init_64.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/bios_ebda.h>
  33. #include <asm/system.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/pgalloc.h>
  37. #include <asm/dma.h>
  38. #include <asm/fixmap.h>
  39. #include <asm/e820.h>
  40. #include <asm/apic.h>
  41. #include <asm/tlb.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/proto.h>
  44. #include <asm/smp.h>
  45. #include <asm/sections.h>
  46. #include <asm/kdebug.h>
  47. #include <asm/numa.h>
  48. #include <asm/cacheflush.h>
  49. #include <asm/init.h>
  50. #include <linux/bootmem.h>
  51. static unsigned long dma_reserve __initdata;
  52. static int __init parse_direct_gbpages_off(char *arg)
  53. {
  54. direct_gbpages = 0;
  55. return 0;
  56. }
  57. early_param("nogbpages", parse_direct_gbpages_off);
  58. static int __init parse_direct_gbpages_on(char *arg)
  59. {
  60. direct_gbpages = 1;
  61. return 0;
  62. }
  63. early_param("gbpages", parse_direct_gbpages_on);
  64. /*
  65. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  66. * physical space so we can cache the place of the first one and move
  67. * around without checking the pgd every time.
  68. */
  69. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  70. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  71. int force_personality32;
  72. /*
  73. * noexec32=on|off
  74. * Control non executable heap for 32bit processes.
  75. * To control the stack too use noexec=off
  76. *
  77. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  78. * off PROT_READ implies PROT_EXEC
  79. */
  80. static int __init nonx32_setup(char *str)
  81. {
  82. if (!strcmp(str, "on"))
  83. force_personality32 &= ~READ_IMPLIES_EXEC;
  84. else if (!strcmp(str, "off"))
  85. force_personality32 |= READ_IMPLIES_EXEC;
  86. return 1;
  87. }
  88. __setup("noexec32=", nonx32_setup);
  89. /*
  90. * NOTE: This function is marked __ref because it calls __init function
  91. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  92. */
  93. static __ref void *spp_getpage(void)
  94. {
  95. void *ptr;
  96. if (after_bootmem)
  97. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  98. else
  99. ptr = alloc_bootmem_pages(PAGE_SIZE);
  100. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  101. panic("set_pte_phys: cannot allocate page data %s\n",
  102. after_bootmem ? "after bootmem" : "");
  103. }
  104. pr_debug("spp_getpage %p\n", ptr);
  105. return ptr;
  106. }
  107. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  108. {
  109. if (pgd_none(*pgd)) {
  110. pud_t *pud = (pud_t *)spp_getpage();
  111. pgd_populate(&init_mm, pgd, pud);
  112. if (pud != pud_offset(pgd, 0))
  113. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  114. pud, pud_offset(pgd, 0));
  115. }
  116. return pud_offset(pgd, vaddr);
  117. }
  118. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  119. {
  120. if (pud_none(*pud)) {
  121. pmd_t *pmd = (pmd_t *) spp_getpage();
  122. pud_populate(&init_mm, pud, pmd);
  123. if (pmd != pmd_offset(pud, 0))
  124. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  125. pmd, pmd_offset(pud, 0));
  126. }
  127. return pmd_offset(pud, vaddr);
  128. }
  129. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  130. {
  131. if (pmd_none(*pmd)) {
  132. pte_t *pte = (pte_t *) spp_getpage();
  133. pmd_populate_kernel(&init_mm, pmd, pte);
  134. if (pte != pte_offset_kernel(pmd, 0))
  135. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  136. }
  137. return pte_offset_kernel(pmd, vaddr);
  138. }
  139. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  140. {
  141. pud_t *pud;
  142. pmd_t *pmd;
  143. pte_t *pte;
  144. pud = pud_page + pud_index(vaddr);
  145. pmd = fill_pmd(pud, vaddr);
  146. pte = fill_pte(pmd, vaddr);
  147. set_pte(pte, new_pte);
  148. /*
  149. * It's enough to flush this one mapping.
