memory-failure.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/kernel-page-flags.h>
  37. #include <linux/sched.h>
  38. #include <linux/ksm.h>
  39. #include <linux/rmap.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/migrate.h>
  44. #include <linux/page-isolation.h>
  45. #include <linux/suspend.h>
  46. #include "internal.h"
  47. int sysctl_memory_failure_early_kill __read_mostly = 0;
  48. int sysctl_memory_failure_recovery __read_mostly = 1;
  49. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  50. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  51. u32 hwpoison_filter_enable = 0;
  52. u32 hwpoison_filter_dev_major = ~0U;
  53. u32 hwpoison_filter_dev_minor = ~0U;
  54. u64 hwpoison_filter_flags_mask;
  55. u64 hwpoison_filter_flags_value;
  56. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  57. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  58. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  59. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  60. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  61. static int hwpoison_filter_dev(struct page *p)
  62. {
  63. struct address_space *mapping;
  64. dev_t dev;
  65. if (hwpoison_filter_dev_major == ~0U &&
  66. hwpoison_filter_dev_minor == ~0U)
  67. return 0;
  68. /*
  69. * page_mapping() does not accept slab page
  70. */
  71. if (PageSlab(p))
  72. return -EINVAL;
  73. mapping = page_mapping(p);
  74. if (mapping == NULL || mapping->host == NULL)
  75. return -EINVAL;
  76. dev = mapping->host->i_sb->s_dev;
  77. if (hwpoison_filter_dev_major != ~0U &&
  78. hwpoison_filter_dev_major != MAJOR(dev))
  79. return -EINVAL;
  80. if (hwpoison_filter_dev_minor != ~0U &&
  81. hwpoison_filter_dev_minor != MINOR(dev))
  82. return -EINVAL;
  83. return 0;
  84. }
  85. static int hwpoison_filter_flags(struct page *p)
  86. {
  87. if (!hwpoison_filter_flags_mask)
  88. return 0;
  89. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  90. hwpoison_filter_flags_value)
  91. return 0;
  92. else
  93. return -EINVAL;
  94. }
  95. /*
  96. * This allows stress tests to limit test scope to a collection of tasks
  97. * by putting them under some memcg. This prevents killing unrelated/important
  98. * processes such as /sbin/init. Note that the target task may share clean
  99. * pages with init (eg. libc text), which is harmless. If the target task
  100. * share _dirty_ pages with another task B, the test scheme must make sure B
  101. * is also included in the memcg. At last, due to race conditions this filter
  102. * can only guarantee that the page either belongs to the memcg tasks, or is
  103. * a freed page.
  104. */
  105. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  106. u64 hwpoison_filter_memcg;
  107. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  108. static int hwpoison_filter_task(struct page *p)
  109. {
  110. struct mem_cgroup *mem;
  111. struct cgroup_subsys_state *css;
  112. unsigned long ino;
  113. if (!hwpoison_filter_memcg)
  114. return 0;
  115. mem = try_get_mem_cgroup_from_page(p);
  116. if (!mem)
  117. return -EINVAL;
  118. css = mem_cgroup_css(mem);
  119. /* root_mem_cgroup has NULL dentries */
  120. if (!css->cgroup->dentry)
  121. return -EINVAL;
  122. ino = css->cgroup->dentry->d_inode->i_ino;
  123. css_put(css);
  124. if (ino != hwpoison_filter_memcg)
  125. return -EINVAL;
  126. return 0;
  127. }
  128. #else
  129. static int hwpoison_filter_task(struct page *p) { return 0; }
  130. #endif
  131. int hwpoison_filter(struct page *p)
  132. {
  133. if (!hwpoison_filter_enable)
  134. return 0;
  135. if (hwpoison_filter_dev(p))
  136. return -EINVAL;
  137. if (hwpoison_filter_flags(p))
  138. return -EINVAL;
  139. if (hwpoison_filter_task(p))
  140. return -EINVAL;
  141. return 0;
  142. }
  143. #else
  144. int hwpoison_filter(struct page *p)
  145. {
  146. return 0;
  147. }
  148. #endif
  149. EXPORT_SYMBOL_GPL(hwpoison_filter);
  150. /*
  151. * Send all the processes who have the page mapped an ``action optional''
  152. * signal.
  153. */
  154. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  155. unsigned long pfn)
  156. {
  157. struct siginfo si;
  158. int ret;
  159. printk(KERN_ERR
  160. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  161. pfn, t->comm, t->pid);
  162. si.si_signo = SIGBUS;
  163. si.si_errno = 0;
  164. si.si_code = BUS_MCEERR_AO;
  165. si.si_addr = (void *)addr;
  166. #ifdef __ARCH_SI_TRAPNO
  167. si.si_trapno = trapno;
  168. #endif
  169. si.si_addr_lsb = PAGE_SHIFT;
  170. /*
  171. * Don't use force here, it's convenient if the signal
  172. * can be temporarily blocked.
