rmap.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  64. }
  65. void anon_vma_free(struct anon_vma *anon_vma)
  66. {
  67. kmem_cache_free(anon_vma_cachep, anon_vma);
  68. }
  69. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  70. {
  71. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  72. }
  73. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  74. {
  75. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  76. }
  77. /**
  78. * anon_vma_prepare - attach an anon_vma to a memory region
  79. * @vma: the memory region in question
  80. *
  81. * This makes sure the memory mapping described by 'vma' has
  82. * an 'anon_vma' attached to it, so that we can associate the
  83. * anonymous pages mapped into it with that anon_vma.
  84. *
  85. * The common case will be that we already have one, but if
  86. * if not we either need to find an adjacent mapping that we
  87. * can re-use the anon_vma from (very common when the only
  88. * reason for splitting a vma has been mprotect()), or we
  89. * allocate a new one.
  90. *
  91. * Anon-vma allocations are very subtle, because we may have
  92. * optimistically looked up an anon_vma in page_lock_anon_vma()
  93. * and that may actually touch the spinlock even in the newly
  94. * allocated vma (it depends on RCU to make sure that the
  95. * anon_vma isn't actually destroyed).
  96. *
  97. * As a result, we need to do proper anon_vma locking even
  98. * for the new allocation. At the same time, we do not want
  99. * to do any locking for the common case of already having
  100. * an anon_vma.
  101. *
  102. * This must be called with the mmap_sem held for reading.
  103. */
  104. int anon_vma_prepare(struct vm_area_struct *vma)
  105. {
  106. struct anon_vma *anon_vma = vma->anon_vma;
  107. struct anon_vma_chain *avc;
  108. might_sleep();
  109. if (unlikely(!anon_vma)) {
  110. struct mm_struct *mm = vma->vm_mm;
  111. struct anon_vma *allocated;
  112. avc = anon_vma_chain_alloc();
  113. if (!avc)
  114. goto out_enomem;
  115. anon_vma = find_mergeable_anon_vma(vma);
  116. allocated = NULL;
  117. if (!anon_vma) {
  118. anon_vma = anon_vma_alloc();
  119. if (unlikely(!anon_vma))
  120. goto out_enomem_free_avc;
  121. allocated = anon_vma;
  122. }
  123. spin_lock(&anon_vma->lock);
  124. /* page_table_lock to protect against threads */
  125. spin_lock(&mm->page_table_lock);
  126. if (likely(!vma->anon_vma)) {
  127. vma->anon_vma = anon_vma;
  128. avc->anon_vma = anon_vma;
  129. avc->vma = vma;
  130. list_add(&avc->same_vma, &vma->anon_vma_chain);
  131. list_add(&avc->same_anon_vma, &anon_vma->head);
  132. allocated = NULL;
  133. }
  134. spin_unlock(&mm->page_table_lock);
  135. spin_unlock(&anon_vma->lock);
  136. if (unlikely(allocated)) {
  137. anon_vma_free(allocated);
  138. anon_vma_chain_free(avc);
  139. }
  140. }
  141. return 0;
  142. out_enomem_free_avc:
  143. anon_vma_chain_free(avc);
  144. out_enomem:
  145. return -ENOMEM;
  146. }
  147. static void anon_vma_chain_link(struct vm_area_struct *vma,
  148. struct anon_vma_chain *avc,
  149. struct anon_vma *anon_vma)
  150. {
  151. avc->vma = vma;
  152. avc->anon_vma = anon_vma;
  153. list_add(&avc->same_vma, &vma->anon_vma_chain);
  154. spin_lock(&anon_vma->lock);
  155. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  156. spin_unlock(&anon_vma->lock);
  157. }
  158. /*
  159. * Attach the anon_vmas from src to dst.
  160. * Returns 0 on success, -ENOMEM on failure.
  161. */
  162. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  163. {
  164. struct anon_vma_chain *avc, *pavc;
  165. list_for_each_entry(pavc, &src->anon_vma_chain, same_vma) {
  166. avc = anon_vma_chain_alloc();
  167. if (!avc)
  168. goto enomem_failure;
  169. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  170. }
  171. return 0;
  172. enomem_failure:
  173. unlink_anon_vmas(dst);
  174. return -ENOMEM;
  175. }
  176. /*
  177. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  178. * the corresponding VMA in the parent process is attached to.
  179. * Returns 0 on success, non-zero on failure.
  180. */
  181. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  182. {
  183. struct anon_vma_chain *avc;
  184. struct anon_vma *anon_vma;
  185. /* Don't bother if the parent process has no anon_vma here. */
  186. if (!pvma->anon_vma)
  187. return 0;
  188. /*
  189. * First, attach the new VMA to the parent VMA's anon_vmas,
  190. * so rmap can find non-COWed pages in child processes.
