af_key.c 99 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/netns/generic.h>
  30. #include <net/xfrm.h>
  31. #include <net/sock.h>
  32. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  33. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  34. static int pfkey_net_id __read_mostly;
  35. struct netns_pfkey {
  36. /* List of all pfkey sockets. */
  37. struct hlist_head table;
  38. atomic_t socks_nr;
  39. };
  40. static DEFINE_MUTEX(pfkey_mutex);
  41. #define DUMMY_MARK 0
  42. static struct xfrm_mark dummy_mark = {0, 0};
  43. struct pfkey_sock {
  44. /* struct sock must be the first member of struct pfkey_sock */
  45. struct sock sk;
  46. int registered;
  47. int promisc;
  48. struct {
  49. uint8_t msg_version;
  50. uint32_t msg_pid;
  51. int (*dump)(struct pfkey_sock *sk);
  52. void (*done)(struct pfkey_sock *sk);
  53. union {
  54. struct xfrm_policy_walk policy;
  55. struct xfrm_state_walk state;
  56. } u;
  57. struct sk_buff *skb;
  58. } dump;
  59. };
  60. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  61. {
  62. return (struct pfkey_sock *)sk;
  63. }
  64. static int pfkey_can_dump(struct sock *sk)
  65. {
  66. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  67. return 1;
  68. return 0;
  69. }
  70. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  71. {
  72. if (pfk->dump.dump) {
  73. if (pfk->dump.skb) {
  74. kfree_skb(pfk->dump.skb);
  75. pfk->dump.skb = NULL;
  76. }
  77. pfk->dump.done(pfk);
  78. pfk->dump.dump = NULL;
  79. pfk->dump.done = NULL;
  80. }
  81. }
  82. static void pfkey_sock_destruct(struct sock *sk)
  83. {
  84. struct net *net = sock_net(sk);
  85. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  86. pfkey_terminate_dump(pfkey_sk(sk));
  87. skb_queue_purge(&sk->sk_receive_queue);
  88. if (!sock_flag(sk, SOCK_DEAD)) {
  89. printk("Attempt to release alive pfkey socket: %p\n", sk);
  90. return;
  91. }
  92. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  93. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  94. atomic_dec(&net_pfkey->socks_nr);
  95. }
  96. static const struct proto_ops pfkey_ops;
  97. static void pfkey_insert(struct sock *sk)
  98. {
  99. struct net *net = sock_net(sk);
  100. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  101. mutex_lock(&pfkey_mutex);
  102. sk_add_node_rcu(sk, &net_pfkey->table);
  103. mutex_unlock(&pfkey_mutex);
  104. }
  105. static void pfkey_remove(struct sock *sk)
  106. {
  107. mutex_lock(&pfkey_mutex);
  108. sk_del_node_init_rcu(sk);
  109. mutex_unlock(&pfkey_mutex);
  110. }
  111. static struct proto key_proto = {
  112. .name = "KEY",
  113. .owner = THIS_MODULE,
  114. .obj_size = sizeof(struct pfkey_sock),
  115. };
  116. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  117. int kern)
  118. {
  119. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  120. struct sock *sk;
  121. int err;
  122. if (!capable(CAP_NET_ADMIN))
  123. return -EPERM;
  124. if (sock->type != SOCK_RAW)
  125. return -ESOCKTNOSUPPORT;
  126. if (protocol != PF_KEY_V2)
  127. return -EPROTONOSUPPORT;
  128. err = -ENOMEM;
  129. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  130. if (sk == NULL)
  131. goto out;
  132. sock->ops = &pfkey_ops;
  133. sock_init_data(sock, sk);
  134. sk->sk_family = PF_KEY;
  135. sk->sk_destruct = pfkey_sock_destruct;
  136. atomic_inc(&net_pfkey->socks_nr);
  137. pfkey_insert(sk);
  138. return 0;
  139. out:
  140. return err;
  141. }
  142. static int pfkey_release(struct socket *sock)
  143. {
  144. struct sock *sk = sock->sk;
  145. if (!sk)
  146. return 0;
  147. pfkey_remove(sk);
  148. sock_orphan(sk);
  149. sock->sk = NULL;
  150. skb_queue_purge(&sk->sk_write_queue);
  151. synchronize_rcu();
  152. sock_put(sk);
  153. return 0;
  154. }
  155. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  156. gfp_t allocation, struct sock *sk)
  157. {
  158. int err = -ENOBUFS;
  159. sock_hold(sk);
  160. if (*skb2 == NULL) {
  161. if (atomic_read(&skb->users) != 1) {
  162. *skb2 = skb_clone(skb, allocation);
  163. } else {
  164. *skb2 = skb;
  165. atomic_inc(&skb->users);
  166. }
  167. }
  168. if (*skb2 != NULL) {
  169. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  170. skb_orphan(*skb2);
  171. skb_set_owner_r(*skb2, sk);
  172. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  173. sk->sk_data_ready(sk, (*skb2)->len);
  174. *skb2 = NULL;
  175. err = 0;
  176. }
  177. }
  178. sock_put(sk);
  179. return err;
  180. }
  181. /* Send SKB to all pfkey sockets matching selected criteria. */
  182. #define BROADCAST_ALL 0
  183. #define BROADCAST_ONE 1
  184. #define BROADCAST_REGISTERED 2
  185. #define BROADCAST_PROMISC_ONLY 4
  186. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  187. int broadcast_flags, struct sock *one_sk,
  188. struct net *net)
  189. {
  190. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  191. struct sock *sk;
  192. struct hlist_node *node;
  193. struct sk_buff *skb2 = NULL;
  194. int err = -ESRCH;
  195. /* XXX Do we need something like netlink_overrun? I think
  196. * XXX PF_KEY socket apps will not mind current behavior.
  197. */
  198. if (!skb)
  199. return -ENOMEM;
  200. rcu_read_lock();
  201. sk_for_each_rcu(sk, node, &net_pfkey->table) {
  202. struct pfkey_sock *pfk = pfkey_sk(sk);
  203. int err2;
  204. /* Yes, it means that if you are meant to receive this
  205. * pfkey message you receive it twice as promiscuous
  206. * socket.
  207. */
  208. if (pfk->promisc)
  209. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  210. /* the exact target will be processed later */
  211. if (sk == one_sk)
  212. continue;
  213. if (broadcast_flags != BROADCAST_ALL) {
  214. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  215. continue;
  216. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  217. !pfk->registered)
  218. continue;
  219. if (broadcast_flags & BROADCAST_ONE)
  220. continue;
  221. }
  222. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  223. /* Error is cleare after succecful sending to at least one
  224. * registered KM */
  225. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  226. err = err2;
  227. }
  228. rcu_read_unlock();
  229. if (one_sk != NULL)
  230. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  231. kfree_skb(skb2);
  232. kfree_skb(skb);
  233. return err;
  234. }
  235. static int pfkey_do_dump(struct pfkey_sock *pfk)
  236. {
  237. struct sadb_msg *hdr;
  238. int rc;
  239. rc = pfk->dump.dump(pfk);
  240. if (rc == -ENOBUFS)
  241. return 0;
  242. if (pfk->dump.skb) {
  243. if (!pfkey_can_dump(&pfk->sk))
  244. return 0;
  245. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  246. hdr->sadb_msg_seq = 0;
  247. hdr->sadb_msg_errno = rc;
  248. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  249. &pfk->sk, sock_net(&pfk->sk));
  250. pfk->dump.skb = NULL;
  251. }
  252. pfkey_terminate_dump(pfk);
  253. return rc;
  254. }
  255. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  256. {
  257. *new = *orig;
  258. }
  259. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  260. {
  261. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  262. struct sadb_msg *hdr;
  263. if (!skb)
  264. return -ENOBUFS;
  265. /* Woe be to the platform trying to support PFKEY yet
  266. * having normal errnos outside the 1-255 range, inclusive.
  267. */
  268. err = -err;
  269. if (err == ERESTARTSYS ||
  270. err == ERESTARTNOHAND ||
  271. err == ERESTARTNOINTR)
  272. err = EINTR;
  273. if (err >= 512)
  274. err = EINVAL;
  275. BUG_ON(err <= 0 || err >= 256);
  276. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  277. pfkey_hdr_dup(hdr, orig);
  278. hdr->sadb_msg_errno = (uint8_t) err;
  279. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  280. sizeof(uint64_t));
  281. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  282. return 0;
  283. }
  284. static u8 sadb_ext_min_len[] = {
  285. [SADB_EXT_RESERVED] = (u8) 0,
  286. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  287. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  288. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  289. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  291. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  292. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  294. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  295. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  296. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  297. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  298. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  299. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  300. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  301. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  302. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  303. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  304. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  305. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  306. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  307. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  308. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  309. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  310. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  311. };
  312. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  313. static int verify_address_len(void *p)
  314. {
  315. struct sadb_address *sp = p;
  316. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  317. struct sockaddr_in *sin;
  318. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  319. struct sockaddr_in6 *sin6;
  320. #endif
  321. int len;
  322. switch (addr->sa_family) {
  323. case AF_INET:
  324. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  325. if (sp->sadb_address_len != len ||
  326. sp->sadb_address_prefixlen > 32)
  327. return -EINVAL;
  328. break;
  329. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  330. case AF_INET6:
  331. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  332. if (sp->sadb_address_len != len ||
  333. sp->sadb_address_prefixlen > 128)
  334. return -EINVAL;
  335. break;
  336. #endif
  337. default:
  338. /* It is user using kernel to keep track of security
  339. * associations for another protocol, such as
  340. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  341. * lengths.
  342. *
  343. * XXX Actually, association/policy database is not yet
  344. * XXX able to cope with arbitrary sockaddr families.
  345. * XXX When it can, remove this -EINVAL. -DaveM
  346. */
  347. return -EINVAL;
  348. break;
  349. }
  350. return 0;
  351. }
  352. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  353. {
  354. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  355. sec_ctx->sadb_x_ctx_len,
  356. sizeof(uint64_t));
  357. }
  358. static inline int verify_sec_ctx_len(void *p)
  359. {
  360. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  361. int len = sec_ctx->sadb_x_ctx_len;
  362. if (len > PAGE_SIZE)
  363. return -EINVAL;
  364. len = pfkey_sec_ctx_len(sec_ctx);
  365. if (sec_ctx->sadb_x_sec_len != len)
  366. return -EINVAL;
  367. return 0;
  368. }
  369. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  370. {
  371. struct xfrm_user_sec_ctx *uctx = NULL;
  372. int ctx_size = sec_ctx->sadb_x_ctx_len;
  373. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  374. if (!uctx)
  375. return NULL;
  376. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  377. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  378. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  379. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  380. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  381. memcpy(uctx + 1, sec_ctx + 1,
  382. uctx->ctx_len);
  383. return uctx;
  384. }
  385. static int present_and_same_family(struct sadb_address *src,
  386. struct sadb_address *dst)
  387. {
  388. struct sockaddr *s_addr, *d_addr;
  389. if (!src || !dst)
  390. return 0;
  391. s_addr = (struct sockaddr *)(src + 1);
  392. d_addr = (struct sockaddr *)(dst + 1);
  393. if (s_addr->sa_family != d_addr->sa_family)
  394. return 0;
  395. if (s_addr->sa_family != AF_INET
  396. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  397. && s_addr->sa_family != AF_INET6
  398. #endif
  399. )
  400. return 0;
  401. return 1;
  402. }
  403. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  404. {
  405. char *p = (char *) hdr;
  406. int len = skb->len;
  407. len -= sizeof(*hdr);
  408. p += sizeof(*hdr);
  409. while (len > 0) {
  410. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  411. uint16_t ext_type;
  412. int ext_len;
  413. ext_len = ehdr->sadb_ext_len;
  414. ext_len *= sizeof(uint64_t);
  415. ext_type = ehdr->sadb_ext_type;
  416. if (ext_len < sizeof(uint64_t) ||
  417. ext_len > len ||
  418. ext_type == SADB_EXT_RESERVED)
  419. return -EINVAL;
  420. if (ext_type <= SADB_EXT_MAX) {
  421. int min = (int) sadb_ext_min_len[ext_type];
  422. if (ext_len < min)
  423. return -EINVAL;
  424. if (ext_hdrs[ext_type-1] != NULL)
  425. return -EINVAL;
  426. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  427. ext_type == SADB_EXT_ADDRESS_DST ||
  428. ext_type == SADB_EXT_ADDRESS_PROXY ||
  429. ext_type == SADB_X_EXT_NAT_T_OA) {
  430. if (verify_address_len(p))
  431. return -EINVAL;
  432. }
  433. if (ext_type == SADB_X_EXT_SEC_CTX) {
  434. if (verify_sec_ctx_len(p))
  435. return -EINVAL;
  436. }
  437. ext_hdrs[ext_type-1] = p;
  438. }
  439. p += ext_len;
  440. len -= ext_len;
  441. }
  442. return 0;
  443. }
  444. static uint16_t
  445. pfkey_satype2proto(uint8_t satype)
  446. {
  447. switch (satype) {
  448. case SADB_SATYPE_UNSPEC:
  449. return IPSEC_PROTO_ANY;
  450. case SADB_SATYPE_AH:
  451. return IPPROTO_AH;
  452. case SADB_SATYPE_ESP:
  453. return IPPROTO_ESP;
  454. case SADB_X_SATYPE_IPCOMP:
  455. return IPPROTO_COMP;
  456. break;
  457. default:
  458. return 0;
  459. }
  460. /* NOTREACHED */
  461. }
  462. static uint8_t
  463. pfkey_proto2satype(uint16_t proto)
  464. {
  465. switch (proto) {
  466. case IPPROTO_AH:
  467. return SADB_SATYPE_AH;
  468. case IPPROTO_ESP:
  469. return SADB_SATYPE_ESP;
  470. case IPPROTO_COMP:
  471. return SADB_X_SATYPE_IPCOMP;
  472. break;
  473. default:
  474. return 0;
  475. }
  476. /* NOTREACHED */
  477. }
  478. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  479. * say specifically 'just raw sockets' as we encode them as 255.
