memory.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <asm/io.h>
  55. #include <asm/pgalloc.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/tlb.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/pgtable.h>
  60. #include "internal.h"
  61. #ifndef CONFIG_NEED_MULTIPLE_NODES
  62. /* use the per-pgdat data instead for discontigmem - mbligh */
  63. unsigned long max_mapnr;
  64. struct page *mem_map;
  65. EXPORT_SYMBOL(max_mapnr);
  66. EXPORT_SYMBOL(mem_map);
  67. #endif
  68. unsigned long num_physpages;
  69. /*
  70. * A number of key systems in x86 including ioremap() rely on the assumption
  71. * that high_memory defines the upper bound on direct map memory, then end
  72. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  73. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  74. * and ZONE_HIGHMEM.
  75. */
  76. void * high_memory;
  77. EXPORT_SYMBOL(num_physpages);
  78. EXPORT_SYMBOL(high_memory);
  79. /*
  80. * Randomize the address space (stacks, mmaps, brk, etc.).
  81. *
  82. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  83. * as ancient (libc5 based) binaries can segfault. )
  84. */
  85. int randomize_va_space __read_mostly =
  86. #ifdef CONFIG_COMPAT_BRK
  87. 1;
  88. #else
  89. 2;
  90. #endif
  91. static int __init disable_randmaps(char *s)
  92. {
  93. randomize_va_space = 0;
  94. return 1;
  95. }
  96. __setup("norandmaps", disable_randmaps);
  97. unsigned long zero_pfn __read_mostly;
  98. unsigned long highest_memmap_pfn __read_mostly;
  99. /*
  100. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  101. */
  102. static int __init init_zero_pfn(void)
  103. {
  104. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  105. return 0;
  106. }
  107. core_initcall(init_zero_pfn);
  108. #if defined(SPLIT_RSS_COUNTING)
  109. void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  110. {
  111. int i;
  112. for (i = 0; i < NR_MM_COUNTERS; i++) {
  113. if (task->rss_stat.count[i]) {
  114. add_mm_counter(mm, i, task->rss_stat.count[i]);
  115. task->rss_stat.count[i] = 0;
  116. }
  117. }
  118. task->rss_stat.events = 0;
  119. }
  120. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  121. {
  122. struct task_struct *task = current;
  123. if (likely(task->mm == mm))
  124. task->rss_stat.count[member] += val;
  125. else
  126. add_mm_counter(mm, member, val);
  127. }
  128. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  129. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  130. /* sync counter once per 64 page faults */
  131. #define TASK_RSS_EVENTS_THRESH (64)
  132. static void check_sync_rss_stat(struct task_struct *task)
  133. {
  134. if (unlikely(task != current))
  135. return;
  136. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  137. __sync_task_rss_stat(task, task->mm);
  138. }
  139. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  140. {
  141. long val = 0;
  142. /*
  143. * Don't use task->mm here...for avoiding to use task_get_mm()..
  144. * The caller must guarantee task->mm is not invalid.
  145. */
  146. val = atomic_long_read(&mm->rss_stat.count[member]);
  147. /*
  148. * counter is updated in asynchronous manner and may go to minus.
  149. * But it's never be expected number for users.
  150. */
  151. if (val < 0)
  152. return 0;
  153. return (unsigned long)val;
  154. }
  155. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  156. {
  157. __sync_task_rss_stat(task, mm);
  158. }
  159. #else
  160. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  161. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  162. static void check_sync_rss_stat(struct task_struct *task)
  163. {
  164. }
  165. #endif
  166. /*
  167. * If a p?d_bad entry is found while walking page tables, report
  168. * the error, before resetting entry to p?d_none. Usually (but
  169. * very seldom) called out from the p?d_none_or_clear_bad macros.
  170. */
  171. void pgd_clear_bad(pgd_t *pgd)
  172. {
  173. pgd_ERROR(*pgd);
  174. pgd_clear(pgd);
  175. }
  176. void pud_clear_bad(pud_t *pud)
  177. {
  178. pud_ERROR(*pud);
  179. pud_clear(pud);
  180. }
  181. void pmd_clear_bad(pmd_t *pmd)
  182. {
  183. pmd_ERROR(*pmd);
  184. pmd_clear(pmd);
  185. }
  186. /*
  187. * Note: this doesn't free the actual pages themselves. That
  188. * has been handled earlier when unmapping all the memory regions.
  189. */
  190. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  191. unsigned long addr)
  192. {
  193. pgtable_t token = pmd_pgtable(*pmd);
  194. pmd_clear(pmd);
  195. pte_free_tlb(tlb, token, addr);
  196. tlb->mm->nr_ptes--;
  197. }
  198. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  199. unsigned long addr, unsigned long end,
  200. unsigned long floor, unsigned long ceiling)
  201. {
  202. pmd_t *pmd;
  203. unsigned long next;
  204. unsigned long start;
  205. start = addr;
  206. pmd = pmd_offset(pud, addr);
  207. do {
  208. next = pmd_addr_end(addr, end);
  209. if (pmd_none_or_clear_bad(pmd))
  210. continue;
  211. free_pte_range(tlb, pmd, addr);
  212. } while (pmd++, addr = next, addr != end);
  213. start &= PUD_MASK;
  214. if (start < floor)
  215. return;
  216. if (ceiling) {
  217. ceiling &= PUD_MASK;
  218. if (!ceiling)
  219. return;
  220. }
  221. if (end - 1 > ceiling - 1)
  222. return;
  223. pmd = pmd_offset(pud, start);
  224. pud_clear(pud);
  225. pmd_free_tlb(tlb, pmd, start);
  226. }
  227. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  228. unsigned long addr, unsigned long end,
  229. unsigned long floor, unsigned long ceiling)
  230. {
  231. pud_t *pud;
  232. unsigned long next;
  233. unsigned long start;
  234. start = addr;
  235. pud = pud_offset(pgd, addr);
  236. do {
  237. next = pud_addr_end(addr, end);
  238. if (pud_none_or_clear_bad(pud))
  239. continue;
  240. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  241. } while (pud++, addr = next, addr != end);
  242. start &= PGDIR_MASK;
  243. if (start < floor)
  244. return;
  245. if (ceiling) {
  246. ceiling &= PGDIR_MASK;
  247. if (!ceiling)
  248. return;
  249. }
  250. if (end - 1 > ceiling - 1)
  251. return;
  252. pud = pud_offset(pgd, start);
  253. pgd_clear(pgd);
  254. pud_free_tlb(tlb, pud, start);
  255. }
  256. /*
  257. * This function frees user-level page tables of a process.
  258. *
  259. * Must be called with pagetable lock held.
  260. */
  261. void free_pgd_range(struct mmu_gather *tlb,
  262. unsigned long addr, unsigned long end,
  263. unsigned long floor, unsigned long ceiling)
  264. {
  265. pgd_t *pgd;
  266. unsigned long next;
  267. unsigned long start;
  268. /*
  269. * The next few lines have given us lots of grief...
  270. *
  271. * Why are we testing PMD* at this top level? Because often
  272. * there will be no work to do at all, and we'd prefer not to
  273. * go all the way down to the bottom just to discover that.
  274. *
  275. * Why all these "- 1"s? Because 0 represents both the bottom
  276. * of the address space and the top of it (using -1 for the
  277. * top wouldn't help much: the masks would do the wrong thing).
  278. * The rule is that addr 0 and floor 0 refer to the bottom of
  279. * the address space, but end 0 and ceiling 0 refer to the top
  280. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  281. * that end 0 case should be mythical).
  282. *
  283. * Wherever addr is brought up or ceiling brought down, we must
  284. * be careful to reject "the opposite 0" before it confuses the
  285. * subsequent tests. But what about where end is brought down
  286. * by PMD_SIZE below? no, end can't go down to 0 there.
  287. *
  288. * Whereas we round start (addr) and ceiling down, by different
  289. * masks at different levels, in order to test whether a table
  290. * now has no other vmas using it, so can be freed, we don't
  291. * bother to round floor or end up - the tests don't need that.
  292. */
  293. addr &= PMD_MASK;
  294. if (addr < floor) {
  295. addr += PMD_SIZE;
  296. if (!addr)
  297. return;
  298. }
  299. if (ceiling) {
  300. ceiling &= PMD_MASK;
  301. if (!ceiling)
  302. return;
  303. }
  304. if (end - 1 > ceiling - 1)
  305. end -= PMD_SIZE;
  306. if (addr > end - 1)
  307. return;
  308. start = addr;
  309. pgd = pgd_offset(tlb->mm, addr);
  310. do {
  311. next = pgd_addr_end(addr, end);
  312. if (pgd_none_or_clear_bad(pgd))
  313. continue;
  314. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  315. } while (pgd++, addr = next, addr != end);
  316. }
  317. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  318. unsigned long floor, unsigned long ceiling)
  319. {
  320. while (vma) {
  321. struct vm_area_struct *next = vma->vm_next;
  322. unsigned long addr = vma->vm_start;
  323. /*
  324. * Hide vma from rmap and truncate_pagecache before freeing
  325. * pgtables
  326. */
  327. unlink_anon_vmas(vma);
  328. unlink_file_vma(vma);
  329. if (is_vm_hugetlb_page(vma)) {
  330. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  331. floor, next? next->vm_start: ceiling);
  332. } else {
  333. /*
  334. * Optimization: gather nearby vmas into one call down
  335. */
  336. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  337. && !is_vm_hugetlb_page(next)) {
  338. vma = next;
  339. next = vma->vm_next;
  340. unlink_anon_vmas(vma);
  341. unlink_file_vma(vma);
  342. }
  343. free_pgd_range(tlb, addr, vma->vm_end,
  344. floor, next? next->vm_start: ceiling);
  345. }
  346. vma = next;
  347. }
  348. }
  349. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  350. {
  351. pgtable_t new = pte_alloc_one(mm, address);
  352. if (!new)
  353. return -ENOMEM;
  354. /*
  355. * Ensure all pte setup (eg. pte page lock and page clearing) are
  356. * visible before the pte is made visible to other CPUs by being
  357. * put into page tables.
  358. *
  359. * The other side of the story is the pointer chasing in the page
  360. * table walking code (when walking the page table without locking;
  361. * ie. most of the time). Fortunately, these data accesses consist
  362. * of a chain of data-dependent loads, meaning most CPUs (alpha
  363. * being the notable exception) will already guarantee loads are
  364. * seen in-order. See the alpha page table accessors for the
  365. * smp_read_barrier_depends() barriers in page table walking code.
  366. */
  367. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  368. spin_lock(&mm->page_table_lock);
  369. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  370. mm->nr_ptes++;
  371. pmd_populate(mm, pmd, new);
  372. new = NULL;
  373. }
  374. spin_unlock(&mm->page_table_lock);
  375. if (new)
  376. pte_free(mm, new);
  377. return 0;
  378. }
  379. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  380. {
  381. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  382. if (!new)
  383. return -ENOMEM;
  384. smp_wmb(); /* See comment in __pte_alloc */
  385. spin_lock(&init_mm.page_table_lock);
  386. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  387. pmd_populate_kernel(&init_mm, pmd, new);
  388. new = NULL;
  389. }
  390. spin_unlock(&init_mm.page_table_lock);
  391. if (new)
  392. pte_free_kernel(&init_mm, new);
  393. return 0;
  394. }
  395. static inline void init_rss_vec(int *rss)
  396. {
  397. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  398. }
  399. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  400. {
  401. int i;
  402. if (current->mm == mm)
  403. sync_mm_rss(current, mm);
  404. for (i = 0; i < NR_MM_COUNTERS; i++)
  405. if (rss[i])
  406. add_mm_counter(mm, i, rss[i]);
  407. }
  408. /*
  409. * This function is called to print an error when a bad pte
  410. * is found. For example, we might have a PFN-mapped pte in
  411. * a region that doesn't allow it.
  412. *
  413. * The calling function must still handle the error.
  414. */
  415. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  416. pte_t pte, struct page *page)
  417. {
  418. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  419. pud_t *pud = pud_offset(pgd, addr);
  420. pmd_t *pmd = pmd_offset(pud, addr);
  421. struct address_space *mapping;
  422. pgoff_t index;
  423. static unsigned long resume;
  424. static unsigned long nr_shown;
  425. static unsigned long nr_unshown;
  426. /*
  427. * Allow a burst of 60 reports, then keep quiet for that minute;
  428. * or allow a steady drip of one report per second.
  429. */
  430. if (nr_shown == 60) {
  431. if (time_before(jiffies, resume)) {
  432. nr_unshown++;
  433. return;
  434. }
  435. if (nr_unshown) {
  436. printk(KERN_ALERT
  437. "BUG: Bad page map: %lu messages suppressed\n",
  438. nr_unshown);
  439. nr_unshown = 0;
  440. }
  441. nr_shown = 0;
  442. }
  443. if (nr_shown++ == 0)
  444. resume = jiffies + 60 * HZ;
  445. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  446. index = linear_page_index(vma, addr);
  447. printk(KERN_ALERT
  448. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  449. current->comm,
  450. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  451. if (page)
  452. dump_page(page);
  453. printk(KERN_ALERT
  454. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  455. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  456. /*
  457. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  458. */
  459. if (vma->vm_ops)
  460. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  461. (unsigned long)vma->vm_ops->fault);
  462. if (vma->vm_file && vma->vm_file->f_op)
  463. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  464. (unsigned long)vma->vm_file->f_op->mmap);
  465. dump_stack();
  466. add_taint(TAINT_BAD_PAGE);
  467. }
  468. static inline int is_cow_mapping(unsigned int flags)
  469. {
  470. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  471. }
  472. #ifndef is_zero_pfn
  473. static inline int is_zero_pfn(unsigned long pfn)
  474. {
  475. return pfn == zero_pfn;
  476. }
  477. #endif
  478. #ifndef my_zero_pfn
  479. static inline unsigned long my_zero_pfn(unsigned long addr)
  480. {
  481. return zero_pfn;
  482. }
  483. #endif
  484. /*
  485. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  486. *
  487. * "Special" mappings do not wish to be associated with a "struct page" (either
  488. * it doesn't exist, or it exists but they don't want to touch it). In this
  489. * case, NULL is returned here. "Normal" mappings do have a struct page.
