io.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
  67. * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
  68. * prefer to use sub-pages only for EV and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include "ubi.h"
  90. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  91. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
  92. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  93. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  94. const struct ubi_ec_hdr *ec_hdr);
  95. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  96. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  97. const struct ubi_vid_hdr *vid_hdr);
  98. #else
  99. #define paranoid_check_not_bad(ubi, pnum) 0
  100. #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
  101. #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
  102. #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
  103. #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
  104. #endif
  105. /**
  106. * ubi_io_read - read data from a physical eraseblock.
  107. * @ubi: UBI device description object
  108. * @buf: buffer where to store the read data
  109. * @pnum: physical eraseblock number to read from
  110. * @offset: offset within the physical eraseblock from where to read
  111. * @len: how many bytes to read
  112. *
  113. * This function reads data from offset @offset of physical eraseblock @pnum
  114. * and stores the read data in the @buf buffer. The following return codes are
  115. * possible:
  116. *
  117. * o %0 if all the requested data were successfully read;
  118. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  119. * correctable bit-flips were detected; this is harmless but may indicate
  120. * that this eraseblock may become bad soon (but do not have to);
  121. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  122. * example it can be an ECC error in case of NAND; this most probably means
  123. * that the data is corrupted;
  124. * o %-EIO if some I/O error occurred;
  125. * o other negative error codes in case of other errors.
  126. */
  127. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  128. int len)
  129. {
  130. int err, retries = 0;
  131. size_t read;
  132. loff_t addr;
  133. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  134. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  135. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  136. ubi_assert(len > 0);
  137. err = paranoid_check_not_bad(ubi, pnum);
  138. if (err)
  139. return err;
  140. addr = (loff_t)pnum * ubi->peb_size + offset;
  141. retry:
  142. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
  143. if (err) {
  144. if (err == -EUCLEAN) {
  145. /*
  146. * -EUCLEAN is reported if there was a bit-flip which
  147. * was corrected, so this is harmless.
  148. *
  149. * We do not report about it here unless debugging is
  150. * enabled. A corresponding message will be printed
  151. * later, when it is has been scrubbed.
  152. */
  153. dbg_msg("fixable bit-flip detected at PEB %d", pnum);
  154. ubi_assert(len == read);
  155. return UBI_IO_BITFLIPS;
  156. }
  157. if (read != len && retries++ < UBI_IO_RETRIES) {
  158. dbg_io("error %d while reading %d bytes from PEB %d:%d,"
  159. " read only %zd bytes, retry",
  160. err, len, pnum, offset, read);
  161. yield();
  162. goto retry;
  163. }
  164. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  165. "read %zd bytes", err, len, pnum, offset, read);
  166. ubi_dbg_dump_stack();
  167. /*
  168. * The driver should never return -EBADMSG if it failed to read
  169. * all the requested data. But some buggy drivers might do
  170. * this, so we change it to -EIO.
  171. */
  172. if (read != len && err == -EBADMSG) {
  173. ubi_assert(0);
  174. err = -EIO;
  175. }
  176. } else {
  177. ubi_assert(len == read);
  178. if (ubi_dbg_is_bitflip()) {
  179. dbg_gen("bit-flip (emulated)");
  180. err = UBI_IO_BITFLIPS;
  181. }
  182. }
  183. return err;
  184. }
  185. /**
  186. * ubi_io_write - write data to a physical eraseblock.
  187. * @ubi: UBI device description object
  188. * @buf: buffer with the data to write
  189. * @pnum: physical eraseblock number to write to
  190. * @offset: offset within the physical eraseblock where to write
  191. * @len: how many bytes to write
  192. *
  193. * This function writes @len bytes of data from buffer @buf to offset @offset
  194. * of physical eraseblock @pnum. If all the data were successfully written,
  195. * zero is returned. If an error occurred, this function returns a negative
  196. * error code. If %-EIO is returned, the physical eraseblock most probably went
  197. * bad.
  198. *
  199. * Note, in case of an error, it is possible that something was still written
  200. * to the flash media, but may be some garbage.
  201. */
  202. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  203. int len)
  204. {
  205. int err;
  206. size_t written;
  207. loff_t addr;
  208. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  209. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  210. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  211. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  212. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  213. if (ubi->ro_mode) {
  214. ubi_err("read-only mode");
  215. return -EROFS;
  216. }
  217. /* The below has to be compiled out if paranoid checks are disabled */
  218. err = paranoid_check_not_bad(ubi, pnum);
  219. if (err)
  220. return err;
  221. /* The area we are writing to has to contain all 0xFF bytes */
  222. err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
  223. if (err)
  224. return err;
  225. if (offset >= ubi->leb_start) {
  226. /*
  227. * We write to the data area of the physical eraseblock. Make
  228. * sure it has valid EC and VID headers.
