. conf[0].pitch = pitch;
  413. conf[0].msr = conf[0].mix_msr
  414. = conf[0].imp_msr = atc->msr;
  415. conf[0].vo = 1;
  416. *n_srcc = apcm->substream->runtime->channels;
  417. }
  418. }
  419. }
  420. static int
  421. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  422. {
  423. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  424. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  425. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  426. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  427. struct src_desc src_dsc = {0};
  428. struct src *src;
  429. struct srcimp_desc srcimp_dsc = {0};
  430. struct srcimp *srcimp;
  431. struct amixer_desc mix_dsc = {0};
  432. struct sum_desc sum_dsc = {0};
  433. unsigned int pitch;
  434. int multi, err, i;
  435. int n_srcimp, n_amixer, n_srcc, n_sum;
  436. struct src_node_conf_t src_node_conf[2] = {{0} };
  437. /* first release old resources */
  438. atc_pcm_release_resources(atc, apcm);
  439. /* The numbers of converting SRCs and SRCIMPs should be determined
  440. * by pitch value. */
  441. multi = apcm->substream->runtime->channels;
  442. /* get pitch and convert to fixed-point 8.24 format. */
  443. pitch = atc_get_pitch((atc->rsr * atc->msr),
  444. apcm->substream->runtime->rate);
  445. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  446. n_sum = (1 == multi) ? 1 : 0;
  447. n_amixer = n_sum * 2 + n_srcc;
  448. n_srcimp = n_srcc;
  449. if ((multi > 1) && (0x8000000 >= pitch)) {
  450. /* Need extra AMIXERs and SRCIMPs for special treatment
  451. * of interleaved recording of conjugate channels */
  452. n_amixer += multi * atc->msr;
  453. n_srcimp += multi * atc->msr;
  454. } else {
  455. n_srcimp += multi;
  456. }
  457. if (n_srcc) {
  458. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  459. if (!apcm->srccs)
  460. return -ENOMEM;
  461. }
  462. if (n_amixer) {
  463. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  464. if (!apcm->amixers) {
  465. err = -ENOMEM;
  466. goto error1;
  467. }
  468. }
  469. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  470. if (!apcm->srcimps) {
  471. err = -ENOMEM;
  472. goto error1;
  473. }
  474. /* Allocate SRCs for sample rate conversion if needed */
  475. src_dsc.multi = 1;
  476. src_dsc.mode = ARCRW;
  477. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  478. src_dsc.msr = src_node_conf[i/multi].msr;
  479. err = src_mgr->get_src(src_mgr, &src_dsc,
  480. (struct src **)&apcm->srccs[i]);
  481. if (err)
  482. goto error1;
  483. src = apcm->srccs[i];
  484. pitch = src_node_conf[i/multi].pitch;
  485. src->ops->set_pitch(src, pitch);
  486. src->ops->set_rom(src, select_rom(pitch));
  487. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  488. apcm->n_srcc++;
  489. }
  490. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  491. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  492. if (i < (n_sum*2))
  493. mix_dsc.msr = atc->msr;
  494. else if (i < (n_sum*2+n_srcc))
  495. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  496. else
  497. mix_dsc.msr = 1;
  498. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  499. (struct amixer **)&apcm->amixers[i]);
  500. if (err)
  501. goto error1;
  502. apcm->n_amixer++;
  503. }
  504. /* Allocate a SUM resource to mix all input channels together */
  505. sum_dsc.msr = atc->msr;
  506. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  507. if (err)
  508. goto error1;
  509. pitch = atc_get_pitch((atc->rsr * atc->msr),
  510. apcm->substream->runtime->rate);
  511. /* Allocate SRCIMP resources */
  512. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  513. if (i < (n_srcc))
  514. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  515. else if (1 == multi)
  516. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  517. else
  518. srcimp_dsc.msr = 1;
  519. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  520. if (err)
  521. goto error1;
  522. apcm->srcimps[i] = srcimp;
  523. apcm->n_srcimp++;
  524. }
  525. /* Allocate a SRC for writing data to host memory */
  526. src_dsc.multi = apcm->substream->runtime->channels;
  527. src_dsc.msr = 1;
  528. src_dsc.mode = MEMWR;
  529. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  530. if (err)
  531. goto error1;
  532. src = apcm->src;
  533. src->ops->set_pitch(src, pitch);