  173. * This could cause a loop when the user sets SIGBUS
  174. * to SIG_IGN, but hopefully noone will do that?
  175. */
  176. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  177. if (ret < 0)
  178. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  179. t->comm, t->pid, ret);
  180. return ret;
  181. }
  182. /*
  183. * When a unknown page type is encountered drain as many buffers as possible
  184. * in the hope to turn the page into a LRU or free page, which we can handle.
  185. */
  186. void shake_page(struct page *p, int access)
  187. {
  188. if (!PageSlab(p)) {
  189. lru_add_drain_all();
  190. if (PageLRU(p))
  191. return;
  192. drain_all_pages();
  193. if (PageLRU(p) || is_free_buddy_page(p))
  194. return;
  195. }
  196. /*
  197. * Only all shrink_slab here (which would also
  198. * shrink other caches) if access is not potentially fatal.
  199. */
  200. if (access) {
  201. int nr;
  202. do {
  203. nr = shrink_slab(1000, GFP_KERNEL, 1000);
  204. if (page_count(p) == 0)
  205. break;
  206. } while (nr > 10);
  207. }
  208. }
  209. EXPORT_SYMBOL_GPL(shake_page);
  210. /*
  211. * Kill all processes that have a poisoned page mapped and then isolate
  212. * the page.
  213. *
  214. * General strategy:
  215. * Find all processes having the page mapped and kill them.
  216. * But we keep a page reference around so that the page is not
  217. * actually freed yet.
  218. * Then stash the page away
  219. *
  220. * There's no convenient way to get back to mapped processes
  221. * from the VMAs. So do a brute-force search over all
  222. * running processes.
  223. *
  224. * Remember that machine checks are not common (or rather
  225. * if they are common you have other problems), so this shouldn't
  226. * be a performance issue.
  227. *
  228. * Also there are some races possible while we get from the
  229. * error detection to actually handle it.
  230. */
  231. struct to_kill {
  232. struct list_head nd;
  233. struct task_struct *tsk;
  234. unsigned long addr;
  235. unsigned addr_valid:1;
  236. };
  237. /*
  238. * Failure handling: if we can't find or can't kill a process there's
  239. * not much we can do. We just print a message and ignore otherwise.
  240. */
  241. /*
  242. * Schedule a process for later kill.
  243. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  244. * TBD would GFP_NOIO be enough?
  245. */
  246. static void add_to_kill(struct task_struct *tsk, struct page *p,
  247. struct vm_area_struct *vma,
  248. struct list_head *to_kill,
  249. struct to_kill **tkc)
  250. {
  251. struct to_kill *tk;
  252. if (*tkc) {
  253. tk = *tkc;
  254. *tkc = NULL;
  255. } else {
  256. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  257. if (!tk) {
  258. printk(KERN_ERR
  259. "MCE: Out of memory while machine check handling\n");
  260. return;
  261. }
  262. }
  263. tk->addr = page_address_in_vma(p, vma);
  264. tk->addr_valid = 1;
  265. /*
  266. * In theory we don't have to kill when the page was
  267. * munmaped. But it could be also a mremap. Since that's
  268. * likely very rare kill anyways just out of paranoia, but use
  269. * a SIGKILL because the error is not contained anymore.
  270. */
  271. if (tk->addr == -EFAULT) {
  272. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  273. page_to_pfn(p), tsk->comm);
  274. tk->addr_valid = 0;
  275. }
  276. get_task_struct(tsk);
  277. tk->tsk = tsk;
  278. list_add_tail(&tk->nd, to_kill);
  279. }
  280. /*
  281. * Kill the processes that have been collected earlier.
  282. *
  283. * Only do anything when DOIT is set, otherwise just free the list
  284. * (this is used for clean pages which do not need killing)
  285. * Also when FAIL is set do a force kill because something went
  286. * wrong earlier.
  287. */
  288. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  289. int fail, unsigned long pfn)
  290. {
  291. struct to_kill *tk, *next;
  292. list_for_each_entry_safe (tk, next, to_kill, nd) {
  293. if (doit) {
  294. /*
  295. * In case something went wrong with munmapping
  296. * make sure the process doesn't catch the
  297. * signal and then access the memory. Just kill it.
  298. */
  299. if (fail || tk->addr_valid == 0) {
  300. printk(KERN_ERR
  301. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  302. pfn, tk->tsk->comm, tk->tsk->pid);
  303. force_sig(SIGKILL, tk->tsk);
  304. }
  305. /*
  306. * In theory the process could have mapped
  307. * something else on the address in-between. We could
  308. * check for that, but we need to tell the
  309. * process anyways.