  490. *
  491. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  492. * pte bit, in which case this function is trivial. Secondly, an architecture
  493. * may not have a spare pte bit, which requires a more complicated scheme,
  494. * described below.
  495. *
  496. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  497. * special mapping (even if there are underlying and valid "struct pages").
  498. * COWed pages of a VM_PFNMAP are always normal.
  499. *
  500. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  501. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  502. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  503. * mapping will always honor the rule
  504. *
  505. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  506. *
  507. * And for normal mappings this is false.
  508. *
  509. * This restricts such mappings to be a linear translation from virtual address
  510. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  511. * as the vma is not a COW mapping; in that case, we know that all ptes are
  512. * special (because none can have been COWed).
  513. *
  514. *
  515. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  516. *
  517. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  518. * page" backing, however the difference is that _all_ pages with a struct
  519. * page (that is, those where pfn_valid is true) are refcounted and considered
  520. * normal pages by the VM. The disadvantage is that pages are refcounted
  521. * (which can be slower and simply not an option for some PFNMAP users). The
  522. * advantage is that we don't have to follow the strict linearity rule of
  523. * PFNMAP mappings in order to support COWable mappings.
  524. *
  525. */
  526. #ifdef __HAVE_ARCH_PTE_SPECIAL
  527. # define HAVE_PTE_SPECIAL 1
  528. #else
  529. # define HAVE_PTE_SPECIAL 0
  530. #endif
  531. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  532. pte_t pte)
  533. {
  534. unsigned long pfn = pte_pfn(pte);
  535. if (HAVE_PTE_SPECIAL) {
  536. if (likely(!pte_special(pte)))
  537. goto check_pfn;
  538. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  539. return NULL;
  540. if (!is_zero_pfn(pfn))
  541. print_bad_pte(vma, addr, pte, NULL);
  542. return NULL;
  543. }
  544. /* !HAVE_PTE_SPECIAL case follows: */
  545. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  546. if (vma->vm_flags & VM_MIXEDMAP) {
  547. if (!pfn_valid(pfn))
  548. return NULL;
  549. goto out;
  550. } else {
  551. unsigned long off;
  552. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  553. if (pfn == vma->vm_pgoff + off)
  554. return NULL;
  555. if (!is_cow_mapping(vma->vm_flags))
  556. return NULL;
  557. }
  558. }
  559. if (is_zero_pfn(pfn))
  560. return NULL;
  561. check_pfn:
  562. if (unlikely(pfn > highest_memmap_pfn)) {
  563. print_bad_pte(vma, addr, pte, NULL);
  564. return NULL;
  565. }
  566. /*
  567. * NOTE! We still have PageReserved() pages in the page tables.
  568. * eg. VDSO mappings can cause them to exist.
  569. */
  570. out:
  571. return pfn_to_page(pfn);
  572. }
  573. /*
  574. * copy one vm_area from one task to the other. Assumes the page tables
  575. * already present in the new task to be cleared in the whole range
  576. * covered by this vma.
  577. */
  578. static inline unsigned long
  579. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  580. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  581. unsigned long addr, int *rss)
  582. {
  583. unsigned long vm_flags = vma->vm_flags;
  584. pte_t pte = *src_pte;
  585. struct page *page;
  586. /* pte contains position in swap or file, so copy. */
  587. if (unlikely(!pte_present(pte))) {
  588. if (!pte_file(pte)) {
  589. swp_entry_t entry = pte_to_swp_entry(pte);
  590. if (swap_duplicate(entry) < 0)
  591. return entry.val;
  592. /* make sure dst_mm is on swapoff's mmlist. */
  593. if (unlikely(list_empty(&dst_mm->mmlist))) {
  594. spin_lock(&mmlist_lock);
  595. if (list_empty(&dst_mm->mmlist))
  596. list_add(&dst_mm->mmlist,
  597. &src_mm->mmlist);
  598. spin_unlock(&mmlist_lock);
  599. }
  600. if (likely(!non_swap_entry(entry)))
  601. rss[MM_SWAPENTS]++;
  602. else if (is_write_migration_entry(entry) &&
  603. is_cow_mapping(vm_flags)) {
  604. /*
  605. * COW mappings require pages in both parent
  606. * and child to be set to read.
  607. */
  608. make_migration_entry_read(&entry);
  609. pte = swp_entry_to_pte(entry);
  610. set_pte_at(src_mm, addr, src_pte, pte);
  611. }
  612. }
  613. goto out_set_pte;
  614. }
  615. /*
  616. * If it's a COW mapping, write protect it both
  617. * in the parent and the child
  618. */
  619. if (is_cow_mapping(vm_flags)) {
  620. ptep_set_wrprotect(src_mm, addr, src_pte);
  621. pte = pte_wrprotect(pte);
  622. }
  623. /*
  624. * If it's a shared mapping, mark it clean in
  625. * the child
  626. */
  627. if (vm_flags & VM_SHARED)
  628. pte = pte_mkclean(pte);
  629. pte = pte_mkold(pte);
  630. page = vm_normal_page(vma, addr, pte);
  631. if (page) {
  632. get_page(page);
  633. page_dup_rmap(page);
  634. if (PageAnon(page))
  635. rss[MM_ANONPAGES]++;
  636. else
  637. rss[MM_FILEPAGES]++;
  638. }
  639. out_set_pte:
  640. set_pte_at(dst_mm, addr, dst_pte, pte);
  641. return 0;
  642. }
  643. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  644. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  645. unsigned long addr, unsigned long end)
  646. {
  647. pte_t *orig_src_pte, *orig_dst_pte;
  648. pte_t *src_pte, *dst_pte;
  649. spinlock_t *src_ptl, *dst_ptl;
  650. int progress = 0;
  651. int rss[NR_MM_COUNTERS];
  652. swp_entry_t entry = (swp_entry_t){0};
  653. again:
  654. init_rss_vec(rss);
  655. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  656. if (!dst_pte)
  657. return -ENOMEM;
  658. src_pte = pte_offset_map_nested(src_pmd, addr);
  659. src_ptl = pte_lockptr(src_mm, src_pmd);
  660. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  661. orig_src_pte = src_pte;
  662. orig_dst_pte = dst_pte;
  663. arch_enter_lazy_mmu_mode();
  664. do {
  665. /*
  666. * We are holding two locks at this point - either of them
  667. * could generate latencies in another task on another CPU.
  668. */
  669. if (progress >= 32) {
  670. progress = 0;
  671. if (need_resched() ||
  672. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  673. break;
  674. }
  675. if (pte_none(*src_pte)) {
  676. progress++;
  677. continue;
  678. }
  679. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  680. vma, addr, rss);
  681. if (entry.val)
  682. break;
  683. progress += 8;
  684. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  685. arch_leave_lazy_mmu_mode();
  686. spin_unlock(src_ptl);
  687. pte_unmap_nested(orig_src_pte);
  688. add_mm_rss_vec(dst_mm, rss);
  689. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  690. cond_resched();
  691. if (entry.val) {
  692. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  693. return -ENOMEM;
  694. progress = 0;
  695. }
  696. if (addr != end)
  697. goto again;
  698. return 0;
  699. }
  700. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  701. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  702. unsigned long addr, unsigned long end)
  703. {
  704. pmd_t *src_pmd, *dst_pmd;
  705. unsigned long next;
  706. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  707. if (!dst_pmd)
  708. return -ENOMEM;
  709. src_pmd = pmd_offset(src_pud, addr);
  710. do {
  711. next = pmd_addr_end(addr, end);
  712. if (pmd_none_or_clear_bad(src_pmd))
  713. continue;
  714. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  715. vma, addr, next))
  716. return -ENOMEM;
  717. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  718. return 0;
  719. }
  720. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  721. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  722. unsigned long addr, unsigned long end)
  723. {
  724. pud_t *src_pud, *dst_pud;
  725. unsigned long next;
  726. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  727. if (!dst_pud)
  728. return -ENOMEM;
  729. src_pud = pud_offset(src_pgd, addr);
  730. do {
  731. next = pud_addr_end(addr, end);
  732. if (pud_none_or_clear_bad(src_pud))
  733. continue;
  734. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  735. vma, addr, next))
  736. return -ENOMEM;
  737. } while (dst_pud++, src_pud++, addr = next, addr != end);
  738. return 0;
  739. }
  740. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  741. struct vm_area_struct *vma)
  742. {
  743. pgd_t *src_pgd, *dst_pgd;
  744. unsigned long next;
  745. unsigned long addr = vma->vm_start;
  746. unsigned long end = vma->vm_end;
  747. int ret;
  748. /*
  749. * Don't copy ptes where a page fault will fill them correctly.
  750. * Fork becomes much lighter when there are big shared or private
  751. * readonly mappings. The tradeoff is that copy_page_range is more
  752. * efficient than faulting.
  753. */
  754. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  755. if (!vma->anon_vma)
  756. return 0;
  757. }
  758. if (is_vm_hugetlb_page(vma))
  759. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  760. if (unlikely(is_pfn_mapping(vma))) {
  761. /*
  762. * We do not free on error cases below as remove_vma
  763. * gets called on error from higher level routine
  764. */
  765. ret = track_pfn_vma_copy(vma);
  766. if (ret)
  767. return ret;
  768. }
  769. /*
  770. * We need to invalidate the secondary MMU mappings only when
  771. * there could be a permission downgrade on the ptes of the
  772. * parent mm. And a permission downgrade will only happen if
  773. * is_cow_mapping() returns true.
  774. */
  775. if (is_cow_mapping(vma->vm_flags))
  776. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  777. ret = 0;
  778. dst_pgd = pgd_offset(dst_mm, addr);
  779. src_pgd = pgd_offset(src_mm, addr);
  780. do {
  781. next = pgd_addr_end(addr, end);
  782. if (pgd_none_or_clear_bad(src_pgd))
  783. continue;
  784. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  785. vma, addr, next))) {
  786. ret = -ENOMEM;
  787. break;
  788. }
  789. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  790. if (is_cow_mapping(vma->vm_flags))
  791. mmu_notifier_invalidate_range_end(src_mm,
  792. vma->vm_start, end);
  793. return ret;
  794. }
  795. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  796. struct vm_area_struct *vma, pmd_t *pmd,
  797. unsigned long addr, unsigned long end,
  798. long *zap_work, struct zap_details *details)
  799. {
  800. struct mm_struct *mm = tlb->mm;
  801. pte_t *pte;
  802. spinlock_t *ptl;
  803. int rss[NR_MM_COUNTERS];
  804. init_rss_vec(rss);
  805. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  806. arch_enter_lazy_mmu_mode();
  807. do {
  808. pte_t ptent = *pte;
  809. if (pte_none(ptent)) {
  810. (*zap_work)--;
  811. continue;
  812. }
  813. (*zap_work) -= PAGE_SIZE;
  814. if (pte_present(ptent)) {
  815. struct page *page;
  816. page = vm_normal_page(vma, addr, ptent);
  817. if (unlikely(details) && page) {
  818. /*
  819. * unmap_shared_mapping_pages() wants to
  820. * invalidate cache without truncating:
  821. * unmap shared but keep private pages.
  822. */
  823. if (details->check_mapping &&
  824. details->check_mapping != page->mapping)
  825. continue;
  826. /*
  827. * Each page->index must be checked when
  828. * invalidating or truncating nonlinear.
  829. */
  830. if (details->nonlinear_vma &&
  831. (page->index < details->first_index ||
  832. page->index > details->last_index))
  833. continue;
  834. }
  835. ptent = ptep_get_and_clear_full(mm, addr, pte,
  836. tlb->fullmm);
  837. tlb_remove_tlb_entry(tlb, pte, addr);
  838. if (unlikely(!page))
  839. continue;
  840. if (unlikely(details) && details->nonlinear_vma
  841. && linear_page_index(details->nonlinear_vma,
  842. addr) != page->index)
  843. set_pte_at(mm, addr, pte,
  844. pgoff_to_pte(page->index));
  845. if (PageAnon(page))
  846. rss[MM_ANONPAGES]--;
  847. else {
  848. if (pte_dirty(ptent))
  849. set_page_dirty(page);
  850. if (pte_young(ptent) &&
  851. likely(!VM_SequentialReadHint(vma)))
  852. mark_page_accessed(page);
  853. rss[MM_FILEPAGES]--;
  854. }
  855. page_remove_rmap(page);
  856. if (unlikely(page_mapcount(page) < 0))
  857. print_bad_pte(vma, addr, ptent, page);
  858. tlb_remove_page(tlb, page);
  859. continue;
  860. }
  861. /*
  862. * If details->check_mapping, we leave swap entries;
  863. * if details->nonlinear_vma, we leave file entries.