  150. * (PGE mappings get flushed as well)
  151. */
  152. __flush_tlb_one(vaddr);
  153. }
  154. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  155. {
  156. pgd_t *pgd;
  157. pud_t *pud_page;
  158. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  159. pgd = pgd_offset_k(vaddr);
  160. if (pgd_none(*pgd)) {
  161. printk(KERN_ERR
  162. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  163. return;
  164. }
  165. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  166. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  167. }
  168. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  169. {
  170. pgd_t *pgd;
  171. pud_t *pud;
  172. pgd = pgd_offset_k(vaddr);
  173. pud = fill_pud(pgd, vaddr);
  174. return fill_pmd(pud, vaddr);
  175. }
  176. pte_t * __init populate_extra_pte(unsigned long vaddr)
  177. {
  178. pmd_t *pmd;
  179. pmd = populate_extra_pmd(vaddr);
  180. return fill_pte(pmd, vaddr);
  181. }
  182. /*
  183. * Create large page table mappings for a range of physical addresses.
  184. */
  185. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  186. pgprot_t prot)
  187. {
  188. pgd_t *pgd;
  189. pud_t *pud;
  190. pmd_t *pmd;
  191. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  192. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  193. pgd = pgd_offset_k((unsigned long)__va(phys));
  194. if (pgd_none(*pgd)) {
  195. pud = (pud_t *) spp_getpage();
  196. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  197. _PAGE_USER));
  198. }
  199. pud = pud_offset(pgd, (unsigned long)__va(phys));
  200. if (pud_none(*pud)) {
  201. pmd = (pmd_t *) spp_getpage();
  202. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  203. _PAGE_USER));
  204. }
  205. pmd = pmd_offset(pud, phys);
  206. BUG_ON(!pmd_none(*pmd));
  207. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  208. }
  209. }
  210. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  211. {
  212. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  213. }
  214. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  215. {
  216. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  217. }
  218. /*
  219. * The head.S code sets up the kernel high mapping:
  220. *
  221. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  222. *
  223. * phys_addr holds the negative offset to the kernel, which is added
  224. * to the compile time generated pmds. This results in invalid pmds up
  225. * to the point where we hit the physaddr 0 mapping.
  226. *
  227. * We limit the mappings to the region from _text to _end. _end is
  228. * rounded up to the 2MB boundary. This catches the invalid pmds as
  229. * well, as they are located before _text:
  230. */
  231. void __init cleanup_highmap(void)
  232. {
  233. unsigned long vaddr = __START_KERNEL_map;
  234. unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
  235. pmd_t *pmd = level2_kernel_pgt;
  236. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  237. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  238. if (pmd_none(*pmd))
  239. continue;
  240. if (vaddr < (unsigned long) _text || vaddr > end)
  241. set_pmd(pmd, __pmd(0));
  242. }
  243. }
  244. static __ref void *alloc_low_page(unsigned long *phys)
  245. {
  246. unsigned long pfn = e820_table_end++;
  247. void *adr;
  248. if (after_bootmem) {
  249. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  250. *phys = __pa(adr);
  251. return adr;
  252. }
  253. if (pfn >= e820_table_top)
  254. panic("alloc_low_page: ran out of memory");
  255. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  256. memset(adr, 0, PAGE_SIZE);
  257. *phys = pfn * PAGE_SIZE;
  258. return adr;
  259. }
  260. static __ref void unmap_low_page(void *adr)
  261. {
  262. if (after_bootmem)
  263. return;
  264. early_iounmap(adr, PAGE_SIZE);
  265. }
  266. static unsigned long __meminit
  267. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  268. pgprot_t prot)
  269. {
  270. unsigned pages = 0;
  271. unsigned long last_map_addr = end;
  272. int i;
  273. pte_t *pte = pte_page + pte_index(addr);
  274. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  275. if (addr >= end) {
  276. if (!after_bootmem) {
  277. for(; i < PTRS_PER_PTE; i++, pte++)
  278. set_pte(pte, __pte(0));
  279. }
  280. break;
  281. }
  282. /*
  283. * We will re-use the existing mapping.
  284. * Xen for example has some special requirements, like mapping
  285. * pagetable pages as RO. So assume someone who pre-setup
  286. * these mappings are more intelligent.
