ip_fragment.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The IP fragmentation functionality.
  7. *
  8. * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
  9. * Alan Cox <alan@lxorguk.ukuu.org.uk>
  10. *
  11. * Fixes:
  12. * Alan Cox : Split from ip.c , see ip_input.c for history.
  13. * David S. Miller : Begin massive cleanup...
  14. * Andi Kleen : Add sysctls.
  15. * xxxx : Overlapfrag bug.
  16. * Ultima : ip_expire() kernel panic.
  17. * Bill Hawes : Frag accounting and evictor fixes.
  18. * John McDonald : 0 length frag bug.
  19. * Alexey Kuznetsov: SMP races, threading, cleanup.
  20. * Patrick McHardy : LRU queue of frag heads for evictor.
  21. */
  22. #include <linux/compiler.h>
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/mm.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/skbuff.h>
  28. #include <linux/list.h>
  29. #include <linux/ip.h>
  30. #include <linux/icmp.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/jhash.h>
  33. #include <linux/random.h>
  34. #include <net/route.h>
  35. #include <net/dst.h>
  36. #include <net/sock.h>
  37. #include <net/ip.h>
  38. #include <net/icmp.h>
  39. #include <net/checksum.h>
  40. #include <net/inetpeer.h>
  41. #include <net/inet_frag.h>
  42. #include <linux/tcp.h>
  43. #include <linux/udp.h>
  44. #include <linux/inet.h>
  45. #include <linux/netfilter_ipv4.h>
  46. /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
  47. * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
  48. * as well. Or notify me, at least. --ANK
  49. */
  50. static int sysctl_ipfrag_max_dist __read_mostly = 64;
  51. struct ipfrag_skb_cb
  52. {
  53. struct inet_skb_parm h;
  54. int offset;
  55. };
  56. #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
  57. /* Describe an entry in the "incomplete datagrams" queue. */
  58. struct ipq {
  59. struct inet_frag_queue q;
  60. u32 user;
  61. __be32 saddr;
  62. __be32 daddr;
  63. __be16 id;
  64. u8 protocol;
  65. int iif;
  66. unsigned int rid;
  67. struct inet_peer *peer;
  68. };
  69. static struct inet_frags ip4_frags;
  70. int ip_frag_nqueues(struct net *net)
  71. {
  72. return net->ipv4.frags.nqueues;
  73. }
  74. int ip_frag_mem(struct net *net)
  75. {
  76. return atomic_read(&net->ipv4.frags.mem);
  77. }
  78. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  79. struct net_device *dev);
  80. struct ip4_create_arg {
  81. struct iphdr *iph;
  82. u32 user;
  83. };
  84. static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
  85. {
  86. return jhash_3words((__force u32)id << 16 | prot,
  87. (__force u32)saddr, (__force u32)daddr,
  88. ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
  89. }
  90. static unsigned int ip4_hashfn(struct inet_frag_queue *q)
  91. {
  92. struct ipq *ipq;
  93. ipq = container_of(q, struct ipq, q);
  94. return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
  95. }
  96. static int ip4_frag_match(struct inet_frag_queue *q, void *a)
  97. {
  98. struct ipq *qp;
  99. struct ip4_create_arg *arg = a;
  100. qp = container_of(q, struct ipq, q);
  101. return (qp->id == arg->iph->id &&
  102. qp->saddr == arg->iph->saddr &&
  103. qp->daddr == arg->iph->daddr &&
  104. qp->protocol == arg->iph->protocol &&
  105. qp->user == arg->user);
  106. }
  107. /* Memory Tracking Functions. */
  108. static __inline__ void frag_kfree_skb(struct netns_frags *nf,
  109. struct sk_buff *skb, int *work)
  110. {
  111. if (work)
  112. *work -= skb->truesize;
  113. atomic_sub(skb->truesize, &nf->mem);
  114. kfree_skb(skb);
  115. }
  116. static void ip4_frag_init(struct inet_frag_queue *q, void *a)
  117. {
  118. struct ipq *qp = container_of(q, struct ipq, q);
  119. struct ip4_create_arg *arg = a;
  120. qp->protocol = arg->iph->protocol;
  121. qp->id = arg->iph->id;
  122. qp->saddr = arg->iph->saddr;
  123. qp->daddr = arg->iph->daddr;
  124. qp->user = arg->user;
  125. qp->peer = sysctl_ipfrag_max_dist ?