  864. */
  865. if (unlikely(details))
  866. continue;
  867. if (pte_file(ptent)) {
  868. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  869. print_bad_pte(vma, addr, ptent, NULL);
  870. } else {
  871. swp_entry_t entry = pte_to_swp_entry(ptent);
  872. if (!non_swap_entry(entry))
  873. rss[MM_SWAPENTS]--;
  874. if (unlikely(!free_swap_and_cache(entry)))
  875. print_bad_pte(vma, addr, ptent, NULL);
  876. }
  877. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  878. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  879. add_mm_rss_vec(mm, rss);
  880. arch_leave_lazy_mmu_mode();
  881. pte_unmap_unlock(pte - 1, ptl);
  882. return addr;
  883. }
  884. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  885. struct vm_area_struct *vma, pud_t *pud,
  886. unsigned long addr, unsigned long end,
  887. long *zap_work, struct zap_details *details)
  888. {
  889. pmd_t *pmd;
  890. unsigned long next;
  891. pmd = pmd_offset(pud, addr);
  892. do {
  893. next = pmd_addr_end(addr, end);
  894. if (pmd_none_or_clear_bad(pmd)) {
  895. (*zap_work)--;
  896. continue;
  897. }
  898. next = zap_pte_range(tlb, vma, pmd, addr, next,
  899. zap_work, details);
  900. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  901. return addr;
  902. }
  903. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  904. struct vm_area_struct *vma, pgd_t *pgd,
  905. unsigned long addr, unsigned long end,
  906. long *zap_work, struct zap_details *details)
  907. {
  908. pud_t *pud;
  909. unsigned long next;
  910. pud = pud_offset(pgd, addr);
  911. do {
  912. next = pud_addr_end(addr, end);
  913. if (pud_none_or_clear_bad(pud)) {
  914. (*zap_work)--;
  915. continue;
  916. }
  917. next = zap_pmd_range(tlb, vma, pud, addr, next,
  918. zap_work, details);
  919. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  920. return addr;
  921. }
  922. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  923. struct vm_area_struct *vma,
  924. unsigned long addr, unsigned long end,
  925. long *zap_work, struct zap_details *details)
  926. {
  927. pgd_t *pgd;
  928. unsigned long next;
  929. if (details && !details->check_mapping && !details->nonlinear_vma)
  930. details = NULL;
  931. BUG_ON(addr >= end);
  932. mem_cgroup_uncharge_start();
  933. tlb_start_vma(tlb, vma);
  934. pgd = pgd_offset(vma->vm_mm, addr);
  935. do {
  936. next = pgd_addr_end(addr, end);
  937. if (pgd_none_or_clear_bad(pgd)) {
  938. (*zap_work)--;
  939. continue;
  940. }
  941. next = zap_pud_range(tlb, vma, pgd, addr, next,
  942. zap_work, details);
  943. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  944. tlb_end_vma(tlb, vma);
  945. mem_cgroup_uncharge_end();
  946. return addr;
  947. }
  948. #ifdef CONFIG_PREEMPT
  949. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  950. #else
  951. /* No preempt: go for improved straight-line efficiency */
  952. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  953. #endif
  954. /**
  955. * unmap_vmas - unmap a range of memory covered by a list of vma's
  956. * @tlbp: address of the caller's struct mmu_gather
  957. * @vma: the starting vma
  958. * @start_addr: virtual address at which to start unmapping
  959. * @end_addr: virtual address at which to end unmapping
  960. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  961. * @details: details of nonlinear truncation or shared cache invalidation
  962. *
  963. * Returns the end address of the unmapping (restart addr if interrupted).
  964. *
  965. * Unmap all pages in the vma list.
  966. *
  967. * We aim to not hold locks for too long (for scheduling latency reasons).
  968. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  969. * return the ending mmu_gather to the caller.
  970. *
  971. * Only addresses between `start' and `end' will be unmapped.
  972. *
  973. * The VMA list must be sorted in ascending virtual address order.
  974. *
  975. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  976. * range after unmap_vmas() returns. So the only responsibility here is to
  977. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  978. * drops the lock and schedules.
  979. */
  980. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  981. struct vm_area_struct *vma, unsigned long start_addr,
  982. unsigned long end_addr, unsigned long *nr_accounted,
  983. struct zap_details *details)
  984. {
  985. long zap_work = ZAP_BLOCK_SIZE;
  986. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  987. int tlb_start_valid = 0;
  988. unsigned long start = start_addr;
  989. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  990. int fullmm = (*tlbp)->fullmm;
  991. struct mm_struct *mm = vma->vm_mm;
  992. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  993. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  994. unsigned long end;
  995. start = max(vma->vm_start, start_addr);
  996. if (start >= vma->vm_end)
  997. continue;
  998. end = min(vma->vm_end, end_addr);
  999. if (end <= vma->vm_start)
  1000. continue;
  1001. if (vma->vm_flags & VM_ACCOUNT)
  1002. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1003. if (unlikely(is_pfn_mapping(vma)))
  1004. untrack_pfn_vma(vma, 0, 0);
  1005. while (start != end) {
  1006. if (!tlb_start_valid) {
  1007. tlb_start = start;
  1008. tlb_start_valid = 1;
  1009. }
  1010. if (unlikely(is_vm_hugetlb_page(vma))) {
  1011. /*
  1012. * It is undesirable to test vma->vm_file as it
  1013. * should be non-null for valid hugetlb area.
  1014. * However, vm_file will be NULL in the error
  1015. * cleanup path of do_mmap_pgoff. When
  1016. * hugetlbfs ->mmap method fails,
  1017. * do_mmap_pgoff() nullifies vma->vm_file
  1018. * before calling this function to clean up.
  1019. * Since no pte has actually been setup, it is
  1020. * safe to do nothing in this case.
  1021. */
  1022. if (vma->vm_file) {
  1023. unmap_hugepage_range(vma, start, end, NULL);
  1024. zap_work -= (end - start) /
  1025. pages_per_huge_page(hstate_vma(vma));
  1026. }
  1027. start = end;
  1028. } else
  1029. start = unmap_page_range(*tlbp, vma,
  1030. start, end, &zap_work, details);
  1031. if (zap_work > 0) {
  1032. BUG_ON(start != end);
  1033. break;
  1034. }
  1035. tlb_finish_mmu(*tlbp, tlb_start, start);
  1036. if (need_resched() ||
  1037. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  1038. if (i_mmap_lock) {
  1039. *tlbp = NULL;
  1040. goto out;
  1041. }
  1042. cond_resched();
  1043. }
  1044. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  1045. tlb_start_valid = 0;
  1046. zap_work = ZAP_BLOCK_SIZE;
  1047. }
  1048. }
  1049. out:
  1050. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1051. return start; /* which is now the end (or restart) address */
  1052. }
  1053. /**
  1054. * zap_page_range - remove user pages in a given range
  1055. * @vma: vm_area_struct holding the applicable pages
  1056. * @address: starting address of pages to zap
  1057. * @size: number of bytes to zap
  1058. * @details: details of nonlinear truncation or shared cache invalidation
  1059. */
  1060. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1061. unsigned long size, struct zap_details *details)
  1062. {
  1063. struct mm_struct *mm = vma->vm_mm;
  1064. struct mmu_gather *tlb;
  1065. unsigned long end = address + size;
  1066. unsigned long nr_accounted = 0;
  1067. lru_add_drain();
  1068. tlb = tlb_gather_mmu(mm, 0);
  1069. update_hiwater_rss(mm);
  1070. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1071. if (tlb)
  1072. tlb_finish_mmu(tlb, address, end);
  1073. return end;
  1074. }
  1075. /**
  1076. * zap_vma_ptes - remove ptes mapping the vma
  1077. * @vma: vm_area_struct holding ptes to be zapped
  1078. * @address: starting address of pages to zap
  1079. * @size: number of bytes to zap
  1080. *
  1081. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1082. *
  1083. * The entire address range must be fully contained within the vma.
  1084. *
  1085. * Returns 0 if successful.
  1086. */
  1087. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1088. unsigned long size)
  1089. {
  1090. if (address < vma->vm_start || address + size > vma->vm_end ||
  1091. !(vma->vm_flags & VM_PFNMAP))
  1092. return -1;
  1093. zap_page_range(vma, address, size, NULL);
  1094. return 0;
  1095. }
  1096. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1097. /*
  1098. * Do a quick page-table lookup for a single page.
  1099. */
  1100. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1101. unsigned int flags)
  1102. {
  1103. pgd_t *pgd;
  1104. pud_t *pud;
  1105. pmd_t *pmd;
  1106. pte_t *ptep, pte;
  1107. spinlock_t *ptl;
  1108. struct page *page;
  1109. struct mm_struct *mm = vma->vm_mm;
  1110. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1111. if (!IS_ERR(page)) {
  1112. BUG_ON(flags & FOLL_GET);
  1113. goto out;
  1114. }
  1115. page = NULL;
  1116. pgd = pgd_offset(mm, address);
  1117. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1118. goto no_page_table;
  1119. pud = pud_offset(pgd, address);
  1120. if (pud_none(*pud))
  1121. goto no_page_table;
  1122. if (pud_huge(*pud)) {
  1123. BUG_ON(flags & FOLL_GET);
  1124. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1125. goto out;
  1126. }
  1127. if (unlikely(pud_bad(*pud)))
  1128. goto no_page_table;
  1129. pmd = pmd_offset(pud, address);
  1130. if (pmd_none(*pmd))
  1131. goto no_page_table;
  1132. if (pmd_huge(*pmd)) {
  1133. BUG_ON(flags & FOLL_GET);
  1134. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1135. goto out;
  1136. }
  1137. if (unlikely(pmd_bad(*pmd)))
  1138. goto no_page_table;
  1139. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1140. pte = *ptep;
  1141. if (!pte_present(pte))
  1142. goto no_page;
  1143. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1144. goto unlock;
  1145. page = vm_normal_page(vma, address, pte);
  1146. if (unlikely(!page)) {
  1147. if ((flags & FOLL_DUMP) ||
  1148. !is_zero_pfn(pte_pfn(pte)))
  1149. goto bad_page;
  1150. page = pte_page(pte);
  1151. }
  1152. if (flags & FOLL_GET)
  1153. get_page(page);
  1154. if (flags & FOLL_TOUCH) {
  1155. if ((flags & FOLL_WRITE) &&
  1156. !pte_dirty(pte) && !PageDirty(page))
  1157. set_page_dirty(page);
  1158. /*
  1159. * pte_mkyoung() would be more correct here, but atomic care
  1160. * is needed to avoid losing the dirty bit: it is easier to use
  1161. * mark_page_accessed().
  1162. */
  1163. mark_page_accessed(page);
  1164. }
  1165. unlock:
  1166. pte_unmap_unlock(ptep, ptl);
  1167. out:
  1168. return page;
  1169. bad_page:
  1170. pte_unmap_unlock(ptep, ptl);
  1171. return ERR_PTR(-EFAULT);
  1172. no_page:
  1173. pte_unmap_unlock(ptep, ptl);
  1174. if (!pte_none(pte))
  1175. return page;
  1176. no_page_table:
  1177. /*
  1178. * When core dumping an enormous anonymous area that nobody
  1179. * has touched so far, we don't want to allocate unnecessary pages or
  1180. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1181. * then get_dump_page() will return NULL to leave a hole in the dump.
  1182. * But we can only make this optimization where a hole would surely
  1183. * be zero-filled if handle_mm_fault() actually did handle it.
  1184. */
  1185. if ((flags & FOLL_DUMP) &&
  1186. (!vma->vm_ops || !vma->vm_ops->fault))
  1187. return ERR_PTR(-EFAULT);
  1188. return page;
  1189. }
  1190. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1191. unsigned long start, int nr_pages, unsigned int gup_flags,
  1192. struct page **pages, struct vm_area_struct **vmas)
  1193. {
  1194. int i;
  1195. unsigned long vm_flags;
  1196. if (nr_pages <= 0)
  1197. return 0;
  1198. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1199. /*
  1200. * Require read or write permissions.
  1201. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1202. */
  1203. vm_flags = (gup_flags & FOLL_WRITE) ?
  1204. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1205. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1206. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1207. i = 0;
  1208. do {
  1209. struct vm_area_struct *vma;
  1210. vma = find_extend_vma(mm, start);
  1211. if (!vma && in_gate_area(tsk, start)) {
  1212. unsigned long pg = start & PAGE_MASK;
  1213. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1214. pgd_t *pgd;
  1215. pud_t *pud;
  1216. pmd_t *pmd;
  1217. pte_t *pte;
  1218. /* user gate pages are read-only */
  1219. if (gup_flags & FOLL_WRITE)
  1220. return i ? : -EFAULT;
  1221. if (pg > TASK_SIZE)
  1222. pgd = pgd_offset_k(pg);
  1223. else
  1224. pgd = pgd_offset_gate(mm, pg);
  1225. BUG_ON(pgd_none(*pgd));
  1226. pud = pud_offset(pgd, pg);
  1227. BUG_ON(pud_none(*pud));
  1228. pmd = pmd_offset(pud, pg);
  1229. if (pmd_none(*pmd))
  1230. return i ? : -EFAULT;
  1231. pte = pte_offset_map(pmd, pg);
  1232. if (pte_none(*pte)) {
  1233. pte_unmap(pte);
  1234. return i ? : -EFAULT;
  1235. }
  1236. if (pages) {
  1237. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1238. pages[i] = page;
  1239. if (page)
  1240. get_page(page);
  1241. }
  1242. pte_unmap(pte);
  1243. if (vmas)
  1244. vmas[i] = gate_vma;
  1245. i++;
  1246. start += PAGE_SIZE;
  1247. nr_pages--;
  1248. continue;
  1249. }
  1250. if (!vma ||
  1251. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1252. !(vm_flags & vma->vm_flags))
  1253. return i ? : -EFAULT;
  1254. if (is_vm_hugetlb_page(vma)) {
  1255. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1256. &start, &nr_pages, i, gup_flags);
  1257. continue;
  1258. }
  1259. do {
  1260. struct page *page;
  1261. unsigned int foll_flags = gup_flags;
  1262. /*
  1263. * If we have a pending SIGKILL, don't keep faulting
  1264. * pages and potentially allocating memory.