  287. */
  288. if (pte_val(*pte)) {
  289. pages++;
  290. continue;
  291. }
  292. if (0)
  293. printk(" pte=%p addr=%lx pte=%016lx\n",
  294. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  295. pages++;
  296. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  297. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  298. }
  299. update_page_count(PG_LEVEL_4K, pages);
  300. return last_map_addr;
  301. }
  302. static unsigned long __meminit
  303. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
  304. pgprot_t prot)
  305. {
  306. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  307. return phys_pte_init(pte, address, end, prot);
  308. }
  309. static unsigned long __meminit
  310. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  311. unsigned long page_size_mask, pgprot_t prot)
  312. {
  313. unsigned long pages = 0;
  314. unsigned long last_map_addr = end;
  315. int i = pmd_index(address);
  316. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  317. unsigned long pte_phys;
  318. pmd_t *pmd = pmd_page + pmd_index(address);
  319. pte_t *pte;
  320. pgprot_t new_prot = prot;
  321. if (address >= end) {
  322. if (!after_bootmem) {
  323. for (; i < PTRS_PER_PMD; i++, pmd++)
  324. set_pmd(pmd, __pmd(0));
  325. }
  326. break;
  327. }
  328. if (pmd_val(*pmd)) {
  329. if (!pmd_large(*pmd)) {
  330. spin_lock(&init_mm.page_table_lock);
  331. last_map_addr = phys_pte_update(pmd, address,
  332. end, prot);
  333. spin_unlock(&init_mm.page_table_lock);
  334. continue;
  335. }
  336. /*
  337. * If we are ok with PG_LEVEL_2M mapping, then we will
  338. * use the existing mapping,
  339. *
  340. * Otherwise, we will split the large page mapping but
  341. * use the same existing protection bits except for
  342. * large page, so that we don't violate Intel's TLB
  343. * Application note (317080) which says, while changing
  344. * the page sizes, new and old translations should
  345. * not differ with respect to page frame and
  346. * attributes.
  347. */
  348. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  349. pages++;
  350. continue;
  351. }
  352. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  353. }
  354. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  355. pages++;
  356. spin_lock(&init_mm.page_table_lock);
  357. set_pte((pte_t *)pmd,
  358. pfn_pte(address >> PAGE_SHIFT,
  359. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  360. spin_unlock(&init_mm.page_table_lock);
  361. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  362. continue;
  363. }
  364. pte = alloc_low_page(&pte_phys);
  365. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  366. unmap_low_page(pte);
  367. spin_lock(&init_mm.page_table_lock);
  368. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  369. spin_unlock(&init_mm.page_table_lock);
  370. }
  371. update_page_count(PG_LEVEL_2M, pages);
  372. return last_map_addr;
  373. }
  374. static unsigned long __meminit
  375. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  376. unsigned long page_size_mask, pgprot_t prot)
  377. {
  378. pmd_t *pmd = pmd_offset(pud, 0);
  379. unsigned long last_map_addr;
  380. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
  381. __flush_tlb_all();
  382. return last_map_addr;
  383. }
  384. static unsigned long __meminit
  385. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  386. unsigned long page_size_mask)
  387. {
  388. unsigned long pages = 0;
  389. unsigned long last_map_addr = end;
  390. int i = pud_index(addr);
  391. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  392. unsigned long pmd_phys;
  393. pud_t *pud = pud_page + pud_index(addr);
  394. pmd_t *pmd;
  395. pgprot_t prot = PAGE_KERNEL;
  396. if (addr >= end)
  397. break;
  398. if (!after_bootmem &&
  399. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  400. set_pud(pud, __pud(0));
  401. continue;
  402. }
  403. if (pud_val(*pud)) {
  404. if (!pud_large(*pud)) {
  405. last_map_addr = phys_pmd_update(pud, addr, end,
  406. page_size_mask, prot);
  407. continue;
  408. }
  409. /*
  410. * If we are ok with PG_LEVEL_1G mapping, then we will
  411. * use the existing mapping.
  412. *
  413. * Otherwise, we will split the gbpage mapping but use
  414. * the same existing protection bits except for large
  415. * page, so that we don't violate Intel's TLB
  416. * Application note (317080) which says, while changing
  417. * the page sizes, new and old translations should
  418. * not differ with respect to page frame and
  419. * attributes.