  126. inet_getpeer(arg->iph->saddr, 1) : NULL;
  127. }
  128. static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
  129. {
  130. struct ipq *qp;
  131. qp = container_of(q, struct ipq, q);
  132. if (qp->peer)
  133. inet_putpeer(qp->peer);
  134. }
  135. /* Destruction primitives. */
  136. static __inline__ void ipq_put(struct ipq *ipq)
  137. {
  138. inet_frag_put(&ipq->q, &ip4_frags);
  139. }
  140. /* Kill ipq entry. It is not destroyed immediately,
  141. * because caller (and someone more) holds reference count.
  142. */
  143. static void ipq_kill(struct ipq *ipq)
  144. {
  145. inet_frag_kill(&ipq->q, &ip4_frags);
  146. }
  147. /* Memory limiting on fragments. Evictor trashes the oldest
  148. * fragment queue until we are back under the threshold.
  149. */
  150. static void ip_evictor(struct net *net)
  151. {
  152. int evicted;
  153. evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
  154. if (evicted)
  155. IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
  156. }
  157. /*
  158. * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
  159. */
  160. static void ip_expire(unsigned long arg)
  161. {
  162. struct ipq *qp;
  163. struct net *net;
  164. qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
  165. net = container_of(qp->q.net, struct net, ipv4.frags);
  166. spin_lock(&qp->q.lock);
  167. if (qp->q.last_in & INET_FRAG_COMPLETE)
  168. goto out;
  169. ipq_kill(qp);
  170. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
  171. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  172. if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
  173. struct sk_buff *head = qp->q.fragments;
  174. rcu_read_lock();
  175. head->dev = dev_get_by_index_rcu(net, qp->iif);
  176. if (!head->dev)
  177. goto out_rcu_unlock;
  178. /*
  179. * Only search router table for the head fragment,
  180. * when defraging timeout at PRE_ROUTING HOOK.
  181. */
  182. if (qp->user == IP_DEFRAG_CONNTRACK_IN && !skb_dst(head)) {
  183. const struct iphdr *iph = ip_hdr(head);
  184. int err = ip_route_input(head, iph->daddr, iph->saddr,
  185. iph->tos, head->dev);
  186. if (unlikely(err))
  187. goto out_rcu_unlock;
  188. /*
  189. * Only an end host needs to send an ICMP
  190. * "Fragment Reassembly Timeout" message, per RFC792.
  191. */
  192. if (skb_rtable(head)->rt_type != RTN_LOCAL)
  193. goto out_rcu_unlock;
  194. }
  195. /* Send an ICMP "Fragment Reassembly Timeout" message. */
  196. icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
  197. out_rcu_unlock:
  198. rcu_read_unlock();
  199. }
  200. out:
  201. spin_unlock(&qp->q.lock);
  202. ipq_put(qp);
  203. }
  204. /* Find the correct entry in the "incomplete datagrams" queue for
  205. * this IP datagram, and create new one, if nothing is found.