  480. */
  481. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  482. {
  483. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  484. }
  485. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  486. {
  487. return (proto ? proto : IPSEC_PROTO_ANY);
  488. }
  489. static inline int pfkey_sockaddr_len(sa_family_t family)
  490. {
  491. switch (family) {
  492. case AF_INET:
  493. return sizeof(struct sockaddr_in);
  494. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  495. case AF_INET6:
  496. return sizeof(struct sockaddr_in6);
  497. #endif
  498. }
  499. return 0;
  500. }
  501. static
  502. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  503. {
  504. switch (sa->sa_family) {
  505. case AF_INET:
  506. xaddr->a4 =
  507. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  508. return AF_INET;
  509. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  510. case AF_INET6:
  511. memcpy(xaddr->a6,
  512. &((struct sockaddr_in6 *)sa)->sin6_addr,
  513. sizeof(struct in6_addr));
  514. return AF_INET6;
  515. #endif
  516. }
  517. return 0;
  518. }
  519. static
  520. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  521. {
  522. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  523. xaddr);
  524. }
  525. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, struct sadb_msg *hdr, void **ext_hdrs)
  526. {
  527. struct sadb_sa *sa;
  528. struct sadb_address *addr;
  529. uint16_t proto;
  530. unsigned short family;
  531. xfrm_address_t *xaddr;
  532. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  533. if (sa == NULL)
  534. return NULL;
  535. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  536. if (proto == 0)
  537. return NULL;
  538. /* sadb_address_len should be checked by caller */
  539. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  540. if (addr == NULL)
  541. return NULL;
  542. family = ((struct sockaddr *)(addr + 1))->sa_family;
  543. switch (family) {
  544. case AF_INET:
  545. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  546. break;
  547. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  548. case AF_INET6:
  549. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  550. break;
  551. #endif
  552. default:
  553. xaddr = NULL;
  554. }
  555. if (!xaddr)
  556. return NULL;
  557. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  558. }
  559. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  560. static int
  561. pfkey_sockaddr_size(sa_family_t family)
  562. {
  563. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  564. }
  565. static inline int pfkey_mode_from_xfrm(int mode)
  566. {
  567. switch(mode) {
  568. case XFRM_MODE_TRANSPORT:
  569. return IPSEC_MODE_TRANSPORT;
  570. case XFRM_MODE_TUNNEL:
  571. return IPSEC_MODE_TUNNEL;
  572. case XFRM_MODE_BEET:
  573. return IPSEC_MODE_BEET;
  574. default:
  575. return -1;
  576. }
  577. }
  578. static inline int pfkey_mode_to_xfrm(int mode)
  579. {
  580. switch(mode) {
  581. case IPSEC_MODE_ANY: /*XXX*/
  582. case IPSEC_MODE_TRANSPORT:
  583. return XFRM_MODE_TRANSPORT;
  584. case IPSEC_MODE_TUNNEL:
  585. return XFRM_MODE_TUNNEL;
  586. case IPSEC_MODE_BEET:
  587. return XFRM_MODE_BEET;
  588. default:
  589. return -1;
  590. }
  591. }
  592. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  593. struct sockaddr *sa,
  594. unsigned short family)
  595. {
  596. switch (family) {
  597. case AF_INET:
  598. {
  599. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  600. sin->sin_family = AF_INET;
  601. sin->sin_port = port;
  602. sin->sin_addr.s_addr = xaddr->a4;
  603. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  604. return 32;
  605. }
  606. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  607. case AF_INET6:
  608. {
  609. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  610. sin6->sin6_family = AF_INET6;
  611. sin6->sin6_port = port;
  612. sin6->sin6_flowinfo = 0;
  613. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  614. sin6->sin6_scope_id = 0;
  615. return 128;
  616. }
  617. #endif
  618. }
  619. return 0;
  620. }
  621. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  622. int add_keys, int hsc)
  623. {
  624. struct sk_buff *skb;
  625. struct sadb_msg *hdr;
  626. struct sadb_sa *sa;
  627. struct sadb_lifetime *lifetime;
  628. struct sadb_address *addr;
  629. struct sadb_key *key;
  630. struct sadb_x_sa2 *sa2;
  631. struct sadb_x_sec_ctx *sec_ctx;
  632. struct xfrm_sec_ctx *xfrm_ctx;
  633. int ctx_size = 0;
  634. int size;
  635. int auth_key_size = 0;
  636. int encrypt_key_size = 0;
  637. int sockaddr_size;
  638. struct xfrm_encap_tmpl *natt = NULL;
  639. int mode;
  640. /* address family check */
  641. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  642. if (!sockaddr_size)
  643. return ERR_PTR(-EINVAL);
  644. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  645. key(AE), (identity(SD),) (sensitivity)> */
  646. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  647. sizeof(struct sadb_lifetime) +
  648. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  649. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  650. sizeof(struct sadb_address)*2 +
  651. sockaddr_size*2 +
  652. sizeof(struct sadb_x_sa2);
  653. if ((xfrm_ctx = x->security)) {
  654. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  655. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  656. }
  657. /* identity & sensitivity */
  658. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  659. size += sizeof(struct sadb_address) + sockaddr_size;
  660. if (add_keys) {
  661. if (x->aalg && x->aalg->alg_key_len) {
  662. auth_key_size =
  663. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  664. size += sizeof(struct sadb_key) + auth_key_size;
  665. }
  666. if (x->ealg && x->ealg->alg_key_len) {
  667. encrypt_key_size =
  668. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  669. size += sizeof(struct sadb_key) + encrypt_key_size;
  670. }
  671. }
  672. if (x->encap)
  673. natt = x->encap;
  674. if (natt && natt->encap_type) {
  675. size += sizeof(struct sadb_x_nat_t_type);
  676. size += sizeof(struct sadb_x_nat_t_port);
  677. size += sizeof(struct sadb_x_nat_t_port);
  678. }
  679. skb = alloc_skb(size + 16, GFP_ATOMIC);
  680. if (skb == NULL)
  681. return ERR_PTR(-ENOBUFS);
  682. /* call should fill header later */
  683. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  684. memset(hdr, 0, size); /* XXX do we need this ? */
  685. hdr->sadb_msg_len = size / sizeof(uint64_t);
  686. /* sa */
  687. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  688. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  689. sa->sadb_sa_exttype = SADB_EXT_SA;
  690. sa->sadb_sa_spi = x->id.spi;
  691. sa->sadb_sa_replay = x->props.replay_window;
  692. switch (x->km.state) {
  693. case XFRM_STATE_VALID:
  694. sa->sadb_sa_state = x->km.dying ?
  695. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  696. break;
  697. case XFRM_STATE_ACQ:
  698. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  699. break;
  700. default:
  701. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  702. break;
  703. }
  704. sa->sadb_sa_auth = 0;
  705. if (x->aalg) {
  706. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  707. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  708. }
  709. sa->sadb_sa_encrypt = 0;
  710. BUG_ON(x->ealg && x->calg);
  711. if (x->ealg) {
  712. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  713. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  714. }
  715. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  716. if (x->calg) {
  717. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  718. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  719. }
  720. sa->sadb_sa_flags = 0;
  721. if (x->props.flags & XFRM_STATE_NOECN)
  722. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  723. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  724. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  725. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  726. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  727. /* hard time */
  728. if (hsc & 2) {
  729. lifetime = (struct sadb_lifetime *) skb_put(skb,
  730. sizeof(struct sadb_lifetime));
  731. lifetime->sadb_lifetime_len =
  732. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  733. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  734. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  735. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  736. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  737. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  738. }
  739. /* soft time */
  740. if (hsc & 1) {
  741. lifetime = (struct sadb_lifetime *) skb_put(skb,
  742. sizeof(struct sadb_lifetime));
  743. lifetime->sadb_lifetime_len =
  744. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  745. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  746. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  747. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  748. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  749. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  750. }
  751. /* current time */
  752. lifetime = (struct sadb_lifetime *) skb_put(skb,
  753. sizeof(struct sadb_lifetime));
  754. lifetime->sadb_lifetime_len =
  755. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  756. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  757. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  758. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  759. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  760. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  761. /* src address */
  762. addr = (struct sadb_address*) skb_put(skb,
  763. sizeof(struct sadb_address)+sockaddr_size);
  764. addr->sadb_address_len =
  765. (sizeof(struct sadb_address)+sockaddr_size)/
  766. sizeof(uint64_t);
  767. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  768. /* "if the ports are non-zero, then the sadb_address_proto field,
  769. normally zero, MUST be filled in with the transport
  770. protocol's number." - RFC2367 */
  771. addr->sadb_address_proto = 0;
  772. addr->sadb_address_reserved = 0;
  773. addr->sadb_address_prefixlen =
  774. pfkey_sockaddr_fill(&x->props.saddr, 0,
  775. (struct sockaddr *) (addr + 1),
  776. x->props.family);
  777. if (!addr->sadb_address_prefixlen)
  778. BUG();
  779. /* dst address */
  780. addr = (struct sadb_address*) skb_put(skb,
  781. sizeof(struct sadb_address)+sockaddr_size);
  782. addr->sadb_address_len =
  783. (sizeof(struct sadb_address)+sockaddr_size)/
  784. sizeof(uint64_t);
  785. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  786. addr->sadb_address_proto = 0;
  787. addr->sadb_address_reserved = 0;
  788. addr->sadb_address_prefixlen =
  789. pfkey_sockaddr_fill(&x->id.daddr, 0,
  790. (struct sockaddr *) (addr + 1),
  791. x->props.family);
  792. if (!addr->sadb_address_prefixlen)
  793. BUG();
  794. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  795. x->props.family)) {
  796. addr = (struct sadb_address*) skb_put(skb,
  797. sizeof(struct sadb_address)+sockaddr_size);
  798. addr->sadb_address_len =
  799. (sizeof(struct sadb_address)+sockaddr_size)/
  800. sizeof(uint64_t);
  801. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  802. addr->sadb_address_proto =
  803. pfkey_proto_from_xfrm(x->sel.proto);
  804. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  805. addr->sadb_address_reserved = 0;
  806. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  807. (struct sockaddr *) (addr + 1),
  808. x->props.family);
  809. }
  810. /* auth key */
  811. if (add_keys && auth_key_size) {
  812. key = (struct sadb_key *) skb_put(skb,
  813. sizeof(struct sadb_key)+auth_key_size);
  814. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  815. sizeof(uint64_t);
  816. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  817. key->sadb_key_bits = x->aalg->alg_key_len;
  818. key->sadb_key_reserved = 0;
  819. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  820. }
  821. /* encrypt key */
  822. if (add_keys && encrypt_key_size) {
  823. key = (struct sadb_key *) skb_put(skb,
  824. sizeof(struct sadb_key)+encrypt_key_size);
  825. key->sadb_key_len = (sizeof(struct sadb_key) +
  826. encrypt_key_size) / sizeof(uint64_t);
  827. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  828. key->sadb_key_bits = x->ealg->alg_key_len;
  829. key->sadb_key_reserved = 0;
  830. memcpy(key + 1, x->ealg->alg_key,
  831. (x->ealg->alg_key_len+7)/8);
  832. }
  833. /* sa */
  834. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  835. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  836. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  837. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  838. kfree_skb(skb);
  839. return ERR_PTR(-EINVAL);
  840. }
  841. sa2->sadb_x_sa2_mode = mode;
  842. sa2->sadb_x_sa2_reserved1 = 0;
  843. sa2->sadb_x_sa2_reserved2 = 0;
  844. sa2->sadb_x_sa2_sequence = 0;
  845. sa2->sadb_x_sa2_reqid = x->props.reqid;
  846. if (natt && natt->encap_type) {
  847. struct sadb_x_nat_t_type *n_type;
  848. struct sadb_x_nat_t_port *n_port;
  849. /* type */
  850. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  851. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  852. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  853. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  854. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  855. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  856. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  857. /* source port */
  858. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  859. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  860. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  861. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  862. n_port->sadb_x_nat_t_port_reserved = 0;
  863. /* dest port */
  864. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  865. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  866. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  867. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  868. n_port->sadb_x_nat_t_port_reserved = 0;
  869. }
  870. /* security context */
  871. if (xfrm_ctx) {
  872. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  873. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  874. sec_ctx->sadb_x_sec_len =
  875. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  876. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  877. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  878. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  879. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  880. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  881. xfrm_ctx->ctx_len);
  882. }
  883. return skb;
  884. }
  885. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  886. {
  887. struct sk_buff *skb;
  888. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  889. return skb;
  890. }
  891. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  892. int hsc)
  893. {
  894. return __pfkey_xfrm_state2msg(x, 0, hsc);
  895. }
  896. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  897. struct sadb_msg *hdr,
  898. void **ext_hdrs)
  899. {
  900. struct xfrm_state *x;
  901. struct sadb_lifetime *lifetime;
  902. struct sadb_sa *sa;
  903. struct sadb_key *key;
  904. struct sadb_x_sec_ctx *sec_ctx;
  905. uint16_t proto;
  906. int err;
  907. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  908. if (!sa ||
  909. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  910. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  911. return ERR_PTR(-EINVAL);
  912. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  913. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  914. return ERR_PTR(-EINVAL);
  915. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  916. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  917. return ERR_PTR(-EINVAL);
  918. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  919. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  920. return ERR_PTR(-EINVAL);
  921. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  922. if (proto == 0)
  923. return ERR_PTR(-EINVAL);
  924. /* default error is no buffer space */
  925. err = -ENOBUFS;
  926. /* RFC2367:
  927. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  928. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  929. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  930. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  931. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  932. not true.