  420. */
  421. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  422. pages++;
  423. continue;
  424. }
  425. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  426. }
  427. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  428. pages++;
  429. spin_lock(&init_mm.page_table_lock);
  430. set_pte((pte_t *)pud,
  431. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  432. spin_unlock(&init_mm.page_table_lock);
  433. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  434. continue;
  435. }
  436. pmd = alloc_low_page(&pmd_phys);
  437. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  438. prot);
  439. unmap_low_page(pmd);
  440. spin_lock(&init_mm.page_table_lock);
  441. pud_populate(&init_mm, pud, __va(pmd_phys));
  442. spin_unlock(&init_mm.page_table_lock);
  443. }
  444. __flush_tlb_all();
  445. update_page_count(PG_LEVEL_1G, pages);
  446. return last_map_addr;
  447. }
  448. static unsigned long __meminit
  449. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  450. unsigned long page_size_mask)
  451. {
  452. pud_t *pud;
  453. pud = (pud_t *)pgd_page_vaddr(*pgd);
  454. return phys_pud_init(pud, addr, end, page_size_mask);
  455. }
  456. unsigned long __meminit
  457. kernel_physical_mapping_init(unsigned long start,
  458. unsigned long end,
  459. unsigned long page_size_mask)
  460. {
  461. unsigned long next, last_map_addr = end;
  462. start = (unsigned long)__va(start);
  463. end = (unsigned long)__va(end);
  464. for (; start < end; start = next) {
  465. pgd_t *pgd = pgd_offset_k(start);
  466. unsigned long pud_phys;
  467. pud_t *pud;
  468. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  469. if (next > end)
  470. next = end;
  471. if (pgd_val(*pgd)) {
  472. last_map_addr = phys_pud_update(pgd, __pa(start),
  473. __pa(end), page_size_mask);
  474. continue;
  475. }
  476. pud = alloc_low_page(&pud_phys);
  477. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  478. page_size_mask);
  479. unmap_low_page(pud);
  480. spin_lock(&init_mm.page_table_lock);
  481. pgd_populate(&init_mm, pgd, __va(pud_phys));
  482. spin_unlock(&init_mm.page_table_lock);
  483. }
  484. __flush_tlb_all();
  485. return last_map_addr;
  486. }
  487. #ifndef CONFIG_NUMA
  488. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
  489. int acpi, int k8)
  490. {
  491. #ifndef CONFIG_NO_BOOTMEM
  492. unsigned long bootmap_size, bootmap;
  493. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  494. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  495. PAGE_SIZE);
  496. if (bootmap == -1L)
  497. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  498. reserve_early(bootmap, bootmap + bootmap_size, "BOOTMAP");
  499. /* don't touch min_low_pfn */
  500. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  501. 0, end_pfn);
  502. e820_register_active_regions(0, start_pfn, end_pfn);
  503. free_bootmem_with_active_regions(0, end_pfn);
  504. #else
  505. e820_register_active_regions(0, start_pfn, end_pfn);
  506. #endif
  507. }
  508. #endif
  509. void __init paging_init(void)
  510. {
  511. unsigned long max_zone_pfns[MAX_NR_ZONES];
  512. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  513. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  514. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  515. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  516. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  517. sparse_init();
  518. /*
  519. * clear the default setting with node 0
  520. * note: don't use nodes_clear here, that is really clearing when
  521. * numa support is not compiled in, and later node_set_state
  522. * will not set it back.
  523. */
  524. node_clear_state(0, N_NORMAL_MEMORY);
  525. free_area_init_nodes(max_zone_pfns);
  526. }
  527. /*
  528. * Memory hotplug specific functions
  529. */
  530. #ifdef CONFIG_MEMORY_HOTPLUG
  531. /*
  532. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  533. * updating.
  534. */
  535. static void update_end_of_memory_vars(u64 start, u64 size)
  536. {
  537. unsigned long end_pfn = PFN_UP(start + size);
  538. if (end_pfn > max_pfn) {
  539. max_pfn = end_pfn;
  540. max_low_pfn = end_pfn;
  541. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  542. }
  543. }
  544. /*
  545. * Memory is added always to NORMAL zone. This means you will never get
  546. * additional DMA/DMA32 memory.