  534. /* Set up device virtual mem map */
  535. err = ct_map_audio_buffer(atc, apcm);
  536. if (err < 0)
  537. goto error1;
  538. return 0;
  539. error1:
  540. atc_pcm_release_resources(atc, apcm);
  541. return err;
  542. }
  543. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  544. {
  545. struct src *src;
  546. struct amixer *amixer;
  547. struct srcimp *srcimp;
  548. struct ct_mixer *mixer = atc->mixer;
  549. struct sum *mono;
  550. struct rsc *out_ports[8] = {NULL};
  551. int err, i, j, n_sum, multi;
  552. unsigned int pitch;
  553. int mix_base = 0, imp_base = 0;
  554. atc_pcm_release_resources(atc, apcm);
  555. /* Get needed resources. */
  556. err = atc_pcm_capture_get_resources(atc, apcm);
  557. if (err)
  558. return err;
  559. /* Connect resources */
  560. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  561. &out_ports[0], &out_ports[1]);
  562. multi = apcm->substream->runtime->channels;
  563. if (1 == multi) {
  564. mono = apcm->mono;
  565. for (i = 0; i < 2; i++) {
  566. amixer = apcm->amixers[i];
  567. amixer->ops->setup(amixer, out_ports[i],
  568. MONO_SUM_SCALE, mono);
  569. }
  570. out_ports[0] = &mono->rsc;
  571. n_sum = 1;
  572. mix_base = n_sum * 2;
  573. }
  574. for (i = 0; i < apcm->n_srcc; i++) {
  575. src = apcm->srccs[i];
  576. srcimp = apcm->srcimps[imp_base+i];
  577. amixer = apcm->amixers[mix_base+i];
  578. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  579. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  580. out_ports[i%multi] = &amixer->rsc;
  581. }
  582. pitch = atc_get_pitch((atc->rsr * atc->msr),
  583. apcm->substream->runtime->rate);
  584. if ((multi > 1) && (pitch <= 0x8000000)) {
  585. /* Special connection for interleaved
  586. * recording with conjugate channels */
  587. for (i = 0; i < multi; i++) {
  588. out_ports[i]->ops->master(out_ports[i]);
  589. for (j = 0; j < atc->msr; j++) {
  590. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  591. amixer->ops->set_input(amixer, out_ports[i]);
  592. amixer->ops->set_scale(amixer, INIT_VOL);
  593. amixer->ops->set_sum(amixer, NULL);
  594. amixer->ops->commit_raw_write(amixer);
  595. out_ports[i]->ops->next_conj(out_ports[i]);
  596. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  597. srcimp->ops->map(srcimp, apcm->src,
  598. &amixer->rsc);
  599. }
  600. }
  601. } else {
  602. for (i = 0; i < multi; i++) {
  603. srcimp = apcm->srcimps[apcm->n_srcc+i];
  604. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  605. }
  606. }
  607. ct_timer_prepare(apcm->timer);
  608. return 0;
  609. }
  610. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  611. {
  612. struct src *src;
  613. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  614. int i, multi;
  615. if (apcm->started)
  616. return 0;
  617. apcm->started = 1;
  618. multi = apcm->substream->runtime->channels;
  619. /* Set up converting SRCs */
  620. for (i = 0; i < apcm->n_srcc; i++) {
  621. src = apcm->srccs[i];
  622. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  623. src_mgr->src_disable(src_mgr, src);
  624. }
  625. /* Set up recording SRC */
  626. src = apcm->src;
  627. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  628. src->ops->set_sa(src, apcm->vm_block->addr);
  629. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  630. src->ops->set_ca(src, apcm->vm_block->addr);
  631. src_mgr->src_disable(src_mgr, src);
  632. /* Disable relevant SRCs firstly */
  633. src_mgr->commit_write(src_mgr);
  634. /* Enable SRCs respectively */
  635. for (i = 0; i < apcm->n_srcc; i++) {
  636. src = apcm->srccs[i];
  637. src->ops->set_state(src, SRC_STATE_RUN);
  638. src->ops->commit_write(src);
  639. src_mgr->src_enable_s(src_mgr, src);
  640. }
  641. src = apcm->src;
  642. src->ops->set_bm(src, 1);
  643. src->ops->set_state(src, SRC_STATE_RUN);
  644. src->ops->commit_write(src);
  645. src_mgr->src_enable_s(src_mgr, src);
  646. /* Enable relevant SRCs synchronously */
  647. src_mgr->commit_write(src_mgr);
  648. ct_timer_start(apcm->timer);
  649. return 0;
  650. }
  651. static int
  652. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  653. {
  654. struct src *src = apcm->src;
  655. if (!src)
  656. return 0;
  657. return src->ops->get_ca(src) - apcm->vm_block->addr;
  658. }