  229. */
  230. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  231. if (err)
  232. return err;
  233. err = paranoid_check_peb_vid_hdr(ubi, pnum);
  234. if (err)
  235. return err;
  236. }
  237. if (ubi_dbg_is_write_failure()) {
  238. dbg_err("cannot write %d bytes to PEB %d:%d "
  239. "(emulated)", len, pnum, offset);
  240. ubi_dbg_dump_stack();
  241. return -EIO;
  242. }
  243. addr = (loff_t)pnum * ubi->peb_size + offset;
  244. err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
  245. if (err) {
  246. ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
  247. "%zd bytes", err, len, pnum, offset, written);
  248. ubi_dbg_dump_stack();
  249. ubi_dbg_dump_flash(ubi, pnum, offset, len);
  250. } else
  251. ubi_assert(written == len);
  252. if (!err) {
  253. err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
  254. if (err)
  255. return err;
  256. /*
  257. * Since we always write sequentially, the rest of the PEB has
  258. * to contain only 0xFF bytes.
  259. */
  260. offset += len;
  261. len = ubi->peb_size - offset;
  262. if (len)
  263. err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
  264. }
  265. return err;
  266. }
  267. /**
  268. * erase_callback - MTD erasure call-back.
  269. * @ei: MTD erase information object.
  270. *
  271. * Note, even though MTD erase interface is asynchronous, all the current
  272. * implementations are synchronous anyway.
  273. */
  274. static void erase_callback(struct erase_info *ei)
  275. {
  276. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  277. }
  278. /**
  279. * do_sync_erase - synchronously erase a physical eraseblock.
  280. * @ubi: UBI device description object
  281. * @pnum: the physical eraseblock number to erase
  282. *
  283. * This function synchronously erases physical eraseblock @pnum and returns
  284. * zero in case of success and a negative error code in case of failure. If
  285. * %-EIO is returned, the physical eraseblock most probably went bad.
  286. */
  287. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  288. {
  289. int err, retries = 0;
  290. struct erase_info ei;
  291. wait_queue_head_t wq;
  292. dbg_io("erase PEB %d", pnum);
  293. retry:
  294. init_waitqueue_head(&wq);
  295. memset(&ei, 0, sizeof(struct erase_info));
  296. ei.mtd = ubi->mtd;
  297. ei.addr = (loff_t)pnum * ubi->peb_size;
  298. ei.len = ubi->peb_size;
  299. ei.callback = erase_callback;
  300. ei.priv = (unsigned long)&wq;
  301. err = ubi->mtd->erase(ubi->mtd, &ei);
  302. if (err) {
  303. if (retries++ < UBI_IO_RETRIES) {
  304. dbg_io("error %d while erasing PEB %d, retry",
  305. err, pnum);
  306. yield();
  307. goto retry;
  308. }
  309. ubi_err("cannot erase PEB %d, error %d", pnum, err);
  310. ubi_dbg_dump_stack();
  311. return err;
  312. }
  313. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  314. ei.state == MTD_ERASE_FAILED);
  315. if (err) {
  316. ubi_err("interrupted PEB %d erasure", pnum);
  317. return -EINTR;
  318. }
  319. if (ei.state == MTD_ERASE_FAILED) {
  320. if (retries++ < UBI_IO_RETRIES) {
  321. dbg_io("error while erasing PEB %d, retry", pnum);
  322. yield();
  323. goto retry;
  324. }
  325. ubi_err("cannot erase PEB %d", pnum);
  326. ubi_dbg_dump_stack();
  327. return -EIO;
  328. }
  329. err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  330. if (err)
  331. return err;
  332. if (ubi_dbg_is_erase_failure() && !err) {
  333. dbg_err("cannot erase PEB %d (emulated)", pnum);
  334. return -EIO;
  335. }
  336. return 0;
  337. }
  338. /**
  339. * check_pattern - check if buffer contains only a certain byte pattern.
  340. * @buf: buffer to check
  341. * @patt: the pattern to check
  342. * @size: buffer size in bytes
  343. *
  344. * This function returns %1 in there are only @patt bytes in @buf, and %0 if
  345. * something else was also found.
  346. */
  347. static int check_pattern(const void *buf, uint8_t patt, int size)
  348. {
  349. int i;
  350. for (i = 0; i < size; i++)
  351. if (((const uint8_t *)buf)[i] != patt)
  352. return 0;
  353. return 1;
  354. }
  355. /* Patterns to write to a physical eraseblock when torturing it */
  356. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  357. /**
  358. * torture_peb - test a supposedly bad physical eraseblock.
  359. * @ubi: UBI device description object
  360. * @pnum: the physical eraseblock number to test
  361. *
  362. * This function returns %-EIO if the physical eraseblock did not pass the
  363. * test, a positive number of erase operations done if the test was
  364. * successfully passed, and other negative error codes in case of other errors.