  310. */
  311. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  312. pfn) < 0)
  313. printk(KERN_ERR
  314. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  315. pfn, tk->tsk->comm, tk->tsk->pid);
  316. }
  317. put_task_struct(tk->tsk);
  318. kfree(tk);
  319. }
  320. }
  321. static int task_early_kill(struct task_struct *tsk)
  322. {
  323. if (!tsk->mm)
  324. return 0;
  325. if (tsk->flags & PF_MCE_PROCESS)
  326. return !!(tsk->flags & PF_MCE_EARLY);
  327. return sysctl_memory_failure_early_kill;
  328. }
  329. /*
  330. * Collect processes when the error hit an anonymous page.
  331. */
  332. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  333. struct to_kill **tkc)
  334. {
  335. struct vm_area_struct *vma;
  336. struct task_struct *tsk;
  337. struct anon_vma *av;
  338. read_lock(&tasklist_lock);
  339. av = page_lock_anon_vma(page);
  340. if (av == NULL) /* Not actually mapped anymore */
  341. goto out;
  342. for_each_process (tsk) {
  343. struct anon_vma_chain *vmac;
  344. if (!task_early_kill(tsk))
  345. continue;
  346. list_for_each_entry(vmac, &av->head, same_anon_vma) {
  347. vma = vmac->vma;
  348. if (!page_mapped_in_vma(page, vma))
  349. continue;
  350. if (vma->vm_mm == tsk->mm)
  351. add_to_kill(tsk, page, vma, to_kill, tkc);
  352. }
  353. }
  354. page_unlock_anon_vma(av);
  355. out:
  356. read_unlock(&tasklist_lock);
  357. }
  358. /*
  359. * Collect processes when the error hit a file mapped page.
  360. */
  361. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  362. struct to_kill **tkc)
  363. {
  364. struct vm_area_struct *vma;
  365. struct task_struct *tsk;
  366. struct prio_tree_iter iter;
  367. struct address_space *mapping = page->mapping;
  368. /*
  369. * A note on the locking order between the two locks.
  370. * We don't rely on this particular order.
  371. * If you have some other code that needs a different order
  372. * feel free to switch them around. Or add a reverse link
  373. * from mm_struct to task_struct, then this could be all
  374. * done without taking tasklist_lock and looping over all tasks.
  375. */
  376. read_lock(&tasklist_lock);
  377. spin_lock(&mapping->i_mmap_lock);
  378. for_each_process(tsk) {
  379. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  380. if (!task_early_kill(tsk))
  381. continue;
  382. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  383. pgoff) {
  384. /*
  385. * Send early kill signal to tasks where a vma covers
  386. * the page but the corrupted page is not necessarily
  387. * mapped it in its pte.
  388. * Assume applications who requested early kill want
  389. * to be informed of all such data corruptions.
  390. */
  391. if (vma->vm_mm == tsk->mm)
  392. add_to_kill(tsk, page, vma, to_kill, tkc);
  393. }
  394. }
  395. spin_unlock(&mapping->i_mmap_lock);
  396. read_unlock(&tasklist_lock);
  397. }
  398. /*
  399. * Collect the processes who have the corrupted page mapped to kill.
  400. * This is done in two steps for locking reasons.
  401. * First preallocate one tokill structure outside the spin locks,
  402. * so that we can kill at least one process reasonably reliable.
  403. */
  404. static void collect_procs(struct page *page, struct list_head *tokill)
  405. {
  406. struct to_kill *tk;
  407. if (!page->mapping)
  408. return;
  409. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  410. if (!tk)
  411. return;
  412. if (PageAnon(page))
  413. collect_procs_anon(page, tokill, &tk);
  414. else
  415. collect_procs_file(page, tokill, &tk);
  416. kfree(tk);
  417. }
  418. /*
  419. * Error handlers for various types of pages.
  420. */
  421. enum outcome {
  422. IGNORED, /* Error: cannot be handled */
  423. FAILED, /* Error: handling failed */
  424. DELAYED, /* Will be handled later */
  425. RECOVERED, /* Successfully recovered */
  426. };
  427. static const char *action_name[] = {
  428. [IGNORED] = "Ignored",
  429. [FAILED] = "Failed",
  430. [DELAYED] = "Delayed",
  431. [RECOVERED] = "Recovered",
  432. };
  433. /*
  434. * XXX: It is possible that a page is isolated from LRU cache,
  435. * and then kept in swap cache or failed to remove from page cache.
  436. * The page count will stop it from being freed by unpoison.
  437. * Stress tests should be aware of this memory leak problem.
  438. */
  439. static int delete_from_lru_cache(struct page *p)
  440. {
  441. if (!isolate_lru_page(p)) {
  442. /*
  443. * Clear sensible page flags, so that the buddy system won't
  444. * complain when the page is unpoison-and-freed.