  1265. */
  1266. if (unlikely(fatal_signal_pending(current)))
  1267. return i ? i : -ERESTARTSYS;
  1268. cond_resched();
  1269. while (!(page = follow_page(vma, start, foll_flags))) {
  1270. int ret;
  1271. ret = handle_mm_fault(mm, vma, start,
  1272. (foll_flags & FOLL_WRITE) ?
  1273. FAULT_FLAG_WRITE : 0);
  1274. if (ret & VM_FAULT_ERROR) {
  1275. if (ret & VM_FAULT_OOM)
  1276. return i ? i : -ENOMEM;
  1277. if (ret &
  1278. (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
  1279. return i ? i : -EFAULT;
  1280. BUG();
  1281. }
  1282. if (ret & VM_FAULT_MAJOR)
  1283. tsk->maj_flt++;
  1284. else
  1285. tsk->min_flt++;
  1286. /*
  1287. * The VM_FAULT_WRITE bit tells us that
  1288. * do_wp_page has broken COW when necessary,
  1289. * even if maybe_mkwrite decided not to set
  1290. * pte_write. We can thus safely do subsequent
  1291. * page lookups as if they were reads. But only
  1292. * do so when looping for pte_write is futile:
  1293. * in some cases userspace may also be wanting
  1294. * to write to the gotten user page, which a
  1295. * read fault here might prevent (a readonly
  1296. * page might get reCOWed by userspace write).
  1297. */
  1298. if ((ret & VM_FAULT_WRITE) &&
  1299. !(vma->vm_flags & VM_WRITE))
  1300. foll_flags &= ~FOLL_WRITE;
  1301. cond_resched();
  1302. }
  1303. if (IS_ERR(page))
  1304. return i ? i : PTR_ERR(page);
  1305. if (pages) {
  1306. pages[i] = page;
  1307. flush_anon_page(vma, page, start);
  1308. flush_dcache_page(page);
  1309. }
  1310. if (vmas)
  1311. vmas[i] = vma;
  1312. i++;
  1313. start += PAGE_SIZE;
  1314. nr_pages--;
  1315. } while (nr_pages && start < vma->vm_end);
  1316. } while (nr_pages);
  1317. return i;
  1318. }
  1319. /**
  1320. * get_user_pages() - pin user pages in memory
  1321. * @tsk: task_struct of target task
  1322. * @mm: mm_struct of target mm
  1323. * @start: starting user address
  1324. * @nr_pages: number of pages from start to pin
  1325. * @write: whether pages will be written to by the caller
  1326. * @force: whether to force write access even if user mapping is
  1327. * readonly. This will result in the page being COWed even
  1328. * in MAP_SHARED mappings. You do not want this.
  1329. * @pages: array that receives pointers to the pages pinned.
  1330. * Should be at least nr_pages long. Or NULL, if caller
  1331. * only intends to ensure the pages are faulted in.
  1332. * @vmas: array of pointers to vmas corresponding to each page.
  1333. * Or NULL if the caller does not require them.
  1334. *
  1335. * Returns number of pages pinned. This may be fewer than the number
  1336. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1337. * were pinned, returns -errno. Each page returned must be released
  1338. * with a put_page() call when it is finished with. vmas will only
  1339. * remain valid while mmap_sem is held.
  1340. *
  1341. * Must be called with mmap_sem held for read or write.
  1342. *
  1343. * get_user_pages walks a process's page tables and takes a reference to
  1344. * each struct page that each user address corresponds to at a given
  1345. * instant. That is, it takes the page that would be accessed if a user
  1346. * thread accesses the given user virtual address at that instant.
  1347. *
  1348. * This does not guarantee that the page exists in the user mappings when
  1349. * get_user_pages returns, and there may even be a completely different
  1350. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1351. * and subsequently re faulted). However it does guarantee that the page
  1352. * won't be freed completely. And mostly callers simply care that the page
  1353. * contains data that was valid *at some point in time*. Typically, an IO
  1354. * or similar operation cannot guarantee anything stronger anyway because
  1355. * locks can't be held over the syscall boundary.
  1356. *
  1357. * If write=0, the page must not be written to. If the page is written to,
  1358. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1359. * after the page is finished with, and before put_page is called.
  1360. *
  1361. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1362. * handle on the memory by some means other than accesses via the user virtual
  1363. * addresses. The pages may be submitted for DMA to devices or accessed via
  1364. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1365. * use the correct cache flushing APIs.
  1366. *
  1367. * See also get_user_pages_fast, for performance critical applications.
  1368. */
  1369. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1370. unsigned long start, int nr_pages, int write, int force,
  1371. struct page **pages, struct vm_area_struct **vmas)
  1372. {
  1373. int flags = FOLL_TOUCH;
  1374. if (pages)
  1375. flags |= FOLL_GET;
  1376. if (write)
  1377. flags |= FOLL_WRITE;
  1378. if (force)
  1379. flags |= FOLL_FORCE;
  1380. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1381. }
  1382. EXPORT_SYMBOL(get_user_pages);
  1383. /**
  1384. * get_dump_page() - pin user page in memory while writing it to core dump
  1385. * @addr: user address
  1386. *
  1387. * Returns struct page pointer of user page pinned for dump,
  1388. * to be freed afterwards by page_cache_release() or put_page().
  1389. *
  1390. * Returns NULL on any kind of failure - a hole must then be inserted into
  1391. * the corefile, to preserve alignment with its headers; and also returns
  1392. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1393. * allowing a hole to be left in the corefile to save diskspace.
  1394. *
  1395. * Called without mmap_sem, but after all other threads have been killed.
  1396. */
  1397. #ifdef CONFIG_ELF_CORE
  1398. struct page *get_dump_page(unsigned long addr)
  1399. {
  1400. struct vm_area_struct *vma;
  1401. struct page *page;
  1402. if (__get_user_pages(current, current->mm, addr, 1,
  1403. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1404. return NULL;
  1405. flush_cache_page(vma, addr, page_to_pfn(page));
  1406. return page;
  1407. }
  1408. #endif /* CONFIG_ELF_CORE */
  1409. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1410. spinlock_t **ptl)
  1411. {
  1412. pgd_t * pgd = pgd_offset(mm, addr);
  1413. pud_t * pud = pud_alloc(mm, pgd, addr);
  1414. if (pud) {
  1415. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1416. if (pmd)
  1417. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1418. }
  1419. return NULL;
  1420. }
  1421. /*
  1422. * This is the old fallback for page remapping.
  1423. *
  1424. * For historical reasons, it only allows reserved pages. Only
  1425. * old drivers should use this, and they needed to mark their
  1426. * pages reserved for the old functions anyway.
  1427. */
  1428. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1429. struct page *page, pgprot_t prot)
  1430. {
  1431. struct mm_struct *mm = vma->vm_mm;
  1432. int retval;
  1433. pte_t *pte;
  1434. spinlock_t *ptl;
  1435. retval = -EINVAL;
  1436. if (PageAnon(page))
  1437. goto out;
  1438. retval = -ENOMEM;
  1439. flush_dcache_page(page);
  1440. pte = get_locked_pte(mm, addr, &ptl);
  1441. if (!pte)
  1442. goto out;
  1443. retval = -EBUSY;
  1444. if (!pte_none(*pte))
  1445. goto out_unlock;
  1446. /* Ok, finally just insert the thing.. */
  1447. get_page(page);
  1448. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1449. page_add_file_rmap(page);
  1450. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1451. retval = 0;
  1452. pte_unmap_unlock(pte, ptl);
  1453. return retval;
  1454. out_unlock:
  1455. pte_unmap_unlock(pte, ptl);
  1456. out:
  1457. return retval;
  1458. }
  1459. /**
  1460. * vm_insert_page - insert single page into user vma
  1461. * @vma: user vma to map to
  1462. * @addr: target user address of this page
  1463. * @page: source kernel page
  1464. *
  1465. * This allows drivers to insert individual pages they've allocated
  1466. * into a user vma.
  1467. *
  1468. * The page has to be a nice clean _individual_ kernel allocation.
  1469. * If you allocate a compound page, you need to have marked it as
  1470. * such (__GFP_COMP), or manually just split the page up yourself
  1471. * (see split_page()).
  1472. *
  1473. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1474. * took an arbitrary page protection parameter. This doesn't allow
  1475. * that. Your vma protection will have to be set up correctly, which
  1476. * means that if you want a shared writable mapping, you'd better
  1477. * ask for a shared writable mapping!
  1478. *
  1479. * The page does not need to be reserved.
  1480. */
  1481. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1482. struct page *page)
  1483. {
  1484. if (addr < vma->vm_start || addr >= vma->vm_end)
  1485. return -EFAULT;
  1486. if (!page_count(page))
  1487. return -EINVAL;
  1488. vma->vm_flags |= VM_INSERTPAGE;
  1489. return insert_page(vma, addr, page, vma->vm_page_prot);
  1490. }
  1491. EXPORT_SYMBOL(vm_insert_page);
  1492. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1493. unsigned long pfn, pgprot_t prot)
  1494. {
  1495. struct mm_struct *mm = vma->vm_mm;
  1496. int retval;
  1497. pte_t *pte, entry;
  1498. spinlock_t *ptl;
  1499. retval = -ENOMEM;
  1500. pte = get_locked_pte(mm, addr, &ptl);
  1501. if (!pte)
  1502. goto out;
  1503. retval = -EBUSY;
  1504. if (!pte_none(*pte))
  1505. goto out_unlock;
  1506. /* Ok, finally just insert the thing.. */
  1507. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1508. set_pte_at(mm, addr, pte, entry);
  1509. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1510. retval = 0;
  1511. out_unlock:
  1512. pte_unmap_unlock(pte, ptl);
  1513. out:
  1514. return retval;
  1515. }
  1516. /**
  1517. * vm_insert_pfn - insert single pfn into user vma
  1518. * @vma: user vma to map to
  1519. * @addr: target user address of this page
  1520. * @pfn: source kernel pfn
  1521. *
  1522. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1523. * they've allocated into a user vma. Same comments apply.
  1524. *
  1525. * This function should only be called from a vm_ops->fault handler, and
  1526. * in that case the handler should return NULL.
  1527. *
  1528. * vma cannot be a COW mapping.
  1529. *
  1530. * As this is called only for pages that do not currently exist, we
  1531. * do not need to flush old virtual caches or the TLB.
  1532. */
  1533. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1534. unsigned long pfn)
  1535. {
  1536. int ret;
  1537. pgprot_t pgprot = vma->vm_page_prot;
  1538. /*
  1539. * Technically, architectures with pte_special can avoid all these
  1540. * restrictions (same for remap_pfn_range). However we would like
  1541. * consistency in testing and feature parity among all, so we should
  1542. * try to keep these invariants in place for everybody.
  1543. */
  1544. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1545. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1546. (VM_PFNMAP|VM_MIXEDMAP));
  1547. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1548. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1549. if (addr < vma->vm_start || addr >= vma->vm_end)
  1550. return -EFAULT;
  1551. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1552. return -EINVAL;
  1553. ret = insert_pfn(vma, addr, pfn, pgprot);
  1554. if (ret)
  1555. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1556. return ret;
  1557. }
  1558. EXPORT_SYMBOL(vm_insert_pfn);
  1559. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1560. unsigned long pfn)
  1561. {
  1562. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1563. if (addr < vma->vm_start || addr >= vma->vm_end)
  1564. return -EFAULT;
  1565. /*
  1566. * If we don't have pte special, then we have to use the pfn_valid()
  1567. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1568. * refcount the page if pfn_valid is true (hence insert_page rather
  1569. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1570. * without pte special, it would there be refcounted as a normal page.
  1571. */
  1572. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1573. struct page *page;
  1574. page = pfn_to_page(pfn);
  1575. return insert_page(vma, addr, page, vma->vm_page_prot);
  1576. }
  1577. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1578. }
  1579. EXPORT_SYMBOL(vm_insert_mixed);
  1580. /*
  1581. * maps a range of physical memory into the requested pages. the old
  1582. * mappings are removed. any references to nonexistent pages results
  1583. * in null mappings (currently treated as "copy-on-access")
  1584. */
  1585. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1586. unsigned long addr, unsigned long end,
  1587. unsigned long pfn, pgprot_t prot)
  1588. {
  1589. pte_t *pte;
  1590. spinlock_t *ptl;
  1591. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1592. if (!pte)
  1593. return -ENOMEM;
  1594. arch_enter_lazy_mmu_mode();
  1595. do {
  1596. BUG_ON(!pte_none(*pte));
  1597. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1598. pfn++;
  1599. } while (pte++, addr += PAGE_SIZE, addr != end);
  1600. arch_leave_lazy_mmu_mode();
  1601. pte_unmap_unlock(pte - 1, ptl);
  1602. return 0;
  1603. }
  1604. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1605. unsigned long addr, unsigned long end,
  1606. unsigned long pfn, pgprot_t prot)
  1607. {
  1608. pmd_t *pmd;
  1609. unsigned long next;
  1610. pfn -= addr >> PAGE_SHIFT;
  1611. pmd = pmd_alloc(mm, pud, addr);
  1612. if (!pmd)
  1613. return -ENOMEM;
  1614. do {
  1615. next = pmd_addr_end(addr, end);
  1616. if (remap_pte_range(mm, pmd, addr, next,
  1617. pfn + (addr >> PAGE_SHIFT), prot))
  1618. return -ENOMEM;
  1619. } while (pmd++, addr = next, addr != end);
  1620. return 0;
  1621. }
  1622. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1623. unsigned long addr, unsigned long end,
  1624. unsigned long pfn, pgprot_t prot)
  1625. {
  1626. pud_t *pud;
  1627. unsigned long next;
  1628. pfn -= addr >> PAGE_SHIFT;
  1629. pud = pud_alloc(mm, pgd, addr);
  1630. if (!pud)
  1631. return -ENOMEM;
  1632. do {
  1633. next = pud_addr_end(addr, end);
  1634. if (remap_pmd_range(mm, pud, addr, next,
  1635. pfn + (addr >> PAGE_SHIFT), prot))
  1636. return -ENOMEM;
  1637. } while (pud++, addr = next, addr != end);
  1638. return 0;
  1639. }
  1640. /**
  1641. * remap_pfn_range - remap kernel memory to userspace
  1642. * @vma: user vma to map to
  1643. * @addr: target user address to start at
  1644. * @pfn: physical address of kernel memory
  1645. * @size: size of map area
  1646. * @prot: page protection flags for this mapping
  1647. *
  1648. * Note: this is only safe if the mm semaphore is held when called.