  365. */
  366. static int torture_peb(struct ubi_device *ubi, int pnum)
  367. {
  368. int err, i, patt_count;
  369. ubi_msg("run torture test for PEB %d", pnum);
  370. patt_count = ARRAY_SIZE(patterns);
  371. ubi_assert(patt_count > 0);
  372. mutex_lock(&ubi->buf_mutex);
  373. for (i = 0; i < patt_count; i++) {
  374. err = do_sync_erase(ubi, pnum);
  375. if (err)
  376. goto out;
  377. /* Make sure the PEB contains only 0xFF bytes */
  378. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  379. if (err)
  380. goto out;
  381. err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
  382. if (err == 0) {
  383. ubi_err("erased PEB %d, but a non-0xFF byte found",
  384. pnum);
  385. err = -EIO;
  386. goto out;
  387. }
  388. /* Write a pattern and check it */
  389. memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
  390. err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  391. if (err)
  392. goto out;
  393. memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
  394. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  395. if (err)
  396. goto out;
  397. err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
  398. if (err == 0) {
  399. ubi_err("pattern %x checking failed for PEB %d",
  400. patterns[i], pnum);
  401. err = -EIO;
  402. goto out;
  403. }
  404. }
  405. err = patt_count;
  406. ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
  407. out:
  408. mutex_unlock(&ubi->buf_mutex);
  409. if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
  410. /*
  411. * If a bit-flip or data integrity error was detected, the test
  412. * has not passed because it happened on a freshly erased
  413. * physical eraseblock which means something is wrong with it.
  414. */
  415. ubi_err("read problems on freshly erased PEB %d, must be bad",
  416. pnum);
  417. err = -EIO;
  418. }
  419. return err;
  420. }
  421. /**
  422. * nor_erase_prepare - prepare a NOR flash PEB for erasure.
  423. * @ubi: UBI device description object
  424. * @pnum: physical eraseblock number to prepare
  425. *
  426. * NOR flash, or at least some of them, have peculiar embedded PEB erasure
  427. * algorithm: the PEB is first filled with zeroes, then it is erased. And
  428. * filling with zeroes starts from the end of the PEB. This was observed with
  429. * Spansion S29GL512N NOR flash.
  430. *
  431. * This means that in case of a power cut we may end up with intact data at the
  432. * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
  433. * EC and VID headers are OK, but a large chunk of data at the end of PEB is
  434. * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
  435. * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
  436. *
  437. * This function is called before erasing NOR PEBs and it zeroes out EC and VID
  438. * magic numbers in order to invalidate them and prevent the failures. Returns
  439. * zero in case of success and a negative error code in case of failure.
  440. */
  441. static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
  442. {
  443. int err, err1;
  444. size_t written;
  445. loff_t addr;
  446. uint32_t data = 0;
  447. struct ubi_vid_hdr vid_hdr;
  448. addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
  449. err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
  450. if (!err) {
  451. addr -= ubi->vid_hdr_aloffset;
  452. err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
  453. (void *)&data);
  454. if (!err)
  455. return 0;
  456. }
  457. /*
  458. * We failed to write to the media. This was observed with Spansion
  459. * S29GL512N NOR flash. Most probably the eraseblock erasure was
  460. * interrupted at a very inappropriate moment, so it became unwritable.
  461. * In this case we probably anyway have garbage in this PEB.
  462. */
  463. err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
  464. if (err1 == UBI_IO_BAD_VID_HDR)
  465. /*
  466. * The VID header is corrupted, so we can safely erase this
  467. * PEB and not afraid that it will be treated as a valid PEB in
  468. * case of an unclean reboot.
  469. */
  470. return 0;
  471. /*
  472. * The PEB contains a valid VID header, but we cannot invalidate it.
  473. * Supposedly the flash media or the driver is screwed up, so return an
  474. * error.
  475. */
  476. ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
  477. pnum, err, err1);
  478. ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
  479. return -EIO;
  480. }
  481. /**
  482. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  483. * @ubi: UBI device description object
  484. * @pnum: physical eraseblock number to erase
  485. * @torture: if this physical eraseblock has to be tortured
  486. *
  487. * This function synchronously erases physical eraseblock @pnum. If @torture
  488. * flag is not zero, the physical eraseblock is checked by means of writing
  489. * different patterns to it and reading them back. If the torturing is enabled,
  490. * the physical eraseblock is erased more than once.
  491. *
  492. * This function returns the number of erasures made in case of success, %-EIO
  493. * if the erasure failed or the torturing test failed, and other negative error
  494. * codes in case of other errors. Note, %-EIO means that the physical
  495. * eraseblock is bad.
  496. */
  497. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  498. {
  499. int err, ret = 0;
  500. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  501. err = paranoid_check_not_bad(ubi, pnum);
  502. if (err != 0)
  503. return err;
  504. if (ubi->ro_mode) {
  505. ubi_err("read-only mode");
  506. return -EROFS;
  507. }
  508. if (ubi->nor_flash) {
  509. err = nor_erase_prepare(ubi, pnum);
  510. if (err)
  511. return err;
  512. }
  513. if (torture) {
  514. ret = torture_peb(ubi, pnum);
  515. if (ret < 0)
  516. return ret;
  517. }
  518. err = do_sync_erase(ubi, pnum);
  519. if (err)
  520. return err;
  521. return ret + 1;
  522. }
  523. /**
  524. * ubi_io_is_bad - check if a physical eraseblock is bad.