  445. */
  446. ClearPageActive(p);
  447. ClearPageUnevictable(p);
  448. /*
  449. * drop the page count elevated by isolate_lru_page()
  450. */
  451. page_cache_release(p);
  452. return 0;
  453. }
  454. return -EIO;
  455. }
  456. /*
  457. * Error hit kernel page.
  458. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  459. * could be more sophisticated.
  460. */
  461. static int me_kernel(struct page *p, unsigned long pfn)
  462. {
  463. return IGNORED;
  464. }
  465. /*
  466. * Page in unknown state. Do nothing.
  467. */
  468. static int me_unknown(struct page *p, unsigned long pfn)
  469. {
  470. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  471. return FAILED;
  472. }
  473. /*
  474. * Clean (or cleaned) page cache page.
  475. */
  476. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  477. {
  478. int err;
  479. int ret = FAILED;
  480. struct address_space *mapping;
  481. delete_from_lru_cache(p);
  482. /*
  483. * For anonymous pages we're done the only reference left
  484. * should be the one m_f() holds.
  485. */
  486. if (PageAnon(p))
  487. return RECOVERED;
  488. /*
  489. * Now truncate the page in the page cache. This is really
  490. * more like a "temporary hole punch"
  491. * Don't do this for block devices when someone else
  492. * has a reference, because it could be file system metadata
  493. * and that's not safe to truncate.
  494. */
  495. mapping = page_mapping(p);
  496. if (!mapping) {
  497. /*
  498. * Page has been teared down in the meanwhile
  499. */
  500. return FAILED;
  501. }
  502. /*
  503. * Truncation is a bit tricky. Enable it per file system for now.
  504. *
  505. * Open: to take i_mutex or not for this? Right now we don't.
  506. */
  507. if (mapping->a_ops->error_remove_page) {
  508. err = mapping->a_ops->error_remove_page(mapping, p);
  509. if (err != 0) {
  510. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  511. pfn, err);
  512. } else if (page_has_private(p) &&
  513. !try_to_release_page(p, GFP_NOIO)) {
  514. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  515. } else {
  516. ret = RECOVERED;
  517. }
  518. } else {
  519. /*
  520. * If the file system doesn't support it just invalidate
  521. * This fails on dirty or anything with private pages
  522. */
  523. if (invalidate_inode_page(p))
  524. ret = RECOVERED;
  525. else
  526. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  527. pfn);
  528. }
  529. return ret;
  530. }
  531. /*
  532. * Dirty cache page page
  533. * Issues: when the error hit a hole page the error is not properly
  534. * propagated.
  535. */
  536. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  537. {
  538. struct address_space *mapping = page_mapping(p);
  539. SetPageError(p);
  540. /* TBD: print more information about the file. */
  541. if (mapping) {
  542. /*
  543. * IO error will be reported by write(), fsync(), etc.
  544. * who check the mapping.
  545. * This way the application knows that something went
  546. * wrong with its dirty file data.
  547. *
  548. * There's one open issue:
  549. *
  550. * The EIO will be only reported on the next IO
  551. * operation and then cleared through the IO map.
  552. * Normally Linux has two mechanisms to pass IO error
  553. * first through the AS_EIO flag in the address space
  554. * and then through the PageError flag in the page.
  555. * Since we drop pages on memory failure handling the
  556. * only mechanism open to use is through AS_AIO.
  557. *
  558. * This has the disadvantage that it gets cleared on
  559. * the first operation that returns an error, while
  560. * the PageError bit is more sticky and only cleared
  561. * when the page is reread or dropped. If an
  562. * application assumes it will always get error on
  563. * fsync, but does other operations on the fd before
  564. * and the page is dropped inbetween then the error
  565. * will not be properly reported.
  566. *
  567. * This can already happen even without hwpoisoned
  568. * pages: first on metadata IO errors (which only
  569. * report through AS_EIO) or when the page is dropped
  570. * at the wrong time.
  571. *
  572. * So right now we assume that the application DTRT on
  573. * the first EIO, but we're not worse than other parts
  574. * of the kernel.
  575. */
  576. mapping_set_error(mapping, EIO);
  577. }
  578. return me_pagecache_clean(p, pfn);
  579. }
  580. /*
  581. * Clean and dirty swap cache.
  582. *
  583. * Dirty swap cache page is tricky to handle. The page could live both in page
  584. * cache and swap cache(ie. page is freshly swapped in). So it could be
  585. * referenced concurrently by 2 types of PTEs:
  586. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  587. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  588. * and then
  589. * - clear dirty bit to prevent IO
  590. * - remove from LRU
  591. * - but keep in the swap cache, so that when we return to it on
  592. * a later page fault, we know the application is accessing
  593. * corrupted data and shall be killed (we installed simple
  594. * interception code in do_swap_page to catch it).
  595. *
  596. * Clean swap cache pages can be directly isolated. A later page fault will
  597. * bring in the known good data from disk.