  1649. */
  1650. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1651. unsigned long pfn, unsigned long size, pgprot_t prot)
  1652. {
  1653. pgd_t *pgd;
  1654. unsigned long next;
  1655. unsigned long end = addr + PAGE_ALIGN(size);
  1656. struct mm_struct *mm = vma->vm_mm;
  1657. int err;
  1658. /*
  1659. * Physically remapped pages are special. Tell the
  1660. * rest of the world about it:
  1661. * VM_IO tells people not to look at these pages
  1662. * (accesses can have side effects).
  1663. * VM_RESERVED is specified all over the place, because
  1664. * in 2.4 it kept swapout's vma scan off this vma; but
  1665. * in 2.6 the LRU scan won't even find its pages, so this
  1666. * flag means no more than count its pages in reserved_vm,
  1667. * and omit it from core dump, even when VM_IO turned off.
  1668. * VM_PFNMAP tells the core MM that the base pages are just
  1669. * raw PFN mappings, and do not have a "struct page" associated
  1670. * with them.
  1671. *
  1672. * There's a horrible special case to handle copy-on-write
  1673. * behaviour that some programs depend on. We mark the "original"
  1674. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1675. */
  1676. if (addr == vma->vm_start && end == vma->vm_end) {
  1677. vma->vm_pgoff = pfn;
  1678. vma->vm_flags |= VM_PFN_AT_MMAP;
  1679. } else if (is_cow_mapping(vma->vm_flags))
  1680. return -EINVAL;
  1681. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1682. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1683. if (err) {
  1684. /*
  1685. * To indicate that track_pfn related cleanup is not
  1686. * needed from higher level routine calling unmap_vmas
  1687. */
  1688. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1689. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1690. return -EINVAL;
  1691. }
  1692. BUG_ON(addr >= end);
  1693. pfn -= addr >> PAGE_SHIFT;
  1694. pgd = pgd_offset(mm, addr);
  1695. flush_cache_range(vma, addr, end);
  1696. do {
  1697. next = pgd_addr_end(addr, end);
  1698. err = remap_pud_range(mm, pgd, addr, next,
  1699. pfn + (addr >> PAGE_SHIFT), prot);
  1700. if (err)
  1701. break;
  1702. } while (pgd++, addr = next, addr != end);
  1703. if (err)
  1704. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1705. return err;
  1706. }
  1707. EXPORT_SYMBOL(remap_pfn_range);
  1708. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1709. unsigned long addr, unsigned long end,
  1710. pte_fn_t fn, void *data)
  1711. {
  1712. pte_t *pte;
  1713. int err;
  1714. pgtable_t token;
  1715. spinlock_t *uninitialized_var(ptl);
  1716. pte = (mm == &init_mm) ?
  1717. pte_alloc_kernel(pmd, addr) :
  1718. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1719. if (!pte)
  1720. return -ENOMEM;
  1721. BUG_ON(pmd_huge(*pmd));
  1722. arch_enter_lazy_mmu_mode();
  1723. token = pmd_pgtable(*pmd);
  1724. do {
  1725. err = fn(pte++, token, addr, data);
  1726. if (err)
  1727. break;
  1728. } while (addr += PAGE_SIZE, addr != end);
  1729. arch_leave_lazy_mmu_mode();
  1730. if (mm != &init_mm)
  1731. pte_unmap_unlock(pte-1, ptl);
  1732. return err;
  1733. }
  1734. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1735. unsigned long addr, unsigned long end,
  1736. pte_fn_t fn, void *data)
  1737. {
  1738. pmd_t *pmd;
  1739. unsigned long next;
  1740. int err;
  1741. BUG_ON(pud_huge(*pud));
  1742. pmd = pmd_alloc(mm, pud, addr);
  1743. if (!pmd)
  1744. return -ENOMEM;
  1745. do {
  1746. next = pmd_addr_end(addr, end);
  1747. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1748. if (err)
  1749. break;
  1750. } while (pmd++, addr = next, addr != end);
  1751. return err;
  1752. }
  1753. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1754. unsigned long addr, unsigned long end,
  1755. pte_fn_t fn, void *data)
  1756. {
  1757. pud_t *pud;
  1758. unsigned long next;
  1759. int err;
  1760. pud = pud_alloc(mm, pgd, addr);
  1761. if (!pud)
  1762. return -ENOMEM;
  1763. do {
  1764. next = pud_addr_end(addr, end);
  1765. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1766. if (err)
  1767. break;
  1768. } while (pud++, addr = next, addr != end);
  1769. return err;
  1770. }
  1771. /*
  1772. * Scan a region of virtual memory, filling in page tables as necessary
  1773. * and calling a provided function on each leaf page table.
  1774. */
  1775. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1776. unsigned long size, pte_fn_t fn, void *data)
  1777. {
  1778. pgd_t *pgd;
  1779. unsigned long next;
  1780. unsigned long start = addr, end = addr + size;
  1781. int err;
  1782. BUG_ON(addr >= end);
  1783. mmu_notifier_invalidate_range_start(mm, start, end);
  1784. pgd = pgd_offset(mm, addr);
  1785. do {
  1786. next = pgd_addr_end(addr, end);
  1787. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1788. if (err)
  1789. break;
  1790. } while (pgd++, addr = next, addr != end);
  1791. mmu_notifier_invalidate_range_end(mm, start, end);
  1792. return err;
  1793. }
  1794. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1795. /*
  1796. * handle_pte_fault chooses page fault handler according to an entry
  1797. * which was read non-atomically. Before making any commitment, on
  1798. * those architectures or configurations (e.g. i386 with PAE) which
  1799. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1800. * must check under lock before unmapping the pte and proceeding
  1801. * (but do_wp_page is only called after already making such a check;
  1802. * and do_anonymous_page and do_no_page can safely check later on).
  1803. */
  1804. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1805. pte_t *page_table, pte_t orig_pte)
  1806. {
  1807. int same = 1;
  1808. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1809. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1810. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1811. spin_lock(ptl);
  1812. same = pte_same(*page_table, orig_pte);
  1813. spin_unlock(ptl);
  1814. }
  1815. #endif
  1816. pte_unmap(page_table);
  1817. return same;
  1818. }
  1819. /*
  1820. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1821. * servicing faults for write access. In the normal case, do always want
  1822. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1823. * that do not have writing enabled, when used by access_process_vm.
  1824. */
  1825. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1826. {
  1827. if (likely(vma->vm_flags & VM_WRITE))
  1828. pte = pte_mkwrite(pte);
  1829. return pte;
  1830. }
  1831. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1832. {
  1833. /*
  1834. * If the source page was a PFN mapping, we don't have
  1835. * a "struct page" for it. We do a best-effort copy by
  1836. * just copying from the original user address. If that
  1837. * fails, we just zero-fill it. Live with it.
  1838. */
  1839. if (unlikely(!src)) {
  1840. void *kaddr = kmap_atomic(dst, KM_USER0);
  1841. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1842. /*
  1843. * This really shouldn't fail, because the page is there
  1844. * in the page tables. But it might just be unreadable,
  1845. * in which case we just give up and fill the result with
  1846. * zeroes.
  1847. */
  1848. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1849. memset(kaddr, 0, PAGE_SIZE);
  1850. kunmap_atomic(kaddr, KM_USER0);
  1851. flush_dcache_page(dst);
  1852. } else
  1853. copy_user_highpage(dst, src, va, vma);
  1854. }
  1855. /*
  1856. * This routine handles present pages, when users try to write
  1857. * to a shared page. It is done by copying the page to a new address
  1858. * and decrementing the shared-page counter for the old page.
  1859. *
  1860. * Note that this routine assumes that the protection checks have been
  1861. * done by the caller (the low-level page fault routine in most cases).
  1862. * Thus we can safely just mark it writable once we've done any necessary
  1863. * COW.
  1864. *
  1865. * We also mark the page dirty at this point even though the page will
  1866. * change only once the write actually happens. This avoids a few races,
  1867. * and potentially makes it more efficient.
  1868. *
  1869. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1870. * but allow concurrent faults), with pte both mapped and locked.
  1871. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1872. */
  1873. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1874. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1875. spinlock_t *ptl, pte_t orig_pte)
  1876. {
  1877. struct page *old_page, *new_page;
  1878. pte_t entry;
  1879. int reuse = 0, ret = 0;
  1880. int page_mkwrite = 0;
  1881. struct page *dirty_page = NULL;
  1882. old_page = vm_normal_page(vma, address, orig_pte);
  1883. if (!old_page) {
  1884. /*
  1885. * VM_MIXEDMAP !pfn_valid() case
  1886. *
  1887. * We should not cow pages in a shared writeable mapping.
  1888. * Just mark the pages writable as we can't do any dirty
  1889. * accounting on raw pfn maps.
  1890. */
  1891. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1892. (VM_WRITE|VM_SHARED))
  1893. goto reuse;
  1894. goto gotten;
  1895. }
  1896. /*
  1897. * Take out anonymous pages first, anonymous shared vmas are
  1898. * not dirty accountable.
  1899. */
  1900. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1901. if (!trylock_page(old_page)) {
  1902. page_cache_get(old_page);
  1903. pte_unmap_unlock(page_table, ptl);
  1904. lock_page(old_page);
  1905. page_table = pte_offset_map_lock(mm, pmd, address,
  1906. &ptl);
  1907. if (!pte_same(*page_table, orig_pte)) {
  1908. unlock_page(old_page);
  1909. page_cache_release(old_page);
  1910. goto unlock;
  1911. }
  1912. page_cache_release(old_page);
  1913. }
  1914. reuse = reuse_swap_page(old_page);
  1915. if (reuse)
  1916. /*
  1917. * The page is all ours. Move it to our anon_vma so
  1918. * the rmap code will not search our parent or siblings.
  1919. * Protected against the rmap code by the page lock.
  1920. */
  1921. page_move_anon_rmap(old_page, vma, address);
  1922. unlock_page(old_page);
  1923. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1924. (VM_WRITE|VM_SHARED))) {
  1925. /*
  1926. * Only catch write-faults on shared writable pages,
  1927. * read-only shared pages can get COWed by
  1928. * get_user_pages(.write=1, .force=1).
  1929. */
  1930. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1931. struct vm_fault vmf;
  1932. int tmp;
  1933. vmf.virtual_address = (void __user *)(address &
  1934. PAGE_MASK);
  1935. vmf.pgoff = old_page->index;
  1936. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1937. vmf.page = old_page;
  1938. /*
  1939. * Notify the address space that the page is about to
  1940. * become writable so that it can prohibit this or wait
  1941. * for the page to get into an appropriate state.
  1942. *
  1943. * We do this without the lock held, so that it can
  1944. * sleep if it needs to.
  1945. */
  1946. page_cache_get(old_page);
  1947. pte_unmap_unlock(page_table, ptl);
  1948. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1949. if (unlikely(tmp &
  1950. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1951. ret = tmp;
  1952. goto unwritable_page;
  1953. }
  1954. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1955. lock_page(old_page);
  1956. if (!old_page->mapping) {
  1957. ret = 0; /* retry the fault */
  1958. unlock_page(old_page);
  1959. goto unwritable_page;
  1960. }
  1961. } else
  1962. VM_BUG_ON(!PageLocked(old_page));
  1963. /*
  1964. * Since we dropped the lock we need to revalidate
  1965. * the PTE as someone else may have changed it. If
  1966. * they did, we just return, as we can count on the
  1967. * MMU to tell us if they didn't also make it writable.
  1968. */
  1969. page_table = pte_offset_map_lock(mm, pmd, address,
  1970. &ptl);
  1971. if (!pte_same(*page_table, orig_pte)) {
  1972. unlock_page(old_page);
  1973. page_cache_release(old_page);
  1974. goto unlock;
  1975. }
  1976. page_mkwrite = 1;
  1977. }
  1978. dirty_page = old_page;
  1979. get_page(dirty_page);
  1980. reuse = 1;
  1981. }
  1982. if (reuse) {
  1983. reuse:
  1984. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1985. entry = pte_mkyoung(orig_pte);
  1986. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1987. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1988. update_mmu_cache(vma, address, page_table);
  1989. ret |= VM_FAULT_WRITE;
  1990. goto unlock;
  1991. }
  1992. /*
  1993. * Ok, we need to copy. Oh, well..