  525. * @ubi: UBI device description object
  526. * @pnum: the physical eraseblock number to check
  527. *
  528. * This function returns a positive number if the physical eraseblock is bad,
  529. * zero if not, and a negative error code if an error occurred.
  530. */
  531. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  532. {
  533. struct mtd_info *mtd = ubi->mtd;
  534. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  535. if (ubi->bad_allowed) {
  536. int ret;
  537. ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  538. if (ret < 0)
  539. ubi_err("error %d while checking if PEB %d is bad",
  540. ret, pnum);
  541. else if (ret)
  542. dbg_io("PEB %d is bad", pnum);
  543. return ret;
  544. }
  545. return 0;
  546. }
  547. /**
  548. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  549. * @ubi: UBI device description object
  550. * @pnum: the physical eraseblock number to mark
  551. *
  552. * This function returns zero in case of success and a negative error code in
  553. * case of failure.
  554. */
  555. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  556. {
  557. int err;
  558. struct mtd_info *mtd = ubi->mtd;
  559. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  560. if (ubi->ro_mode) {
  561. ubi_err("read-only mode");
  562. return -EROFS;
  563. }
  564. if (!ubi->bad_allowed)
  565. return 0;
  566. err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  567. if (err)
  568. ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
  569. return err;
  570. }
  571. /**
  572. * validate_ec_hdr - validate an erase counter header.
  573. * @ubi: UBI device description object
  574. * @ec_hdr: the erase counter header to check
  575. *
  576. * This function returns zero if the erase counter header is OK, and %1 if
  577. * not.
  578. */
  579. static int validate_ec_hdr(const struct ubi_device *ubi,
  580. const struct ubi_ec_hdr *ec_hdr)
  581. {
  582. long long ec;
  583. int vid_hdr_offset, leb_start;
  584. ec = be64_to_cpu(ec_hdr->ec);
  585. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  586. leb_start = be32_to_cpu(ec_hdr->data_offset);
  587. if (ec_hdr->version != UBI_VERSION) {
  588. ubi_err("node with incompatible UBI version found: "
  589. "this UBI version is %d, image version is %d",
  590. UBI_VERSION, (int)ec_hdr->version);
  591. goto bad;
  592. }
  593. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  594. ubi_err("bad VID header offset %d, expected %d",
  595. vid_hdr_offset, ubi->vid_hdr_offset);
  596. goto bad;
  597. }
  598. if (leb_start != ubi->leb_start) {
  599. ubi_err("bad data offset %d, expected %d",
  600. leb_start, ubi->leb_start);
  601. goto bad;
  602. }
  603. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  604. ubi_err("bad erase counter %lld", ec);
  605. goto bad;
  606. }
  607. return 0;
  608. bad:
  609. ubi_err("bad EC header");
  610. ubi_dbg_dump_ec_hdr(ec_hdr);
  611. ubi_dbg_dump_stack();
  612. return 1;
  613. }
  614. /**
  615. * ubi_io_read_ec_hdr - read and check an erase counter header.
  616. * @ubi: UBI device description object
  617. * @pnum: physical eraseblock to read from
  618. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  619. * header
  620. * @verbose: be verbose if the header is corrupted or was not found
  621. *
  622. * This function reads erase counter header from physical eraseblock @pnum and
  623. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  624. * erase counter header. The following codes may be returned:
  625. *
  626. * o %0 if the CRC checksum is correct and the header was successfully read;
  627. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  628. * and corrected by the flash driver; this is harmless but may indicate that
  629. * this eraseblock may become bad soon (but may be not);
  630. * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
  631. * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
  632. * o a negative error code in case of failure.
  633. */
  634. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  635. struct ubi_ec_hdr *ec_hdr, int verbose)
  636. {
  637. int err, read_err = 0;
  638. uint32_t crc, magic, hdr_crc;
  639. dbg_io("read EC header from PEB %d", pnum);
  640. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  641. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  642. if (err) {
  643. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  644. return err;
  645. /*
  646. * We read all the data, but either a correctable bit-flip
  647. * occurred, or MTD reported about some data integrity error,
  648. * like an ECC error in case of NAND. The former is harmless,
  649. * the later may mean that the read data is corrupted. But we
  650. * have a CRC check-sum and we will detect this. If the EC
  651. * header is still OK, we just report this as there was a
  652. * bit-flip.
  653. */
  654. read_err = err;
  655. }
  656. magic = be32_to_cpu(ec_hdr->magic);
  657. if (magic != UBI_EC_HDR_MAGIC) {
  658. /*
  659. * The magic field is wrong. Let's check if we have read all
  660. * 0xFF. If yes, this physical eraseblock is assumed to be
  661. * empty.
  662. *
  663. * But if there was a read error, we do not test it for all
  664. * 0xFFs. Even if it does contain all 0xFFs, this error
  665. * indicates that something is still wrong with this physical
  666. * eraseblock and we anyway cannot treat it as empty.