  598. */
  599. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  600. {
  601. ClearPageDirty(p);
  602. /* Trigger EIO in shmem: */
  603. ClearPageUptodate(p);
  604. if (!delete_from_lru_cache(p))
  605. return DELAYED;
  606. else
  607. return FAILED;
  608. }
  609. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  610. {
  611. delete_from_swap_cache(p);
  612. if (!delete_from_lru_cache(p))
  613. return RECOVERED;
  614. else
  615. return FAILED;
  616. }
  617. /*
  618. * Huge pages. Needs work.
  619. * Issues:
  620. * No rmap support so we cannot find the original mapper. In theory could walk
  621. * all MMs and look for the mappings, but that would be non atomic and racy.
  622. * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
  623. * like just walking the current process and hoping it has it mapped (that
  624. * should be usually true for the common "shared database cache" case)
  625. * Should handle free huge pages and dequeue them too, but this needs to
  626. * handle huge page accounting correctly.
  627. */
  628. static int me_huge_page(struct page *p, unsigned long pfn)
  629. {
  630. return FAILED;
  631. }
  632. /*
  633. * Various page states we can handle.
  634. *
  635. * A page state is defined by its current page->flags bits.
  636. * The table matches them in order and calls the right handler.
  637. *
  638. * This is quite tricky because we can access page at any time
  639. * in its live cycle, so all accesses have to be extremly careful.
  640. *
  641. * This is not complete. More states could be added.
  642. * For any missing state don't attempt recovery.
  643. */
  644. #define dirty (1UL << PG_dirty)
  645. #define sc (1UL << PG_swapcache)
  646. #define unevict (1UL << PG_unevictable)
  647. #define mlock (1UL << PG_mlocked)
  648. #define writeback (1UL << PG_writeback)
  649. #define lru (1UL << PG_lru)
  650. #define swapbacked (1UL << PG_swapbacked)
  651. #define head (1UL << PG_head)
  652. #define tail (1UL << PG_tail)
  653. #define compound (1UL << PG_compound)
  654. #define slab (1UL << PG_slab)
  655. #define reserved (1UL << PG_reserved)
  656. static struct page_state {
  657. unsigned long mask;
  658. unsigned long res;
  659. char *msg;
  660. int (*action)(struct page *p, unsigned long pfn);
  661. } error_states[] = {
  662. { reserved, reserved, "reserved kernel", me_kernel },
  663. /*
  664. * free pages are specially detected outside this table:
  665. * PG_buddy pages only make a small fraction of all free pages.
  666. */
  667. /*
  668. * Could in theory check if slab page is free or if we can drop
  669. * currently unused objects without touching them. But just
  670. * treat it as standard kernel for now.
  671. */
  672. { slab, slab, "kernel slab", me_kernel },
  673. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  674. { head, head, "huge", me_huge_page },
  675. { tail, tail, "huge", me_huge_page },
  676. #else
  677. { compound, compound, "huge", me_huge_page },
  678. #endif
  679. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  680. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  681. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  682. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  683. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  684. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  685. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  686. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  687. /*
  688. * Catchall entry: must be at end.
  689. */
  690. { 0, 0, "unknown page state", me_unknown },
  691. };
  692. #undef dirty
  693. #undef sc
  694. #undef unevict
  695. #undef mlock
  696. #undef writeback
  697. #undef lru
  698. #undef swapbacked
  699. #undef head
  700. #undef tail
  701. #undef compound
  702. #undef slab
  703. #undef reserved
  704. static void action_result(unsigned long pfn, char *msg, int result)
  705. {
  706. struct page *page = pfn_to_page(pfn);
  707. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  708. pfn,
  709. PageDirty(page) ? "dirty " : "",
  710. msg, action_name[result]);
  711. }
  712. static int page_action(struct page_state *ps, struct page *p,
  713. unsigned long pfn)
  714. {
  715. int result;
  716. int count;
  717. result = ps->action(p, pfn);
  718. action_result(pfn, ps->msg, result);
  719. count = page_count(p) - 1;
  720. if (ps->action == me_swapcache_dirty && result == DELAYED)
  721. count--;
  722. if (count != 0) {
  723. printk(KERN_ERR
  724. "MCE %#lx: %s page still referenced by %d users\n",
  725. pfn, ps->msg, count);
  726. result = FAILED;
  727. }
  728. /* Could do more checks here if page looks ok */
  729. /*
  730. * Could adjust zone counters here to correct for the missing page.
  731. */
  732. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  733. }
  734. #define N_UNMAP_TRIES 5
  735. /*
  736. * Do all that is necessary to remove user space mappings. Unmap
  737. * the pages and send SIGBUS to the processes if the data was dirty.