  191. */
  192. if (anon_vma_clone(vma, pvma))
  193. return -ENOMEM;
  194. /* Then add our own anon_vma. */
  195. anon_vma = anon_vma_alloc();
  196. if (!anon_vma)
  197. goto out_error;
  198. avc = anon_vma_chain_alloc();
  199. if (!avc)
  200. goto out_error_free_anon_vma;
  201. anon_vma_chain_link(vma, avc, anon_vma);
  202. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  203. vma->anon_vma = anon_vma;
  204. return 0;
  205. out_error_free_anon_vma:
  206. anon_vma_free(anon_vma);
  207. out_error:
  208. return -ENOMEM;
  209. }
  210. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  211. {
  212. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  213. int empty;
  214. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  215. if (!anon_vma)
  216. return;
  217. spin_lock(&anon_vma->lock);
  218. list_del(&anon_vma_chain->same_anon_vma);
  219. /* We must garbage collect the anon_vma if it's empty */
  220. empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
  221. spin_unlock(&anon_vma->lock);
  222. if (empty)
  223. anon_vma_free(anon_vma);
  224. }
  225. void unlink_anon_vmas(struct vm_area_struct *vma)
  226. {
  227. struct anon_vma_chain *avc, *next;
  228. /* Unlink each anon_vma chained to the VMA. */
  229. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  230. anon_vma_unlink(avc);
  231. list_del(&avc->same_vma);
  232. anon_vma_chain_free(avc);
  233. }
  234. }
  235. static void anon_vma_ctor(void *data)
  236. {
  237. struct anon_vma *anon_vma = data;
  238. spin_lock_init(&anon_vma->lock);
  239. ksm_refcount_init(anon_vma);
  240. INIT_LIST_HEAD(&anon_vma->head);
  241. }
  242. void __init anon_vma_init(void)
  243. {
  244. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  245. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  246. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  247. }
  248. /*
  249. * Getting a lock on a stable anon_vma from a page off the LRU is
  250. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  251. */
  252. struct anon_vma *page_lock_anon_vma(struct page *page)
  253. {
  254. struct anon_vma *anon_vma;
  255. unsigned long anon_mapping;
  256. rcu_read_lock();
  257. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  258. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  259. goto out;
  260. if (!page_mapped(page))
  261. goto out;
  262. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  263. spin_lock(&anon_vma->lock);
  264. return anon_vma;
  265. out:
  266. rcu_read_unlock();
  267. return NULL;
  268. }
  269. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  270. {
  271. spin_unlock(&anon_vma->lock);
  272. rcu_read_unlock();
  273. }
  274. /*
  275. * At what user virtual address is page expected in @vma?
  276. * Returns virtual address or -EFAULT if page's index/offset is not
  277. * within the range mapped the @vma.
  278. */
  279. static inline unsigned long
  280. vma_address(struct page *page, struct vm_area_struct *vma)
  281. {
  282. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  283. unsigned long address;
  284. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  285. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  286. /* page should be within @vma mapping range */
  287. return -EFAULT;
  288. }
  289. return address;
  290. }
  291. /*
  292. * At what user virtual address is page expected in vma?
  293. * checking that the page matches the vma.
  294. */
  295. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  296. {
  297. if (PageAnon(page)) {
  298. if (vma->anon_vma != page_anon_vma(page))
  299. return -EFAULT;
  300. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  301. if (!vma->vm_file ||
  302. vma->vm_file->f_mapping != page->mapping)
  303. return -EFAULT;
  304. } else
  305. return -EFAULT;
  306. return vma_address(page, vma);
  307. }
  308. /*
  309. * Check that @page is mapped at @address into @mm.
  310. *
  311. * If @sync is false, page_check_address may perform a racy check to avoid
  312. * the page table lock when the pte is not present (helpful when reclaiming
  313. * highly shared pages).
  314. *
  315. * On success returns with pte mapped and locked.
  316. */
  317. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  318. unsigned long address, spinlock_t **ptlp, int sync)
  319. {
  320. pgd_t *pgd;
  321. pud_t *pud;
  322. pmd_t *pmd;
  323. pte_t *pte;
  324. spinlock_t *ptl;
  325. pgd = pgd_offset(mm, address);
  326. if (!pgd_present(*pgd))
  327. return NULL;
  328. pud = pud_offset(pgd, address);
  329. if (!pud_present(*pud))
  330. return NULL;
  331. pmd = pmd_offset(pud, address);
  332. if (!pmd_present(*pmd))
  333. return NULL;
  334. pte = pte_offset_map(pmd, address);
  335. /* Make a quick check before getting the lock */
  336. if (!sync && !pte_present(*pte)) {
  337. pte_unmap(pte);
  338. return NULL;
  339. }
  340. ptl = pte_lockptr(mm, pmd);
  341. spin_lock(ptl);
  342. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  343. *ptlp = ptl;
  344. return pte;
  345. }
  346. pte_unmap_unlock(pte, ptl);
  347. return NULL;
  348. }
  349. /**
  350. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  351. * @page: the page to test
  352. * @vma: the VMA to test
  353. *
  354. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  355. * if the page is not mapped into the page tables of this VMA. Only
  356. * valid for normal file or anonymous VMAs.
  357. */
  358. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  359. {
  360. unsigned long address;
  361. pte_t *pte;
  362. spinlock_t *ptl;
  363. address = vma_address(page, vma);
  364. if (address == -EFAULT) /* out of vma range */
  365. return 0;
  366. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  367. if (!pte) /* the page is not in this mm */
  368. return 0;
  369. pte_unmap_unlock(pte, ptl);
  370. return 1;
  371. }
  372. /*
  373. * Subfunctions of page_referenced: page_referenced_one called
  374. * repeatedly from either page_referenced_anon or page_referenced_file.
  375. */
  376. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  377. unsigned long address, unsigned int *mapcount,
  378. unsigned long *vm_flags)
  379. {
  380. struct mm_struct *mm = vma->vm_mm;
  381. pte_t *pte;
  382. spinlock_t *ptl;
  383. int referenced = 0;
  384. pte = page_check_address(page, mm, address, &ptl, 0);
  385. if (!pte)
  386. goto out;
  387. /*
  388. * Don't want to elevate referenced for mlocked page that gets this far,
  389. * in order that it progresses to try_to_unmap and is moved to the
  390. * unevictable list.