  667. */
  668. if (read_err != -EBADMSG &&
  669. check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  670. /* The physical eraseblock is supposedly empty */
  671. if (verbose)
  672. ubi_warn("no EC header found at PEB %d, "
  673. "only 0xFF bytes", pnum);
  674. else if (UBI_IO_DEBUG)
  675. dbg_msg("no EC header found at PEB %d, "
  676. "only 0xFF bytes", pnum);
  677. return UBI_IO_PEB_EMPTY;
  678. }
  679. /*
  680. * This is not a valid erase counter header, and these are not
  681. * 0xFF bytes. Report that the header is corrupted.
  682. */
  683. if (verbose) {
  684. ubi_warn("bad magic number at PEB %d: %08x instead of "
  685. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  686. ubi_dbg_dump_ec_hdr(ec_hdr);
  687. } else if (UBI_IO_DEBUG)
  688. dbg_msg("bad magic number at PEB %d: %08x instead of "
  689. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  690. return UBI_IO_BAD_EC_HDR;
  691. }
  692. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  693. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  694. if (hdr_crc != crc) {
  695. if (verbose) {
  696. ubi_warn("bad EC header CRC at PEB %d, calculated "
  697. "%#08x, read %#08x", pnum, crc, hdr_crc);
  698. ubi_dbg_dump_ec_hdr(ec_hdr);
  699. } else if (UBI_IO_DEBUG)
  700. dbg_msg("bad EC header CRC at PEB %d, calculated "
  701. "%#08x, read %#08x", pnum, crc, hdr_crc);
  702. return UBI_IO_BAD_EC_HDR;
  703. }
  704. /* And of course validate what has just been read from the media */
  705. err = validate_ec_hdr(ubi, ec_hdr);
  706. if (err) {
  707. ubi_err("validation failed for PEB %d", pnum);
  708. return -EINVAL;
  709. }
  710. return read_err ? UBI_IO_BITFLIPS : 0;
  711. }
  712. /**
  713. * ubi_io_write_ec_hdr - write an erase counter header.
  714. * @ubi: UBI device description object
  715. * @pnum: physical eraseblock to write to
  716. * @ec_hdr: the erase counter header to write
  717. *
  718. * This function writes erase counter header described by @ec_hdr to physical
  719. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  720. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  721. * field.
  722. *
  723. * This function returns zero in case of success and a negative error code in
  724. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  725. * went bad.
  726. */
  727. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  728. struct ubi_ec_hdr *ec_hdr)
  729. {
  730. int err;
  731. uint32_t crc;
  732. dbg_io("write EC header to PEB %d", pnum);
  733. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  734. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  735. ec_hdr->version = UBI_VERSION;
  736. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  737. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  738. ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
  739. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  740. ec_hdr->hdr_crc = cpu_to_be32(crc);
  741. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  742. if (err)
  743. return err;
  744. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  745. return err;
  746. }
  747. /**
  748. * validate_vid_hdr - validate a volume identifier header.
  749. * @ubi: UBI device description object
  750. * @vid_hdr: the volume identifier header to check
  751. *
  752. * This function checks that data stored in the volume identifier header
  753. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  754. */
  755. static int validate_vid_hdr(const struct ubi_device *ubi,
  756. const struct ubi_vid_hdr *vid_hdr)
  757. {
  758. int vol_type = vid_hdr->vol_type;
  759. int copy_flag = vid_hdr->copy_flag;
  760. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  761. int lnum = be32_to_cpu(vid_hdr->lnum);
  762. int compat = vid_hdr->compat;
  763. int data_size = be32_to_cpu(vid_hdr->data_size);
  764. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  765. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  766. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  767. int usable_leb_size = ubi->leb_size - data_pad;
  768. if (copy_flag != 0 && copy_flag != 1) {
  769. dbg_err("bad copy_flag");
  770. goto bad;
  771. }
  772. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  773. data_pad < 0) {
  774. dbg_err("negative values");
  775. goto bad;
  776. }
  777. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  778. dbg_err("bad vol_id");
  779. goto bad;
  780. }
  781. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  782. dbg_err("bad compat");
  783. goto bad;
  784. }
  785. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  786. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  787. compat != UBI_COMPAT_REJECT) {
  788. dbg_err("bad compat");
  789. goto bad;
  790. }
  791. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  792. dbg_err("bad vol_type");
  793. goto bad;
  794. }
  795. if (data_pad >= ubi->leb_size / 2) {
  796. dbg_err("bad data_pad");
  797. goto bad;
  798. }
  799. if (vol_type == UBI_VID_STATIC) {
  800. /*
  801. * Although from high-level point of view static volumes may
  802. * contain zero bytes of data, but no VID headers can contain
  803. * zero at these fields, because they empty volumes do not have
  804. * mapped logical eraseblocks.