  659. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  660. struct ct_atc_pcm *apcm)
  661. {
  662. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  663. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  664. struct src_desc desc = {0};
  665. struct amixer_desc mix_dsc = {0};
  666. struct src *src;
  667. int err;
  668. int n_amixer = apcm->substream->runtime->channels, i;
  669. unsigned int pitch, rsr = atc->pll_rate;
  670. /* first release old resources */
  671. atc_pcm_release_resources(atc, apcm);
  672. /* Get SRC resource */
  673. desc.multi = apcm->substream->runtime->channels;
  674. desc.msr = 1;
  675. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  676. desc.msr <<= 1;
  677. desc.mode = MEMRD;
  678. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  679. if (err)
  680. goto error1;
  681. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  682. src = apcm->src;
  683. src->ops->set_pitch(src, pitch);
  684. src->ops->set_rom(src, select_rom(pitch));
  685. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  686. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  687. src->ops->set_bp(src, 1);
  688. /* Get AMIXER resource */
  689. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  690. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  691. if (!apcm->amixers) {
  692. err = -ENOMEM;
  693. goto error1;
  694. }
  695. mix_dsc.msr = desc.msr;
  696. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  697. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  698. (struct amixer **)&apcm->amixers[i]);
  699. if (err)
  700. goto error1;
  701. apcm->n_amixer++;
  702. }
  703. /* Set up device virtual mem map */
  704. err = ct_map_audio_buffer(atc, apcm);
  705. if (err < 0)
  706. goto error1;
  707. return 0;
  708. error1:
  709. atc_pcm_release_resources(atc, apcm);
  710. return err;
  711. }
  712. static int atc_pll_init(struct ct_atc *atc, int rate)
  713. {
  714. struct hw *hw = atc->hw;
  715. int err;
  716. err = hw->pll_init(hw, rate);
  717. atc->pll_rate = err ? 0 : rate;
  718. return err;
  719. }
  720. static int
  721. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  722. {
  723. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  724. unsigned int rate = apcm->substream->runtime->rate;
  725. unsigned int status;
  726. int err = 0;
  727. unsigned char iec958_con_fs;
  728. switch (rate) {
  729. case 48000:
  730. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  731. break;
  732. case 44100:
  733. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  734. break;
  735. case 32000:
  736. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  737. break;
  738. default:
  739. return -ENOENT;
  740. }
  741. mutex_lock(&atc->atc_mutex);
  742. dao->ops->get_spos(dao, &status);
  743. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  744. status &= ((~IEC958_AES3_CON_FS) << 24);
  745. status |= (iec958_con_fs << 24);
  746. dao->ops->set_spos(dao, status);
  747. dao->ops->commit_write(dao);
  748. }
  749. if ((rate != atc->pll_rate) && (32000 != rate))
  750. err = atc_pll_init(atc, rate);
  751. mutex_unlock(&atc->atc_mutex);
  752. return err;
  753. }
  754. static int
  755. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  756. {
  757. struct src *src;
  758. struct amixer *amixer;
  759. struct dao *dao;
  760. int err;
  761. int i;
  762. atc_pcm_release_resources(atc, apcm);
  763. /* Configure SPDIFOO and PLL to passthrough mode;
  764. * determine pll_rate. */
  765. err = spdif_passthru_playback_setup(atc, apcm);
  766. if (err)
  767. return err;
  768. /* Get needed resources. */
  769. err = spdif_passthru_playback_get_resources(atc, apcm);
  770. if (err)
  771. return err;
  772. /* Connect resources */
  773. src = apcm->src;
  774. for (i = 0; i < apcm->n_amixer; i++) {
  775. amixer = apcm->amixers[i];
  776. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  777. src = src->ops->next_interleave(src);
  778. if (!src)
  779. src = apcm->src;
  780. }
  781. /* Connect to SPDIFOO */
  782. mutex_lock(&atc->atc_mutex);
  783. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  784. amixer = apcm->amixers[0];
  785. dao->ops->set_left_input(dao, &amixer->rsc);
  786. amixer = apcm->amixers[1];
  787. dao->ops->set_right_input(dao, &amixer->rsc);
  788. mutex_unlock(&atc->atc_mutex);