  1994. */
  1995. page_cache_get(old_page);
  1996. gotten:
  1997. pte_unmap_unlock(page_table, ptl);
  1998. if (unlikely(anon_vma_prepare(vma)))
  1999. goto oom;
  2000. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2001. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2002. if (!new_page)
  2003. goto oom;
  2004. } else {
  2005. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2006. if (!new_page)
  2007. goto oom;
  2008. cow_user_page(new_page, old_page, address, vma);
  2009. }
  2010. __SetPageUptodate(new_page);
  2011. /*
  2012. * Don't let another task, with possibly unlocked vma,
  2013. * keep the mlocked page.
  2014. */
  2015. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  2016. lock_page(old_page); /* for LRU manipulation */
  2017. clear_page_mlock(old_page);
  2018. unlock_page(old_page);
  2019. }
  2020. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2021. goto oom_free_new;
  2022. /*
  2023. * Re-check the pte - we dropped the lock
  2024. */
  2025. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2026. if (likely(pte_same(*page_table, orig_pte))) {
  2027. if (old_page) {
  2028. if (!PageAnon(old_page)) {
  2029. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2030. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2031. }
  2032. } else
  2033. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2034. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2035. entry = mk_pte(new_page, vma->vm_page_prot);
  2036. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2037. /*
  2038. * Clear the pte entry and flush it first, before updating the
  2039. * pte with the new entry. This will avoid a race condition
  2040. * seen in the presence of one thread doing SMC and another
  2041. * thread doing COW.
  2042. */
  2043. ptep_clear_flush(vma, address, page_table);
  2044. page_add_new_anon_rmap(new_page, vma, address);
  2045. /*
  2046. * We call the notify macro here because, when using secondary
  2047. * mmu page tables (such as kvm shadow page tables), we want the
  2048. * new page to be mapped directly into the secondary page table.
  2049. */
  2050. set_pte_at_notify(mm, address, page_table, entry);
  2051. update_mmu_cache(vma, address, page_table);
  2052. if (old_page) {
  2053. /*
  2054. * Only after switching the pte to the new page may
  2055. * we remove the mapcount here. Otherwise another
  2056. * process may come and find the rmap count decremented
  2057. * before the pte is switched to the new page, and
  2058. * "reuse" the old page writing into it while our pte
  2059. * here still points into it and can be read by other
  2060. * threads.
  2061. *
  2062. * The critical issue is to order this
  2063. * page_remove_rmap with the ptp_clear_flush above.
  2064. * Those stores are ordered by (if nothing else,)
  2065. * the barrier present in the atomic_add_negative
  2066. * in page_remove_rmap.
  2067. *
  2068. * Then the TLB flush in ptep_clear_flush ensures that
  2069. * no process can access the old page before the
  2070. * decremented mapcount is visible. And the old page
  2071. * cannot be reused until after the decremented
  2072. * mapcount is visible. So transitively, TLBs to
  2073. * old page will be flushed before it can be reused.
  2074. */
  2075. page_remove_rmap(old_page);
  2076. }
  2077. /* Free the old page.. */
  2078. new_page = old_page;
  2079. ret |= VM_FAULT_WRITE;
  2080. } else
  2081. mem_cgroup_uncharge_page(new_page);
  2082. if (new_page)
  2083. page_cache_release(new_page);
  2084. if (old_page)
  2085. page_cache_release(old_page);
  2086. unlock:
  2087. pte_unmap_unlock(page_table, ptl);
  2088. if (dirty_page) {
  2089. /*
  2090. * Yes, Virginia, this is actually required to prevent a race
  2091. * with clear_page_dirty_for_io() from clearing the page dirty
  2092. * bit after it clear all dirty ptes, but before a racing
  2093. * do_wp_page installs a dirty pte.
  2094. *
  2095. * do_no_page is protected similarly.
  2096. */
  2097. if (!page_mkwrite) {
  2098. wait_on_page_locked(dirty_page);
  2099. set_page_dirty_balance(dirty_page, page_mkwrite);
  2100. }
  2101. put_page(dirty_page);
  2102. if (page_mkwrite) {
  2103. struct address_space *mapping = dirty_page->mapping;
  2104. set_page_dirty(dirty_page);
  2105. unlock_page(dirty_page);
  2106. page_cache_release(dirty_page);
  2107. if (mapping) {
  2108. /*
  2109. * Some device drivers do not set page.mapping
  2110. * but still dirty their pages
  2111. */
  2112. balance_dirty_pages_ratelimited(mapping);
  2113. }
  2114. }
  2115. /* file_update_time outside page_lock */
  2116. if (vma->vm_file)
  2117. file_update_time(vma->vm_file);
  2118. }
  2119. return ret;
  2120. oom_free_new:
  2121. page_cache_release(new_page);
  2122. oom:
  2123. if (old_page) {
  2124. if (page_mkwrite) {
  2125. unlock_page(old_page);
  2126. page_cache_release(old_page);
  2127. }
  2128. page_cache_release(old_page);
  2129. }
  2130. return VM_FAULT_OOM;
  2131. unwritable_page:
  2132. page_cache_release(old_page);
  2133. return ret;
  2134. }
  2135. /*
  2136. * Helper functions for unmap_mapping_range().
  2137. *
  2138. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2139. *
  2140. * We have to restart searching the prio_tree whenever we drop the lock,
  2141. * since the iterator is only valid while the lock is held, and anyway
  2142. * a later vma might be split and reinserted earlier while lock dropped.
  2143. *
  2144. * The list of nonlinear vmas could be handled more efficiently, using
  2145. * a placeholder, but handle it in the same way until a need is shown.
  2146. * It is important to search the prio_tree before nonlinear list: a vma
  2147. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2148. * while the lock is dropped; but never shifted from list to prio_tree.
  2149. *
  2150. * In order to make forward progress despite restarting the search,
  2151. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2152. * quickly skip it next time around. Since the prio_tree search only
  2153. * shows us those vmas affected by unmapping the range in question, we
  2154. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2155. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2156. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2157. * i_mmap_lock.
  2158. *
  2159. * In order to make forward progress despite repeatedly restarting some
  2160. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2161. * and restart from that address when we reach that vma again. It might
  2162. * have been split or merged, shrunk or extended, but never shifted: so
  2163. * restart_addr remains valid so long as it remains in the vma's range.
  2164. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2165. * values so we can save vma's restart_addr in its truncate_count field.
  2166. */
  2167. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2168. static void reset_vma_truncate_counts(struct address_space *mapping)
  2169. {
  2170. struct vm_area_struct *vma;
  2171. struct prio_tree_iter iter;
  2172. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2173. vma->vm_truncate_count = 0;
  2174. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2175. vma->vm_truncate_count = 0;
  2176. }
  2177. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2178. unsigned long start_addr, unsigned long end_addr,
  2179. struct zap_details *details)
  2180. {
  2181. unsigned long restart_addr;
  2182. int need_break;
  2183. /*
  2184. * files that support invalidating or truncating portions of the
  2185. * file from under mmaped areas must have their ->fault function
  2186. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2187. * This provides synchronisation against concurrent unmapping here.
  2188. */
  2189. again:
  2190. restart_addr = vma->vm_truncate_count;
  2191. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2192. start_addr = restart_addr;
  2193. if (start_addr >= end_addr) {
  2194. /* Top of vma has been split off since last time */
  2195. vma->vm_truncate_count = details->truncate_count;
  2196. return 0;
  2197. }
  2198. }
  2199. restart_addr = zap_page_range(vma, start_addr,
  2200. end_addr - start_addr, details);
  2201. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2202. if (restart_addr >= end_addr) {
  2203. /* We have now completed this vma: mark it so */
  2204. vma->vm_truncate_count = details->truncate_count;
  2205. if (!need_break)
  2206. return 0;
  2207. } else {
  2208. /* Note restart_addr in vma's truncate_count field */
  2209. vma->vm_truncate_count = restart_addr;
  2210. if (!need_break)
  2211. goto again;
  2212. }
  2213. spin_unlock(details->i_mmap_lock);
  2214. cond_resched();
  2215. spin_lock(details->i_mmap_lock);
  2216. return -EINTR;
  2217. }
  2218. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2219. struct zap_details *details)
  2220. {
  2221. struct vm_area_struct *vma;
  2222. struct prio_tree_iter iter;
  2223. pgoff_t vba, vea, zba, zea;
  2224. restart:
  2225. vma_prio_tree_foreach(vma, &iter, root,
  2226. details->first_index, details->last_index) {
  2227. /* Skip quickly over those we have already dealt with */
  2228. if (vma->vm_truncate_count == details->truncate_count)
  2229. continue;
  2230. vba = vma->vm_pgoff;
  2231. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2232. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2233. zba = details->first_index;
  2234. if (zba < vba)
  2235. zba = vba;
  2236. zea = details->last_index;
  2237. if (zea > vea)
  2238. zea = vea;
  2239. if (unmap_mapping_range_vma(vma,
  2240. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2241. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2242. details) < 0)
  2243. goto restart;
  2244. }
  2245. }
  2246. static inline void unmap_mapping_range_list(struct list_head *head,
  2247. struct zap_details *details)
  2248. {
  2249. struct vm_area_struct *vma;
  2250. /*
  2251. * In nonlinear VMAs there is no correspondence between virtual address
  2252. * offset and file offset. So we must perform an exhaustive search
  2253. * across *all* the pages in each nonlinear VMA, not just the pages
  2254. * whose virtual address lies outside the file truncation point.
  2255. */
  2256. restart:
  2257. list_for_each_entry(vma, head, shared.vm_set.list) {
  2258. /* Skip quickly over those we have already dealt with */
  2259. if (vma->vm_truncate_count == details->truncate_count)
  2260. continue;
  2261. details->nonlinear_vma = vma;
  2262. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2263. vma->vm_end, details) < 0)
  2264. goto restart;
  2265. }
  2266. }
  2267. /**
  2268. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2269. * @mapping: the address space containing mmaps to be unmapped.
  2270. * @holebegin: byte in first page to unmap, relative to the start of
  2271. * the underlying file. This will be rounded down to a PAGE_SIZE
  2272. * boundary. Note that this is different from truncate_pagecache(), which
  2273. * must keep the partial page. In contrast, we must get rid of
  2274. * partial pages.
  2275. * @holelen: size of prospective hole in bytes. This will be rounded
  2276. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2277. * end of the file.
  2278. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2279. * but 0 when invalidating pagecache, don't throw away private data.
  2280. */
  2281. void unmap_mapping_range(struct address_space *mapping,
  2282. loff_t const holebegin, loff_t const holelen, int even_cows)
  2283. {
  2284. struct zap_details details;
  2285. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2286. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2287. /* Check for overflow. */
  2288. if (sizeof(holelen) > sizeof(hlen)) {
  2289. long long holeend =
  2290. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2291. if (holeend & ~(long long)ULONG_MAX)
  2292. hlen = ULONG_MAX - hba + 1;
  2293. }
  2294. details.check_mapping = even_cows? NULL: mapping;
  2295. details.nonlinear_vma = NULL;
  2296. details.first_index = hba;
  2297. details.last_index = hba + hlen - 1;
  2298. if (details.last_index < details.first_index)
  2299. details.last_index = ULONG_MAX;
  2300. details.i_mmap_lock = &mapping->i_mmap_lock;
  2301. spin_lock(&mapping->i_mmap_lock);
  2302. /* Protect against endless unmapping loops */
  2303. mapping->truncate_count++;
  2304. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2305. if (mapping->truncate_count == 0)
  2306. reset_vma_truncate_counts(mapping);
  2307. mapping->truncate_count++;
  2308. }
  2309. details.truncate_count = mapping->truncate_count;
  2310. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2311. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2312. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2313. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2314. spin_unlock(&mapping->i_mmap_lock);
  2315. }
  2316. EXPORT_SYMBOL(unmap_mapping_range);
  2317. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2318. {
  2319. struct address_space *mapping = inode->i_mapping;
  2320. /*
  2321. * If the underlying filesystem is not going to provide
  2322. * a way to truncate a range of blocks (punch a hole) -
  2323. * we should return failure right now.
  2324. */
  2325. if (!inode->i_op->truncate_range)
  2326. return -ENOSYS;
  2327. mutex_lock(&inode->i_mutex);
  2328. down_write(&inode->i_alloc_sem);
  2329. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2330. truncate_inode_pages_range(mapping, offset, end);
  2331. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2332. inode->i_op->truncate_range(inode, offset, end);
  2333. up_write(&inode->i_alloc_sem);
  2334. mutex_unlock(&inode->i_mutex);
  2335. return 0;
  2336. }
  2337. /*
  2338. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2339. * but allow concurrent faults), and pte mapped but not yet locked.
  2340. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2341. */
  2342. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2343. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2344. unsigned int flags, pte_t orig_pte)
  2345. {
  2346. spinlock_t *ptl;
  2347. struct page *page;
  2348. swp_entry_t entry;
  2349. pte_t pte;
  2350. struct mem_cgroup *ptr = NULL;
  2351. int ret = 0;
  2352. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2353. goto out;
  2354. entry = pte_to_swp_entry(orig_pte);
  2355. if (unlikely(non_swap_entry(entry))) {
  2356. if (is_migration_entry(entry)) {
  2357. migration_entry_wait(mm, pmd, address);
  2358. } else if (is_hwpoison_entry(entry)) {
  2359. ret = VM_FAULT_HWPOISON;
  2360. } else {
  2361. print_bad_pte(vma, address, orig_pte, NULL);
  2362. ret = VM_FAULT_SIGBUS;
  2363. }
  2364. goto out;
  2365. }
  2366. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2367. page = lookup_swap_cache(entry);
  2368. if (!page) {
  2369. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2370. page = swapin_readahead(entry,
  2371. GFP_HIGHUSER_MOVABLE, vma, address);
  2372. if (!page) {
  2373. /*
  2374. * Back out if somebody else faulted in this pte
  2375. * while we released the pte lock.