  805. */
  806. if (used_ebs == 0) {
  807. dbg_err("zero used_ebs");
  808. goto bad;
  809. }
  810. if (data_size == 0) {
  811. dbg_err("zero data_size");
  812. goto bad;
  813. }
  814. if (lnum < used_ebs - 1) {
  815. if (data_size != usable_leb_size) {
  816. dbg_err("bad data_size");
  817. goto bad;
  818. }
  819. } else if (lnum == used_ebs - 1) {
  820. if (data_size == 0) {
  821. dbg_err("bad data_size at last LEB");
  822. goto bad;
  823. }
  824. } else {
  825. dbg_err("too high lnum");
  826. goto bad;
  827. }
  828. } else {
  829. if (copy_flag == 0) {
  830. if (data_crc != 0) {
  831. dbg_err("non-zero data CRC");
  832. goto bad;
  833. }
  834. if (data_size != 0) {
  835. dbg_err("non-zero data_size");
  836. goto bad;
  837. }
  838. } else {
  839. if (data_size == 0) {
  840. dbg_err("zero data_size of copy");
  841. goto bad;
  842. }
  843. }
  844. if (used_ebs != 0) {
  845. dbg_err("bad used_ebs");
  846. goto bad;
  847. }
  848. }
  849. return 0;
  850. bad:
  851. ubi_err("bad VID header");
  852. ubi_dbg_dump_vid_hdr(vid_hdr);
  853. ubi_dbg_dump_stack();
  854. return 1;
  855. }
  856. /**
  857. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  858. * @ubi: UBI device description object
  859. * @pnum: physical eraseblock number to read from
  860. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  861. * identifier header
  862. * @verbose: be verbose if the header is corrupted or wasn't found
  863. *
  864. * This function reads the volume identifier header from physical eraseblock
  865. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  866. * volume identifier header. The following codes may be returned:
  867. *
  868. * o %0 if the CRC checksum is correct and the header was successfully read;
  869. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  870. * and corrected by the flash driver; this is harmless but may indicate that
  871. * this eraseblock may become bad soon;
  872. * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
  873. * error detected);
  874. * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
  875. * header there);
  876. * o a negative error code in case of failure.
  877. */
  878. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  879. struct ubi_vid_hdr *vid_hdr, int verbose)
  880. {
  881. int err, read_err = 0;
  882. uint32_t crc, magic, hdr_crc;
  883. void *p;
  884. dbg_io("read VID header from PEB %d", pnum);
  885. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  886. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  887. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  888. ubi->vid_hdr_alsize);
  889. if (err) {
  890. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  891. return err;
  892. /*
  893. * We read all the data, but either a correctable bit-flip
  894. * occurred, or MTD reported about some data integrity error,
  895. * like an ECC error in case of NAND. The former is harmless,
  896. * the later may mean the read data is corrupted. But we have a
  897. * CRC check-sum and we will identify this. If the VID header is
  898. * still OK, we just report this as there was a bit-flip.
  899. */
  900. read_err = err;
  901. }
  902. magic = be32_to_cpu(vid_hdr->magic);
  903. if (magic != UBI_VID_HDR_MAGIC) {
  904. /*
  905. * If we have read all 0xFF bytes, the VID header probably does
  906. * not exist and the physical eraseblock is assumed to be free.
  907. *
  908. * But if there was a read error, we do not test the data for
  909. * 0xFFs. Even if it does contain all 0xFFs, this error
  910. * indicates that something is still wrong with this physical
  911. * eraseblock and it cannot be regarded as free.
  912. */
  913. if (read_err != -EBADMSG &&
  914. check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  915. /* The physical eraseblock is supposedly free */
  916. if (verbose)
  917. ubi_warn("no VID header found at PEB %d, "
  918. "only 0xFF bytes", pnum);
  919. else if (UBI_IO_DEBUG)
  920. dbg_msg("no VID header found at PEB %d, "
  921. "only 0xFF bytes", pnum);
  922. return UBI_IO_PEB_FREE;
  923. }
  924. /*
  925. * This is not a valid VID header, and these are not 0xFF
  926. * bytes. Report that the header is corrupted.
  927. */
  928. if (verbose) {
  929. ubi_warn("bad magic number at PEB %d: %08x instead of "
  930. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  931. ubi_dbg_dump_vid_hdr(vid_hdr);
  932. } else if (UBI_IO_DEBUG)
  933. dbg_msg("bad magic number at PEB %d: %08x instead of "
  934. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  935. return UBI_IO_BAD_VID_HDR;
  936. }
  937. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  938. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  939. if (hdr_crc != crc) {
  940. if (verbose) {
  941. ubi_warn("bad CRC at PEB %d, calculated %#08x, "
  942. "read %#08x", pnum, crc, hdr_crc);
  943. ubi_dbg_dump_vid_hdr(vid_hdr);
  944. } else if (UBI_IO_DEBUG)
  945. dbg_msg("bad CRC at PEB %d, calculated %#08x, "
  946. "read %#08x", pnum, crc, hdr_crc);
  947. return UBI_IO_BAD_VID_HDR;
  948. }
  949. /* Validate the VID header that we have just read */
  950. err = validate_vid_hdr(ubi, vid_hdr);
  951. if (err) {
  952. ubi_err("validation failed for PEB %d", pnum);
  953. return -EINVAL;
  954. }
  955. return read_err ? UBI_IO_BITFLIPS : 0;
  956. }
  957. /**
  958. * ubi_io_write_vid_hdr - write a volume identifier header.