  789. ct_timer_prepare(apcm->timer);
  790. return 0;
  791. }
  792. static int atc_select_line_in(struct ct_atc *atc)
  793. {
  794. struct hw *hw = atc->hw;
  795. struct ct_mixer *mixer = atc->mixer;
  796. struct src *src;
  797. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  798. return 0;
  799. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  800. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  801. hw->select_adc_source(hw, ADC_LINEIN);
  802. src = atc->srcs[2];
  803. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  804. src = atc->srcs[3];
  805. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  806. return 0;
  807. }
  808. static int atc_select_mic_in(struct ct_atc *atc)
  809. {
  810. struct hw *hw = atc->hw;
  811. struct ct_mixer *mixer = atc->mixer;
  812. struct src *src;
  813. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  814. return 0;
  815. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  816. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  817. hw->select_adc_source(hw, ADC_MICIN);
  818. src = atc->srcs[2];
  819. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  820. src = atc->srcs[3];
  821. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  822. return 0;
  823. }
  824. static int atc_have_digit_io_switch(struct ct_atc *atc)
  825. {
  826. struct hw *hw = atc->hw;
  827. return hw->have_digit_io_switch(hw);
  828. }
  829. static int atc_select_digit_io(struct ct_atc *atc)
  830. {
  831. struct hw *hw = atc->hw;
  832. if (hw->is_adc_source_selected(hw, ADC_NONE))
  833. return 0;
  834. hw->select_adc_source(hw, ADC_NONE);
  835. return 0;
  836. }
  837. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  838. {
  839. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  840. if (state)
  841. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  842. else
  843. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  844. daio_mgr->commit_write(daio_mgr);
  845. return 0;
  846. }
  847. static int
  848. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  849. {
  850. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  851. return dao->ops->get_spos(dao, status);
  852. }
  853. static int
  854. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  855. {
  856. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  857. dao->ops->set_spos(dao, status);
  858. dao->ops->commit_write(dao);
  859. return 0;
  860. }
  861. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  862. {
  863. return atc_daio_unmute(atc, state, LINEO1);
  864. }
  865. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  866. {
  867. return atc_daio_unmute(atc, state, LINEO2);
  868. }
  869. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  870. {
  871. return atc_daio_unmute(atc, state, LINEO3);
  872. }
  873. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  874. {
  875. return atc_daio_unmute(atc, state, LINEO4);
  876. }
  877. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  878. {
  879. return atc_daio_unmute(atc, state, LINEIM);
  880. }
  881. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  882. {
  883. return atc_daio_unmute(atc, state, SPDIFOO);
  884. }
  885. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  886. {
  887. return atc_daio_unmute(atc, state, SPDIFIO);
  888. }
  889. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  890. {
  891. return atc_dao_get_status(atc, status, SPDIFOO);
  892. }
  893. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  894. {
  895. return atc_dao_set_status(atc, status, SPDIFOO);
  896. }
  897. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  898. {
  899. struct dao_desc da_dsc = {0};
  900. struct dao *dao;
  901. int err;
  902. struct ct_mixer *mixer = atc->mixer;
  903. struct rsc *rscs[2] = {NULL};
  904. unsigned int spos = 0;
  905. mutex_lock(&atc->atc_mutex);
  906. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  907. da_dsc.msr = state ? 1 : atc->msr;
  908. da_dsc.passthru = state ? 1 : 0;
  909. err = dao->ops->reinit(dao, &da_dsc);
  910. if (state) {
  911. spos = IEC958_DEFAULT_CON;
  912. } else {
  913. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  914. &rscs[0], &rscs[1]);
  915. dao->ops->set_left_input(dao, rscs[0]);
  916. dao->ops->set_right_input(dao, rscs[1]);