  391. */
  392. if (vma->vm_flags & VM_LOCKED) {
  393. *mapcount = 1; /* break early from loop */
  394. *vm_flags |= VM_LOCKED;
  395. goto out_unmap;
  396. }
  397. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  398. /*
  399. * Don't treat a reference through a sequentially read
  400. * mapping as such. If the page has been used in
  401. * another mapping, we will catch it; if this other
  402. * mapping is already gone, the unmap path will have
  403. * set PG_referenced or activated the page.
  404. */
  405. if (likely(!VM_SequentialReadHint(vma)))
  406. referenced++;
  407. }
  408. /* Pretend the page is referenced if the task has the
  409. swap token and is in the middle of a page fault. */
  410. if (mm != current->mm && has_swap_token(mm) &&
  411. rwsem_is_locked(&mm->mmap_sem))
  412. referenced++;
  413. out_unmap:
  414. (*mapcount)--;
  415. pte_unmap_unlock(pte, ptl);
  416. if (referenced)
  417. *vm_flags |= vma->vm_flags;
  418. out:
  419. return referenced;
  420. }
  421. static int page_referenced_anon(struct page *page,
  422. struct mem_cgroup *mem_cont,
  423. unsigned long *vm_flags)
  424. {
  425. unsigned int mapcount;
  426. struct anon_vma *anon_vma;
  427. struct anon_vma_chain *avc;
  428. int referenced = 0;
  429. anon_vma = page_lock_anon_vma(page);
  430. if (!anon_vma)
  431. return referenced;
  432. mapcount = page_mapcount(page);
  433. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  434. struct vm_area_struct *vma = avc->vma;
  435. unsigned long address = vma_address(page, vma);
  436. if (address == -EFAULT)
  437. continue;
  438. /*
  439. * If we are reclaiming on behalf of a cgroup, skip
  440. * counting on behalf of references from different
  441. * cgroups
  442. */
  443. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  444. continue;
  445. referenced += page_referenced_one(page, vma, address,
  446. &mapcount, vm_flags);
  447. if (!mapcount)
  448. break;
  449. }
  450. page_unlock_anon_vma(anon_vma);
  451. return referenced;
  452. }
  453. /**
  454. * page_referenced_file - referenced check for object-based rmap
  455. * @page: the page we're checking references on.
  456. * @mem_cont: target memory controller
  457. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  458. *
  459. * For an object-based mapped page, find all the places it is mapped and
  460. * check/clear the referenced flag. This is done by following the page->mapping
  461. * pointer, then walking the chain of vmas it holds. It returns the number
  462. * of references it found.
  463. *
  464. * This function is only called from page_referenced for object-based pages.
  465. */
  466. static int page_referenced_file(struct page *page,
  467. struct mem_cgroup *mem_cont,
  468. unsigned long *vm_flags)
  469. {
  470. unsigned int mapcount;
  471. struct address_space *mapping = page->mapping;
  472. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  473. struct vm_area_struct *vma;
  474. struct prio_tree_iter iter;
  475. int referenced = 0;
  476. /*
  477. * The caller's checks on page->mapping and !PageAnon have made
  478. * sure that this is a file page: the check for page->mapping
  479. * excludes the case just before it gets set on an anon page.
  480. */
  481. BUG_ON(PageAnon(page));
  482. /*
  483. * The page lock not only makes sure that page->mapping cannot
  484. * suddenly be NULLified by truncation, it makes sure that the
  485. * structure at mapping cannot be freed and reused yet,
  486. * so we can safely take mapping->i_mmap_lock.
  487. */
  488. BUG_ON(!PageLocked(page));
  489. spin_lock(&mapping->i_mmap_lock);
  490. /*
  491. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  492. * is more likely to be accurate if we note it after spinning.
  493. */
  494. mapcount = page_mapcount(page);
  495. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  496. unsigned long address = vma_address(page, vma);
  497. if (address == -EFAULT)
  498. continue;
  499. /*
  500. * If we are reclaiming on behalf of a cgroup, skip
  501. * counting on behalf of references from different
  502. * cgroups
  503. */
  504. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  505. continue;
  506. referenced += page_referenced_one(page, vma, address,
  507. &mapcount, vm_flags);
  508. if (!mapcount)
  509. break;
  510. }
  511. spin_unlock(&mapping->i_mmap_lock);
  512. return referenced;
  513. }
  514. /**
  515. * page_referenced - test if the page was referenced
  516. * @page: the page to test
  517. * @is_locked: caller holds lock on the page
  518. * @mem_cont: target memory controller
  519. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  520. *
  521. * Quick test_and_clear_referenced for all mappings to a page,
  522. * returns the number of ptes which referenced the page.