  2376. */
  2377. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2378. if (likely(pte_same(*page_table, orig_pte)))
  2379. ret = VM_FAULT_OOM;
  2380. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2381. goto unlock;
  2382. }
  2383. /* Had to read the page from swap area: Major fault */
  2384. ret = VM_FAULT_MAJOR;
  2385. count_vm_event(PGMAJFAULT);
  2386. } else if (PageHWPoison(page)) {
  2387. /*
  2388. * hwpoisoned dirty swapcache pages are kept for killing
  2389. * owner processes (which may be unknown at hwpoison time)
  2390. */
  2391. ret = VM_FAULT_HWPOISON;
  2392. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2393. goto out_release;
  2394. }
  2395. lock_page(page);
  2396. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2397. page = ksm_might_need_to_copy(page, vma, address);
  2398. if (!page) {
  2399. ret = VM_FAULT_OOM;
  2400. goto out;
  2401. }
  2402. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2403. ret = VM_FAULT_OOM;
  2404. goto out_page;
  2405. }
  2406. /*
  2407. * Back out if somebody else already faulted in this pte.
  2408. */
  2409. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2410. if (unlikely(!pte_same(*page_table, orig_pte)))
  2411. goto out_nomap;
  2412. if (unlikely(!PageUptodate(page))) {
  2413. ret = VM_FAULT_SIGBUS;
  2414. goto out_nomap;
  2415. }
  2416. /*
  2417. * The page isn't present yet, go ahead with the fault.
  2418. *
  2419. * Be careful about the sequence of operations here.
  2420. * To get its accounting right, reuse_swap_page() must be called
  2421. * while the page is counted on swap but not yet in mapcount i.e.
  2422. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2423. * must be called after the swap_free(), or it will never succeed.
  2424. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2425. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2426. * in page->private. In this case, a record in swap_cgroup is silently
  2427. * discarded at swap_free().
  2428. */
  2429. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2430. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2431. pte = mk_pte(page, vma->vm_page_prot);
  2432. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2433. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2434. flags &= ~FAULT_FLAG_WRITE;
  2435. }
  2436. flush_icache_page(vma, page);
  2437. set_pte_at(mm, address, page_table, pte);
  2438. page_add_anon_rmap(page, vma, address);
  2439. /* It's better to call commit-charge after rmap is established */
  2440. mem_cgroup_commit_charge_swapin(page, ptr);
  2441. swap_free(entry);
  2442. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2443. try_to_free_swap(page);
  2444. unlock_page(page);
  2445. if (flags & FAULT_FLAG_WRITE) {
  2446. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2447. if (ret & VM_FAULT_ERROR)
  2448. ret &= VM_FAULT_ERROR;
  2449. goto out;
  2450. }
  2451. /* No need to invalidate - it was non-present before */
  2452. update_mmu_cache(vma, address, page_table);
  2453. unlock:
  2454. pte_unmap_unlock(page_table, ptl);
  2455. out:
  2456. return ret;
  2457. out_nomap:
  2458. mem_cgroup_cancel_charge_swapin(ptr);
  2459. pte_unmap_unlock(page_table, ptl);
  2460. out_page:
  2461. unlock_page(page);
  2462. out_release:
  2463. page_cache_release(page);
  2464. return ret;
  2465. }
  2466. /*
  2467. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2468. * but allow concurrent faults), and pte mapped but not yet locked.
  2469. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2470. */
  2471. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2472. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2473. unsigned int flags)
  2474. {
  2475. struct page *page;
  2476. spinlock_t *ptl;
  2477. pte_t entry;
  2478. if (!(flags & FAULT_FLAG_WRITE)) {
  2479. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2480. vma->vm_page_prot));
  2481. ptl = pte_lockptr(mm, pmd);
  2482. spin_lock(ptl);
  2483. if (!pte_none(*page_table))
  2484. goto unlock;
  2485. goto setpte;
  2486. }
  2487. /* Allocate our own private page. */
  2488. pte_unmap(page_table);
  2489. if (unlikely(anon_vma_prepare(vma)))
  2490. goto oom;
  2491. page = alloc_zeroed_user_highpage_movable(vma, address);
  2492. if (!page)
  2493. goto oom;
  2494. __SetPageUptodate(page);
  2495. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2496. goto oom_free_page;
  2497. entry = mk_pte(page, vma->vm_page_prot);
  2498. if (vma->vm_flags & VM_WRITE)
  2499. entry = pte_mkwrite(pte_mkdirty(entry));
  2500. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2501. if (!pte_none(*page_table))
  2502. goto release;
  2503. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2504. page_add_new_anon_rmap(page, vma, address);
  2505. setpte:
  2506. set_pte_at(mm, address, page_table, entry);
  2507. /* No need to invalidate - it was non-present before */
  2508. update_mmu_cache(vma, address, page_table);
  2509. unlock:
  2510. pte_unmap_unlock(page_table, ptl);
  2511. return 0;
  2512. release:
  2513. mem_cgroup_uncharge_page(page);
  2514. page_cache_release(page);
  2515. goto unlock;
  2516. oom_free_page:
  2517. page_cache_release(page);
  2518. oom:
  2519. return VM_FAULT_OOM;
  2520. }
  2521. /*
  2522. * __do_fault() tries to create a new page mapping. It aggressively
  2523. * tries to share with existing pages, but makes a separate copy if
  2524. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2525. * the next page fault.
  2526. *
  2527. * As this is called only for pages that do not currently exist, we
  2528. * do not need to flush old virtual caches or the TLB.
  2529. *
  2530. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2531. * but allow concurrent faults), and pte neither mapped nor locked.
  2532. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2533. */
  2534. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2535. unsigned long address, pmd_t *pmd,
  2536. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2537. {
  2538. pte_t *page_table;
  2539. spinlock_t *ptl;
  2540. struct page *page;
  2541. pte_t entry;
  2542. int anon = 0;
  2543. int charged = 0;
  2544. struct page *dirty_page = NULL;
  2545. struct vm_fault vmf;
  2546. int ret;
  2547. int page_mkwrite = 0;
  2548. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2549. vmf.pgoff = pgoff;
  2550. vmf.flags = flags;
  2551. vmf.page = NULL;
  2552. ret = vma->vm_ops->fault(vma, &vmf);
  2553. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2554. return ret;
  2555. if (unlikely(PageHWPoison(vmf.page))) {
  2556. if (ret & VM_FAULT_LOCKED)
  2557. unlock_page(vmf.page);
  2558. return VM_FAULT_HWPOISON;
  2559. }
  2560. /*
  2561. * For consistency in subsequent calls, make the faulted page always
  2562. * locked.
  2563. */
  2564. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2565. lock_page(vmf.page);
  2566. else
  2567. VM_BUG_ON(!PageLocked(vmf.page));
  2568. /*
  2569. * Should we do an early C-O-W break?
  2570. */
  2571. page = vmf.page;
  2572. if (flags & FAULT_FLAG_WRITE) {
  2573. if (!(vma->vm_flags & VM_SHARED)) {
  2574. anon = 1;
  2575. if (unlikely(anon_vma_prepare(vma))) {
  2576. ret = VM_FAULT_OOM;
  2577. goto out;
  2578. }
  2579. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2580. vma, address);
  2581. if (!page) {
  2582. ret = VM_FAULT_OOM;
  2583. goto out;
  2584. }
  2585. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2586. ret = VM_FAULT_OOM;
  2587. page_cache_release(page);
  2588. goto out;
  2589. }
  2590. charged = 1;
  2591. /*
  2592. * Don't let another task, with possibly unlocked vma,
  2593. * keep the mlocked page.
  2594. */
  2595. if (vma->vm_flags & VM_LOCKED)
  2596. clear_page_mlock(vmf.page);
  2597. copy_user_highpage(page, vmf.page, address, vma);
  2598. __SetPageUptodate(page);
  2599. } else {
  2600. /*
  2601. * If the page will be shareable, see if the backing
  2602. * address space wants to know that the page is about
  2603. * to become writable
  2604. */
  2605. if (vma->vm_ops->page_mkwrite) {
  2606. int tmp;
  2607. unlock_page(page);
  2608. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2609. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2610. if (unlikely(tmp &
  2611. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2612. ret = tmp;
  2613. goto unwritable_page;
  2614. }
  2615. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2616. lock_page(page);
  2617. if (!page->mapping) {
  2618. ret = 0; /* retry the fault */
  2619. unlock_page(page);
  2620. goto unwritable_page;
  2621. }
  2622. } else
  2623. VM_BUG_ON(!PageLocked(page));
  2624. page_mkwrite = 1;
  2625. }
  2626. }
  2627. }
  2628. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2629. /*
  2630. * This silly early PAGE_DIRTY setting removes a race
  2631. * due to the bad i386 page protection. But it's valid
  2632. * for other architectures too.
  2633. *
  2634. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2635. * an exclusive copy of the page, or this is a shared mapping,
  2636. * so we can make it writable and dirty to avoid having to
  2637. * handle that later.
  2638. */
  2639. /* Only go through if we didn't race with anybody else... */
  2640. if (likely(pte_same(*page_table, orig_pte))) {
  2641. flush_icache_page(vma, page);
  2642. entry = mk_pte(page, vma->vm_page_prot);
  2643. if (flags & FAULT_FLAG_WRITE)
  2644. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2645. if (anon) {
  2646. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2647. page_add_new_anon_rmap(page, vma, address);
  2648. } else {
  2649. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2650. page_add_file_rmap(page);
  2651. if (flags & FAULT_FLAG_WRITE) {
  2652. dirty_page = page;
  2653. get_page(dirty_page);
  2654. }
  2655. }
  2656. set_pte_at(mm, address, page_table, entry);
  2657. /* no need to invalidate: a not-present page won't be cached */
  2658. update_mmu_cache(vma, address, page_table);
  2659. } else {
  2660. if (charged)
  2661. mem_cgroup_uncharge_page(page);
  2662. if (anon)
  2663. page_cache_release(page);
  2664. else
  2665. anon = 1; /* no anon but release faulted_page */
  2666. }
  2667. pte_unmap_unlock(page_table, ptl);
  2668. out:
  2669. if (dirty_page) {
  2670. struct address_space *mapping = page->mapping;
  2671. if (set_page_dirty(dirty_page))
  2672. page_mkwrite = 1;
  2673. unlock_page(dirty_page);
  2674. put_page(dirty_page);
  2675. if (page_mkwrite && mapping) {
  2676. /*
  2677. * Some device drivers do not set page.mapping but still
  2678. * dirty their pages
  2679. */
  2680. balance_dirty_pages_ratelimited(mapping);
  2681. }
  2682. /* file_update_time outside page_lock */
  2683. if (vma->vm_file)
  2684. file_update_time(vma->vm_file);
  2685. } else {
  2686. unlock_page(vmf.page);
  2687. if (anon)
  2688. page_cache_release(vmf.page);
  2689. }
  2690. return ret;
  2691. unwritable_page:
  2692. page_cache_release(page);
  2693. return ret;
  2694. }
  2695. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2696. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2697. unsigned int flags, pte_t orig_pte)
  2698. {
  2699. pgoff_t pgoff = (((address & PAGE_MASK)
  2700. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2701. pte_unmap(page_table);
  2702. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2703. }
  2704. /*
  2705. * Fault of a previously existing named mapping. Repopulate the pte
  2706. * from the encoded file_pte if possible. This enables swappable
  2707. * nonlinear vmas.
  2708. *
  2709. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2710. * but allow concurrent faults), and pte mapped but not yet locked.
  2711. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2712. */
  2713. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2714. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2715. unsigned int flags, pte_t orig_pte)
  2716. {
  2717. pgoff_t pgoff;
  2718. flags |= FAULT_FLAG_NONLINEAR;
  2719. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2720. return 0;
  2721. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2722. /*
  2723. * Page table corrupted: show pte and kill process.
  2724. */
  2725. print_bad_pte(vma, address, orig_pte, NULL);
  2726. return VM_FAULT_SIGBUS;
  2727. }
  2728. pgoff = pte_to_pgoff(orig_pte);
  2729. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2730. }
  2731. /*
  2732. * These routines also need to handle stuff like marking pages dirty
  2733. * and/or accessed for architectures that don't do it in hardware (most
  2734. * RISC architectures). The early dirtying is also good on the i386.
  2735. *
  2736. * There is also a hook called "update_mmu_cache()" that architectures
  2737. * with external mmu caches can use to update those (ie the Sparc or
  2738. * PowerPC hashed page tables that act as extended TLBs).
  2739. *
  2740. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2741. * but allow concurrent faults), and pte mapped but not yet locked.