  917. /* Restore PLL to atc->rsr if needed. */
  918. if (atc->pll_rate != atc->rsr)
  919. err = atc_pll_init(atc, atc->rsr);
  920. }
  921. dao->ops->set_spos(dao, spos);
  922. dao->ops->commit_write(dao);
  923. mutex_unlock(&atc->atc_mutex);
  924. return err;
  925. }
  926. static int atc_release_resources(struct ct_atc *atc)
  927. {
  928. int i;
  929. struct daio_mgr *daio_mgr = NULL;
  930. struct dao *dao = NULL;
  931. struct dai *dai = NULL;
  932. struct daio *daio = NULL;
  933. struct sum_mgr *sum_mgr = NULL;
  934. struct src_mgr *src_mgr = NULL;
  935. struct srcimp_mgr *srcimp_mgr = NULL;
  936. struct srcimp *srcimp = NULL;
  937. struct ct_mixer *mixer = NULL;
  938. /* disconnect internal mixer objects */
  939. if (atc->mixer) {
  940. mixer = atc->mixer;
  941. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  942. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  943. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  944. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  945. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  946. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  947. }
  948. if (atc->daios) {
  949. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  950. for (i = 0; i < atc->n_daio; i++) {
  951. daio = atc->daios[i];
  952. if (daio->type < LINEIM) {
  953. dao = container_of(daio, struct dao, daio);
  954. dao->ops->clear_left_input(dao);
  955. dao->ops->clear_right_input(dao);
  956. } else {
  957. dai = container_of(daio, struct dai, daio);
  958. /* some thing to do for dai ... */
  959. }
  960. daio_mgr->put_daio(daio_mgr, daio);
  961. }
  962. kfree(atc->daios);
  963. atc->daios = NULL;
  964. }
  965. if (atc->pcm) {
  966. sum_mgr = atc->rsc_mgrs[SUM];
  967. for (i = 0; i < atc->n_pcm; i++)
  968. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  969. kfree(atc->pcm);
  970. atc->pcm = NULL;
  971. }
  972. if (atc->srcs) {
  973. src_mgr = atc->rsc_mgrs[SRC];
  974. for (i = 0; i < atc->n_src; i++)
  975. src_mgr->put_src(src_mgr, atc->srcs[i]);
  976. kfree(atc->srcs);
  977. atc->srcs = NULL;
  978. }
  979. if (atc->srcimps) {
  980. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  981. for (i = 0; i < atc->n_srcimp; i++) {
  982. srcimp = atc->srcimps[i];
  983. srcimp->ops->unmap(srcimp);
  984. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  985. }
  986. kfree(atc->srcimps);
  987. atc->srcimps = NULL;
  988. }
  989. return 0;
  990. }
  991. static int ct_atc_destroy(struct ct_atc *atc)
  992. {
  993. int i = 0;
  994. if (!atc)
  995. return 0;
  996. if (atc->timer) {
  997. ct_timer_free(atc->timer);
  998. atc->timer = NULL;
  999. }
  1000. atc_release_resources(atc);
  1001. /* Destroy internal mixer objects */
  1002. if (atc->mixer)
  1003. ct_mixer_destroy(atc->mixer);
  1004. for (i = 0; i < NUM_RSCTYP; i++) {
  1005. if (rsc_mgr_funcs[i].destroy && atc->rsc_mgrs[i])
  1006. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1007. }
  1008. if (atc->hw)
  1009. destroy_hw_obj((struct hw *)atc->hw);
  1010. /* Destroy device virtual memory manager object */
  1011. if (atc->vm) {
  1012. ct_vm_destroy(atc->vm);
  1013. atc->vm = NULL;
  1014. }
  1015. kfree(atc);
  1016. return 0;
  1017. }
  1018. static int atc_dev_free(struct snd_device *dev)
  1019. {
  1020. struct ct_atc *atc = dev->device_data;
  1021. return ct_atc_destroy(atc);
  1022. }
  1023. static int __devinit atc_identify_card(struct ct_atc *atc, unsigned int ssid)
  1024. {
  1025. const struct snd_pci_quirk *p;
  1026. const struct snd_pci_quirk *list;
  1027. u16 vendor_id, device_id;
  1028. switch (atc->chip_type) {
  1029. case ATC20K1:
  1030. atc->chip_name = "20K1";
  1031. list = subsys_20k1_list;
  1032. break;
  1033. case ATC20K2:
  1034. atc->chip_name = "20K2";
  1035. list = subsys_20k2_list;
  1036. break;
  1037. default:
  1038. return -ENOENT;
  1039. }
  1040. if (ssid) {
  1041. vendor_id = ssid >> 16;
  1042. device_id = ssid & 0xffff;
  1043. } else {
  1044. vendor_id = atc->pci->subsystem_vendor;
  1045. device_id = atc->pci->subsystem_device;
  1046. }
  1047. p = snd_pci_quirk_lookup_id(vendor_id, device_id, list);
  1048. if (p) {
  1049. if (p->value < 0) {
  1050. printk(KERN_ERR "ctxfi: "
  1051. "Device %04x:%04x is black-listed\n",
  1052. vendor_id, device_id);