  933. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  934. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  935. */
  936. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  937. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  938. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  939. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  940. return ERR_PTR(-EINVAL);
  941. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  942. if (key != NULL &&
  943. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  944. ((key->sadb_key_bits+7) / 8 == 0 ||
  945. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  946. return ERR_PTR(-EINVAL);
  947. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  948. if (key != NULL &&
  949. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  950. ((key->sadb_key_bits+7) / 8 == 0 ||
  951. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  952. return ERR_PTR(-EINVAL);
  953. x = xfrm_state_alloc(net);
  954. if (x == NULL)
  955. return ERR_PTR(-ENOBUFS);
  956. x->id.proto = proto;
  957. x->id.spi = sa->sadb_sa_spi;
  958. x->props.replay_window = sa->sadb_sa_replay;
  959. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  960. x->props.flags |= XFRM_STATE_NOECN;
  961. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  962. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  963. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  964. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  965. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  966. if (lifetime != NULL) {
  967. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  968. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  969. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  970. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  971. }
  972. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  973. if (lifetime != NULL) {
  974. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  975. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  976. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  977. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  978. }
  979. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  980. if (sec_ctx != NULL) {
  981. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  982. if (!uctx)
  983. goto out;
  984. err = security_xfrm_state_alloc(x, uctx);
  985. kfree(uctx);
  986. if (err)
  987. goto out;
  988. }
  989. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  990. if (sa->sadb_sa_auth) {
  991. int keysize = 0;
  992. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  993. if (!a) {
  994. err = -ENOSYS;
  995. goto out;
  996. }
  997. if (key)
  998. keysize = (key->sadb_key_bits + 7) / 8;
  999. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1000. if (!x->aalg)
  1001. goto out;
  1002. strcpy(x->aalg->alg_name, a->name);
  1003. x->aalg->alg_key_len = 0;
  1004. if (key) {
  1005. x->aalg->alg_key_len = key->sadb_key_bits;
  1006. memcpy(x->aalg->alg_key, key+1, keysize);
  1007. }
  1008. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1009. x->props.aalgo = sa->sadb_sa_auth;
  1010. /* x->algo.flags = sa->sadb_sa_flags; */
  1011. }
  1012. if (sa->sadb_sa_encrypt) {
  1013. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1014. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1015. if (!a) {
  1016. err = -ENOSYS;
  1017. goto out;
  1018. }
  1019. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1020. if (!x->calg)
  1021. goto out;
  1022. strcpy(x->calg->alg_name, a->name);
  1023. x->props.calgo = sa->sadb_sa_encrypt;
  1024. } else {
  1025. int keysize = 0;
  1026. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1027. if (!a) {
  1028. err = -ENOSYS;
  1029. goto out;
  1030. }
  1031. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1032. if (key)
  1033. keysize = (key->sadb_key_bits + 7) / 8;
  1034. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1035. if (!x->ealg)
  1036. goto out;
  1037. strcpy(x->ealg->alg_name, a->name);
  1038. x->ealg->alg_key_len = 0;
  1039. if (key) {
  1040. x->ealg->alg_key_len = key->sadb_key_bits;
  1041. memcpy(x->ealg->alg_key, key+1, keysize);
  1042. }
  1043. x->props.ealgo = sa->sadb_sa_encrypt;
  1044. }
  1045. }
  1046. /* x->algo.flags = sa->sadb_sa_flags; */
  1047. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1048. &x->props.saddr);
  1049. if (!x->props.family) {
  1050. err = -EAFNOSUPPORT;
  1051. goto out;
  1052. }
  1053. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1054. &x->id.daddr);
  1055. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1056. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1057. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1058. if (mode < 0) {
  1059. err = -EINVAL;
  1060. goto out;
  1061. }
  1062. x->props.mode = mode;
  1063. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1064. }
  1065. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1066. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1067. /* Nobody uses this, but we try. */
  1068. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1069. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1070. }
  1071. if (!x->sel.family)
  1072. x->sel.family = x->props.family;
  1073. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1074. struct sadb_x_nat_t_type* n_type;
  1075. struct xfrm_encap_tmpl *natt;
  1076. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1077. if (!x->encap)
  1078. goto out;
  1079. natt = x->encap;
  1080. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1081. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1082. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1083. struct sadb_x_nat_t_port* n_port =
  1084. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1085. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1086. }
  1087. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1088. struct sadb_x_nat_t_port* n_port =
  1089. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1090. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1091. }
  1092. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1093. }
  1094. err = xfrm_init_state(x);
  1095. if (err)
  1096. goto out;
  1097. x->km.seq = hdr->sadb_msg_seq;
  1098. return x;
  1099. out:
  1100. x->km.state = XFRM_STATE_DEAD;
  1101. xfrm_state_put(x);
  1102. return ERR_PTR(err);
  1103. }
  1104. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1105. {
  1106. return -EOPNOTSUPP;
  1107. }
  1108. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1109. {
  1110. struct net *net = sock_net(sk);
  1111. struct sk_buff *resp_skb;
  1112. struct sadb_x_sa2 *sa2;
  1113. struct sadb_address *saddr, *daddr;
  1114. struct sadb_msg *out_hdr;
  1115. struct sadb_spirange *range;
  1116. struct xfrm_state *x = NULL;
  1117. int mode;
  1118. int err;
  1119. u32 min_spi, max_spi;
  1120. u32 reqid;
  1121. u8 proto;
  1122. unsigned short family;
  1123. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1124. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1125. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1126. return -EINVAL;
  1127. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1128. if (proto == 0)
  1129. return -EINVAL;
  1130. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1131. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1132. if (mode < 0)
  1133. return -EINVAL;
  1134. reqid = sa2->sadb_x_sa2_reqid;
  1135. } else {
  1136. mode = 0;
  1137. reqid = 0;
  1138. }
  1139. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1140. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1141. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1142. switch (family) {
  1143. case AF_INET:
  1144. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1145. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1146. break;
  1147. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1148. case AF_INET6:
  1149. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1150. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1151. break;
  1152. #endif
  1153. }
  1154. if (hdr->sadb_msg_seq) {
  1155. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1156. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1157. xfrm_state_put(x);
  1158. x = NULL;
  1159. }
  1160. }
  1161. if (!x)
  1162. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1163. if (x == NULL)
  1164. return -ENOENT;
  1165. min_spi = 0x100;
  1166. max_spi = 0x0fffffff;
  1167. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1168. if (range) {
  1169. min_spi = range->sadb_spirange_min;
  1170. max_spi = range->sadb_spirange_max;
  1171. }
  1172. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1173. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1174. if (IS_ERR(resp_skb)) {
  1175. xfrm_state_put(x);
  1176. return PTR_ERR(resp_skb);
  1177. }
  1178. out_hdr = (struct sadb_msg *) resp_skb->data;
  1179. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1180. out_hdr->sadb_msg_type = SADB_GETSPI;
  1181. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1182. out_hdr->sadb_msg_errno = 0;
  1183. out_hdr->sadb_msg_reserved = 0;
  1184. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1185. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1186. xfrm_state_put(x);
  1187. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1188. return 0;
  1189. }
  1190. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1191. {
  1192. struct net *net = sock_net(sk);
  1193. struct xfrm_state *x;
  1194. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1195. return -EOPNOTSUPP;
  1196. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1197. return 0;
  1198. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1199. if (x == NULL)
  1200. return 0;
  1201. spin_lock_bh(&x->lock);
  1202. if (x->km.state == XFRM_STATE_ACQ) {
  1203. x->km.state = XFRM_STATE_ERROR;
  1204. wake_up(&net->xfrm.km_waitq);
  1205. }
  1206. spin_unlock_bh(&x->lock);
  1207. xfrm_state_put(x);
  1208. return 0;
  1209. }
  1210. static inline int event2poltype(int event)
  1211. {
  1212. switch (event) {
  1213. case XFRM_MSG_DELPOLICY:
  1214. return SADB_X_SPDDELETE;
  1215. case XFRM_MSG_NEWPOLICY:
  1216. return SADB_X_SPDADD;
  1217. case XFRM_MSG_UPDPOLICY:
  1218. return SADB_X_SPDUPDATE;
  1219. case XFRM_MSG_POLEXPIRE:
  1220. // return SADB_X_SPDEXPIRE;
  1221. default:
  1222. printk("pfkey: Unknown policy event %d\n", event);
  1223. break;
  1224. }
  1225. return 0;
  1226. }
  1227. static inline int event2keytype(int event)
  1228. {
  1229. switch (event) {
  1230. case XFRM_MSG_DELSA:
  1231. return SADB_DELETE;
  1232. case XFRM_MSG_NEWSA:
  1233. return SADB_ADD;
  1234. case XFRM_MSG_UPDSA:
  1235. return SADB_UPDATE;
  1236. case XFRM_MSG_EXPIRE:
  1237. return SADB_EXPIRE;
  1238. default:
  1239. printk("pfkey: Unknown SA event %d\n", event);
  1240. break;
  1241. }
  1242. return 0;
  1243. }
  1244. /* ADD/UPD/DEL */
  1245. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1246. {
  1247. struct sk_buff *skb;
  1248. struct sadb_msg *hdr;
  1249. skb = pfkey_xfrm_state2msg(x);
  1250. if (IS_ERR(skb))
  1251. return PTR_ERR(skb);
  1252. hdr = (struct sadb_msg *) skb->data;
  1253. hdr->sadb_msg_version = PF_KEY_V2;
  1254. hdr->sadb_msg_type = event2keytype(c->event);
  1255. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1256. hdr->sadb_msg_errno = 0;
  1257. hdr->sadb_msg_reserved = 0;
  1258. hdr->sadb_msg_seq = c->seq;
  1259. hdr->sadb_msg_pid = c->pid;
  1260. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1261. return 0;
  1262. }
  1263. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1264. {
  1265. struct net *net = sock_net(sk);
  1266. struct xfrm_state *x;
  1267. int err;
  1268. struct km_event c;
  1269. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1270. if (IS_ERR(x))
  1271. return PTR_ERR(x);
  1272. xfrm_state_hold(x);
  1273. if (hdr->sadb_msg_type == SADB_ADD)
  1274. err = xfrm_state_add(x);
  1275. else
  1276. err = xfrm_state_update(x);
  1277. xfrm_audit_state_add(x, err ? 0 : 1,
  1278. audit_get_loginuid(current),
  1279. audit_get_sessionid(current), 0);
  1280. if (err < 0) {
  1281. x->km.state = XFRM_STATE_DEAD;
  1282. __xfrm_state_put(x);
  1283. goto out;
  1284. }
  1285. if (hdr->sadb_msg_type == SADB_ADD)
  1286. c.event = XFRM_MSG_NEWSA;
  1287. else
  1288. c.event = XFRM_MSG_UPDSA;
  1289. c.seq = hdr->sadb_msg_seq;
  1290. c.pid = hdr->sadb_msg_pid;
  1291. km_state_notify(x, &c);
  1292. out:
  1293. xfrm_state_put(x);
  1294. return err;
  1295. }
  1296. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1297. {
  1298. struct net *net = sock_net(sk);
  1299. struct xfrm_state *x;
  1300. struct km_event c;
  1301. int err;
  1302. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1303. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1304. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1305. return -EINVAL;
  1306. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1307. if (x == NULL)
  1308. return -ESRCH;
  1309. if ((err = security_xfrm_state_delete(x)))
  1310. goto out;
  1311. if (xfrm_state_kern(x)) {
  1312. err = -EPERM;
  1313. goto out;
  1314. }
  1315. err = xfrm_state_delete(x);
  1316. if (err < 0)
  1317. goto out;
  1318. c.seq = hdr->sadb_msg_seq;
  1319. c.pid = hdr->sadb_msg_pid;
  1320. c.event = XFRM_MSG_DELSA;
  1321. km_state_notify(x, &c);
  1322. out:
  1323. xfrm_audit_state_delete(x, err ? 0 : 1,
  1324. audit_get_loginuid(current),
  1325. audit_get_sessionid(current), 0);
  1326. xfrm_state_put(x);
  1327. return err;
  1328. }
  1329. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1330. {
  1331. struct net *net = sock_net(sk);
  1332. __u8 proto;