  523. */
  524. int page_referenced(struct page *page,
  525. int is_locked,
  526. struct mem_cgroup *mem_cont,
  527. unsigned long *vm_flags)
  528. {
  529. int referenced = 0;
  530. int we_locked = 0;
  531. *vm_flags = 0;
  532. if (page_mapped(page) && page_rmapping(page)) {
  533. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  534. we_locked = trylock_page(page);
  535. if (!we_locked) {
  536. referenced++;
  537. goto out;
  538. }
  539. }
  540. if (unlikely(PageKsm(page)))
  541. referenced += page_referenced_ksm(page, mem_cont,
  542. vm_flags);
  543. else if (PageAnon(page))
  544. referenced += page_referenced_anon(page, mem_cont,
  545. vm_flags);
  546. else if (page->mapping)
  547. referenced += page_referenced_file(page, mem_cont,
  548. vm_flags);
  549. if (we_locked)
  550. unlock_page(page);
  551. }
  552. out:
  553. if (page_test_and_clear_young(page))
  554. referenced++;
  555. return referenced;
  556. }
  557. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  558. unsigned long address)
  559. {
  560. struct mm_struct *mm = vma->vm_mm;
  561. pte_t *pte;
  562. spinlock_t *ptl;
  563. int ret = 0;
  564. pte = page_check_address(page, mm, address, &ptl, 1);
  565. if (!pte)
  566. goto out;
  567. if (pte_dirty(*pte) || pte_write(*pte)) {
  568. pte_t entry;
  569. flush_cache_page(vma, address, pte_pfn(*pte));
  570. entry = ptep_clear_flush_notify(vma, address, pte);
  571. entry = pte_wrprotect(entry);
  572. entry = pte_mkclean(entry);
  573. set_pte_at(mm, address, pte, entry);
  574. ret = 1;
  575. }
  576. pte_unmap_unlock(pte, ptl);
  577. out:
  578. return ret;
  579. }
  580. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  581. {
  582. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  583. struct vm_area_struct *vma;
  584. struct prio_tree_iter iter;
  585. int ret = 0;
  586. BUG_ON(PageAnon(page));
  587. spin_lock(&mapping->i_mmap_lock);
  588. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  589. if (vma->vm_flags & VM_SHARED) {
  590. unsigned long address = vma_address(page, vma);
  591. if (address == -EFAULT)
  592. continue;
  593. ret += page_mkclean_one(page, vma, address);
  594. }
  595. }
  596. spin_unlock(&mapping->i_mmap_lock);
  597. return ret;
  598. }
  599. int page_mkclean(struct page *page)
  600. {
  601. int ret = 0;
  602. BUG_ON(!PageLocked(page));
  603. if (page_mapped(page)) {
  604. struct address_space *mapping = page_mapping(page);
  605. if (mapping) {
  606. ret = page_mkclean_file(mapping, page);
  607. if (page_test_dirty(page)) {
  608. page_clear_dirty(page);
  609. ret = 1;
  610. }
  611. }
  612. }
  613. return ret;
  614. }
  615. EXPORT_SYMBOL_GPL(page_mkclean);
  616. /**
  617. * page_move_anon_rmap - move a page to our anon_vma
  618. * @page: the page to move to our anon_vma
  619. * @vma: the vma the page belongs to
  620. * @address: the user virtual address mapped
  621. *
  622. * When a page belongs exclusively to one process after a COW event,
  623. * that page can be moved into the anon_vma that belongs to just that
  624. * process, so the rmap code will not search the parent or sibling
  625. * processes.
  626. */
  627. void page_move_anon_rmap(struct page *page,
  628. struct vm_area_struct *vma, unsigned long address)
  629. {
  630. struct anon_vma *anon_vma = vma->anon_vma;
  631. VM_BUG_ON(!PageLocked(page));
  632. VM_BUG_ON(!anon_vma);
  633. VM_BUG_ON(page->index != linear_page_index(vma, address));
  634. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  635. page->mapping = (struct address_space *) anon_vma;
  636. }
  637. /**
  638. * __page_set_anon_rmap - setup new anonymous rmap
  639. * @page: the page to add the mapping to
  640. * @vma: the vm area in which the mapping is added
  641. * @address: the user virtual address mapped
  642. */
  643. static void __page_set_anon_rmap(struct page *page,
  644. struct vm_area_struct *vma, unsigned long address)
  645. {
  646. struct anon_vma *anon_vma = vma->anon_vma;
  647. BUG_ON(!anon_vma);
  648. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  649. page->mapping = (struct address_space *) anon_vma;
  650. page->index = linear_page_index(vma, address);
  651. }
  652. /**
  653. * __page_check_anon_rmap - sanity check anonymous rmap addition
  654. * @page: the page to add the mapping to
  655. * @vma: the vm area in which the mapping is added
  656. * @address: the user virtual address mapped
  657. */
  658. static void __page_check_anon_rmap(struct page *page,
  659. struct vm_area_struct *vma, unsigned long address)
  660. {
  661. #ifdef CONFIG_DEBUG_VM
  662. /*
  663. * The page's anon-rmap details (mapping and index) are guaranteed to
  664. * be set up correctly at this point.
  665. *
  666. * We have exclusion against page_add_anon_rmap because the caller
  667. * always holds the page locked, except if called from page_dup_rmap,
  668. * in which case the page is already known to be setup.
  669. *
  670. * We have exclusion against page_add_new_anon_rmap because those pages
  671. * are initially only visible via the pagetables, and the pte is locked
  672. * over the call to page_add_new_anon_rmap.
  673. */
  674. BUG_ON(page->index != linear_page_index(vma, address));
  675. #endif
  676. }
  677. /**
  678. * page_add_anon_rmap - add pte mapping to an anonymous page
  679. * @page: the page to add the mapping to
  680. * @vma: the vm area in which the mapping is added
  681. * @address: the user virtual address mapped
  682. *
  683. * The caller needs to hold the pte lock, and the page must be locked in
  684. * the anon_vma case: to serialize mapping,index checking after setting,
  685. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  686. * (but PageKsm is never downgraded to PageAnon).