  206. */
  207. static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
  208. {
  209. struct inet_frag_queue *q;
  210. struct ip4_create_arg arg;
  211. unsigned int hash;
  212. arg.iph = iph;
  213. arg.user = user;
  214. read_lock(&ip4_frags.lock);
  215. hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
  216. q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
  217. if (q == NULL)
  218. goto out_nomem;
  219. return container_of(q, struct ipq, q);
  220. out_nomem:
  221. LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
  222. return NULL;
  223. }
  224. /* Is the fragment too far ahead to be part of ipq? */
  225. static inline int ip_frag_too_far(struct ipq *qp)
  226. {
  227. struct inet_peer *peer = qp->peer;
  228. unsigned int max = sysctl_ipfrag_max_dist;
  229. unsigned int start, end;
  230. int rc;
  231. if (!peer || !max)
  232. return 0;
  233. start = qp->rid;
  234. end = atomic_inc_return(&peer->rid);
  235. qp->rid = end;
  236. rc = qp->q.fragments && (end - start) > max;
  237. if (rc) {
  238. struct net *net;
  239. net = container_of(qp->q.net, struct net, ipv4.frags);
  240. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  241. }
  242. return rc;
  243. }
  244. static int ip_frag_reinit(struct ipq *qp)
  245. {
  246. struct sk_buff *fp;
  247. if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
  248. atomic_inc(&qp->q.refcnt);
  249. return -ETIMEDOUT;
  250. }
  251. fp = qp->q.fragments;
  252. do {
  253. struct sk_buff *xp = fp->next;
  254. frag_kfree_skb(qp->q.net, fp, NULL);
  255. fp = xp;
  256. } while (fp);
  257. qp->q.last_in = 0;
  258. qp->q.len = 0;
  259. qp->q.meat = 0;
  260. qp->q.fragments = NULL;
  261. qp->iif = 0;
  262. return 0;
  263. }
  264. /* Add new segment to existing queue. */
  265. static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
  266. {
  267. struct sk_buff *prev, *next;
  268. struct net_device *dev;
  269. int flags, offset;
  270. int ihl, end;
  271. int err = -ENOENT;
  272. if (qp->q.last_in & INET_FRAG_COMPLETE)
  273. goto err;
  274. if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
  275. unlikely(ip_frag_too_far(qp)) &&
  276. unlikely(err = ip_frag_reinit(qp))) {
  277. ipq_kill(qp);
  278. goto err;
  279. }
  280. offset = ntohs(ip_hdr(skb)->frag_off);
  281. flags = offset & ~IP_OFFSET;
  282. offset &= IP_OFFSET;
  283. offset <<= 3; /* offset is in 8-byte chunks */
  284. ihl = ip_hdrlen(skb);
  285. /* Determine the position of this fragment. */
  286. end = offset + skb->len - ihl;
  287. err = -EINVAL;
  288. /* Is this the final fragment? */
  289. if ((flags & IP_MF) == 0) {
  290. /* If we already have some bits beyond end
  291. * or have different end, the segment is corrrupted.
  292. */
  293. if (end < qp->q.len ||
  294. ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
  295. goto err;
  296. qp->q.last_in |= INET_FRAG_LAST_IN;
  297. qp->q.len = end;
  298. } else {
  299. if (end&7) {
  300. end &= ~7;
  301. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  302. skb->ip_summed = CHECKSUM_NONE;
  303. }
  304. if (end > qp->q.len) {
  305. /* Some bits beyond end -> corruption. */
  306. if (qp->q.last_in & INET_FRAG_LAST_IN)
  307. goto err;
  308. qp->q.len = end;
  309. }
  310. }
  311. if (end == offset)
  312. goto err;
  313. err = -ENOMEM;
  314. if (pskb_pull(skb, ihl) == NULL)
  315. goto err;
  316. err = pskb_trim_rcsum(skb, end - offset);
  317. if (err)
  318. goto err;
  319. /* Find out which fragments are in front and at the back of us
  320. * in the chain of fragments so far. We must know where to put
  321. * this fragment, right?
  322. */
  323. prev = NULL;
  324. for (next = qp->q.fragments; next != NULL; next = next->next) {
  325. if (FRAG_CB(next)->offset >= offset)
  326. break; /* bingo! */
  327. prev = next;
  328. }
  329. /* We found where to put this one. Check for overlap with
  330. * preceding fragment, and, if needed, align things so that
  331. * any overlaps are eliminated.