  738. */
  739. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  740. int trapno)
  741. {
  742. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  743. struct address_space *mapping;
  744. LIST_HEAD(tokill);
  745. int ret;
  746. int i;
  747. int kill = 1;
  748. if (PageReserved(p) || PageSlab(p))
  749. return SWAP_SUCCESS;
  750. /*
  751. * This check implies we don't kill processes if their pages
  752. * are in the swap cache early. Those are always late kills.
  753. */
  754. if (!page_mapped(p))
  755. return SWAP_SUCCESS;
  756. if (PageCompound(p) || PageKsm(p))
  757. return SWAP_FAIL;
  758. if (PageSwapCache(p)) {
  759. printk(KERN_ERR
  760. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  761. ttu |= TTU_IGNORE_HWPOISON;
  762. }
  763. /*
  764. * Propagate the dirty bit from PTEs to struct page first, because we
  765. * need this to decide if we should kill or just drop the page.
  766. * XXX: the dirty test could be racy: set_page_dirty() may not always
  767. * be called inside page lock (it's recommended but not enforced).
  768. */
  769. mapping = page_mapping(p);
  770. if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
  771. if (page_mkclean(p)) {
  772. SetPageDirty(p);
  773. } else {
  774. kill = 0;
  775. ttu |= TTU_IGNORE_HWPOISON;
  776. printk(KERN_INFO
  777. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  778. pfn);
  779. }
  780. }
  781. /*
  782. * First collect all the processes that have the page
  783. * mapped in dirty form. This has to be done before try_to_unmap,
  784. * because ttu takes the rmap data structures down.
  785. *
  786. * Error handling: We ignore errors here because
  787. * there's nothing that can be done.
  788. */
  789. if (kill)
  790. collect_procs(p, &tokill);
  791. /*
  792. * try_to_unmap can fail temporarily due to races.
  793. * Try a few times (RED-PEN better strategy?)
  794. */
  795. for (i = 0; i < N_UNMAP_TRIES; i++) {
  796. ret = try_to_unmap(p, ttu);
  797. if (ret == SWAP_SUCCESS)
  798. break;
  799. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  800. }
  801. if (ret != SWAP_SUCCESS)
  802. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  803. pfn, page_mapcount(p));
  804. /*
  805. * Now that the dirty bit has been propagated to the
  806. * struct page and all unmaps done we can decide if
  807. * killing is needed or not. Only kill when the page
  808. * was dirty, otherwise the tokill list is merely
  809. * freed. When there was a problem unmapping earlier
  810. * use a more force-full uncatchable kill to prevent
  811. * any accesses to the poisoned memory.
  812. */
  813. kill_procs_ao(&tokill, !!PageDirty(p), trapno,
  814. ret != SWAP_SUCCESS, pfn);
  815. return ret;
  816. }
  817. int __memory_failure(unsigned long pfn, int trapno, int flags)
  818. {
  819. struct page_state *ps;
  820. struct page *p;
  821. int res;
  822. if (!sysctl_memory_failure_recovery)
  823. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  824. if (!pfn_valid(pfn)) {
  825. printk(KERN_ERR
  826. "MCE %#lx: memory outside kernel control\n",
  827. pfn);
  828. return -ENXIO;
  829. }
  830. p = pfn_to_page(pfn);
  831. if (TestSetPageHWPoison(p)) {
  832. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  833. return 0;
  834. }
  835. atomic_long_add(1, &mce_bad_pages);
  836. /*
  837. * We need/can do nothing about count=0 pages.
  838. * 1) it's a free page, and therefore in safe hand:
  839. * prep_new_page() will be the gate keeper.
  840. * 2) it's part of a non-compound high order page.
  841. * Implies some kernel user: cannot stop them from
  842. * R/W the page; let's pray that the page has been
  843. * used and will be freed some time later.
  844. * In fact it's dangerous to directly bump up page count from 0,
  845. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  846. */
  847. if (!(flags & MF_COUNT_INCREASED) &&
  848. !get_page_unless_zero(compound_head(p))) {
  849. if (is_free_buddy_page(p)) {
  850. action_result(pfn, "free buddy", DELAYED);
  851. return 0;
  852. } else {
  853. action_result(pfn, "high order kernel", IGNORED);
  854. return -EBUSY;
  855. }
  856. }
  857. /*
  858. * We ignore non-LRU pages for good reasons.
  859. * - PG_locked is only well defined for LRU pages and a few others
  860. * - to avoid races with __set_page_locked()
  861. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  862. * The check (unnecessarily) ignores LRU pages being isolated and
  863. * walked by the page reclaim code, however that's not a big loss.
  864. */
  865. if (!PageLRU(p))
  866. shake_page(p, 0);
  867. if (!PageLRU(p)) {
  868. /*
  869. * shake_page could have turned it free.
  870. */
  871. if (is_free_buddy_page(p)) {
  872. action_result(pfn, "free buddy, 2nd try", DELAYED);
  873. return 0;
  874. }
  875. action_result(pfn, "non LRU", IGNORED);
  876. put_page(p);
  877. return -EBUSY;
  878. }
  879. /*
  880. * Lock the page and wait for writeback to finish.
  881. * It's very difficult to mess with pages currently under IO
  882. * and in many cases impossible, so we just avoid it here.
  883. */
  884. lock_page_nosync(p);
  885. /*
  886. * unpoison always clear PG_hwpoison inside page lock
  887. */
  888. if (!PageHWPoison(p)) {
  889. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  890. res = 0;
  891. goto out;
  892. }
  893. if (hwpoison_filter(p)) {
  894. if (TestClearPageHWPoison(p))
  895. atomic_long_dec(&mce_bad_pages);
  896. unlock_page(p);
  897. put_page(p);
  898. return 0;
  899. }
  900. wait_on_page_writeback(p);
  901. /*
  902. * Now take care of user space mappings.
  903. * Abort on fail: __remove_from_page_cache() assumes unmapped page.
  904. */
  905. if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
  906. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  907. res = -EBUSY;
  908. goto out;
  909. }
  910. /*
  911. * Torn down by someone else?
  912. */
  913. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  914. action_result(pfn, "already truncated LRU", IGNORED);
  915. res = -EBUSY;
  916. goto out;
  917. }
  918. res = -EBUSY;
  919. for (ps = error_states;; ps++) {
  920. if ((p->flags & ps->mask) == ps->res) {
  921. res = page_action(ps, p, pfn);
  922. break;
  923. }
  924. }
  925. out:
  926. unlock_page(p);
  927. return res;
  928. }
  929. EXPORT_SYMBOL_GPL(__memory_failure);
  930. /**
  931. * memory_failure - Handle memory failure of a page.
  932. * @pfn: Page Number of the corrupted page
  933. * @trapno: Trap number reported in the signal to user space.
  934. *
  935. * This function is called by the low level machine check code
  936. * of an architecture when it detects hardware memory corruption
  937. * of a page. It tries its best to recover, which includes
  938. * dropping pages, killing processes etc.
  939. *
  940. * The function is primarily of use for corruptions that
  941. * happen outside the current execution context (e.g. when
  942. * detected by a background scrubber)
  943. *
  944. * Must run in process context (e.g. a work queue) with interrupts
  945. * enabled and no spinlocks hold.
  946. */
  947. void memory_failure(unsigned long pfn, int trapno)
  948. {
  949. __memory_failure(pfn, trapno, 0);
  950. }
  951. /**
  952. * unpoison_memory - Unpoison a previously poisoned page
  953. * @pfn: Page number of the to be unpoisoned page
  954. *
  955. * Software-unpoison a page that has been poisoned by
  956. * memory_failure() earlier.
  957. *
  958. * This is only done on the software-level, so it only works
  959. * for linux injected failures, not real hardware failures
  960. *
  961. * Returns 0 for success, otherwise -errno.
  962. */
  963. int unpoison_memory(unsigned long pfn)
  964. {
  965. struct page *page;
  966. struct page *p;
  967. int freeit = 0;
  968. if (!pfn_valid(pfn))
  969. return -ENXIO;
  970. p = pfn_to_page(pfn);
  971. page = compound_head(p);
  972. if (!PageHWPoison(p)) {
  973. pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
  974. return 0;
  975. }
  976. if (!get_page_unless_zero(page)) {
  977. if (TestClearPageHWPoison(p))
  978. atomic_long_dec(&mce_bad_pages);
  979. pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
  980. return 0;
  981. }
  982. lock_page_nosync(page);
  983. /*
  984. * This test is racy because PG_hwpoison is set outside of page lock.
  985. * That's acceptable because that won't trigger kernel panic. Instead,
  986. * the PG_hwpoison page will be caught and isolated on the entrance to
  987. * the free buddy page pool.
  988. */
  989. if (TestClearPageHWPoison(p)) {
  990. pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
  991. atomic_long_dec(&mce_bad_pages);
  992. freeit = 1;
  993. }
  994. unlock_page(page);
  995. put_page(page);
  996. if (freeit)
  997. put_page(page);
  998. return 0;
  999. }
  1000. EXPORT_SYMBOL(unpoison_memory);
  1001. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1002. {
  1003. int nid = page_to_nid(p);
  1004. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1005. }
  1006. /*
  1007. * Safely get reference count of an arbitrary page.
  1008. * Returns 0 for a free page, -EIO for a zero refcount page
  1009. * that is not free, and 1 for any other page type.
  1010. * For 1 the page is returned with increased page count, otherwise not.
  1011. */
  1012. static int get_any_page(struct page *p, unsigned long pfn, int flags)
  1013. {
  1014. int ret;
  1015. if (flags & MF_COUNT_INCREASED)
  1016. return 1;
  1017. /*
  1018. * The lock_system_sleep prevents a race with memory hotplug,
  1019. * because the isolation assumes there's only a single user.