  959. * @ubi: UBI device description object
  960. * @pnum: the physical eraseblock number to write to
  961. * @vid_hdr: the volume identifier header to write
  962. *
  963. * This function writes the volume identifier header described by @vid_hdr to
  964. * physical eraseblock @pnum. This function automatically fills the
  965. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  966. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  967. *
  968. * This function returns zero in case of success and a negative error code in
  969. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  970. * bad.
  971. */
  972. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  973. struct ubi_vid_hdr *vid_hdr)
  974. {
  975. int err;
  976. uint32_t crc;
  977. void *p;
  978. dbg_io("write VID header to PEB %d", pnum);
  979. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  980. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  981. if (err)
  982. return err;
  983. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  984. vid_hdr->version = UBI_VERSION;
  985. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  986. vid_hdr->hdr_crc = cpu_to_be32(crc);
  987. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  988. if (err)
  989. return err;
  990. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  991. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  992. ubi->vid_hdr_alsize);
  993. return err;
  994. }
  995. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  996. /**
  997. * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
  998. * @ubi: UBI device description object
  999. * @pnum: physical eraseblock number to check
  1000. *
  1001. * This function returns zero if the physical eraseblock is good, %-EINVAL if
  1002. * it is bad and a negative error code if an error occurred.
  1003. */
  1004. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
  1005. {
  1006. int err;
  1007. err = ubi_io_is_bad(ubi, pnum);
  1008. if (!err)
  1009. return err;
  1010. ubi_err("paranoid check failed for PEB %d", pnum);
  1011. ubi_dbg_dump_stack();
  1012. return err > 0 ? -EINVAL : err;
  1013. }
  1014. /**
  1015. * paranoid_check_ec_hdr - check if an erase counter header is all right.
  1016. * @ubi: UBI device description object
  1017. * @pnum: physical eraseblock number the erase counter header belongs to
  1018. * @ec_hdr: the erase counter header to check
  1019. *
  1020. * This function returns zero if the erase counter header contains valid
  1021. * values, and %-EINVAL if not.
  1022. */
  1023. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  1024. const struct ubi_ec_hdr *ec_hdr)
  1025. {
  1026. int err;
  1027. uint32_t magic;
  1028. magic = be32_to_cpu(ec_hdr->magic);
  1029. if (magic != UBI_EC_HDR_MAGIC) {
  1030. ubi_err("bad magic %#08x, must be %#08x",
  1031. magic, UBI_EC_HDR_MAGIC);
  1032. goto fail;
  1033. }
  1034. err = validate_ec_hdr(ubi, ec_hdr);
  1035. if (err) {
  1036. ubi_err("paranoid check failed for PEB %d", pnum);
  1037. goto fail;
  1038. }
  1039. return 0;
  1040. fail:
  1041. ubi_dbg_dump_ec_hdr(ec_hdr);
  1042. ubi_dbg_dump_stack();
  1043. return -EINVAL;
  1044. }
  1045. /**
  1046. * paranoid_check_peb_ec_hdr - check erase counter header.
  1047. * @ubi: UBI device description object
  1048. * @pnum: the physical eraseblock number to check
  1049. *
  1050. * This function returns zero if the erase counter header is all right and and
  1051. * a negative error code if not or if an error occurred.
  1052. */
  1053. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  1054. {
  1055. int err;
  1056. uint32_t crc, hdr_crc;
  1057. struct ubi_ec_hdr *ec_hdr;
  1058. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1059. if (!ec_hdr)
  1060. return -ENOMEM;
  1061. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  1062. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1063. goto exit;
  1064. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  1065. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  1066. if (hdr_crc != crc) {
  1067. ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
  1068. ubi_err("paranoid check failed for PEB %d", pnum);
  1069. ubi_dbg_dump_ec_hdr(ec_hdr);
  1070. ubi_dbg_dump_stack();
  1071. err = -EINVAL;
  1072. goto exit;
  1073. }
  1074. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  1075. exit:
  1076. kfree(ec_hdr);
  1077. return err;
  1078. }
  1079. /**
  1080. * paranoid_check_vid_hdr - check that a volume identifier header is all right.
  1081. * @ubi: UBI device description object
  1082. * @pnum: physical eraseblock number the volume identifier header belongs to
  1083. * @vid_hdr: the volume identifier header to check
  1084. *
  1085. * This function returns zero if the volume identifier header is all right, and
  1086. * %-EINVAL if not.
  1087. */
  1088. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1089. const struct ubi_vid_hdr *vid_hdr)
  1090. {
  1091. int err;
  1092. uint32_t magic;
  1093. magic = be32_to_cpu(vid_hdr->magic);
  1094. if (magic != UBI_VID_HDR_MAGIC) {
  1095. ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
  1096. magic, pnum, UBI_VID_HDR_MAGIC);
  1097. goto fail;
  1098. }
  1099. err = validate_vid_hdr(ubi, vid_hdr);
  1100. if (err) {
  1101. ubi_err("paranoid check failed for PEB %d", pnum);
  1102. goto fail;
  1103. }
  1104. return err;
  1105. fail:
  1106. ubi_err("paranoid check failed for PEB %d", pnum);
  1107. ubi_dbg_dump_vid_hdr(vid_hdr);
  1108. ubi_dbg_dump_stack();
  1109. return -EINVAL;
  1110. }
  1111. /**
  1112. * paranoid_check_peb_vid_hdr - check volume identifier header.