  1333. struct sk_buff *out_skb;
  1334. struct sadb_msg *out_hdr;
  1335. struct xfrm_state *x;
  1336. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1337. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1338. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1339. return -EINVAL;
  1340. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1341. if (x == NULL)
  1342. return -ESRCH;
  1343. out_skb = pfkey_xfrm_state2msg(x);
  1344. proto = x->id.proto;
  1345. xfrm_state_put(x);
  1346. if (IS_ERR(out_skb))
  1347. return PTR_ERR(out_skb);
  1348. out_hdr = (struct sadb_msg *) out_skb->data;
  1349. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1350. out_hdr->sadb_msg_type = SADB_GET;
  1351. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1352. out_hdr->sadb_msg_errno = 0;
  1353. out_hdr->sadb_msg_reserved = 0;
  1354. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1355. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1356. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1357. return 0;
  1358. }
  1359. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1360. gfp_t allocation)
  1361. {
  1362. struct sk_buff *skb;
  1363. struct sadb_msg *hdr;
  1364. int len, auth_len, enc_len, i;
  1365. auth_len = xfrm_count_auth_supported();
  1366. if (auth_len) {
  1367. auth_len *= sizeof(struct sadb_alg);
  1368. auth_len += sizeof(struct sadb_supported);
  1369. }
  1370. enc_len = xfrm_count_enc_supported();
  1371. if (enc_len) {
  1372. enc_len *= sizeof(struct sadb_alg);
  1373. enc_len += sizeof(struct sadb_supported);
  1374. }
  1375. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1376. skb = alloc_skb(len + 16, allocation);
  1377. if (!skb)
  1378. goto out_put_algs;
  1379. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1380. pfkey_hdr_dup(hdr, orig);
  1381. hdr->sadb_msg_errno = 0;
  1382. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1383. if (auth_len) {
  1384. struct sadb_supported *sp;
  1385. struct sadb_alg *ap;
  1386. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1387. ap = (struct sadb_alg *) (sp + 1);
  1388. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1389. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1390. for (i = 0; ; i++) {
  1391. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1392. if (!aalg)
  1393. break;
  1394. if (aalg->available)
  1395. *ap++ = aalg->desc;
  1396. }
  1397. }
  1398. if (enc_len) {
  1399. struct sadb_supported *sp;
  1400. struct sadb_alg *ap;
  1401. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1402. ap = (struct sadb_alg *) (sp + 1);
  1403. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1404. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1405. for (i = 0; ; i++) {
  1406. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1407. if (!ealg)
  1408. break;
  1409. if (ealg->available)
  1410. *ap++ = ealg->desc;
  1411. }
  1412. }
  1413. out_put_algs:
  1414. return skb;
  1415. }
  1416. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1417. {
  1418. struct pfkey_sock *pfk = pfkey_sk(sk);
  1419. struct sk_buff *supp_skb;
  1420. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1421. return -EINVAL;
  1422. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1423. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1424. return -EEXIST;
  1425. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1426. }
  1427. xfrm_probe_algs();
  1428. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1429. if (!supp_skb) {
  1430. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1431. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1432. return -ENOBUFS;
  1433. }
  1434. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1435. return 0;
  1436. }
  1437. static int unicast_flush_resp(struct sock *sk, struct sadb_msg *ihdr)
  1438. {
  1439. struct sk_buff *skb;
  1440. struct sadb_msg *hdr;
  1441. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1442. if (!skb)
  1443. return -ENOBUFS;
  1444. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1445. memcpy(hdr, ihdr, sizeof(struct sadb_msg));
  1446. hdr->sadb_msg_errno = (uint8_t) 0;
  1447. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1448. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1449. }
  1450. static int key_notify_sa_flush(struct km_event *c)
  1451. {
  1452. struct sk_buff *skb;
  1453. struct sadb_msg *hdr;
  1454. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1455. if (!skb)
  1456. return -ENOBUFS;
  1457. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1458. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1459. hdr->sadb_msg_type = SADB_FLUSH;
  1460. hdr->sadb_msg_seq = c->seq;
  1461. hdr->sadb_msg_pid = c->pid;
  1462. hdr->sadb_msg_version = PF_KEY_V2;
  1463. hdr->sadb_msg_errno = (uint8_t) 0;
  1464. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1465. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1466. return 0;
  1467. }
  1468. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1469. {
  1470. struct net *net = sock_net(sk);
  1471. unsigned proto;
  1472. struct km_event c;
  1473. struct xfrm_audit audit_info;
  1474. int err, err2;
  1475. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1476. if (proto == 0)
  1477. return -EINVAL;
  1478. audit_info.loginuid = audit_get_loginuid(current);
  1479. audit_info.sessionid = audit_get_sessionid(current);
  1480. audit_info.secid = 0;
  1481. err = xfrm_state_flush(net, proto, &audit_info);
  1482. err2 = unicast_flush_resp(sk, hdr);
  1483. if (err || err2) {
  1484. if (err == -ESRCH) /* empty table - go quietly */
  1485. err = 0;
  1486. return err ? err : err2;
  1487. }
  1488. c.data.proto = proto;
  1489. c.seq = hdr->sadb_msg_seq;
  1490. c.pid = hdr->sadb_msg_pid;
  1491. c.event = XFRM_MSG_FLUSHSA;
  1492. c.net = net;
  1493. km_state_notify(NULL, &c);
  1494. return 0;
  1495. }
  1496. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1497. {
  1498. struct pfkey_sock *pfk = ptr;
  1499. struct sk_buff *out_skb;
  1500. struct sadb_msg *out_hdr;
  1501. if (!pfkey_can_dump(&pfk->sk))
  1502. return -ENOBUFS;
  1503. out_skb = pfkey_xfrm_state2msg(x);
  1504. if (IS_ERR(out_skb))
  1505. return PTR_ERR(out_skb);
  1506. out_hdr = (struct sadb_msg *) out_skb->data;
  1507. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1508. out_hdr->sadb_msg_type = SADB_DUMP;
  1509. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1510. out_hdr->sadb_msg_errno = 0;
  1511. out_hdr->sadb_msg_reserved = 0;
  1512. out_hdr->sadb_msg_seq = count + 1;
  1513. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1514. if (pfk->dump.skb)
  1515. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1516. &pfk->sk, sock_net(&pfk->sk));
  1517. pfk->dump.skb = out_skb;
  1518. return 0;
  1519. }
  1520. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1521. {
  1522. struct net *net = sock_net(&pfk->sk);
  1523. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1524. }
  1525. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1526. {
  1527. xfrm_state_walk_done(&pfk->dump.u.state);
  1528. }
  1529. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1530. {
  1531. u8 proto;
  1532. struct pfkey_sock *pfk = pfkey_sk(sk);
  1533. if (pfk->dump.dump != NULL)
  1534. return -EBUSY;
  1535. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1536. if (proto == 0)
  1537. return -EINVAL;
  1538. pfk->dump.msg_version = hdr->sadb_msg_version;
  1539. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1540. pfk->dump.dump = pfkey_dump_sa;
  1541. pfk->dump.done = pfkey_dump_sa_done;
  1542. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1543. return pfkey_do_dump(pfk);
  1544. }
  1545. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1546. {
  1547. struct pfkey_sock *pfk = pfkey_sk(sk);
  1548. int satype = hdr->sadb_msg_satype;
  1549. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1550. /* XXX we mangle packet... */
  1551. hdr->sadb_msg_errno = 0;
  1552. if (satype != 0 && satype != 1)
  1553. return -EINVAL;
  1554. pfk->promisc = satype;
  1555. }
  1556. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1557. return 0;
  1558. }
  1559. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1560. {
  1561. int i;
  1562. u32 reqid = *(u32*)ptr;
  1563. for (i=0; i<xp->xfrm_nr; i++) {
  1564. if (xp->xfrm_vec[i].reqid == reqid)
  1565. return -EEXIST;
  1566. }
  1567. return 0;
  1568. }
  1569. static u32 gen_reqid(struct net *net)
  1570. {
  1571. struct xfrm_policy_walk walk;
  1572. u32 start;
  1573. int rc;
  1574. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1575. start = reqid;
  1576. do {
  1577. ++reqid;
  1578. if (reqid == 0)
  1579. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1580. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1581. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1582. xfrm_policy_walk_done(&walk);
  1583. if (rc != -EEXIST)
  1584. return reqid;
  1585. } while (reqid != start);
  1586. return 0;
  1587. }
  1588. static int
  1589. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1590. {
  1591. struct net *net = xp_net(xp);
  1592. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1593. int mode;
  1594. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1595. return -ELOOP;
  1596. if (rq->sadb_x_ipsecrequest_mode == 0)
  1597. return -EINVAL;
  1598. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1599. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1600. return -EINVAL;
  1601. t->mode = mode;
  1602. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1603. t->optional = 1;
  1604. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1605. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1606. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1607. t->reqid = 0;
  1608. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1609. return -ENOBUFS;
  1610. }
  1611. /* addresses present only in tunnel mode */
  1612. if (t->mode == XFRM_MODE_TUNNEL) {
  1613. u8 *sa = (u8 *) (rq + 1);
  1614. int family, socklen;
  1615. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1616. &t->saddr);
  1617. if (!family)
  1618. return -EINVAL;
  1619. socklen = pfkey_sockaddr_len(family);
  1620. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1621. &t->id.daddr) != family)
  1622. return -EINVAL;
  1623. t->encap_family = family;
  1624. } else
  1625. t->encap_family = xp->family;
  1626. /* No way to set this via kame pfkey */
  1627. t->allalgs = 1;
  1628. xp->xfrm_nr++;
  1629. return 0;
  1630. }
  1631. static int
  1632. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1633. {
  1634. int err;
  1635. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1636. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1637. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1638. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1639. return err;
  1640. len -= rq->sadb_x_ipsecrequest_len;
  1641. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1642. }
  1643. return 0;
  1644. }
  1645. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1646. {
  1647. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1648. if (xfrm_ctx) {
  1649. int len = sizeof(struct sadb_x_sec_ctx);
  1650. len += xfrm_ctx->ctx_len;
  1651. return PFKEY_ALIGN8(len);
  1652. }
  1653. return 0;
  1654. }
  1655. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1656. {
  1657. struct xfrm_tmpl *t;
  1658. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1659. int socklen = 0;
  1660. int i;
  1661. for (i=0; i<xp->xfrm_nr; i++) {
  1662. t = xp->xfrm_vec + i;
  1663. socklen += pfkey_sockaddr_len(t->encap_family);
  1664. }
  1665. return sizeof(struct sadb_msg) +
  1666. (sizeof(struct sadb_lifetime) * 3) +
  1667. (sizeof(struct sadb_address) * 2) +
  1668. (sockaddr_size * 2) +
  1669. sizeof(struct sadb_x_policy) +
  1670. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1671. (socklen * 2) +
  1672. pfkey_xfrm_policy2sec_ctx_size(xp);
  1673. }
  1674. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1675. {
  1676. struct sk_buff *skb;
  1677. int size;
  1678. size = pfkey_xfrm_policy2msg_size(xp);
  1679. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1680. if (skb == NULL)
  1681. return ERR_PTR(-ENOBUFS);
  1682. return skb;
  1683. }
  1684. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1685. {
  1686. struct sadb_msg *hdr;
  1687. struct sadb_address *addr;
  1688. struct sadb_lifetime *lifetime;
  1689. struct sadb_x_policy *pol;
  1690. struct sadb_x_sec_ctx *sec_ctx;
  1691. struct xfrm_sec_ctx *xfrm_ctx;
  1692. int i;
  1693. int size;
  1694. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1695. int socklen = pfkey_sockaddr_len(xp->family);
  1696. size = pfkey_xfrm_policy2msg_size(xp);
  1697. /* call should fill header later */
  1698. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1699. memset(hdr, 0, size); /* XXX do we need this ? */
  1700. /* src address */
  1701. addr = (struct sadb_address*) skb_put(skb,
  1702. sizeof(struct sadb_address)+sockaddr_size);
  1703. addr->sadb_address_len =
  1704. (sizeof(struct sadb_address)+sockaddr_size)/
  1705. sizeof(uint64_t);
  1706. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1707. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1708. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1709. addr->sadb_address_reserved = 0;
  1710. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1711. xp->selector.sport,
  1712. (struct sockaddr *) (addr + 1),
  1713. xp->family))
  1714. BUG();
  1715. /* dst address */
  1716. addr = (struct sadb_address*) skb_put(skb,
  1717. sizeof(struct sadb_address)+sockaddr_size);
  1718. addr->sadb_address_len =
  1719. (sizeof(struct sadb_address)+sockaddr_size)/