  687. */
  688. void page_add_anon_rmap(struct page *page,
  689. struct vm_area_struct *vma, unsigned long address)
  690. {
  691. int first = atomic_inc_and_test(&page->_mapcount);
  692. if (first)
  693. __inc_zone_page_state(page, NR_ANON_PAGES);
  694. if (unlikely(PageKsm(page)))
  695. return;
  696. VM_BUG_ON(!PageLocked(page));
  697. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  698. if (first)
  699. __page_set_anon_rmap(page, vma, address);
  700. else
  701. __page_check_anon_rmap(page, vma, address);
  702. }
  703. /**
  704. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  705. * @page: the page to add the mapping to
  706. * @vma: the vm area in which the mapping is added
  707. * @address: the user virtual address mapped
  708. *
  709. * Same as page_add_anon_rmap but must only be called on *new* pages.
  710. * This means the inc-and-test can be bypassed.
  711. * Page does not have to be locked.
  712. */
  713. void page_add_new_anon_rmap(struct page *page,
  714. struct vm_area_struct *vma, unsigned long address)
  715. {
  716. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  717. SetPageSwapBacked(page);
  718. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  719. __inc_zone_page_state(page, NR_ANON_PAGES);
  720. __page_set_anon_rmap(page, vma, address);
  721. if (page_evictable(page, vma))
  722. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  723. else
  724. add_page_to_unevictable_list(page);
  725. }
  726. /**
  727. * page_add_file_rmap - add pte mapping to a file page
  728. * @page: the page to add the mapping to
  729. *
  730. * The caller needs to hold the pte lock.
  731. */
  732. void page_add_file_rmap(struct page *page)
  733. {
  734. if (atomic_inc_and_test(&page->_mapcount)) {
  735. __inc_zone_page_state(page, NR_FILE_MAPPED);
  736. mem_cgroup_update_file_mapped(page, 1);
  737. }
  738. }
  739. /**
  740. * page_remove_rmap - take down pte mapping from a page
  741. * @page: page to remove mapping from
  742. *
  743. * The caller needs to hold the pte lock.
  744. */
  745. void page_remove_rmap(struct page *page)
  746. {
  747. /* page still mapped by someone else? */
  748. if (!atomic_add_negative(-1, &page->_mapcount))
  749. return;
  750. /*
  751. * Now that the last pte has gone, s390 must transfer dirty
  752. * flag from storage key to struct page. We can usually skip
  753. * this if the page is anon, so about to be freed; but perhaps
  754. * not if it's in swapcache - there might be another pte slot
  755. * containing the swap entry, but page not yet written to swap.
  756. */
  757. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  758. page_clear_dirty(page);
  759. set_page_dirty(page);
  760. }
  761. if (PageAnon(page)) {
  762. mem_cgroup_uncharge_page(page);
  763. __dec_zone_page_state(page, NR_ANON_PAGES);
  764. } else {
  765. __dec_zone_page_state(page, NR_FILE_MAPPED);
  766. mem_cgroup_update_file_mapped(page, -1);
  767. }
  768. /*
  769. * It would be tidy to reset the PageAnon mapping here,
  770. * but that might overwrite a racing page_add_anon_rmap
  771. * which increments mapcount after us but sets mapping
  772. * before us: so leave the reset to free_hot_cold_page,
  773. * and remember that it's only reliable while mapped.
  774. * Leaving it set also helps swapoff to reinstate ptes
  775. * faster for those pages still in swapcache.
  776. */
  777. }
  778. /*
  779. * Subfunctions of try_to_unmap: try_to_unmap_one called
  780. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  781. */
  782. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  783. unsigned long address, enum ttu_flags flags)
  784. {
  785. struct mm_struct *mm = vma->vm_mm;
  786. pte_t *pte;
  787. pte_t pteval;
  788. spinlock_t *ptl;
  789. int ret = SWAP_AGAIN;
  790. pte = page_check_address(page, mm, address, &ptl, 0);
  791. if (!pte)
  792. goto out;
  793. /*
  794. * If the page is mlock()d, we cannot swap it out.
  795. * If it's recently referenced (perhaps page_referenced
  796. * skipped over this mm) then we should reactivate it.
  797. */
  798. if (!(flags & TTU_IGNORE_MLOCK)) {
  799. if (vma->vm_flags & VM_LOCKED)
  800. goto out_mlock;
  801. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  802. goto out_unmap;
  803. }
  804. if (!(flags & TTU_IGNORE_ACCESS)) {
  805. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  806. ret = SWAP_FAIL;
  807. goto out_unmap;
  808. }
  809. }
  810. /* Nuke the page table entry. */
  811. flush_cache_page(vma, address, page_to_pfn(page));
  812. pteval = ptep_clear_flush_notify(vma, address, pte);
  813. /* Move the dirty bit to the physical page now the pte is gone. */
  814. if (pte_dirty(pteval))
  815. set_page_dirty(page);
  816. /* Update high watermark before we lower rss */
  817. update_hiwater_rss(mm);
  818. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  819. if (PageAnon(page))
  820. dec_mm_counter(mm, MM_ANONPAGES);
  821. else
  822. dec_mm_counter(mm, MM_FILEPAGES);
  823. set_pte_at(mm, address, pte,
  824. swp_entry_to_pte(make_hwpoison_entry(page)));
  825. } else if (PageAnon(page)) {
  826. swp_entry_t entry = { .val = page_private(page) };
  827. if (PageSwapCache(page)) {
  828. /*
  829. * Store the swap location in the pte.