  332. */
  333. if (prev) {
  334. int i = (FRAG_CB(prev)->offset + prev->len) - offset;
  335. if (i > 0) {
  336. offset += i;
  337. err = -EINVAL;
  338. if (end <= offset)
  339. goto err;
  340. err = -ENOMEM;
  341. if (!pskb_pull(skb, i))
  342. goto err;
  343. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  344. skb->ip_summed = CHECKSUM_NONE;
  345. }
  346. }
  347. err = -ENOMEM;
  348. while (next && FRAG_CB(next)->offset < end) {
  349. int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
  350. if (i < next->len) {
  351. /* Eat head of the next overlapped fragment
  352. * and leave the loop. The next ones cannot overlap.
  353. */
  354. if (!pskb_pull(next, i))
  355. goto err;
  356. FRAG_CB(next)->offset += i;
  357. qp->q.meat -= i;
  358. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  359. next->ip_summed = CHECKSUM_NONE;
  360. break;
  361. } else {
  362. struct sk_buff *free_it = next;
  363. /* Old fragment is completely overridden with
  364. * new one drop it.
  365. */
  366. next = next->next;
  367. if (prev)
  368. prev->next = next;
  369. else
  370. qp->q.fragments = next;
  371. qp->q.meat -= free_it->len;
  372. frag_kfree_skb(qp->q.net, free_it, NULL);
  373. }
  374. }
  375. FRAG_CB(skb)->offset = offset;
  376. /* Insert this fragment in the chain of fragments. */
  377. skb->next = next;
  378. if (prev)
  379. prev->next = skb;
  380. else
  381. qp->q.fragments = skb;
  382. dev = skb->dev;
  383. if (dev) {
  384. qp->iif = dev->ifindex;
  385. skb->dev = NULL;
  386. }
  387. qp->q.stamp = skb->tstamp;
  388. qp->q.meat += skb->len;
  389. atomic_add(skb->truesize, &qp->q.net->mem);
  390. if (offset == 0)
  391. qp->q.last_in |= INET_FRAG_FIRST_IN;
  392. if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
  393. qp->q.meat == qp->q.len)
  394. return ip_frag_reasm(qp, prev, dev);
  395. write_lock(&ip4_frags.lock);
  396. list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
  397. write_unlock(&ip4_frags.lock);
  398. return -EINPROGRESS;
  399. err:
  400. kfree_skb(skb);
  401. return err;
  402. }
  403. /* Build a new IP datagram from all its fragments. */
  404. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  405. struct net_device *dev)
  406. {
  407. struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
  408. struct iphdr *iph;
  409. struct sk_buff *fp, *head = qp->q.fragments;
  410. int len;
  411. int ihlen;
  412. int err;
  413. ipq_kill(qp);
  414. /* Make the one we just received the head. */
  415. if (prev) {
  416. head = prev->next;
  417. fp = skb_clone(head, GFP_ATOMIC);
  418. if (!fp)
  419. goto out_nomem;
  420. fp->next = head->next;
  421. prev->next = fp;
  422. skb_morph(head, qp->q.fragments);
  423. head->next = qp->q.fragments->next;
  424. kfree_skb(qp->q.fragments);
  425. qp->q.fragments = head;
  426. }
  427. WARN_ON(head == NULL);
  428. WARN_ON(FRAG_CB(head)->offset != 0);
  429. /* Allocate a new buffer for the datagram. */
  430. ihlen = ip_hdrlen(head);
  431. len = ihlen + qp->q.len;
  432. err = -E2BIG;
  433. if (len > 65535)
  434. goto out_oversize;
  435. /* Head of list must not be cloned. */
  436. if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
  437. goto out_nomem;
  438. /* If the first fragment is fragmented itself, we split
  439. * it to two chunks: the first with data and paged part
  440. * and the second, holding only fragments. */
  441. if (skb_has_frags(head)) {
  442. struct sk_buff *clone;