  1720. sizeof(uint64_t);
  1721. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1722. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1723. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1724. addr->sadb_address_reserved = 0;
  1725. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1726. (struct sockaddr *) (addr + 1),
  1727. xp->family);
  1728. /* hard time */
  1729. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1730. sizeof(struct sadb_lifetime));
  1731. lifetime->sadb_lifetime_len =
  1732. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1733. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1734. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1735. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1736. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1737. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1738. /* soft time */
  1739. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1740. sizeof(struct sadb_lifetime));
  1741. lifetime->sadb_lifetime_len =
  1742. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1743. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1744. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1745. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1746. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1747. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1748. /* current time */
  1749. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1750. sizeof(struct sadb_lifetime));
  1751. lifetime->sadb_lifetime_len =
  1752. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1753. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1754. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1755. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1756. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1757. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1758. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1759. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1760. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1761. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1762. if (xp->action == XFRM_POLICY_ALLOW) {
  1763. if (xp->xfrm_nr)
  1764. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1765. else
  1766. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1767. }
  1768. pol->sadb_x_policy_dir = dir+1;
  1769. pol->sadb_x_policy_id = xp->index;
  1770. pol->sadb_x_policy_priority = xp->priority;
  1771. for (i=0; i<xp->xfrm_nr; i++) {
  1772. struct sadb_x_ipsecrequest *rq;
  1773. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1774. int req_size;
  1775. int mode;
  1776. req_size = sizeof(struct sadb_x_ipsecrequest);
  1777. if (t->mode == XFRM_MODE_TUNNEL) {
  1778. socklen = pfkey_sockaddr_len(t->encap_family);
  1779. req_size += socklen * 2;
  1780. } else {
  1781. size -= 2*socklen;
  1782. }
  1783. rq = (void*)skb_put(skb, req_size);
  1784. pol->sadb_x_policy_len += req_size/8;
  1785. memset(rq, 0, sizeof(*rq));
  1786. rq->sadb_x_ipsecrequest_len = req_size;
  1787. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1788. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1789. return -EINVAL;
  1790. rq->sadb_x_ipsecrequest_mode = mode;
  1791. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1792. if (t->reqid)
  1793. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1794. if (t->optional)
  1795. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1796. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1797. if (t->mode == XFRM_MODE_TUNNEL) {
  1798. u8 *sa = (void *)(rq + 1);
  1799. pfkey_sockaddr_fill(&t->saddr, 0,
  1800. (struct sockaddr *)sa,
  1801. t->encap_family);
  1802. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1803. (struct sockaddr *) (sa + socklen),
  1804. t->encap_family);
  1805. }
  1806. }
  1807. /* security context */
  1808. if ((xfrm_ctx = xp->security)) {
  1809. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1810. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1811. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1812. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1813. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1814. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1815. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1816. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1817. xfrm_ctx->ctx_len);
  1818. }
  1819. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1820. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1821. return 0;
  1822. }
  1823. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1824. {
  1825. struct sk_buff *out_skb;
  1826. struct sadb_msg *out_hdr;
  1827. int err;
  1828. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1829. if (IS_ERR(out_skb)) {
  1830. err = PTR_ERR(out_skb);
  1831. goto out;
  1832. }
  1833. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1834. if (err < 0)
  1835. return err;
  1836. out_hdr = (struct sadb_msg *) out_skb->data;
  1837. out_hdr->sadb_msg_version = PF_KEY_V2;
  1838. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1839. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1840. else
  1841. out_hdr->sadb_msg_type = event2poltype(c->event);
  1842. out_hdr->sadb_msg_errno = 0;
  1843. out_hdr->sadb_msg_seq = c->seq;
  1844. out_hdr->sadb_msg_pid = c->pid;
  1845. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1846. out:
  1847. return 0;
  1848. }
  1849. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1850. {
  1851. struct net *net = sock_net(sk);
  1852. int err = 0;
  1853. struct sadb_lifetime *lifetime;
  1854. struct sadb_address *sa;
  1855. struct sadb_x_policy *pol;
  1856. struct xfrm_policy *xp;
  1857. struct km_event c;
  1858. struct sadb_x_sec_ctx *sec_ctx;
  1859. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1860. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1861. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1862. return -EINVAL;
  1863. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1864. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1865. return -EINVAL;
  1866. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1867. return -EINVAL;
  1868. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1869. if (xp == NULL)
  1870. return -ENOBUFS;
  1871. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1872. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1873. xp->priority = pol->sadb_x_policy_priority;
  1874. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1875. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1876. if (!xp->family) {
  1877. err = -EINVAL;
  1878. goto out;
  1879. }
  1880. xp->selector.family = xp->family;
  1881. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1882. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1883. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1884. if (xp->selector.sport)
  1885. xp->selector.sport_mask = htons(0xffff);
  1886. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1887. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1888. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1889. /* Amusing, we set this twice. KAME apps appear to set same value
  1890. * in both addresses.
  1891. */
  1892. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1893. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1894. if (xp->selector.dport)
  1895. xp->selector.dport_mask = htons(0xffff);
  1896. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1897. if (sec_ctx != NULL) {
  1898. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1899. if (!uctx) {
  1900. err = -ENOBUFS;
  1901. goto out;
  1902. }
  1903. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1904. kfree(uctx);
  1905. if (err)
  1906. goto out;
  1907. }
  1908. xp->lft.soft_byte_limit = XFRM_INF;
  1909. xp->lft.hard_byte_limit = XFRM_INF;
  1910. xp->lft.soft_packet_limit = XFRM_INF;
  1911. xp->lft.hard_packet_limit = XFRM_INF;
  1912. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1913. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1914. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1915. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1916. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1917. }
  1918. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1919. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1920. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1921. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1922. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1923. }
  1924. xp->xfrm_nr = 0;
  1925. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1926. (err = parse_ipsecrequests(xp, pol)) < 0)
  1927. goto out;
  1928. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1929. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1930. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1931. audit_get_loginuid(current),
  1932. audit_get_sessionid(current), 0);
  1933. if (err)
  1934. goto out;
  1935. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1936. c.event = XFRM_MSG_UPDPOLICY;
  1937. else
  1938. c.event = XFRM_MSG_NEWPOLICY;
  1939. c.seq = hdr->sadb_msg_seq;
  1940. c.pid = hdr->sadb_msg_pid;
  1941. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1942. xfrm_pol_put(xp);
  1943. return 0;
  1944. out:
  1945. xp->walk.dead = 1;
  1946. xfrm_policy_destroy(xp);
  1947. return err;
  1948. }
  1949. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1950. {
  1951. struct net *net = sock_net(sk);
  1952. int err;
  1953. struct sadb_address *sa;
  1954. struct sadb_x_policy *pol;
  1955. struct xfrm_policy *xp;
  1956. struct xfrm_selector sel;
  1957. struct km_event c;
  1958. struct sadb_x_sec_ctx *sec_ctx;
  1959. struct xfrm_sec_ctx *pol_ctx = NULL;
  1960. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1961. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1962. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1963. return -EINVAL;
  1964. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1965. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1966. return -EINVAL;
  1967. memset(&sel, 0, sizeof(sel));
  1968. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1969. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1970. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1971. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1972. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1973. if (sel.sport)
  1974. sel.sport_mask = htons(0xffff);
  1975. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1976. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1977. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1978. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1979. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1980. if (sel.dport)
  1981. sel.dport_mask = htons(0xffff);
  1982. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1983. if (sec_ctx != NULL) {
  1984. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1985. if (!uctx)
  1986. return -ENOMEM;
  1987. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1988. kfree(uctx);
  1989. if (err)
  1990. return err;
  1991. }
  1992. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  1993. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  1994. 1, &err);
  1995. security_xfrm_policy_free(pol_ctx);
  1996. if (xp == NULL)
  1997. return -ENOENT;
  1998. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  1999. audit_get_loginuid(current),
  2000. audit_get_sessionid(current), 0);
  2001. if (err)
  2002. goto out;
  2003. c.seq = hdr->sadb_msg_seq;
  2004. c.pid = hdr->sadb_msg_pid;
  2005. c.data.byid = 0;
  2006. c.event = XFRM_MSG_DELPOLICY;
  2007. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2008. out:
  2009. xfrm_pol_put(xp);
  2010. return err;
  2011. }
  2012. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2013. {
  2014. int err;
  2015. struct sk_buff *out_skb;
  2016. struct sadb_msg *out_hdr;
  2017. err = 0;
  2018. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2019. if (IS_ERR(out_skb)) {
  2020. err = PTR_ERR(out_skb);
  2021. goto out;
  2022. }
  2023. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2024. if (err < 0)
  2025. goto out;
  2026. out_hdr = (struct sadb_msg *) out_skb->data;
  2027. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2028. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2029. out_hdr->sadb_msg_satype = 0;
  2030. out_hdr->sadb_msg_errno = 0;
  2031. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2032. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2033. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2034. err = 0;
  2035. out:
  2036. return err;
  2037. }
  2038. #ifdef CONFIG_NET_KEY_MIGRATE
  2039. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2040. {
  2041. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2042. }
  2043. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2044. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2045. u16 *family)
  2046. {
  2047. int af, socklen;
  2048. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2049. return -EINVAL;
  2050. af = pfkey_sockaddr_extract(sa, saddr);
  2051. if (!af)
  2052. return -EINVAL;
  2053. socklen = pfkey_sockaddr_len(af);
  2054. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2055. daddr) != af)
  2056. return -EINVAL;
  2057. *family = af;
  2058. return 0;
  2059. }
  2060. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2061. struct xfrm_migrate *m)
  2062. {
  2063. int err;
  2064. struct sadb_x_ipsecrequest *rq2;
  2065. int mode;
  2066. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2067. len < rq1->sadb_x_ipsecrequest_len)
  2068. return -EINVAL;
  2069. /* old endoints */
  2070. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2071. rq1->sadb_x_ipsecrequest_len,