  2742. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2743. */
  2744. static inline int handle_pte_fault(struct mm_struct *mm,
  2745. struct vm_area_struct *vma, unsigned long address,
  2746. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2747. {
  2748. pte_t entry;
  2749. spinlock_t *ptl;
  2750. entry = *pte;
  2751. if (!pte_present(entry)) {
  2752. if (pte_none(entry)) {
  2753. if (vma->vm_ops) {
  2754. if (likely(vma->vm_ops->fault))
  2755. return do_linear_fault(mm, vma, address,
  2756. pte, pmd, flags, entry);
  2757. }
  2758. return do_anonymous_page(mm, vma, address,
  2759. pte, pmd, flags);
  2760. }
  2761. if (pte_file(entry))
  2762. return do_nonlinear_fault(mm, vma, address,
  2763. pte, pmd, flags, entry);
  2764. return do_swap_page(mm, vma, address,
  2765. pte, pmd, flags, entry);
  2766. }
  2767. ptl = pte_lockptr(mm, pmd);
  2768. spin_lock(ptl);
  2769. if (unlikely(!pte_same(*pte, entry)))
  2770. goto unlock;
  2771. if (flags & FAULT_FLAG_WRITE) {
  2772. if (!pte_write(entry))
  2773. return do_wp_page(mm, vma, address,
  2774. pte, pmd, ptl, entry);
  2775. entry = pte_mkdirty(entry);
  2776. }
  2777. entry = pte_mkyoung(entry);
  2778. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2779. update_mmu_cache(vma, address, pte);
  2780. } else {
  2781. /*
  2782. * This is needed only for protection faults but the arch code
  2783. * is not yet telling us if this is a protection fault or not.
  2784. * This still avoids useless tlb flushes for .text page faults
  2785. * with threads.
  2786. */
  2787. if (flags & FAULT_FLAG_WRITE)
  2788. flush_tlb_page(vma, address);
  2789. }
  2790. unlock:
  2791. pte_unmap_unlock(pte, ptl);
  2792. return 0;
  2793. }
  2794. /*
  2795. * By the time we get here, we already hold the mm semaphore
  2796. */
  2797. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2798. unsigned long address, unsigned int flags)
  2799. {
  2800. pgd_t *pgd;
  2801. pud_t *pud;
  2802. pmd_t *pmd;
  2803. pte_t *pte;
  2804. __set_current_state(TASK_RUNNING);
  2805. count_vm_event(PGFAULT);
  2806. /* do counter updates before entering really critical section. */
  2807. check_sync_rss_stat(current);
  2808. if (unlikely(is_vm_hugetlb_page(vma)))
  2809. return hugetlb_fault(mm, vma, address, flags);
  2810. pgd = pgd_offset(mm, address);
  2811. pud = pud_alloc(mm, pgd, address);
  2812. if (!pud)
  2813. return VM_FAULT_OOM;
  2814. pmd = pmd_alloc(mm, pud, address);
  2815. if (!pmd)
  2816. return VM_FAULT_OOM;
  2817. pte = pte_alloc_map(mm, pmd, address);
  2818. if (!pte)
  2819. return VM_FAULT_OOM;
  2820. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2821. }
  2822. #ifndef __PAGETABLE_PUD_FOLDED
  2823. /*
  2824. * Allocate page upper directory.
  2825. * We've already handled the fast-path in-line.
  2826. */
  2827. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2828. {
  2829. pud_t *new = pud_alloc_one(mm, address);
  2830. if (!new)
  2831. return -ENOMEM;
  2832. smp_wmb(); /* See comment in __pte_alloc */
  2833. spin_lock(&mm->page_table_lock);
  2834. if (pgd_present(*pgd)) /* Another has populated it */
  2835. pud_free(mm, new);
  2836. else
  2837. pgd_populate(mm, pgd, new);
  2838. spin_unlock(&mm->page_table_lock);
  2839. return 0;
  2840. }
  2841. #endif /* __PAGETABLE_PUD_FOLDED */
  2842. #ifndef __PAGETABLE_PMD_FOLDED
  2843. /*
  2844. * Allocate page middle directory.
  2845. * We've already handled the fast-path in-line.
  2846. */
  2847. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2848. {
  2849. pmd_t *new = pmd_alloc_one(mm, address);
  2850. if (!new)
  2851. return -ENOMEM;
  2852. smp_wmb(); /* See comment in __pte_alloc */
  2853. spin_lock(&mm->page_table_lock);
  2854. #ifndef __ARCH_HAS_4LEVEL_HACK
  2855. if (pud_present(*pud)) /* Another has populated it */
  2856. pmd_free(mm, new);
  2857. else
  2858. pud_populate(mm, pud, new);
  2859. #else
  2860. if (pgd_present(*pud)) /* Another has populated it */
  2861. pmd_free(mm, new);
  2862. else
  2863. pgd_populate(mm, pud, new);
  2864. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2865. spin_unlock(&mm->page_table_lock);
  2866. return 0;
  2867. }
  2868. #endif /* __PAGETABLE_PMD_FOLDED */
  2869. int make_pages_present(unsigned long addr, unsigned long end)
  2870. {
  2871. int ret, len, write;
  2872. struct vm_area_struct * vma;
  2873. vma = find_vma(current->mm, addr);
  2874. if (!vma)
  2875. return -ENOMEM;
  2876. write = (vma->vm_flags & VM_WRITE) != 0;
  2877. BUG_ON(addr >= end);
  2878. BUG_ON(end > vma->vm_end);
  2879. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2880. ret = get_user_pages(current, current->mm, addr,
  2881. len, write, 0, NULL, NULL);
  2882. if (ret < 0)
  2883. return ret;
  2884. return ret == len ? 0 : -EFAULT;
  2885. }
  2886. #if !defined(__HAVE_ARCH_GATE_AREA)
  2887. #if defined(AT_SYSINFO_EHDR)
  2888. static struct vm_area_struct gate_vma;
  2889. static int __init gate_vma_init(void)
  2890. {
  2891. gate_vma.vm_mm = NULL;
  2892. gate_vma.vm_start = FIXADDR_USER_START;
  2893. gate_vma.vm_end = FIXADDR_USER_END;
  2894. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2895. gate_vma.vm_page_prot = __P101;
  2896. /*
  2897. * Make sure the vDSO gets into every core dump.
  2898. * Dumping its contents makes post-mortem fully interpretable later
  2899. * without matching up the same kernel and hardware config to see
  2900. * what PC values meant.
  2901. */
  2902. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2903. return 0;
  2904. }
  2905. __initcall(gate_vma_init);
  2906. #endif
  2907. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2908. {
  2909. #ifdef AT_SYSINFO_EHDR
  2910. return &gate_vma;
  2911. #else
  2912. return NULL;
  2913. #endif
  2914. }
  2915. int in_gate_area_no_task(unsigned long addr)
  2916. {
  2917. #ifdef AT_SYSINFO_EHDR
  2918. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2919. return 1;
  2920. #endif
  2921. return 0;
  2922. }
  2923. #endif /* __HAVE_ARCH_GATE_AREA */
  2924. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2925. pte_t **ptepp, spinlock_t **ptlp)
  2926. {
  2927. pgd_t *pgd;
  2928. pud_t *pud;
  2929. pmd_t *pmd;
  2930. pte_t *ptep;
  2931. pgd = pgd_offset(mm, address);
  2932. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2933. goto out;
  2934. pud = pud_offset(pgd, address);
  2935. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2936. goto out;
  2937. pmd = pmd_offset(pud, address);
  2938. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2939. goto out;
  2940. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2941. if (pmd_huge(*pmd))
  2942. goto out;
  2943. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2944. if (!ptep)
  2945. goto out;
  2946. if (!pte_present(*ptep))
  2947. goto unlock;
  2948. *ptepp = ptep;
  2949. return 0;
  2950. unlock:
  2951. pte_unmap_unlock(ptep, *ptlp);
  2952. out:
  2953. return -EINVAL;
  2954. }
  2955. /**
  2956. * follow_pfn - look up PFN at a user virtual address
  2957. * @vma: memory mapping
  2958. * @address: user virtual address
  2959. * @pfn: location to store found PFN
  2960. *
  2961. * Only IO mappings and raw PFN mappings are allowed.
  2962. *
  2963. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2964. */
  2965. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2966. unsigned long *pfn)
  2967. {
  2968. int ret = -EINVAL;
  2969. spinlock_t *ptl;
  2970. pte_t *ptep;
  2971. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2972. return ret;
  2973. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2974. if (ret)
  2975. return ret;
  2976. *pfn = pte_pfn(*ptep);
  2977. pte_unmap_unlock(ptep, ptl);
  2978. return 0;
  2979. }
  2980. EXPORT_SYMBOL(follow_pfn);
  2981. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2982. int follow_phys(struct vm_area_struct *vma,
  2983. unsigned long address, unsigned int flags,
  2984. unsigned long *prot, resource_size_t *phys)
  2985. {
  2986. int ret = -EINVAL;
  2987. pte_t *ptep, pte;
  2988. spinlock_t *ptl;
  2989. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2990. goto out;
  2991. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2992. goto out;
  2993. pte = *ptep;
  2994. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2995. goto unlock;
  2996. *prot = pgprot_val(pte_pgprot(pte));
  2997. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2998. ret = 0;
  2999. unlock:
  3000. pte_unmap_unlock(ptep, ptl);
  3001. out:
  3002. return ret;
  3003. }
  3004. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3005. void *buf, int len, int write)
  3006. {
  3007. resource_size_t phys_addr;
  3008. unsigned long prot = 0;
  3009. void __iomem *maddr;
  3010. int offset = addr & (PAGE_SIZE-1);
  3011. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3012. return -EINVAL;
  3013. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3014. if (write)
  3015. memcpy_toio(maddr + offset, buf, len);
  3016. else
  3017. memcpy_fromio(buf, maddr + offset, len);
  3018. iounmap(maddr);
  3019. return len;
  3020. }
  3021. #endif
  3022. /*
  3023. * Access another process' address space.
  3024. * Source/target buffer must be kernel space,
  3025. * Do not walk the page table directly, use get_user_pages
  3026. */
  3027. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  3028. {
  3029. struct mm_struct *mm;
  3030. struct vm_area_struct *vma;
  3031. void *old_buf = buf;
  3032. mm = get_task_mm(tsk);
  3033. if (!mm)
  3034. return 0;
  3035. down_read(&mm->mmap_sem);
  3036. /* ignore errors, just check how much was successfully transferred */
  3037. while (len) {
  3038. int bytes, ret, offset;
  3039. void *maddr;
  3040. struct page *page = NULL;
  3041. ret = get_user_pages(tsk, mm, addr, 1,
  3042. write, 1, &page, &vma);
  3043. if (ret <= 0) {
  3044. /*
  3045. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3046. * we can access using slightly different code.
  3047. */
  3048. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3049. vma = find_vma(mm, addr);
  3050. if (!vma)
  3051. break;
  3052. if (vma->vm_ops && vma->vm_ops->access)
  3053. ret = vma->vm_ops->access(vma, addr, buf,
  3054. len, write);
  3055. if (ret <= 0)
  3056. #endif
  3057. break;
  3058. bytes = ret;
  3059. } else {
  3060. bytes = len;
  3061. offset = addr & (PAGE_SIZE-1);
  3062. if (bytes > PAGE_SIZE-offset)
  3063. bytes = PAGE_SIZE-offset;
  3064. maddr = kmap(page);
  3065. if (write) {
  3066. copy_to_user_page(vma, page, addr,
  3067. maddr + offset, buf, bytes);
  3068. set_page_dirty_lock(page);
  3069. } else {
  3070. copy_from_user_page(vma, page, addr,
  3071. buf, maddr + offset, bytes);
  3072. }
  3073. kunmap(page);
  3074. page_cache_release(page);
  3075. }
  3076. len -= bytes;
  3077. buf += bytes;
  3078. addr += bytes;
  3079. }
  3080. up_read(&mm->mmap_sem);
  3081. mmput(mm);
  3082. return buf - old_buf;
  3083. }
  3084. /*
  3085. * Print the name of a VMA.
  3086. */
  3087. void print_vma_addr(char *prefix, unsigned long ip)
  3088. {
  3089. struct mm_struct *mm = current->mm;
  3090. struct vm_area_struct *vma;
  3091. /*
  3092. * Do not print if we are in atomic
  3093. * contexts (in exception stacks, etc.):
  3094. */
  3095. if (preempt_count())
  3096. return;
  3097. down_read(&mm->mmap_sem);
  3098. vma = find_vma(mm, ip);
  3099. if (vma && vma->vm_file) {
  3100. struct file *f = vma->vm_file;
  3101. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3102. if (buf) {
  3103. char *p, *s;
  3104. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3105. if (IS_ERR(p))
  3106. p = "?";
  3107. s = strrchr(p, '/');
  3108. if (s)
  3109. p = s+1;
  3110. printk("%s%s[%lx+%lx]", prefix, p,
  3111. vma->vm_start,
  3112. vma->vm_end - vma->vm_start);
  3113. free_page((unsigned long)buf);
  3114. }
  3115. }
  3116. up_read(&current->mm->mmap_sem);
  3117. }
  3118. #ifdef CONFIG_PROVE_LOCKING
  3119. void might_fault(void)
  3120. {
  3121. /*
  3122. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3123. * holding the mmap_sem, this is safe because kernel memory doesn't
  3124. * get paged out, therefore we'll never actually fault, and the
  3125. * below annotations will generate false positives.
  3126. */
  3127. if (segment_eq(get_fs(), KERNEL_DS))
  3128. return;
  3129. might_sleep();
  3130. /*
  3131. * it would be nicer only to annotate paths which are not under
  3132. * pagefault_disable, however that requires a larger audit and
  3133. * providing helpers like get_user_atomic.
  3134. */
  3135. if (!in_atomic() && current->mm)
  3136. might_lock_read(&current->mm->mmap_sem);
  3137. }
  3138. EXPORT_SYMBOL(might_fault);
  3139. #endif