  1053. return -ENOENT;
  1054. }
  1055. atc->model = p->value;
  1056. } else {
  1057. if (atc->chip_type == ATC20K1)
  1058. atc->model = CT20K1_UNKNOWN;
  1059. else
  1060. atc->model = CT20K2_UNKNOWN;
  1061. }
  1062. atc->model_name = ct_subsys_name[atc->model];
  1063. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1064. atc->chip_name, atc->model_name,
  1065. vendor_id, device_id);
  1066. return 0;
  1067. }
  1068. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1069. {
  1070. enum CTALSADEVS i;
  1071. int err;
  1072. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1073. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1074. if (!alsa_dev_funcs[i].create)
  1075. continue;
  1076. err = alsa_dev_funcs[i].create(atc, i,
  1077. alsa_dev_funcs[i].public_name);
  1078. if (err) {
  1079. printk(KERN_ERR "ctxfi: "
  1080. "Creating alsa device %d failed!\n", i);
  1081. return err;
  1082. }
  1083. }
  1084. return 0;
  1085. }
  1086. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1087. {
  1088. struct hw *hw;
  1089. struct card_conf info = {0};
  1090. int i, err;
  1091. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1092. if (err) {
  1093. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1094. return err;
  1095. }
  1096. atc->hw = hw;
  1097. /* Initialize card hardware. */
  1098. info.rsr = atc->rsr;
  1099. info.msr = atc->msr;
  1100. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1101. err = hw->card_init(hw, &info);
  1102. if (err < 0)
  1103. return err;
  1104. for (i = 0; i < NUM_RSCTYP; i++) {
  1105. if (!rsc_mgr_funcs[i].create)
  1106. continue;
  1107. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1108. if (err) {
  1109. printk(KERN_ERR "ctxfi: "
  1110. "Failed to create rsc_mgr %d!!!\n", i);
  1111. return err;
  1112. }
  1113. }
  1114. return 0;
  1115. }
  1116. static int atc_get_resources(struct ct_atc *atc)
  1117. {
  1118. struct daio_desc da_desc = {0};
  1119. struct daio_mgr *daio_mgr;
  1120. struct src_desc src_dsc = {0};
  1121. struct src_mgr *src_mgr;
  1122. struct srcimp_desc srcimp_dsc = {0};
  1123. struct srcimp_mgr *srcimp_mgr;
  1124. struct sum_desc sum_dsc = {0};
  1125. struct sum_mgr *sum_mgr;
  1126. int err, i;
  1127. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1128. if (!atc->daios)
  1129. return -ENOMEM;
  1130. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1131. if (!atc->srcs)
  1132. return -ENOMEM;
  1133. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1134. if (!atc->srcimps)
  1135. return -ENOMEM;
  1136. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1137. if (!atc->pcm)
  1138. return -ENOMEM;
  1139. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1140. da_desc.msr = atc->msr;
  1141. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1142. da_desc.type = i;
  1143. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1144. (struct daio **)&atc->daios[i]);
  1145. if (err) {
  1146. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1147. "resource %d!!!\n", i);
  1148. return err;
  1149. }
  1150. atc->n_daio++;
  1151. }
  1152. if (atc->model == CTSB073X)
  1153. da_desc.type = SPDIFI1;
  1154. else
  1155. da_desc.type = SPDIFIO;
  1156. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1157. (struct daio **)&atc->daios[i]);
  1158. if (err) {
  1159. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1160. return err;
  1161. }
  1162. atc->n_daio++;
  1163. src_mgr = atc->rsc_mgrs[SRC];
  1164. src_dsc.multi = 1;
  1165. src_dsc.msr = atc->msr;
  1166. src_dsc.mode = ARCRW;
  1167. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1168. err = src_mgr->get_src(src_mgr, &src_dsc,
  1169. (struct src **)&atc->srcs[i]);
  1170. if (err)
  1171. return err;
  1172. atc->n_src++;
  1173. }
  1174. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1175. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1176. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1177. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1178. (struct srcimp **)&atc->srcimps[i]);
  1179. if (err)
  1180. return err;
  1181. atc->n_srcimp++;
  1182. }
  1183. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1184. for (i = 0; i < (2*1); i++) {
  1185. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1186. (struct srcimp **)&atc->srcimps[2*1+i]);