  2072. &m->old_saddr, &m->old_daddr,
  2073. &m->old_family);
  2074. if (err)
  2075. return err;
  2076. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2077. len -= rq1->sadb_x_ipsecrequest_len;
  2078. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2079. len < rq2->sadb_x_ipsecrequest_len)
  2080. return -EINVAL;
  2081. /* new endpoints */
  2082. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2083. rq2->sadb_x_ipsecrequest_len,
  2084. &m->new_saddr, &m->new_daddr,
  2085. &m->new_family);
  2086. if (err)
  2087. return err;
  2088. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2089. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2090. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2091. return -EINVAL;
  2092. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2093. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2094. return -EINVAL;
  2095. m->mode = mode;
  2096. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2097. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2098. rq2->sadb_x_ipsecrequest_len));
  2099. }
  2100. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2101. struct sadb_msg *hdr, void **ext_hdrs)
  2102. {
  2103. int i, len, ret, err = -EINVAL;
  2104. u8 dir;
  2105. struct sadb_address *sa;
  2106. struct sadb_x_kmaddress *kma;
  2107. struct sadb_x_policy *pol;
  2108. struct sadb_x_ipsecrequest *rq;
  2109. struct xfrm_selector sel;
  2110. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2111. struct xfrm_kmaddress k;
  2112. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2113. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2114. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2115. err = -EINVAL;
  2116. goto out;
  2117. }
  2118. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2119. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2120. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2121. err = -EINVAL;
  2122. goto out;
  2123. }
  2124. if (kma) {
  2125. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2126. k.reserved = kma->sadb_x_kmaddress_reserved;
  2127. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2128. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2129. &k.local, &k.remote, &k.family);
  2130. if (ret < 0) {
  2131. err = ret;
  2132. goto out;
  2133. }
  2134. }
  2135. dir = pol->sadb_x_policy_dir - 1;
  2136. memset(&sel, 0, sizeof(sel));
  2137. /* set source address info of selector */
  2138. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2139. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2140. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2141. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2142. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2143. if (sel.sport)
  2144. sel.sport_mask = htons(0xffff);
  2145. /* set destination address info of selector */
  2146. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2147. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2148. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2149. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2150. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2151. if (sel.dport)
  2152. sel.dport_mask = htons(0xffff);
  2153. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2154. /* extract ipsecrequests */
  2155. i = 0;
  2156. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2157. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2158. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2159. if (ret < 0) {
  2160. err = ret;
  2161. goto out;
  2162. } else {
  2163. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2164. len -= ret;
  2165. i++;
  2166. }
  2167. }
  2168. if (!i || len > 0) {
  2169. err = -EINVAL;
  2170. goto out;
  2171. }
  2172. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2173. kma ? &k : NULL);
  2174. out:
  2175. return err;
  2176. }
  2177. #else
  2178. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2179. struct sadb_msg *hdr, void **ext_hdrs)
  2180. {
  2181. return -ENOPROTOOPT;
  2182. }
  2183. #endif
  2184. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2185. {
  2186. struct net *net = sock_net(sk);
  2187. unsigned int dir;
  2188. int err = 0, delete;
  2189. struct sadb_x_policy *pol;
  2190. struct xfrm_policy *xp;
  2191. struct km_event c;
  2192. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2193. return -EINVAL;
  2194. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2195. if (dir >= XFRM_POLICY_MAX)
  2196. return -EINVAL;
  2197. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2198. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2199. dir, pol->sadb_x_policy_id, delete, &err);
  2200. if (xp == NULL)
  2201. return -ENOENT;
  2202. if (delete) {
  2203. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2204. audit_get_loginuid(current),
  2205. audit_get_sessionid(current), 0);
  2206. if (err)
  2207. goto out;
  2208. c.seq = hdr->sadb_msg_seq;
  2209. c.pid = hdr->sadb_msg_pid;
  2210. c.data.byid = 1;
  2211. c.event = XFRM_MSG_DELPOLICY;
  2212. km_policy_notify(xp, dir, &c);
  2213. } else {
  2214. err = key_pol_get_resp(sk, xp, hdr, dir);
  2215. }
  2216. out:
  2217. xfrm_pol_put(xp);
  2218. return err;
  2219. }
  2220. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2221. {
  2222. struct pfkey_sock *pfk = ptr;
  2223. struct sk_buff *out_skb;
  2224. struct sadb_msg *out_hdr;
  2225. int err;
  2226. if (!pfkey_can_dump(&pfk->sk))
  2227. return -ENOBUFS;
  2228. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2229. if (IS_ERR(out_skb))
  2230. return PTR_ERR(out_skb);
  2231. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2232. if (err < 0)
  2233. return err;
  2234. out_hdr = (struct sadb_msg *) out_skb->data;
  2235. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2236. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2237. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2238. out_hdr->sadb_msg_errno = 0;
  2239. out_hdr->sadb_msg_seq = count + 1;
  2240. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2241. if (pfk->dump.skb)
  2242. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2243. &pfk->sk, sock_net(&pfk->sk));
  2244. pfk->dump.skb = out_skb;
  2245. return 0;
  2246. }
  2247. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2248. {
  2249. struct net *net = sock_net(&pfk->sk);
  2250. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2251. }
  2252. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2253. {
  2254. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2255. }
  2256. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2257. {
  2258. struct pfkey_sock *pfk = pfkey_sk(sk);
  2259. if (pfk->dump.dump != NULL)
  2260. return -EBUSY;
  2261. pfk->dump.msg_version = hdr->sadb_msg_version;
  2262. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2263. pfk->dump.dump = pfkey_dump_sp;
  2264. pfk->dump.done = pfkey_dump_sp_done;
  2265. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2266. return pfkey_do_dump(pfk);
  2267. }
  2268. static int key_notify_policy_flush(struct km_event *c)
  2269. {
  2270. struct sk_buff *skb_out;
  2271. struct sadb_msg *hdr;
  2272. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2273. if (!skb_out)
  2274. return -ENOBUFS;
  2275. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2276. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2277. hdr->sadb_msg_seq = c->seq;
  2278. hdr->sadb_msg_pid = c->pid;
  2279. hdr->sadb_msg_version = PF_KEY_V2;
  2280. hdr->sadb_msg_errno = (uint8_t) 0;
  2281. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2282. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2283. return 0;
  2284. }
  2285. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2286. {
  2287. struct net *net = sock_net(sk);
  2288. struct km_event c;
  2289. struct xfrm_audit audit_info;
  2290. int err, err2;
  2291. audit_info.loginuid = audit_get_loginuid(current);
  2292. audit_info.sessionid = audit_get_sessionid(current);
  2293. audit_info.secid = 0;
  2294. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, &audit_info);
  2295. err2 = unicast_flush_resp(sk, hdr);
  2296. if (err || err2) {
  2297. if (err == -ESRCH) /* empty table - old silent behavior */
  2298. return 0;
  2299. return err;
  2300. }
  2301. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2302. c.event = XFRM_MSG_FLUSHPOLICY;
  2303. c.pid = hdr->sadb_msg_pid;
  2304. c.seq = hdr->sadb_msg_seq;
  2305. c.net = net;
  2306. km_policy_notify(NULL, 0, &c);
  2307. return 0;
  2308. }
  2309. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2310. struct sadb_msg *hdr, void **ext_hdrs);
  2311. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2312. [SADB_RESERVED] = pfkey_reserved,
  2313. [SADB_GETSPI] = pfkey_getspi,
  2314. [SADB_UPDATE] = pfkey_add,
  2315. [SADB_ADD] = pfkey_add,
  2316. [SADB_DELETE] = pfkey_delete,
  2317. [SADB_GET] = pfkey_get,
  2318. [SADB_ACQUIRE] = pfkey_acquire,
  2319. [SADB_REGISTER] = pfkey_register,
  2320. [SADB_EXPIRE] = NULL,
  2321. [SADB_FLUSH] = pfkey_flush,
  2322. [SADB_DUMP] = pfkey_dump,
  2323. [SADB_X_PROMISC] = pfkey_promisc,
  2324. [SADB_X_PCHANGE] = NULL,
  2325. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2326. [SADB_X_SPDADD] = pfkey_spdadd,
  2327. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2328. [SADB_X_SPDGET] = pfkey_spdget,
  2329. [SADB_X_SPDACQUIRE] = NULL,
  2330. [SADB_X_SPDDUMP] = pfkey_spddump,
  2331. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2332. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2333. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2334. [SADB_X_MIGRATE] = pfkey_migrate,
  2335. };
  2336. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2337. {
  2338. void *ext_hdrs[SADB_EXT_MAX];
  2339. int err;
  2340. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2341. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2342. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2343. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2344. if (!err) {
  2345. err = -EOPNOTSUPP;
  2346. if (pfkey_funcs[hdr->sadb_msg_type])
  2347. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2348. }
  2349. return err;
  2350. }
  2351. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2352. {
  2353. struct sadb_msg *hdr = NULL;
  2354. if (skb->len < sizeof(*hdr)) {
  2355. *errp = -EMSGSIZE;
  2356. } else {
  2357. hdr = (struct sadb_msg *) skb->data;
  2358. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2359. hdr->sadb_msg_reserved != 0 ||
  2360. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2361. hdr->sadb_msg_type > SADB_MAX)) {
  2362. hdr = NULL;
  2363. *errp = -EINVAL;
  2364. } else if (hdr->sadb_msg_len != (skb->len /
  2365. sizeof(uint64_t)) ||
  2366. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2367. sizeof(uint64_t))) {
  2368. hdr = NULL;
  2369. *errp = -EMSGSIZE;
  2370. } else {
  2371. *errp = 0;
  2372. }
  2373. }
  2374. return hdr;
  2375. }
  2376. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2377. {
  2378. unsigned int id = d->desc.sadb_alg_id;
  2379. if (id >= sizeof(t->aalgos) * 8)
  2380. return 0;
  2381. return (t->aalgos >> id) & 1;
  2382. }
  2383. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2384. {
  2385. unsigned int id = d->desc.sadb_alg_id;
  2386. if (id >= sizeof(t->ealgos) * 8)
  2387. return 0;
  2388. return (t->ealgos >> id) & 1;
  2389. }
  2390. static int count_ah_combs(struct xfrm_tmpl *t)
  2391. {
  2392. int i, sz = 0;
  2393. for (i = 0; ; i++) {
  2394. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2395. if (!aalg)
  2396. break;
  2397. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2398. sz += sizeof(struct sadb_comb);
  2399. }
  2400. return sz + sizeof(struct sadb_prop);
  2401. }
  2402. static int count_esp_combs(struct xfrm_tmpl *t)
  2403. {
  2404. int i, k, sz = 0;
  2405. for (i = 0; ; i++) {
  2406. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2407. if (!ealg)
  2408. break;
  2409. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2410. continue;
  2411. for (k = 1; ; k++) {
  2412. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2413. if (!aalg)
  2414. break;
  2415. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2416. sz += sizeof(struct sadb_comb);
  2417. }
  2418. }
  2419. return sz + sizeof(struct sadb_prop);
  2420. }
  2421. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2422. {
  2423. struct sadb_prop *p;
  2424. int i;
  2425. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2426. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2427. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2428. p->sadb_prop_replay = 32;
  2429. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2430. for (i = 0; ; i++) {
  2431. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2432. if (!aalg)
  2433. break;
  2434. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2435. struct sadb_comb *c;
  2436. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2437. memset(c, 0, sizeof(*c));
  2438. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2439. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2440. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2441. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2442. c->sadb_comb_hard_addtime = 24*60*60;
  2443. c->sadb_comb_soft_addtime = 20*60*60;
  2444. c->sadb_comb_hard_usetime = 8*60*60;
  2445. c->sadb_comb_soft_usetime = 7*60*60;
  2446. }
  2447. }
  2448. }
  2449. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2450. {
  2451. struct sadb_prop *p;
  2452. int i, k;
  2453. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2454. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2455. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2456. p->sadb_prop_replay = 32;