  830. * See handle_pte_fault() ...
  831. */
  832. if (swap_duplicate(entry) < 0) {
  833. set_pte_at(mm, address, pte, pteval);
  834. ret = SWAP_FAIL;
  835. goto out_unmap;
  836. }
  837. if (list_empty(&mm->mmlist)) {
  838. spin_lock(&mmlist_lock);
  839. if (list_empty(&mm->mmlist))
  840. list_add(&mm->mmlist, &init_mm.mmlist);
  841. spin_unlock(&mmlist_lock);
  842. }
  843. dec_mm_counter(mm, MM_ANONPAGES);
  844. inc_mm_counter(mm, MM_SWAPENTS);
  845. } else if (PAGE_MIGRATION) {
  846. /*
  847. * Store the pfn of the page in a special migration
  848. * pte. do_swap_page() will wait until the migration
  849. * pte is removed and then restart fault handling.
  850. */
  851. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  852. entry = make_migration_entry(page, pte_write(pteval));
  853. }
  854. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  855. BUG_ON(pte_file(*pte));
  856. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  857. /* Establish migration entry for a file page */
  858. swp_entry_t entry;
  859. entry = make_migration_entry(page, pte_write(pteval));
  860. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  861. } else
  862. dec_mm_counter(mm, MM_FILEPAGES);
  863. page_remove_rmap(page);
  864. page_cache_release(page);
  865. out_unmap:
  866. pte_unmap_unlock(pte, ptl);
  867. out:
  868. return ret;
  869. out_mlock:
  870. pte_unmap_unlock(pte, ptl);
  871. /*
  872. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  873. * unstable result and race. Plus, We can't wait here because
  874. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  875. * if trylock failed, the page remain in evictable lru and later
  876. * vmscan could retry to move the page to unevictable lru if the
  877. * page is actually mlocked.
  878. */
  879. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  880. if (vma->vm_flags & VM_LOCKED) {
  881. mlock_vma_page(page);
  882. ret = SWAP_MLOCK;
  883. }
  884. up_read(&vma->vm_mm->mmap_sem);
  885. }
  886. return ret;
  887. }
  888. /*
  889. * objrmap doesn't work for nonlinear VMAs because the assumption that
  890. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  891. * Consequently, given a particular page and its ->index, we cannot locate the
  892. * ptes which are mapping that page without an exhaustive linear search.
  893. *
  894. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  895. * maps the file to which the target page belongs. The ->vm_private_data field
  896. * holds the current cursor into that scan. Successive searches will circulate
  897. * around the vma's virtual address space.
  898. *
  899. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  900. * more scanning pressure is placed against them as well. Eventually pages
  901. * will become fully unmapped and are eligible for eviction.
  902. *
  903. * For very sparsely populated VMAs this is a little inefficient - chances are
  904. * there there won't be many ptes located within the scan cluster. In this case
  905. * maybe we could scan further - to the end of the pte page, perhaps.
  906. *
  907. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  908. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  909. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  910. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  911. */
  912. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  913. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  914. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  915. struct vm_area_struct *vma, struct page *check_page)
  916. {
  917. struct mm_struct *mm = vma->vm_mm;
  918. pgd_t *pgd;
  919. pud_t *pud;
  920. pmd_t *pmd;
  921. pte_t *pte;
  922. pte_t pteval;
  923. spinlock_t *ptl;
  924. struct page *page;
  925. unsigned long address;
  926. unsigned long end;
  927. int ret = SWAP_AGAIN;
  928. int locked_vma = 0;
  929. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  930. end = address + CLUSTER_SIZE;
  931. if (address < vma->vm_start)
  932. address = vma->vm_start;
  933. if (end > vma->vm_end)
  934. end = vma->vm_end;
  935. pgd = pgd_offset(mm, address);
  936. if (!pgd_present(*pgd))
  937. return ret;
  938. pud = pud_offset(pgd, address);
  939. if (!pud_present(*pud))
  940. return ret;
  941. pmd = pmd_offset(pud, address);
  942. if (!pmd_present(*pmd))
  943. return ret;
  944. /*
  945. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  946. * keep the sem while scanning the cluster for mlocking pages.
  947. */
  948. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  949. locked_vma = (vma->vm_flags & VM_LOCKED);
  950. if (!locked_vma)
  951. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  952. }
  953. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  954. /* Update high watermark before we lower rss */
  955. update_hiwater_rss(mm);
  956. for (; address < end; pte++, address += PAGE_SIZE) {
  957. if (!pte_present(*pte))
  958. continue;
  959. page = vm_normal_page(vma, address, *pte);
  960. BUG_ON(!page || PageAnon(page));
  961. if (locked_vma) {
  962. mlock_vma_page(page); /* no-op if already mlocked */
  963. if (page == check_page)
  964. ret = SWAP_MLOCK;
  965. continue; /* don't unmap */
  966. }
  967. if (ptep_clear_flush_young_notify(vma, address, pte))
  968. continue;
  969. /* Nuke the page table entry. */
  970. flush_cache_page(vma, address, pte_pfn(*pte));
  971. pteval = ptep_clear_flush_notify(vma, address, pte);
  972. /* If nonlinear, store the file page offset in the pte. */
  973. if (page->index != linear_page_index(vma, address))
  974. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  975. /* Move the dirty bit to the physical page now the pte is gone. */
  976. if (pte_dirty(pteval))
  977. set_page_dirty(page);
  978. page_remove_rmap(page);
  979. page_cache_release(page);
  980. dec_mm_counter(mm, MM_FILEPAGES);
  981. (*mapcount)--;
  982. }
  983. pte_unmap_unlock(pte - 1, ptl);
  984. if (locked_vma)
  985. up_read(&vma->vm_mm->mmap_sem);
  986. return ret;
  987. }
  988. /**
  989. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  990. * rmap method
  991. * @page: the page to unmap/unlock
  992. * @flags: action and flags
  993. *
  994. * Find all the mappings of a page using the mapping pointer and the vma chains
  995. * contained in the anon_vma struct it points to.