  1187. if (err)
  1188. return err;
  1189. atc->n_srcimp++;
  1190. }
  1191. sum_mgr = atc->rsc_mgrs[SUM];
  1192. sum_dsc.msr = atc->msr;
  1193. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1194. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1195. (struct sum **)&atc->pcm[i]);
  1196. if (err)
  1197. return err;
  1198. atc->n_pcm++;
  1199. }
  1200. return 0;
  1201. }
  1202. static void
  1203. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1204. struct src **srcs, struct srcimp **srcimps)
  1205. {
  1206. struct rsc *rscs[2] = {NULL};
  1207. struct src *src;
  1208. struct srcimp *srcimp;
  1209. int i = 0;
  1210. rscs[0] = &dai->daio.rscl;
  1211. rscs[1] = &dai->daio.rscr;
  1212. for (i = 0; i < 2; i++) {
  1213. src = srcs[i];
  1214. srcimp = srcimps[i];
  1215. srcimp->ops->map(srcimp, src, rscs[i]);
  1216. src_mgr->src_disable(src_mgr, src);
  1217. }
  1218. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1219. src = srcs[0];
  1220. src->ops->set_pm(src, 1);
  1221. for (i = 0; i < 2; i++) {
  1222. src = srcs[i];
  1223. src->ops->set_state(src, SRC_STATE_RUN);
  1224. src->ops->commit_write(src);
  1225. src_mgr->src_enable_s(src_mgr, src);
  1226. }
  1227. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1228. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1229. dai->ops->set_enb_src(dai, 1);
  1230. dai->ops->set_enb_srt(dai, 1);
  1231. dai->ops->commit_write(dai);
  1232. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1233. }
  1234. static void atc_connect_resources(struct ct_atc *atc)
  1235. {
  1236. struct dai *dai;
  1237. struct dao *dao;
  1238. struct src *src;
  1239. struct sum *sum;
  1240. struct ct_mixer *mixer;
  1241. struct rsc *rscs[2] = {NULL};
  1242. int i, j;
  1243. mixer = atc->mixer;
  1244. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1245. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1246. dao = container_of(atc->daios[j], struct dao, daio);
  1247. dao->ops->set_left_input(dao, rscs[0]);
  1248. dao->ops->set_right_input(dao, rscs[1]);
  1249. }
  1250. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1251. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1252. (struct src **)&atc->srcs[2],
  1253. (struct srcimp **)&atc->srcimps[2]);
  1254. src = atc->srcs[2];
  1255. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1256. src = atc->srcs[3];
  1257. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1258. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1259. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1260. (struct src **)&atc->srcs[0],
  1261. (struct srcimp **)&atc->srcimps[0]);
  1262. src = atc->srcs[0];
  1263. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1264. src = atc->srcs[1];
  1265. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1266. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1267. sum = atc->pcm[j];
  1268. mixer->set_input_left(mixer, i, &sum->rsc);
  1269. sum = atc->pcm[j+1];
  1270. mixer->set_input_right(mixer, i, &sum->rsc);
  1271. }
  1272. }
  1273. #ifdef CONFIG_PM
  1274. static int atc_suspend(struct ct_atc *atc, pm_message_t state)
  1275. {
  1276. int i;
  1277. struct hw *hw = atc->hw;
  1278. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot);
  1279. for (i = FRONT; i < NUM_PCMS; i++) {
  1280. if (!atc->pcms[i])
  1281. continue;
  1282. snd_pcm_suspend_all(atc->pcms[i]);
  1283. }
  1284. atc_release_resources(atc);
  1285. hw->suspend(hw, state);
  1286. return 0;
  1287. }
  1288. static int atc_hw_resume(struct ct_atc *atc)
  1289. {
  1290. struct hw *hw = atc->hw;
  1291. struct card_conf info = {0};
  1292. /* Re-initialize card hardware. */
  1293. info.rsr = atc->rsr;
  1294. info.msr = atc->msr;
  1295. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1296. return hw->resume(hw, &info);
  1297. }
  1298. static int atc_resources_resume(struct ct_atc *atc)
  1299. {
  1300. struct ct_mixer *mixer;
  1301. int err = 0;
  1302. /* Get resources */
  1303. err = atc_get_resources(atc);
  1304. if (err < 0) {
  1305. atc_release_resources(atc);
  1306. return err;
  1307. }
  1308. /* Build topology */
  1309. atc_connect_resources(atc);
  1310. mixer = atc->mixer;
  1311. mixer->resume(mixer);
  1312. return 0;
  1313. }
  1314. static int atc_resume(struct ct_atc *atc)
  1315. {
  1316. int err = 0;
  1317. /* Do hardware resume. */
  1318. err = atc_hw_resume(atc);
  1319. if (err < 0) {
  1320. printk(KERN_ERR "ctxfi: pci_enable_device failed, "
  1321. "disabling device\n");
  1322. snd_card_disconnect(atc->card);
  1323. return err;
  1324. }
  1325. err = atc_resources_resume(atc);
  1326. if (err < 0)
  1327. return err;
  1328. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0);
  1329. return 0;
  1330. }
  1331. #endif
  1332. static struct ct_atc atc_preset __devinitdata = {
  1333. .map_audio_buffer = ct_map_audio_buffer,
  1334. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1335. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1336. .pcm_release_resources = atc_pcm_release_resources,
  1337. .pcm_playback_start = atc_pcm_playback_start,
  1338. .pcm_playback_stop = atc_pcm_stop,
  1339. .pcm_playback_position = atc_pcm_playback_position,
  1340. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1341. .pcm_capture_start = atc_pcm_capture_start,
  1342. .pcm_capture_stop = atc_pcm_stop,
  1343. .pcm_capture_position = atc_pcm_capture_position,
  1344. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1345. .get_ptp_phys = atc_get_ptp_phys,
  1346. .select_line_in = atc_select_line_in,
  1347. .select_mic_in = atc_select_mic_in,
  1348. .select_digit_io = atc_select_digit_io,
  1349. .line_front_unmute = atc_line_front_unmute,
  1350. .line_surround_unmute = atc_line_surround_unmute,
  1351. .line_clfe_unmute = atc_line_clfe_unmute,
  1352. .line_rear_unmute = atc_line_rear_unmute,
  1353. .line_in_unmute = atc_line_in_unmute,
  1354. .spdif_out_unmute = atc_spdif_out_unmute,
  1355. .spdif_in_unmute = atc_spdif_in_unmute,
  1356. .spdif_out_get_status = atc_spdif_out_get_status,
  1357. .spdif_out_set_status = atc_spdif_out_set_status,
  1358. .spdif_out_passthru = atc_spdif_out_passthru,
  1359. .have_digit_io_switch = atc_have_digit_io_switch,
  1360. #ifdef CONFIG_PM
  1361. .suspend = atc_suspend,
  1362. .resume = atc_resume,
  1363. #endif
  1364. };
  1365. /**
  1366. * ct_atc_create - create and initialize a hardware manager
  1367. * @card: corresponding alsa card object
  1368. * @pci: corresponding kernel pci device object
  1369. * @ratc: return created object address in it
  1370. *
  1371. * Creates and initializes a hardware manager.
  1372. *
  1373. * Creates kmallocated ct_atc structure. Initializes hardware.
  1374. * Returns 0 if suceeds, or negative error code if fails.
  1375. */
  1376. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1377. unsigned int rsr, unsigned int msr,
  1378. int chip_type, unsigned int ssid,
  1379. struct ct_atc **ratc)
  1380. {
  1381. struct ct_atc *atc;
  1382. static struct snd_device_ops ops = {
  1383. .dev_free = atc_dev_free,
  1384. };
  1385. int err;
  1386. *ratc = NULL;
  1387. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1388. if (!atc)
  1389. return -ENOMEM;
  1390. /* Set operations */
  1391. *atc = atc_preset;
  1392. atc->card = card;
  1393. atc->pci = pci;
  1394. atc->rsr = rsr;
  1395. atc->msr = msr;
  1396. atc->chip_type = chip_type;
  1397. mutex_init(&atc->atc_mutex);
  1398. /* Find card model */
  1399. err = atc_identify_card(atc, ssid);
  1400. if (err < 0) {
  1401. printk(KERN_ERR "ctatc: Card not recognised\n");
  1402. goto error1;
  1403. }
  1404. /* Set up device virtual memory management object */
  1405. err = ct_vm_create(&atc->vm, pci);
  1406. if (err < 0)
  1407. goto error1;
  1408. /* Create all atc hw devices */
  1409. err = atc_create_hw_devs(atc);
  1410. if (err < 0)
  1411. goto error1;
  1412. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1413. if (err) {
  1414. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1415. goto error1;
  1416. }
  1417. /* Get resources */
  1418. err = atc_get_resources(atc);
  1419. if (err < 0)
  1420. goto error1;
  1421. /* Build topology */
  1422. atc_connect_resources(atc);
  1423. atc->timer = ct_timer_new(atc);
  1424. if (!atc->timer)
  1425. goto error1;
  1426. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1427. if (err < 0)
  1428. goto error1;
  1429. snd_card_set_dev(card, &pci->dev);
  1430. *ratc = atc;
  1431. return 0;
  1432. error1:
  1433. ct_atc_destroy(atc);
  1434. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1435. return err;
  1436. }