  443. int i, plen = 0;
  444. if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
  445. goto out_nomem;
  446. clone->next = head->next;
  447. head->next = clone;
  448. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  449. skb_frag_list_init(head);
  450. for (i=0; i<skb_shinfo(head)->nr_frags; i++)
  451. plen += skb_shinfo(head)->frags[i].size;
  452. clone->len = clone->data_len = head->data_len - plen;
  453. head->data_len -= clone->len;
  454. head->len -= clone->len;
  455. clone->csum = 0;
  456. clone->ip_summed = head->ip_summed;
  457. atomic_add(clone->truesize, &qp->q.net->mem);
  458. }
  459. skb_shinfo(head)->frag_list = head->next;
  460. skb_push(head, head->data - skb_network_header(head));
  461. atomic_sub(head->truesize, &qp->q.net->mem);
  462. for (fp=head->next; fp; fp = fp->next) {
  463. head->data_len += fp->len;
  464. head->len += fp->len;
  465. if (head->ip_summed != fp->ip_summed)
  466. head->ip_summed = CHECKSUM_NONE;
  467. else if (head->ip_summed == CHECKSUM_COMPLETE)
  468. head->csum = csum_add(head->csum, fp->csum);
  469. head->truesize += fp->truesize;
  470. atomic_sub(fp->truesize, &qp->q.net->mem);
  471. }
  472. head->next = NULL;
  473. head->dev = dev;
  474. head->tstamp = qp->q.stamp;
  475. iph = ip_hdr(head);
  476. iph->frag_off = 0;
  477. iph->tot_len = htons(len);
  478. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
  479. qp->q.fragments = NULL;
  480. return 0;
  481. out_nomem:
  482. LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
  483. "queue %p\n", qp);
  484. err = -ENOMEM;
  485. goto out_fail;
  486. out_oversize:
  487. if (net_ratelimit())
  488. printk(KERN_INFO "Oversized IP packet from %pI4.\n",
  489. &qp->saddr);
  490. out_fail:
  491. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  492. return err;
  493. }
  494. /* Process an incoming IP datagram fragment. */
  495. int ip_defrag(struct sk_buff *skb, u32 user)
  496. {
  497. struct ipq *qp;
  498. struct net *net;
  499. net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
  500. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
  501. /* Start by cleaning up the memory. */
  502. if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
  503. ip_evictor(net);
  504. /* Lookup (or create) queue header */
  505. if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
  506. int ret;
  507. spin_lock(&qp->q.lock);
  508. ret = ip_frag_queue(qp, skb);
  509. spin_unlock(&qp->q.lock);
  510. ipq_put(qp);
  511. return ret;
  512. }
  513. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  514. kfree_skb(skb);
  515. return -ENOMEM;
  516. }
  517. #ifdef CONFIG_SYSCTL
  518. static int zero;
  519. static struct ctl_table ip4_frags_ns_ctl_table[] = {
  520. {
  521. .procname = "ipfrag_high_thresh",
  522. .data = &init_net.ipv4.frags.high_thresh,
  523. .maxlen = sizeof(int),
  524. .mode = 0644,
  525. .proc_handler = proc_dointvec
  526. },
  527. {
  528. .procname = "ipfrag_low_thresh",
  529. .data = &init_net.ipv4.frags.low_thresh,
  530. .maxlen = sizeof(int),
  531. .mode = 0644,
  532. .proc_handler = proc_dointvec
  533. },
  534. {
  535. .procname = "ipfrag_time",
  536. .data = &init_net.ipv4.frags.timeout,
  537. .maxlen = sizeof(int),
  538. .mode = 0644,
  539. .proc_handler = proc_dointvec_jiffies,
  540. },
  541. { }
  542. };
  543. static struct ctl_table ip4_frags_ctl_table[] = {
  544. {
  545. .procname = "ipfrag_secret_interval",