  996. *
  997. * This function is only called from try_to_unmap/try_to_munlock for
  998. * anonymous pages.
  999. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1000. * where the page was found will be held for write. So, we won't recheck
  1001. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1002. * 'LOCKED.
  1003. */
  1004. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1005. {
  1006. struct anon_vma *anon_vma;
  1007. struct anon_vma_chain *avc;
  1008. int ret = SWAP_AGAIN;
  1009. anon_vma = page_lock_anon_vma(page);
  1010. if (!anon_vma)
  1011. return ret;
  1012. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1013. struct vm_area_struct *vma = avc->vma;
  1014. unsigned long address = vma_address(page, vma);
  1015. if (address == -EFAULT)
  1016. continue;
  1017. ret = try_to_unmap_one(page, vma, address, flags);
  1018. if (ret != SWAP_AGAIN || !page_mapped(page))
  1019. break;
  1020. }
  1021. page_unlock_anon_vma(anon_vma);
  1022. return ret;
  1023. }
  1024. /**
  1025. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1026. * @page: the page to unmap/unlock
  1027. * @flags: action and flags
  1028. *
  1029. * Find all the mappings of a page using the mapping pointer and the vma chains
  1030. * contained in the address_space struct it points to.
  1031. *
  1032. * This function is only called from try_to_unmap/try_to_munlock for
  1033. * object-based pages.
  1034. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1035. * where the page was found will be held for write. So, we won't recheck
  1036. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1037. * 'LOCKED.
  1038. */
  1039. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1040. {
  1041. struct address_space *mapping = page->mapping;
  1042. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1043. struct vm_area_struct *vma;
  1044. struct prio_tree_iter iter;
  1045. int ret = SWAP_AGAIN;
  1046. unsigned long cursor;
  1047. unsigned long max_nl_cursor = 0;
  1048. unsigned long max_nl_size = 0;
  1049. unsigned int mapcount;
  1050. spin_lock(&mapping->i_mmap_lock);
  1051. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1052. unsigned long address = vma_address(page, vma);
  1053. if (address == -EFAULT)
  1054. continue;
  1055. ret = try_to_unmap_one(page, vma, address, flags);
  1056. if (ret != SWAP_AGAIN || !page_mapped(page))
  1057. goto out;
  1058. }
  1059. if (list_empty(&mapping->i_mmap_nonlinear))
  1060. goto out;
  1061. /*
  1062. * We don't bother to try to find the munlocked page in nonlinears.
  1063. * It's costly. Instead, later, page reclaim logic may call
  1064. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1065. */
  1066. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1067. goto out;
  1068. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1069. shared.vm_set.list) {
  1070. cursor = (unsigned long) vma->vm_private_data;
  1071. if (cursor > max_nl_cursor)
  1072. max_nl_cursor = cursor;
  1073. cursor = vma->vm_end - vma->vm_start;
  1074. if (cursor > max_nl_size)
  1075. max_nl_size = cursor;
  1076. }
  1077. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1078. ret = SWAP_FAIL;
  1079. goto out;
  1080. }
  1081. /*
  1082. * We don't try to search for this page in the nonlinear vmas,
  1083. * and page_referenced wouldn't have found it anyway. Instead
  1084. * just walk the nonlinear vmas trying to age and unmap some.
  1085. * The mapcount of the page we came in with is irrelevant,
  1086. * but even so use it as a guide to how hard we should try?
  1087. */
  1088. mapcount = page_mapcount(page);
  1089. if (!mapcount)
  1090. goto out;
  1091. cond_resched_lock(&mapping->i_mmap_lock);
  1092. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1093. if (max_nl_cursor == 0)
  1094. max_nl_cursor = CLUSTER_SIZE;
  1095. do {
  1096. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1097. shared.vm_set.list) {
  1098. cursor = (unsigned long) vma->vm_private_data;
  1099. while ( cursor < max_nl_cursor &&
  1100. cursor < vma->vm_end - vma->vm_start) {
  1101. if (try_to_unmap_cluster(cursor, &mapcount,
  1102. vma, page) == SWAP_MLOCK)
  1103. ret = SWAP_MLOCK;
  1104. cursor += CLUSTER_SIZE;
  1105. vma->vm_private_data = (void *) cursor;
  1106. if ((int)mapcount <= 0)
  1107. goto out;
  1108. }
  1109. vma->vm_private_data = (void *) max_nl_cursor;
  1110. }
  1111. cond_resched_lock(&mapping->i_mmap_lock);
  1112. max_nl_cursor += CLUSTER_SIZE;
  1113. } while (max_nl_cursor <= max_nl_size);
  1114. /*
  1115. * Don't loop forever (perhaps all the remaining pages are
  1116. * in locked vmas). Reset cursor on all unreserved nonlinear
  1117. * vmas, now forgetting on which ones it had fallen behind.