  1020. * This is a big hammer, a better would be nicer.
  1021. */
  1022. lock_system_sleep();
  1023. /*
  1024. * Isolate the page, so that it doesn't get reallocated if it
  1025. * was free.
  1026. */
  1027. set_migratetype_isolate(p);
  1028. if (!get_page_unless_zero(compound_head(p))) {
  1029. if (is_free_buddy_page(p)) {
  1030. pr_debug("get_any_page: %#lx free buddy page\n", pfn);
  1031. /* Set hwpoison bit while page is still isolated */
  1032. SetPageHWPoison(p);
  1033. ret = 0;
  1034. } else {
  1035. pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
  1036. pfn, p->flags);
  1037. ret = -EIO;
  1038. }
  1039. } else {
  1040. /* Not a free page */
  1041. ret = 1;
  1042. }
  1043. unset_migratetype_isolate(p);
  1044. unlock_system_sleep();
  1045. return ret;
  1046. }
  1047. /**
  1048. * soft_offline_page - Soft offline a page.
  1049. * @page: page to offline
  1050. * @flags: flags. Same as memory_failure().
  1051. *
  1052. * Returns 0 on success, otherwise negated errno.
  1053. *
  1054. * Soft offline a page, by migration or invalidation,
  1055. * without killing anything. This is for the case when
  1056. * a page is not corrupted yet (so it's still valid to access),
  1057. * but has had a number of corrected errors and is better taken
  1058. * out.
  1059. *
  1060. * The actual policy on when to do that is maintained by
  1061. * user space.
  1062. *
  1063. * This should never impact any application or cause data loss,
  1064. * however it might take some time.
  1065. *
  1066. * This is not a 100% solution for all memory, but tries to be
  1067. * ``good enough'' for the majority of memory.
  1068. */
  1069. int soft_offline_page(struct page *page, int flags)
  1070. {
  1071. int ret;
  1072. unsigned long pfn = page_to_pfn(page);
  1073. ret = get_any_page(page, pfn, flags);
  1074. if (ret < 0)
  1075. return ret;
  1076. if (ret == 0)
  1077. goto done;
  1078. /*
  1079. * Page cache page we can handle?
  1080. */
  1081. if (!PageLRU(page)) {
  1082. /*
  1083. * Try to free it.
  1084. */
  1085. put_page(page);
  1086. shake_page(page, 1);
  1087. /*
  1088. * Did it turn free?
  1089. */
  1090. ret = get_any_page(page, pfn, 0);
  1091. if (ret < 0)
  1092. return ret;
  1093. if (ret == 0)
  1094. goto done;
  1095. }
  1096. if (!PageLRU(page)) {
  1097. pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1098. pfn, page->flags);
  1099. return -EIO;
  1100. }
  1101. lock_page(page);
  1102. wait_on_page_writeback(page);
  1103. /*
  1104. * Synchronized using the page lock with memory_failure()
  1105. */
  1106. if (PageHWPoison(page)) {
  1107. unlock_page(page);
  1108. put_page(page);
  1109. pr_debug("soft offline: %#lx page already poisoned\n", pfn);
  1110. return -EBUSY;
  1111. }
  1112. /*
  1113. * Try to invalidate first. This should work for
  1114. * non dirty unmapped page cache pages.
  1115. */
  1116. ret = invalidate_inode_page(page);
  1117. unlock_page(page);
  1118. /*
  1119. * Drop count because page migration doesn't like raised
  1120. * counts. The page could get re-allocated, but if it becomes
  1121. * LRU the isolation will just fail.
  1122. * RED-PEN would be better to keep it isolated here, but we
  1123. * would need to fix isolation locking first.
  1124. */
  1125. put_page(page);
  1126. if (ret == 1) {
  1127. ret = 0;
  1128. pr_debug("soft_offline: %#lx: invalidated\n", pfn);
  1129. goto done;
  1130. }
  1131. /*
  1132. * Simple invalidation didn't work.
  1133. * Try to migrate to a new page instead. migrate.c
  1134. * handles a large number of cases for us.
  1135. */
  1136. ret = isolate_lru_page(page);
  1137. if (!ret) {
  1138. LIST_HEAD(pagelist);
  1139. list_add(&page->lru, &pagelist);
  1140. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
  1141. if (ret) {
  1142. pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
  1143. pfn, ret, page->flags);
  1144. if (ret > 0)
  1145. ret = -EIO;
  1146. }
  1147. } else {
  1148. pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1149. pfn, ret, page_count(page), page->flags);
  1150. }
  1151. if (ret)
  1152. return ret;
  1153. done:
  1154. atomic_long_add(1, &mce_bad_pages);
  1155. SetPageHWPoison(page);
  1156. /* keep elevated page count for bad page */
  1157. return ret;
  1158. }