  546. .data = &ip4_frags.secret_interval,
  547. .maxlen = sizeof(int),
  548. .mode = 0644,
  549. .proc_handler = proc_dointvec_jiffies,
  550. },
  551. {
  552. .procname = "ipfrag_max_dist",
  553. .data = &sysctl_ipfrag_max_dist,
  554. .maxlen = sizeof(int),
  555. .mode = 0644,
  556. .proc_handler = proc_dointvec_minmax,
  557. .extra1 = &zero
  558. },
  559. { }
  560. };
  561. static int __net_init ip4_frags_ns_ctl_register(struct net *net)
  562. {
  563. struct ctl_table *table;
  564. struct ctl_table_header *hdr;
  565. table = ip4_frags_ns_ctl_table;
  566. if (!net_eq(net, &init_net)) {
  567. table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
  568. if (table == NULL)
  569. goto err_alloc;
  570. table[0].data = &net->ipv4.frags.high_thresh;
  571. table[1].data = &net->ipv4.frags.low_thresh;
  572. table[2].data = &net->ipv4.frags.timeout;
  573. }
  574. hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
  575. if (hdr == NULL)
  576. goto err_reg;
  577. net->ipv4.frags_hdr = hdr;
  578. return 0;
  579. err_reg:
  580. if (!net_eq(net, &init_net))
  581. kfree(table);
  582. err_alloc:
  583. return -ENOMEM;
  584. }
  585. static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
  586. {
  587. struct ctl_table *table;
  588. table = net->ipv4.frags_hdr->ctl_table_arg;
  589. unregister_net_sysctl_table(net->ipv4.frags_hdr);
  590. kfree(table);
  591. }
  592. static void ip4_frags_ctl_register(void)
  593. {
  594. register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
  595. }
  596. #else
  597. static inline int ip4_frags_ns_ctl_register(struct net *net)
  598. {
  599. return 0;
  600. }
  601. static inline void ip4_frags_ns_ctl_unregister(struct net *net)
  602. {
  603. }
  604. static inline void ip4_frags_ctl_register(void)
  605. {
  606. }
  607. #endif
  608. static int __net_init ipv4_frags_init_net(struct net *net)
  609. {
  610. /*
  611. * Fragment cache limits. We will commit 256K at one time. Should we
  612. * cross that limit we will prune down to 192K. This should cope with
  613. * even the most extreme cases without allowing an attacker to
  614. * measurably harm machine performance.
  615. */
  616. net->ipv4.frags.high_thresh = 256 * 1024;
  617. net->ipv4.frags.low_thresh = 192 * 1024;
  618. /*
  619. * Important NOTE! Fragment queue must be destroyed before MSL expires.
  620. * RFC791 is wrong proposing to prolongate timer each fragment arrival
  621. * by TTL.
  622. */
  623. net->ipv4.frags.timeout = IP_FRAG_TIME;
  624. inet_frags_init_net(&net->ipv4.frags);
  625. return ip4_frags_ns_ctl_register(net);
  626. }
  627. static void __net_exit ipv4_frags_exit_net(struct net *net)
  628. {
  629. ip4_frags_ns_ctl_unregister(net);
  630. inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
  631. }
  632. static struct pernet_operations ip4_frags_ops = {
  633. .init = ipv4_frags_init_net,
  634. .exit = ipv4_frags_exit_net,
  635. };
  636. void __init ipfrag_init(void)
  637. {
  638. ip4_frags_ctl_register();
  639. register_pernet_subsys(&ip4_frags_ops);
  640. ip4_frags.hashfn = ip4_hashfn;
  641. ip4_frags.constructor = ip4_frag_init;
  642. ip4_frags.destructor = ip4_frag_free;
  643. ip4_frags.skb_free = NULL;
  644. ip4_frags.qsize = sizeof(struct ipq);
  645. ip4_frags.match = ip4_frag_match;
  646. ip4_frags.frag_expire = ip_expire;
  647. ip4_frags.secret_interval = 10 * 60 * HZ;
  648. inet_frags_init(&ip4_frags);
  649. }
  650. EXPORT_SYMBOL(ip_defrag);