  1113. * @ubi: UBI device description object
  1114. * @pnum: the physical eraseblock number to check
  1115. *
  1116. * This function returns zero if the volume identifier header is all right,
  1117. * and a negative error code if not or if an error occurred.
  1118. */
  1119. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1120. {
  1121. int err;
  1122. uint32_t crc, hdr_crc;
  1123. struct ubi_vid_hdr *vid_hdr;
  1124. void *p;
  1125. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  1126. if (!vid_hdr)
  1127. return -ENOMEM;
  1128. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1129. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1130. ubi->vid_hdr_alsize);
  1131. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1132. goto exit;
  1133. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
  1134. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1135. if (hdr_crc != crc) {
  1136. ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
  1137. "read %#08x", pnum, crc, hdr_crc);
  1138. ubi_err("paranoid check failed for PEB %d", pnum);
  1139. ubi_dbg_dump_vid_hdr(vid_hdr);
  1140. ubi_dbg_dump_stack();
  1141. err = -EINVAL;
  1142. goto exit;
  1143. }
  1144. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  1145. exit:
  1146. ubi_free_vid_hdr(ubi, vid_hdr);
  1147. return err;
  1148. }
  1149. /**
  1150. * ubi_dbg_check_write - make sure write succeeded.
  1151. * @ubi: UBI device description object
  1152. * @buf: buffer with data which were written
  1153. * @pnum: physical eraseblock number the data were written to
  1154. * @offset: offset within the physical eraseblock the data were written to
  1155. * @len: how many bytes were written
  1156. *
  1157. * This functions reads data which were recently written and compares it with
  1158. * the original data buffer - the data have to match. Returns zero if the data
  1159. * match and a negative error code if not or in case of failure.
  1160. */
  1161. int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  1162. int offset, int len)
  1163. {
  1164. int err, i;
  1165. mutex_lock(&ubi->dbg_buf_mutex);
  1166. err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
  1167. if (err)
  1168. goto out_unlock;
  1169. for (i = 0; i < len; i++) {
  1170. uint8_t c = ((uint8_t *)buf)[i];
  1171. uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
  1172. int dump_len;
  1173. if (c == c1)
  1174. continue;
  1175. ubi_err("paranoid check failed for PEB %d:%d, len %d",
  1176. pnum, offset, len);
  1177. ubi_msg("data differ at position %d", i);
  1178. dump_len = max_t(int, 128, len - i);
  1179. ubi_msg("hex dump of the original buffer from %d to %d",
  1180. i, i + dump_len);
  1181. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1182. buf + i, dump_len, 1);
  1183. ubi_msg("hex dump of the read buffer from %d to %d",
  1184. i, i + dump_len);
  1185. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1186. ubi->dbg_peb_buf + i, dump_len, 1);
  1187. ubi_dbg_dump_stack();
  1188. err = -EINVAL;
  1189. goto out_unlock;
  1190. }
  1191. mutex_unlock(&ubi->dbg_buf_mutex);
  1192. return 0;
  1193. out_unlock:
  1194. mutex_unlock(&ubi->dbg_buf_mutex);
  1195. return err;
  1196. }
  1197. /**
  1198. * ubi_dbg_check_all_ff - check that a region of flash is empty.
  1199. * @ubi: UBI device description object
  1200. * @pnum: the physical eraseblock number to check
  1201. * @offset: the starting offset within the physical eraseblock to check
  1202. * @len: the length of the region to check
  1203. *
  1204. * This function returns zero if only 0xFF bytes are present at offset
  1205. * @offset of the physical eraseblock @pnum, and a negative error code if not
  1206. * or if an error occurred.
  1207. */
  1208. int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
  1209. {
  1210. size_t read;
  1211. int err;
  1212. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1213. mutex_lock(&ubi->dbg_buf_mutex);
  1214. err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
  1215. if (err && err != -EUCLEAN) {
  1216. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  1217. "read %zd bytes", err, len, pnum, offset, read);
  1218. goto error;
  1219. }
  1220. err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
  1221. if (err == 0) {
  1222. ubi_err("flash region at PEB %d:%d, length %d does not "
  1223. "contain all 0xFF bytes", pnum, offset, len);
  1224. goto fail;
  1225. }
  1226. mutex_unlock(&ubi->dbg_buf_mutex);
  1227. return 0;
  1228. fail:
  1229. ubi_err("paranoid check failed for PEB %d", pnum);
  1230. ubi_msg("hex dump of the %d-%d region", offset, offset + len);
  1231. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1232. ubi->dbg_peb_buf, len, 1);
  1233. err = -EINVAL;
  1234. error:
  1235. ubi_dbg_dump_stack();
  1236. mutex_unlock(&ubi->dbg_buf_mutex);
  1237. return err;
  1238. }
  1239. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */