transport.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795
  1. /*
  2. * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the BSD-type
  8. * license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. *
  14. * Redistributions of source code must retain the above copyright
  15. * notice, this list of conditions and the following disclaimer.
  16. *
  17. * Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials provided
  20. * with the distribution.
  21. *
  22. * Neither the name of the Network Appliance, Inc. nor the names of
  23. * its contributors may be used to endorse or promote products
  24. * derived from this software without specific prior written
  25. * permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. */
  39. /*
  40. * transport.c
  41. *
  42. * This file contains the top-level implementation of an RPC RDMA
  43. * transport.
  44. *
  45. * Naming convention: functions beginning with xprt_ are part of the
  46. * transport switch. All others are RPC RDMA internal.
  47. */
  48. #include <linux/module.h>
  49. #include <linux/init.h>
  50. #include <linux/seq_file.h>
  51. #include "xprt_rdma.h"
  52. #ifdef RPC_DEBUG
  53. # define RPCDBG_FACILITY RPCDBG_TRANS
  54. #endif
  55. MODULE_LICENSE("Dual BSD/GPL");
  56. MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
  57. MODULE_AUTHOR("Network Appliance, Inc.");
  58. /*
  59. * tunables
  60. */
  61. static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
  62. static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
  63. static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
  64. static unsigned int xprt_rdma_inline_write_padding;
  65. static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
  66. int xprt_rdma_pad_optimize = 0;
  67. #ifdef RPC_DEBUG
  68. static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
  69. static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
  70. static unsigned int zero;
  71. static unsigned int max_padding = PAGE_SIZE;
  72. static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
  73. static unsigned int max_memreg = RPCRDMA_LAST - 1;
  74. static struct ctl_table_header *sunrpc_table_header;
  75. static ctl_table xr_tunables_table[] = {
  76. {
  77. .procname = "rdma_slot_table_entries",
  78. .data = &xprt_rdma_slot_table_entries,
  79. .maxlen = sizeof(unsigned int),
  80. .mode = 0644,
  81. .proc_handler = proc_dointvec_minmax,
  82. .extra1 = &min_slot_table_size,
  83. .extra2 = &max_slot_table_size
  84. },
  85. {
  86. .procname = "rdma_max_inline_read",
  87. .data = &xprt_rdma_max_inline_read,
  88. .maxlen = sizeof(unsigned int),
  89. .mode = 0644,
  90. .proc_handler = proc_dointvec,
  91. },
  92. {
  93. .procname = "rdma_max_inline_write",
  94. .data = &xprt_rdma_max_inline_write,
  95. .maxlen = sizeof(unsigned int),
  96. .mode = 0644,
  97. .proc_handler = proc_dointvec,
  98. },
  99. {
  100. .procname = "rdma_inline_write_padding",
  101. .data = &xprt_rdma_inline_write_padding,
  102. .maxlen = sizeof(unsigned int),
  103. .mode = 0644,
  104. .proc_handler = proc_dointvec_minmax,
  105. .extra1 = &zero,
  106. .extra2 = &max_padding,
  107. },
  108. {
  109. .procname = "rdma_memreg_strategy",
  110. .data = &xprt_rdma_memreg_strategy,
  111. .maxlen = sizeof(unsigned int),
  112. .mode = 0644,
  113. .proc_handler = proc_dointvec_minmax,
  114. .extra1 = &min_memreg,
  115. .extra2 = &max_memreg,
  116. },
  117. {
  118. .procname = "rdma_pad_optimize",
  119. .data = &xprt_rdma_pad_optimize,
  120. .maxlen = sizeof(unsigned int),
  121. .mode = 0644,
  122. .proc_handler = proc_dointvec,
  123. },
  124. { },
  125. };
  126. static ctl_table sunrpc_table[] = {
  127. {
  128. .procname = "sunrpc",
  129. .mode = 0555,
  130. .child = xr_tunables_table
  131. },
  132. { },
  133. };
  134. #endif
  135. static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
  136. static void
  137. xprt_rdma_format_addresses(struct rpc_xprt *xprt)
  138. {
  139. struct sockaddr *sap = (struct sockaddr *)
  140. &rpcx_to_rdmad(xprt).addr;
  141. struct sockaddr_in *sin = (struct sockaddr_in *)sap;
  142. char buf[64];
  143. (void)rpc_ntop(sap, buf, sizeof(buf));
  144. xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
  145. snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
  146. xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
  147. xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
  148. snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
  149. xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
  150. snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
  151. xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
  152. /* netid */
  153. xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
  154. }
  155. static void
  156. xprt_rdma_free_addresses(struct rpc_xprt *xprt)
  157. {
  158. unsigned int i;
  159. for (i = 0; i < RPC_DISPLAY_MAX; i++)
  160. switch (i) {
  161. case RPC_DISPLAY_PROTO:
  162. case RPC_DISPLAY_NETID:
  163. continue;
  164. default:
  165. kfree(xprt->address_strings[i]);
  166. }
  167. }
  168. static void
  169. xprt_rdma_connect_worker(struct work_struct *work)
  170. {
  171. struct rpcrdma_xprt *r_xprt =
  172. container_of(work, struct rpcrdma_xprt, rdma_connect.work);
  173. struct rpc_xprt *xprt = &r_xprt->xprt;
  174. int rc = 0;
  175. if (!xprt->shutdown) {
  176. xprt_clear_connected(xprt);
  177. dprintk("RPC: %s: %sconnect\n", __func__,
  178. r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
  179. rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
  180. if (rc)
  181. goto out;
  182. }
  183. goto out_clear;
  184. out:
  185. xprt_wake_pending_tasks(xprt, rc);
  186. out_clear:
  187. dprintk("RPC: %s: exit\n", __func__);
  188. xprt_clear_connecting(xprt);
  189. }
  190. /*
  191. * xprt_rdma_destroy
  192. *
  193. * Destroy the xprt.
  194. * Free all memory associated with the object, including its own.
  195. * NOTE: none of the *destroy methods free memory for their top-level
  196. * objects, even though they may have allocated it (they do free
  197. * private memory). It's up to the caller to handle it. In this
  198. * case (RDMA transport), all structure memory is inlined with the
  199. * struct rpcrdma_xprt.
  200. */
  201. static void
  202. xprt_rdma_destroy(struct rpc_xprt *xprt)
  203. {
  204. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  205. int rc;
  206. dprintk("RPC: %s: called\n", __func__);
  207. cancel_delayed_work(&r_xprt->rdma_connect);
  208. flush_scheduled_work();
  209. xprt_clear_connected(xprt);
  210. rpcrdma_buffer_destroy(&r_xprt->rx_buf);
  211. rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
  212. if (rc)
  213. dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
  214. __func__, rc);
  215. rpcrdma_ia_close(&r_xprt->rx_ia);
  216. xprt_rdma_free_addresses(xprt);
  217. kfree(xprt->slot);
  218. xprt->slot = NULL;
  219. kfree(xprt);
  220. dprintk("RPC: %s: returning\n", __func__);
  221. module_put(THIS_MODULE);
  222. }
  223. static const struct rpc_timeout xprt_rdma_default_timeout = {
  224. .to_initval = 60 * HZ,
  225. .to_maxval = 60 * HZ,
  226. };
  227. /**
  228. * xprt_setup_rdma - Set up transport to use RDMA
  229. *
  230. * @args: rpc transport arguments
  231. */
  232. static struct rpc_xprt *
  233. xprt_setup_rdma(struct xprt_create *args)
  234. {
  235. struct rpcrdma_create_data_internal cdata;
  236. struct rpc_xprt *xprt;
  237. struct rpcrdma_xprt *new_xprt;
  238. struct rpcrdma_ep *new_ep;
  239. struct sockaddr_in *sin;
  240. int rc;
  241. if (args->addrlen > sizeof(xprt->addr)) {
  242. dprintk("RPC: %s: address too large\n", __func__);
  243. return ERR_PTR(-EBADF);
  244. }
  245. xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
  246. if (xprt == NULL) {
  247. dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
  248. __func__);
  249. return ERR_PTR(-ENOMEM);
  250. }
  251. xprt->max_reqs = xprt_rdma_slot_table_entries;
  252. xprt->slot = kcalloc(xprt->max_reqs,
  253. sizeof(struct rpc_rqst), GFP_KERNEL);
  254. if (xprt->slot == NULL) {
  255. dprintk("RPC: %s: couldn't allocate %d slots\n",
  256. __func__, xprt->max_reqs);
  257. kfree(xprt);
  258. return ERR_PTR(-ENOMEM);
  259. }
  260. /* 60 second timeout, no retries */
  261. xprt->timeout = &xprt_rdma_default_timeout;
  262. xprt->bind_timeout = (60U * HZ);
  263. xprt->connect_timeout = (60U * HZ);
  264. xprt->reestablish_timeout = (5U * HZ);
  265. xprt->idle_timeout = (5U * 60 * HZ);
  266. xprt->resvport = 0; /* privileged port not needed */
  267. xprt->tsh_size = 0; /* RPC-RDMA handles framing */
  268. xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
  269. xprt->ops = &xprt_rdma_procs;
  270. /*
  271. * Set up RDMA-specific connect data.
  272. */
  273. /* Put server RDMA address in local cdata */
  274. memcpy(&cdata.addr, args->dstaddr, args->addrlen);
  275. /* Ensure xprt->addr holds valid server TCP (not RDMA)
  276. * address, for any side protocols which peek at it */
  277. xprt->prot = IPPROTO_TCP;
  278. xprt->addrlen = args->addrlen;
  279. memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
  280. sin = (struct sockaddr_in *)&cdata.addr;
  281. if (ntohs(sin->sin_port) != 0)
  282. xprt_set_bound(xprt);
  283. dprintk("RPC: %s: %pI4:%u\n",
  284. __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
  285. /* Set max requests */
  286. cdata.max_requests = xprt->max_reqs;
  287. /* Set some length limits */
  288. cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
  289. cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
  290. cdata.inline_wsize = xprt_rdma_max_inline_write;
  291. if (cdata.inline_wsize > cdata.wsize)
  292. cdata.inline_wsize = cdata.wsize;
  293. cdata.inline_rsize = xprt_rdma_max_inline_read;
  294. if (cdata.inline_rsize > cdata.rsize)
  295. cdata.inline_rsize = cdata.rsize;
  296. cdata.padding = xprt_rdma_inline_write_padding;
  297. /*
  298. * Create new transport instance, which includes initialized
  299. * o ia
  300. * o endpoint
  301. * o buffers
  302. */
  303. new_xprt = rpcx_to_rdmax(xprt);
  304. rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
  305. xprt_rdma_memreg_strategy);
  306. if (rc)
  307. goto out1;
  308. /*
  309. * initialize and create ep
  310. */
  311. new_xprt->rx_data = cdata;
  312. new_ep = &new_xprt->rx_ep;
  313. new_ep->rep_remote_addr = cdata.addr;
  314. rc = rpcrdma_ep_create(&new_xprt->rx_ep,
  315. &new_xprt->rx_ia, &new_xprt->rx_data);
  316. if (rc)
  317. goto out2;
  318. /*
  319. * Allocate pre-registered send and receive buffers for headers and
  320. * any inline data. Also specify any padding which will be provided
  321. * from a preregistered zero buffer.
  322. */
  323. rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
  324. &new_xprt->rx_data);
  325. if (rc)
  326. goto out3;
  327. /*
  328. * Register a callback for connection events. This is necessary because
  329. * connection loss notification is async. We also catch connection loss
  330. * when reaping receives.
  331. */
  332. INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
  333. new_ep->rep_func = rpcrdma_conn_func;
  334. new_ep->rep_xprt = xprt;
  335. xprt_rdma_format_addresses(xprt);
  336. if (!try_module_get(THIS_MODULE))
  337. goto out4;
  338. return xprt;
  339. out4:
  340. xprt_rdma_free_addresses(xprt);
  341. rc = -EINVAL;
  342. out3:
  343. (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
  344. out2:
  345. rpcrdma_ia_close(&new_xprt->rx_ia);
  346. out1:
  347. kfree(xprt->slot);
  348. kfree(xprt);
  349. return ERR_PTR(rc);
  350. }
  351. /*
  352. * Close a connection, during shutdown or timeout/reconnect
  353. */
  354. static void
  355. xprt_rdma_close(struct rpc_xprt *xprt)
  356. {
  357. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  358. dprintk("RPC: %s: closing\n", __func__);
  359. if (r_xprt->rx_ep.rep_connected > 0)
  360. xprt->reestablish_timeout = 0;
  361. xprt_disconnect_done(xprt);
  362. (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
  363. }
  364. static void
  365. xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
  366. {
  367. struct sockaddr_in *sap;
  368. sap = (struct sockaddr_in *)&xprt->addr;
  369. sap->sin_port = htons(port);
  370. sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
  371. sap->sin_port = htons(port);
  372. dprintk("RPC: %s: %u\n", __func__, port);
  373. }
  374. static void
  375. xprt_rdma_connect(struct rpc_task *task)
  376. {
  377. struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
  378. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  379. if (!xprt_test_and_set_connecting(xprt)) {
  380. if (r_xprt->rx_ep.rep_connected != 0) {
  381. /* Reconnect */
  382. schedule_delayed_work(&r_xprt->rdma_connect,
  383. xprt->reestablish_timeout);
  384. xprt->reestablish_timeout <<= 1;
  385. if (xprt->reestablish_timeout > (30 * HZ))
  386. xprt->reestablish_timeout = (30 * HZ);
  387. else if (xprt->reestablish_timeout < (5 * HZ))
  388. xprt->reestablish_timeout = (5 * HZ);
  389. } else {
  390. schedule_delayed_work(&r_xprt->rdma_connect, 0);
  391. if (!RPC_IS_ASYNC(task))
  392. flush_scheduled_work();
  393. }
  394. }
  395. }
  396. static int
  397. xprt_rdma_reserve_xprt(struct rpc_task *task)
  398. {
  399. struct rpc_xprt *xprt = task->tk_xprt;
  400. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  401. int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
  402. /* == RPC_CWNDSCALE @ init, but *after* setup */
  403. if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
  404. r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
  405. dprintk("RPC: %s: cwndscale %lu\n", __func__,
  406. r_xprt->rx_buf.rb_cwndscale);
  407. BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
  408. }
  409. xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
  410. return xprt_reserve_xprt_cong(task);
  411. }
  412. /*
  413. * The RDMA allocate/free functions need the task structure as a place
  414. * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
  415. * sequence. For this reason, the recv buffers are attached to send
  416. * buffers for portions of the RPC. Note that the RPC layer allocates
  417. * both send and receive buffers in the same call. We may register
  418. * the receive buffer portion when using reply chunks.
  419. */
  420. static void *
  421. xprt_rdma_allocate(struct rpc_task *task, size_t size)
  422. {
  423. struct rpc_xprt *xprt = task->tk_xprt;
  424. struct rpcrdma_req *req, *nreq;
  425. req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
  426. BUG_ON(NULL == req);
  427. if (size > req->rl_size) {
  428. dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
  429. "prog %d vers %d proc %d\n",
  430. __func__, size, req->rl_size,
  431. task->tk_client->cl_prog, task->tk_client->cl_vers,
  432. task->tk_msg.rpc_proc->p_proc);
  433. /*
  434. * Outgoing length shortage. Our inline write max must have
  435. * been configured to perform direct i/o.
  436. *
  437. * This is therefore a large metadata operation, and the
  438. * allocate call was made on the maximum possible message,
  439. * e.g. containing long filename(s) or symlink data. In
  440. * fact, while these metadata operations *might* carry
  441. * large outgoing payloads, they rarely *do*. However, we
  442. * have to commit to the request here, so reallocate and
  443. * register it now. The data path will never require this
  444. * reallocation.
  445. *
  446. * If the allocation or registration fails, the RPC framework
  447. * will (doggedly) retry.
  448. */
  449. if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
  450. RPCRDMA_BOUNCEBUFFERS) {
  451. /* forced to "pure inline" */
  452. dprintk("RPC: %s: too much data (%zd) for inline "
  453. "(r/w max %d/%d)\n", __func__, size,
  454. rpcx_to_rdmad(xprt).inline_rsize,
  455. rpcx_to_rdmad(xprt).inline_wsize);
  456. size = req->rl_size;
  457. rpc_exit(task, -EIO); /* fail the operation */
  458. rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
  459. goto out;
  460. }
  461. if (task->tk_flags & RPC_TASK_SWAPPER)
  462. nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
  463. else
  464. nreq = kmalloc(sizeof *req + size, GFP_NOFS);
  465. if (nreq == NULL)
  466. goto outfail;
  467. if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
  468. nreq->rl_base, size + sizeof(struct rpcrdma_req)
  469. - offsetof(struct rpcrdma_req, rl_base),
  470. &nreq->rl_handle, &nreq->rl_iov)) {
  471. kfree(nreq);
  472. goto outfail;
  473. }
  474. rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
  475. nreq->rl_size = size;
  476. nreq->rl_niovs = 0;
  477. nreq->rl_nchunks = 0;
  478. nreq->rl_buffer = (struct rpcrdma_buffer *)req;
  479. nreq->rl_reply = req->rl_reply;
  480. memcpy(nreq->rl_segments,
  481. req->rl_segments, sizeof nreq->rl_segments);
  482. /* flag the swap with an unused field */
  483. nreq->rl_iov.length = 0;
  484. req->rl_reply = NULL;
  485. req = nreq;
  486. }
  487. dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
  488. out:
  489. req->rl_connect_cookie = 0; /* our reserved value */
  490. return req->rl_xdr_buf;
  491. outfail:
  492. rpcrdma_buffer_put(req);
  493. rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
  494. return NULL;
  495. }
  496. /*
  497. * This function returns all RDMA resources to the pool.
  498. */
  499. static void
  500. xprt_rdma_free(void *buffer)
  501. {
  502. struct rpcrdma_req *req;
  503. struct rpcrdma_xprt *r_xprt;
  504. struct rpcrdma_rep *rep;
  505. int i;
  506. if (buffer == NULL)
  507. return;
  508. req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
  509. if (req->rl_iov.length == 0) { /* see allocate above */
  510. r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
  511. struct rpcrdma_xprt, rx_buf);
  512. } else
  513. r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
  514. rep = req->rl_reply;
  515. dprintk("RPC: %s: called on 0x%p%s\n",
  516. __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
  517. /*
  518. * Finish the deregistration. When using mw bind, this was
  519. * begun in rpcrdma_reply_handler(). In all other modes, we
  520. * do it here, in thread context. The process is considered
  521. * complete when the rr_func vector becomes NULL - this
  522. * was put in place during rpcrdma_reply_handler() - the wait
  523. * call below will not block if the dereg is "done". If
  524. * interrupted, our framework will clean up.
  525. */
  526. for (i = 0; req->rl_nchunks;) {
  527. --req->rl_nchunks;
  528. i += rpcrdma_deregister_external(
  529. &req->rl_segments[i], r_xprt, NULL);
  530. }
  531. if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
  532. rep->rr_func = NULL; /* abandon the callback */
  533. req->rl_reply = NULL;
  534. }
  535. if (req->rl_iov.length == 0) { /* see allocate above */
  536. struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
  537. oreq->rl_reply = req->rl_reply;
  538. (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
  539. req->rl_handle,
  540. &req->rl_iov);
  541. kfree(req);
  542. req = oreq;
  543. }
  544. /* Put back request+reply buffers */
  545. rpcrdma_buffer_put(req);
  546. }
  547. /*
  548. * send_request invokes the meat of RPC RDMA. It must do the following:
  549. * 1. Marshal the RPC request into an RPC RDMA request, which means
  550. * putting a header in front of data, and creating IOVs for RDMA
  551. * from those in the request.
  552. * 2. In marshaling, detect opportunities for RDMA, and use them.
  553. * 3. Post a recv message to set up asynch completion, then send
  554. * the request (rpcrdma_ep_post).