  1118. */
  1119. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1120. vma->vm_private_data = NULL;
  1121. out:
  1122. spin_unlock(&mapping->i_mmap_lock);
  1123. return ret;
  1124. }
  1125. /**
  1126. * try_to_unmap - try to remove all page table mappings to a page
  1127. * @page: the page to get unmapped
  1128. * @flags: action and flags
  1129. *
  1130. * Tries to remove all the page table entries which are mapping this
  1131. * page, used in the pageout path. Caller must hold the page lock.
  1132. * Return values are:
  1133. *
  1134. * SWAP_SUCCESS - we succeeded in removing all mappings
  1135. * SWAP_AGAIN - we missed a mapping, try again later
  1136. * SWAP_FAIL - the page is unswappable
  1137. * SWAP_MLOCK - page is mlocked.
  1138. */
  1139. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1140. {
  1141. int ret;
  1142. BUG_ON(!PageLocked(page));
  1143. if (unlikely(PageKsm(page)))
  1144. ret = try_to_unmap_ksm(page, flags);
  1145. else if (PageAnon(page))
  1146. ret = try_to_unmap_anon(page, flags);
  1147. else
  1148. ret = try_to_unmap_file(page, flags);
  1149. if (ret != SWAP_MLOCK && !page_mapped(page))
  1150. ret = SWAP_SUCCESS;
  1151. return ret;
  1152. }
  1153. /**
  1154. * try_to_munlock - try to munlock a page
  1155. * @page: the page to be munlocked
  1156. *
  1157. * Called from munlock code. Checks all of the VMAs mapping the page
  1158. * to make sure nobody else has this page mlocked. The page will be
  1159. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1160. *
  1161. * Return values are:
  1162. *
  1163. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1164. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1165. * SWAP_FAIL - page cannot be located at present
  1166. * SWAP_MLOCK - page is now mlocked.
  1167. */
  1168. int try_to_munlock(struct page *page)
  1169. {
  1170. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1171. if (unlikely(PageKsm(page)))
  1172. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1173. else if (PageAnon(page))
  1174. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1175. else
  1176. return try_to_unmap_file(page, TTU_MUNLOCK);
  1177. }
  1178. #ifdef CONFIG_MIGRATION
  1179. /*
  1180. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1181. * Called by migrate.c to remove migration ptes, but might be used more later.
  1182. */
  1183. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1184. struct vm_area_struct *, unsigned long, void *), void *arg)
  1185. {
  1186. struct anon_vma *anon_vma;
  1187. struct anon_vma_chain *avc;
  1188. int ret = SWAP_AGAIN;
  1189. /*
  1190. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1191. * because that depends on page_mapped(); but not all its usages
  1192. * are holding mmap_sem, which also gave the necessary guarantee
  1193. * (that this anon_vma's slab has not already been destroyed).
  1194. * This needs to be reviewed later: avoiding page_lock_anon_vma()
  1195. * is risky, and currently limits the usefulness of rmap_walk().
  1196. */
  1197. anon_vma = page_anon_vma(page);
  1198. if (!anon_vma)
  1199. return ret;
  1200. spin_lock(&anon_vma->lock);
  1201. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1202. struct vm_area_struct *vma = avc->vma;
  1203. unsigned long address = vma_address(page, vma);
  1204. if (address == -EFAULT)
  1205. continue;
  1206. ret = rmap_one(page, vma, address, arg);
  1207. if (ret != SWAP_AGAIN)
  1208. break;
  1209. }
  1210. spin_unlock(&anon_vma->lock);
  1211. return ret;
  1212. }
  1213. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1214. struct vm_area_struct *, unsigned long, void *), void *arg)
  1215. {
  1216. struct address_space *mapping = page->mapping;
  1217. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1218. struct vm_area_struct *vma;
  1219. struct prio_tree_iter iter;
  1220. int ret = SWAP_AGAIN;
  1221. if (!mapping)
  1222. return ret;
  1223. spin_lock(&mapping->i_mmap_lock);
  1224. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1225. unsigned long address = vma_address(page, vma);
  1226. if (address == -EFAULT)
  1227. continue;
  1228. ret = rmap_one(page, vma, address, arg);
  1229. if (ret != SWAP_AGAIN)
  1230. break;
  1231. }
  1232. /*
  1233. * No nonlinear handling: being always shared, nonlinear vmas
  1234. * never contain migration ptes. Decide what to do about this
  1235. * limitation to linear when we need rmap_walk() on nonlinear.
  1236. */
  1237. spin_unlock(&mapping->i_mmap_lock);
  1238. return ret;
  1239. }
  1240. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1241. struct vm_area_struct *, unsigned long, void *), void *arg)
  1242. {
  1243. VM_BUG_ON(!PageLocked(page));
  1244. if (unlikely(PageKsm(page)))
  1245. return rmap_walk_ksm(page, rmap_one, arg);
  1246. else if (PageAnon(page))
  1247. return rmap_walk_anon(page, rmap_one, arg);
  1248. else
  1249. return rmap_walk_file(page, rmap_one, arg);
  1250. }
  1251. #endif /* CONFIG_MIGRATION */