  2457. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2458. for (i=0; ; i++) {
  2459. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2460. if (!ealg)
  2461. break;
  2462. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2463. continue;
  2464. for (k = 1; ; k++) {
  2465. struct sadb_comb *c;
  2466. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2467. if (!aalg)
  2468. break;
  2469. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2470. continue;
  2471. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2472. memset(c, 0, sizeof(*c));
  2473. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2474. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2475. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2476. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2477. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2478. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2479. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2480. c->sadb_comb_hard_addtime = 24*60*60;
  2481. c->sadb_comb_soft_addtime = 20*60*60;
  2482. c->sadb_comb_hard_usetime = 8*60*60;
  2483. c->sadb_comb_soft_usetime = 7*60*60;
  2484. }
  2485. }
  2486. }
  2487. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2488. {
  2489. return 0;
  2490. }
  2491. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2492. {
  2493. struct sk_buff *out_skb;
  2494. struct sadb_msg *out_hdr;
  2495. int hard;
  2496. int hsc;
  2497. hard = c->data.hard;
  2498. if (hard)
  2499. hsc = 2;
  2500. else
  2501. hsc = 1;
  2502. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2503. if (IS_ERR(out_skb))
  2504. return PTR_ERR(out_skb);
  2505. out_hdr = (struct sadb_msg *) out_skb->data;
  2506. out_hdr->sadb_msg_version = PF_KEY_V2;
  2507. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2508. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2509. out_hdr->sadb_msg_errno = 0;
  2510. out_hdr->sadb_msg_reserved = 0;
  2511. out_hdr->sadb_msg_seq = 0;
  2512. out_hdr->sadb_msg_pid = 0;
  2513. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2514. return 0;
  2515. }
  2516. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2517. {
  2518. struct net *net = x ? xs_net(x) : c->net;
  2519. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2520. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2521. return 0;
  2522. switch (c->event) {
  2523. case XFRM_MSG_EXPIRE:
  2524. return key_notify_sa_expire(x, c);
  2525. case XFRM_MSG_DELSA:
  2526. case XFRM_MSG_NEWSA:
  2527. case XFRM_MSG_UPDSA:
  2528. return key_notify_sa(x, c);
  2529. case XFRM_MSG_FLUSHSA:
  2530. return key_notify_sa_flush(c);
  2531. case XFRM_MSG_NEWAE: /* not yet supported */
  2532. break;
  2533. default:
  2534. printk("pfkey: Unknown SA event %d\n", c->event);
  2535. break;
  2536. }
  2537. return 0;
  2538. }
  2539. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2540. {
  2541. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2542. return 0;
  2543. switch (c->event) {
  2544. case XFRM_MSG_POLEXPIRE:
  2545. return key_notify_policy_expire(xp, c);
  2546. case XFRM_MSG_DELPOLICY:
  2547. case XFRM_MSG_NEWPOLICY:
  2548. case XFRM_MSG_UPDPOLICY:
  2549. return key_notify_policy(xp, dir, c);
  2550. case XFRM_MSG_FLUSHPOLICY:
  2551. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2552. break;
  2553. return key_notify_policy_flush(c);
  2554. default:
  2555. printk("pfkey: Unknown policy event %d\n", c->event);
  2556. break;
  2557. }
  2558. return 0;
  2559. }
  2560. static u32 get_acqseq(void)
  2561. {
  2562. u32 res;
  2563. static atomic_t acqseq;
  2564. do {
  2565. res = atomic_inc_return(&acqseq);
  2566. } while (!res);
  2567. return res;
  2568. }
  2569. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2570. {
  2571. struct sk_buff *skb;
  2572. struct sadb_msg *hdr;
  2573. struct sadb_address *addr;
  2574. struct sadb_x_policy *pol;
  2575. int sockaddr_size;
  2576. int size;
  2577. struct sadb_x_sec_ctx *sec_ctx;
  2578. struct xfrm_sec_ctx *xfrm_ctx;
  2579. int ctx_size = 0;
  2580. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2581. if (!sockaddr_size)
  2582. return -EINVAL;
  2583. size = sizeof(struct sadb_msg) +
  2584. (sizeof(struct sadb_address) * 2) +
  2585. (sockaddr_size * 2) +
  2586. sizeof(struct sadb_x_policy);
  2587. if (x->id.proto == IPPROTO_AH)
  2588. size += count_ah_combs(t);
  2589. else if (x->id.proto == IPPROTO_ESP)
  2590. size += count_esp_combs(t);
  2591. if ((xfrm_ctx = x->security)) {
  2592. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2593. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2594. }
  2595. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2596. if (skb == NULL)
  2597. return -ENOMEM;
  2598. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2599. hdr->sadb_msg_version = PF_KEY_V2;
  2600. hdr->sadb_msg_type = SADB_ACQUIRE;
  2601. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2602. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2603. hdr->sadb_msg_errno = 0;
  2604. hdr->sadb_msg_reserved = 0;
  2605. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2606. hdr->sadb_msg_pid = 0;
  2607. /* src address */
  2608. addr = (struct sadb_address*) skb_put(skb,
  2609. sizeof(struct sadb_address)+sockaddr_size);
  2610. addr->sadb_address_len =
  2611. (sizeof(struct sadb_address)+sockaddr_size)/
  2612. sizeof(uint64_t);
  2613. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2614. addr->sadb_address_proto = 0;
  2615. addr->sadb_address_reserved = 0;
  2616. addr->sadb_address_prefixlen =
  2617. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2618. (struct sockaddr *) (addr + 1),
  2619. x->props.family);
  2620. if (!addr->sadb_address_prefixlen)
  2621. BUG();
  2622. /* dst address */
  2623. addr = (struct sadb_address*) skb_put(skb,
  2624. sizeof(struct sadb_address)+sockaddr_size);
  2625. addr->sadb_address_len =
  2626. (sizeof(struct sadb_address)+sockaddr_size)/
  2627. sizeof(uint64_t);
  2628. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2629. addr->sadb_address_proto = 0;
  2630. addr->sadb_address_reserved = 0;
  2631. addr->sadb_address_prefixlen =
  2632. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2633. (struct sockaddr *) (addr + 1),
  2634. x->props.family);
  2635. if (!addr->sadb_address_prefixlen)
  2636. BUG();
  2637. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2638. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2639. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2640. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2641. pol->sadb_x_policy_dir = dir+1;
  2642. pol->sadb_x_policy_id = xp->index;
  2643. /* Set sadb_comb's. */
  2644. if (x->id.proto == IPPROTO_AH)
  2645. dump_ah_combs(skb, t);
  2646. else if (x->id.proto == IPPROTO_ESP)
  2647. dump_esp_combs(skb, t);
  2648. /* security context */
  2649. if (xfrm_ctx) {
  2650. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2651. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2652. sec_ctx->sadb_x_sec_len =
  2653. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2654. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2655. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2656. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2657. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2658. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2659. xfrm_ctx->ctx_len);
  2660. }
  2661. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2662. }
  2663. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2664. u8 *data, int len, int *dir)
  2665. {
  2666. struct net *net = sock_net(sk);
  2667. struct xfrm_policy *xp;
  2668. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2669. struct sadb_x_sec_ctx *sec_ctx;
  2670. switch (sk->sk_family) {
  2671. case AF_INET:
  2672. if (opt != IP_IPSEC_POLICY) {
  2673. *dir = -EOPNOTSUPP;
  2674. return NULL;
  2675. }
  2676. break;
  2677. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2678. case AF_INET6:
  2679. if (opt != IPV6_IPSEC_POLICY) {
  2680. *dir = -EOPNOTSUPP;
  2681. return NULL;
  2682. }
  2683. break;
  2684. #endif
  2685. default:
  2686. *dir = -EINVAL;
  2687. return NULL;
  2688. }
  2689. *dir = -EINVAL;
  2690. if (len < sizeof(struct sadb_x_policy) ||
  2691. pol->sadb_x_policy_len*8 > len ||
  2692. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2693. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2694. return NULL;
  2695. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2696. if (xp == NULL) {
  2697. *dir = -ENOBUFS;
  2698. return NULL;
  2699. }
  2700. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2701. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2702. xp->lft.soft_byte_limit = XFRM_INF;
  2703. xp->lft.hard_byte_limit = XFRM_INF;
  2704. xp->lft.soft_packet_limit = XFRM_INF;
  2705. xp->lft.hard_packet_limit = XFRM_INF;
  2706. xp->family = sk->sk_family;
  2707. xp->xfrm_nr = 0;
  2708. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2709. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2710. goto out;
  2711. /* security context too */
  2712. if (len >= (pol->sadb_x_policy_len*8 +
  2713. sizeof(struct sadb_x_sec_ctx))) {
  2714. char *p = (char *)pol;
  2715. struct xfrm_user_sec_ctx *uctx;
  2716. p += pol->sadb_x_policy_len*8;
  2717. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2718. if (len < pol->sadb_x_policy_len*8 +
  2719. sec_ctx->sadb_x_sec_len) {
  2720. *dir = -EINVAL;
  2721. goto out;
  2722. }
  2723. if ((*dir = verify_sec_ctx_len(p)))
  2724. goto out;
  2725. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2726. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2727. kfree(uctx);
  2728. if (*dir)
  2729. goto out;
  2730. }
  2731. *dir = pol->sadb_x_policy_dir-1;
  2732. return xp;
  2733. out:
  2734. xp->walk.dead = 1;
  2735. xfrm_policy_destroy(xp);
  2736. return NULL;
  2737. }
  2738. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2739. {
  2740. struct sk_buff *skb;
  2741. struct sadb_msg *hdr;
  2742. struct sadb_sa *sa;
  2743. struct sadb_address *addr;
  2744. struct sadb_x_nat_t_port *n_port;
  2745. int sockaddr_size;
  2746. int size;
  2747. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2748. struct xfrm_encap_tmpl *natt = NULL;
  2749. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2750. if (!sockaddr_size)
  2751. return -EINVAL;
  2752. if (!satype)
  2753. return -EINVAL;
  2754. if (!x->encap)
  2755. return -EINVAL;
  2756. natt = x->encap;
  2757. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2758. *
  2759. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2760. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2761. */
  2762. size = sizeof(struct sadb_msg) +
  2763. sizeof(struct sadb_sa) +
  2764. (sizeof(struct sadb_address) * 2) +
  2765. (sockaddr_size * 2) +
  2766. (sizeof(struct sadb_x_nat_t_port) * 2);
  2767. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2768. if (skb == NULL)
  2769. return -ENOMEM;
  2770. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2771. hdr->sadb_msg_version = PF_KEY_V2;
  2772. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2773. hdr->sadb_msg_satype = satype;
  2774. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2775. hdr->sadb_msg_errno = 0;
  2776. hdr->sadb_msg_reserved = 0;
  2777. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2778. hdr->sadb_msg_pid = 0;
  2779. /* SA */
  2780. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2781. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2782. sa->sadb_sa_exttype = SADB_EXT_SA;
  2783. sa->sadb_sa_spi = x->id.spi;
  2784. sa->sadb_sa_replay = 0;
  2785. sa->sadb_sa_state = 0;
  2786. sa->sadb_sa_auth = 0;
  2787. sa->sadb_sa_encrypt = 0;
  2788. sa->sadb_sa_flags = 0;
  2789. /* ADDRESS_SRC (old addr) */
  2790. addr = (struct sadb_address*)
  2791. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2792. addr->sadb_address_len =
  2793. (sizeof(struct sadb_address)+sockaddr_size)/
  2794. sizeof(uint64_t);
  2795. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2796. addr->sadb_address_proto = 0;
  2797. addr->sadb_address_reserved = 0;
  2798. addr->sadb_address_prefixlen =
  2799. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2800. (struct sockaddr *) (addr + 1),
  2801. x->props.family);
  2802. if (!addr->sadb_address_prefixlen)
  2803. BUG();
  2804. /* NAT_T_SPORT (old port) */
  2805. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2806. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2807. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2808. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2809. n_port->sadb_x_nat_t_port_reserved = 0;
  2810. /* ADDRESS_DST (new addr) */
  2811. addr = (struct sadb_address*)
  2812. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2813. addr->sadb_address_len =
  2814. (sizeof(struct sadb_address)+sockaddr_size)/
  2815. sizeof(uint64_t);
  2816. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2817. addr->sadb_address_proto = 0;
  2818. addr->sadb_address_reserved = 0;
  2819. addr->sadb_address_prefixlen =
  2820. pfkey_sockaddr_fill(ipaddr, 0,
  2821. (struct sockaddr *) (addr + 1),
  2822. x->props.family);
  2823. if (!addr->sadb_address_prefixlen)
  2824. BUG();
  2825. /* NAT_T_DPORT (new port) */
  2826. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2827. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2828. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2829. n_port->sadb_x_nat_t_port_port = sport;
  2830. n_port->sadb_x_nat_t_port_reserved = 0;
  2831. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2832. }
  2833. #ifdef CONFIG_NET_KEY_MIGRATE