  555. * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
  556. */
  557. static int
  558. xprt_rdma_send_request(struct rpc_task *task)
  559. {
  560. struct rpc_rqst *rqst = task->tk_rqstp;
  561. struct rpc_xprt *xprt = task->tk_xprt;
  562. struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
  563. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  564. /* marshal the send itself */
  565. if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
  566. r_xprt->rx_stats.failed_marshal_count++;
  567. dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
  568. __func__);
  569. return -EIO;
  570. }
  571. if (req->rl_reply == NULL) /* e.g. reconnection */
  572. rpcrdma_recv_buffer_get(req);
  573. if (req->rl_reply) {
  574. req->rl_reply->rr_func = rpcrdma_reply_handler;
  575. /* this need only be done once, but... */
  576. req->rl_reply->rr_xprt = xprt;
  577. }
  578. /* Must suppress retransmit to maintain credits */
  579. if (req->rl_connect_cookie == xprt->connect_cookie)
  580. goto drop_connection;
  581. req->rl_connect_cookie = xprt->connect_cookie;
  582. if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
  583. goto drop_connection;
  584. task->tk_bytes_sent += rqst->rq_snd_buf.len;
  585. rqst->rq_bytes_sent = 0;
  586. return 0;
  587. drop_connection:
  588. xprt_disconnect_done(xprt);
  589. return -ENOTCONN; /* implies disconnect */
  590. }
  591. static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
  592. {
  593. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  594. long idle_time = 0;
  595. if (xprt_connected(xprt))
  596. idle_time = (long)(jiffies - xprt->last_used) / HZ;
  597. seq_printf(seq,
  598. "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
  599. "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
  600. 0, /* need a local port? */
  601. xprt->stat.bind_count,
  602. xprt->stat.connect_count,
  603. xprt->stat.connect_time,
  604. idle_time,
  605. xprt->stat.sends,
  606. xprt->stat.recvs,
  607. xprt->stat.bad_xids,
  608. xprt->stat.req_u,
  609. xprt->stat.bklog_u,
  610. r_xprt->rx_stats.read_chunk_count,
  611. r_xprt->rx_stats.write_chunk_count,
  612. r_xprt->rx_stats.reply_chunk_count,
  613. r_xprt->rx_stats.total_rdma_request,
  614. r_xprt->rx_stats.total_rdma_reply,
  615. r_xprt->rx_stats.pullup_copy_count,
  616. r_xprt->rx_stats.fixup_copy_count,
  617. r_xprt->rx_stats.hardway_register_count,
  618. r_xprt->rx_stats.failed_marshal_count,
  619. r_xprt->rx_stats.bad_reply_count);
  620. }
  621. /*
  622. * Plumbing for rpc transport switch and kernel module
  623. */
  624. static struct rpc_xprt_ops xprt_rdma_procs = {
  625. .reserve_xprt = xprt_rdma_reserve_xprt,
  626. .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
  627. .release_request = xprt_release_rqst_cong, /* ditto */
  628. .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
  629. .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
  630. .set_port = xprt_rdma_set_port,
  631. .connect = xprt_rdma_connect,
  632. .buf_alloc = xprt_rdma_allocate,
  633. .buf_free = xprt_rdma_free,
  634. .send_request = xprt_rdma_send_request,
  635. .close = xprt_rdma_close,
  636. .destroy = xprt_rdma_destroy,
  637. .print_stats = xprt_rdma_print_stats
  638. };
  639. static struct xprt_class xprt_rdma = {
  640. .list = LIST_HEAD_INIT(xprt_rdma.list),
  641. .name = "rdma",
  642. .owner = THIS_MODULE,
  643. .ident = XPRT_TRANSPORT_RDMA,
  644. .setup = xprt_setup_rdma,
  645. };
  646. static void __exit xprt_rdma_cleanup(void)
  647. {
  648. int rc;
  649. dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
  650. #ifdef RPC_DEBUG
  651. if (sunrpc_table_header) {
  652. unregister_sysctl_table(sunrpc_table_header);
  653. sunrpc_table_header = NULL;
  654. }
  655. #endif
  656. rc = xprt_unregister_transport(&xprt_rdma);
  657. if (rc)
  658. dprintk("RPC: %s: xprt_unregister returned %i\n",
  659. __func__, rc);
  660. }
  661. static int __init xprt_rdma_init(void)
  662. {
  663. int rc;
  664. rc = xprt_register_transport(&xprt_rdma);
  665. if (rc)
  666. return rc;
  667. dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
  668. dprintk(KERN_INFO "Defaults:\n");
  669. dprintk(KERN_INFO "\tSlots %d\n"
  670. "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
  671. xprt_rdma_slot_table_entries,
  672. xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
  673. dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
  674. xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
  675. #ifdef RPC_DEBUG
  676. if (!sunrpc_table_header)
  677. sunrpc_table_header = register_sysctl_table(sunrpc_table);
  678. #endif
  679. return 0;
  680. }
  681. module_init(xprt_rdma_init);
  682. module_exit(xprt_rdma_cleanup);