  2834. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2835. struct xfrm_selector *sel)
  2836. {
  2837. struct sadb_address *addr;
  2838. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2839. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2840. addr->sadb_address_exttype = type;
  2841. addr->sadb_address_proto = sel->proto;
  2842. addr->sadb_address_reserved = 0;
  2843. switch (type) {
  2844. case SADB_EXT_ADDRESS_SRC:
  2845. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2846. pfkey_sockaddr_fill(&sel->saddr, 0,
  2847. (struct sockaddr *)(addr + 1),
  2848. sel->family);
  2849. break;
  2850. case SADB_EXT_ADDRESS_DST:
  2851. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2852. pfkey_sockaddr_fill(&sel->daddr, 0,
  2853. (struct sockaddr *)(addr + 1),
  2854. sel->family);
  2855. break;
  2856. default:
  2857. return -EINVAL;
  2858. }
  2859. return 0;
  2860. }
  2861. static int set_sadb_kmaddress(struct sk_buff *skb, struct xfrm_kmaddress *k)
  2862. {
  2863. struct sadb_x_kmaddress *kma;
  2864. u8 *sa;
  2865. int family = k->family;
  2866. int socklen = pfkey_sockaddr_len(family);
  2867. int size_req;
  2868. size_req = (sizeof(struct sadb_x_kmaddress) +
  2869. pfkey_sockaddr_pair_size(family));
  2870. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2871. memset(kma, 0, size_req);
  2872. kma->sadb_x_kmaddress_len = size_req / 8;
  2873. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2874. kma->sadb_x_kmaddress_reserved = k->reserved;
  2875. sa = (u8 *)(kma + 1);
  2876. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2877. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2878. return -EINVAL;
  2879. return 0;
  2880. }
  2881. static int set_ipsecrequest(struct sk_buff *skb,
  2882. uint8_t proto, uint8_t mode, int level,
  2883. uint32_t reqid, uint8_t family,
  2884. xfrm_address_t *src, xfrm_address_t *dst)
  2885. {
  2886. struct sadb_x_ipsecrequest *rq;
  2887. u8 *sa;
  2888. int socklen = pfkey_sockaddr_len(family);
  2889. int size_req;
  2890. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2891. pfkey_sockaddr_pair_size(family);
  2892. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2893. memset(rq, 0, size_req);
  2894. rq->sadb_x_ipsecrequest_len = size_req;
  2895. rq->sadb_x_ipsecrequest_proto = proto;
  2896. rq->sadb_x_ipsecrequest_mode = mode;
  2897. rq->sadb_x_ipsecrequest_level = level;
  2898. rq->sadb_x_ipsecrequest_reqid = reqid;
  2899. sa = (u8 *) (rq + 1);
  2900. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2901. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2902. return -EINVAL;
  2903. return 0;
  2904. }
  2905. #endif
  2906. #ifdef CONFIG_NET_KEY_MIGRATE
  2907. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2908. struct xfrm_migrate *m, int num_bundles,
  2909. struct xfrm_kmaddress *k)
  2910. {
  2911. int i;
  2912. int sasize_sel;
  2913. int size = 0;
  2914. int size_pol = 0;
  2915. struct sk_buff *skb;
  2916. struct sadb_msg *hdr;
  2917. struct sadb_x_policy *pol;
  2918. struct xfrm_migrate *mp;
  2919. if (type != XFRM_POLICY_TYPE_MAIN)
  2920. return 0;
  2921. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2922. return -EINVAL;
  2923. if (k != NULL) {
  2924. /* addresses for KM */
  2925. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2926. pfkey_sockaddr_pair_size(k->family));
  2927. }
  2928. /* selector */
  2929. sasize_sel = pfkey_sockaddr_size(sel->family);
  2930. if (!sasize_sel)
  2931. return -EINVAL;
  2932. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2933. /* policy info */
  2934. size_pol += sizeof(struct sadb_x_policy);
  2935. /* ipsecrequests */
  2936. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2937. /* old locator pair */
  2938. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2939. pfkey_sockaddr_pair_size(mp->old_family);
  2940. /* new locator pair */
  2941. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2942. pfkey_sockaddr_pair_size(mp->new_family);
  2943. }
  2944. size += sizeof(struct sadb_msg) + size_pol;
  2945. /* alloc buffer */
  2946. skb = alloc_skb(size, GFP_ATOMIC);
  2947. if (skb == NULL)
  2948. return -ENOMEM;
  2949. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2950. hdr->sadb_msg_version = PF_KEY_V2;
  2951. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2952. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2953. hdr->sadb_msg_len = size / 8;
  2954. hdr->sadb_msg_errno = 0;
  2955. hdr->sadb_msg_reserved = 0;
  2956. hdr->sadb_msg_seq = 0;
  2957. hdr->sadb_msg_pid = 0;
  2958. /* Addresses to be used by KM for negotiation, if ext is available */
  2959. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2960. return -EINVAL;
  2961. /* selector src */
  2962. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2963. /* selector dst */
  2964. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2965. /* policy information */
  2966. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2967. pol->sadb_x_policy_len = size_pol / 8;
  2968. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2969. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2970. pol->sadb_x_policy_dir = dir + 1;
  2971. pol->sadb_x_policy_id = 0;
  2972. pol->sadb_x_policy_priority = 0;
  2973. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2974. /* old ipsecrequest */
  2975. int mode = pfkey_mode_from_xfrm(mp->mode);
  2976. if (mode < 0)
  2977. goto err;
  2978. if (set_ipsecrequest(skb, mp->proto, mode,
  2979. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2980. mp->reqid, mp->old_family,
  2981. &mp->old_saddr, &mp->old_daddr) < 0)
  2982. goto err;
  2983. /* new ipsecrequest */
  2984. if (set_ipsecrequest(skb, mp->proto, mode,
  2985. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2986. mp->reqid, mp->new_family,
  2987. &mp->new_saddr, &mp->new_daddr) < 0)
  2988. goto err;
  2989. }
  2990. /* broadcast migrate message to sockets */
  2991. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  2992. return 0;
  2993. err:
  2994. kfree_skb(skb);
  2995. return -EINVAL;
  2996. }
  2997. #else
  2998. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2999. struct xfrm_migrate *m, int num_bundles,
  3000. struct xfrm_kmaddress *k)
  3001. {
  3002. return -ENOPROTOOPT;
  3003. }
  3004. #endif
  3005. static int pfkey_sendmsg(struct kiocb *kiocb,
  3006. struct socket *sock, struct msghdr *msg, size_t len)
  3007. {
  3008. struct sock *sk = sock->sk;
  3009. struct sk_buff *skb = NULL;
  3010. struct sadb_msg *hdr = NULL;
  3011. int err;
  3012. err = -EOPNOTSUPP;
  3013. if (msg->msg_flags & MSG_OOB)
  3014. goto out;
  3015. err = -EMSGSIZE;
  3016. if ((unsigned)len > sk->sk_sndbuf - 32)
  3017. goto out;
  3018. err = -ENOBUFS;
  3019. skb = alloc_skb(len, GFP_KERNEL);
  3020. if (skb == NULL)
  3021. goto out;
  3022. err = -EFAULT;
  3023. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3024. goto out;
  3025. hdr = pfkey_get_base_msg(skb, &err);
  3026. if (!hdr)
  3027. goto out;
  3028. mutex_lock(&xfrm_cfg_mutex);
  3029. err = pfkey_process(sk, skb, hdr);
  3030. mutex_unlock(&xfrm_cfg_mutex);
  3031. out:
  3032. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3033. err = 0;
  3034. kfree_skb(skb);
  3035. return err ? : len;
  3036. }
  3037. static int pfkey_recvmsg(struct kiocb *kiocb,
  3038. struct socket *sock, struct msghdr *msg, size_t len,
  3039. int flags)
  3040. {
  3041. struct sock *sk = sock->sk;
  3042. struct pfkey_sock *pfk = pfkey_sk(sk);
  3043. struct sk_buff *skb;
  3044. int copied, err;
  3045. err = -EINVAL;
  3046. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3047. goto out;
  3048. msg->msg_namelen = 0;
  3049. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3050. if (skb == NULL)
  3051. goto out;
  3052. copied = skb->len;
  3053. if (copied > len) {
  3054. msg->msg_flags |= MSG_TRUNC;
  3055. copied = len;
  3056. }
  3057. skb_reset_transport_header(skb);
  3058. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3059. if (err)
  3060. goto out_free;
  3061. sock_recv_ts_and_drops(msg, sk, skb);
  3062. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3063. if (pfk->dump.dump != NULL &&
  3064. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3065. pfkey_do_dump(pfk);
  3066. out_free:
  3067. skb_free_datagram(sk, skb);
  3068. out:
  3069. return err;
  3070. }
  3071. static const struct proto_ops pfkey_ops = {
  3072. .family = PF_KEY,
  3073. .owner = THIS_MODULE,
  3074. /* Operations that make no sense on pfkey sockets. */
  3075. .bind = sock_no_bind,
  3076. .connect = sock_no_connect,
  3077. .socketpair = sock_no_socketpair,
  3078. .accept = sock_no_accept,
  3079. .getname = sock_no_getname,
  3080. .ioctl = sock_no_ioctl,
  3081. .listen = sock_no_listen,
  3082. .shutdown = sock_no_shutdown,
  3083. .setsockopt = sock_no_setsockopt,
  3084. .getsockopt = sock_no_getsockopt,
  3085. .mmap = sock_no_mmap,
  3086. .sendpage = sock_no_sendpage,
  3087. /* Now the operations that really occur. */
  3088. .release = pfkey_release,
  3089. .poll = datagram_poll,
  3090. .sendmsg = pfkey_sendmsg,
  3091. .recvmsg = pfkey_recvmsg,
  3092. };
  3093. static const struct net_proto_family pfkey_family_ops = {
  3094. .family = PF_KEY,
  3095. .create = pfkey_create,
  3096. .owner = THIS_MODULE,
  3097. };
  3098. #ifdef CONFIG_PROC_FS
  3099. static int pfkey_seq_show(struct seq_file *f, void *v)
  3100. {
  3101. struct sock *s = sk_entry(v);
  3102. if (v == SEQ_START_TOKEN)
  3103. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3104. else
  3105. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3106. s,
  3107. atomic_read(&s->sk_refcnt),
  3108. sk_rmem_alloc_get(s),
  3109. sk_wmem_alloc_get(s),
  3110. sock_i_uid(s),
  3111. sock_i_ino(s)
  3112. );
  3113. return 0;
  3114. }
  3115. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3116. {
  3117. struct net *net = seq_file_net(f);
  3118. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3119. rcu_read_lock();
  3120. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3121. }
  3122. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3123. {
  3124. struct net *net = seq_file_net(f);
  3125. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3126. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3127. }
  3128. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3129. {
  3130. rcu_read_unlock();
  3131. }
  3132. static const struct seq_operations pfkey_seq_ops = {
  3133. .start = pfkey_seq_start,
  3134. .next = pfkey_seq_next,
  3135. .stop = pfkey_seq_stop,
  3136. .show = pfkey_seq_show,
  3137. };
  3138. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3139. {
  3140. return seq_open_net(inode, file, &pfkey_seq_ops,
  3141. sizeof(struct seq_net_private));
  3142. }
  3143. static const struct file_operations pfkey_proc_ops = {
  3144. .open = pfkey_seq_open,
  3145. .read = seq_read,
  3146. .llseek = seq_lseek,
  3147. .release = seq_release_net,
  3148. };
  3149. static int __net_init pfkey_init_proc(struct net *net)
  3150. {
  3151. struct proc_dir_entry *e;
  3152. e = proc_net_fops_create(net, "pfkey", 0, &pfkey_proc_ops);
  3153. if (e == NULL)
  3154. return -ENOMEM;
  3155. return 0;
  3156. }
  3157. static void __net_exit pfkey_exit_proc(struct net *net)
  3158. {
  3159. proc_net_remove(net, "pfkey");
  3160. }
  3161. #else
  3162. static inline int pfkey_init_proc(struct net *net)
  3163. {
  3164. return 0;
  3165. }
  3166. static inline void pfkey_exit_proc(struct net *net)
  3167. {
  3168. }
  3169. #endif
  3170. static struct xfrm_mgr pfkeyv2_mgr =
  3171. {
  3172. .id = "pfkeyv2",
  3173. .notify = pfkey_send_notify,
  3174. .acquire = pfkey_send_acquire,
  3175. .compile_policy = pfkey_compile_policy,
  3176. .new_mapping = pfkey_send_new_mapping,
  3177. .notify_policy = pfkey_send_policy_notify,
  3178. .migrate = pfkey_send_migrate,
  3179. };
  3180. static int __net_init pfkey_net_init(struct net *net)
  3181. {
  3182. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3183. int rv;
  3184. INIT_HLIST_HEAD(&net_pfkey->table);
  3185. atomic_set(&net_pfkey->socks_nr, 0);
  3186. rv = pfkey_init_proc(net);
  3187. return rv;
  3188. }
  3189. static void __net_exit pfkey_net_exit(struct net *net)
  3190. {
  3191. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3192. pfkey_exit_proc(net);
  3193. BUG_ON(!hlist_empty(&net_pfkey->table));
  3194. }
  3195. static struct pernet_operations pfkey_net_ops = {
  3196. .init = pfkey_net_init,
  3197. .exit = pfkey_net_exit,
  3198. .id = &pfkey_net_id,
  3199. .size = sizeof(struct netns_pfkey),
  3200. };
  3201. static void __exit ipsec_pfkey_exit(void)
  3202. {
  3203. xfrm_unregister_km(&pfkeyv2_mgr);
  3204. sock_unregister(PF_KEY);
  3205. unregister_pernet_subsys(&pfkey_net_ops);
  3206. proto_unregister(&key_proto);
  3207. }
  3208. static int __init ipsec_pfkey_init(void)
  3209. {
  3210. int err = proto_register(&key_proto, 0);
  3211. if (err != 0)
  3212. goto out;
  3213. err = register_pernet_subsys(&pfkey_net_ops);
  3214. if (err != 0)
  3215. goto out_unregister_key_proto;
  3216. err = sock_register(&pfkey_family_ops);
  3217. if (err != 0)
  3218. goto out_unregister_pernet;
  3219. err = xfrm_register_km(&pfkeyv2_mgr);
  3220. if (err != 0)
  3221. goto out_sock_unregister;
  3222. out:
  3223. return err;
  3224. out_sock_unregister:
  3225. sock_unregister(PF_KEY);
  3226. out_unregister_pernet:
  3227. unregister_pernet_subsys(&pfkey_net_ops);
  3228. out_unregister_key_proto:
  3229. proto_unregister(&key_proto);
  3230. goto out;
  3231. }
  3232. module_init(ipsec_pfkey_init);
  3233. module_exit(ipsec_pfkey_exit);
  3234. MODULE_LICENSE("GPL");
  3235. MODULE_ALIAS_NETPROTO(PF_KEY);