  547. */
  548. int arch_add_memory(int nid, u64 start, u64 size)
  549. {
  550. struct pglist_data *pgdat = NODE_DATA(nid);
  551. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  552. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  553. unsigned long nr_pages = size >> PAGE_SHIFT;
  554. int ret;
  555. last_mapped_pfn = init_memory_mapping(start, start + size);
  556. if (last_mapped_pfn > max_pfn_mapped)
  557. max_pfn_mapped = last_mapped_pfn;
  558. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  559. WARN_ON_ONCE(ret);
  560. /* update max_pfn, max_low_pfn and high_memory */
  561. update_end_of_memory_vars(start, size);
  562. return ret;
  563. }
  564. EXPORT_SYMBOL_GPL(arch_add_memory);
  565. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  566. int memory_add_physaddr_to_nid(u64 start)
  567. {
  568. return 0;
  569. }
  570. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  571. #endif
  572. #endif /* CONFIG_MEMORY_HOTPLUG */
  573. static struct kcore_list kcore_vsyscall;
  574. void __init mem_init(void)
  575. {
  576. long codesize, reservedpages, datasize, initsize;
  577. unsigned long absent_pages;
  578. pci_iommu_alloc();
  579. /* clear_bss() already clear the empty_zero_page */
  580. reservedpages = 0;
  581. /* this will put all low memory onto the freelists */
  582. #ifdef CONFIG_NUMA
  583. totalram_pages = numa_free_all_bootmem();
  584. #else
  585. totalram_pages = free_all_bootmem();
  586. #endif
  587. absent_pages = absent_pages_in_range(0, max_pfn);
  588. reservedpages = max_pfn - totalram_pages - absent_pages;
  589. after_bootmem = 1;
  590. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  591. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  592. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  593. /* Register memory areas for /proc/kcore */
  594. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  595. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  596. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  597. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  598. nr_free_pages() << (PAGE_SHIFT-10),
  599. max_pfn << (PAGE_SHIFT-10),
  600. codesize >> 10,
  601. absent_pages << (PAGE_SHIFT-10),
  602. reservedpages << (PAGE_SHIFT-10),
  603. datasize >> 10,
  604. initsize >> 10);
  605. }
  606. #ifdef CONFIG_DEBUG_RODATA
  607. const int rodata_test_data = 0xC3;
  608. EXPORT_SYMBOL_GPL(rodata_test_data);
  609. int kernel_set_to_readonly;
  610. void set_kernel_text_rw(void)
  611. {
  612. unsigned long start = PFN_ALIGN(_text);
  613. unsigned long end = PFN_ALIGN(__stop___ex_table);
  614. if (!kernel_set_to_readonly)
  615. return;
  616. pr_debug("Set kernel text: %lx - %lx for read write\n",
  617. start, end);
  618. /*
  619. * Make the kernel identity mapping for text RW. Kernel text
  620. * mapping will always be RO. Refer to the comment in
  621. * static_protections() in pageattr.c
  622. */
  623. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  624. }
  625. void set_kernel_text_ro(void)
  626. {
  627. unsigned long start = PFN_ALIGN(_text);
  628. unsigned long end = PFN_ALIGN(__stop___ex_table);
  629. if (!kernel_set_to_readonly)
  630. return;
  631. pr_debug("Set kernel text: %lx - %lx for read only\n",
  632. start, end);
  633. /*
  634. * Set the kernel identity mapping for text RO.
  635. */
  636. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  637. }
  638. void mark_rodata_ro(void)
  639. {
  640. unsigned long start = PFN_ALIGN(_text);
  641. unsigned long rodata_start =
  642. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  643. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  644. unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
  645. unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
  646. unsigned long data_start = (unsigned long) &_sdata;
  647. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  648. (end - start) >> 10);
  649. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  650. kernel_set_to_readonly = 1;
  651. /*
  652. * The rodata section (but not the kernel text!) should also be
  653. * not-executable.
  654. */
  655. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  656. rodata_test();
  657. #ifdef CONFIG_CPA_DEBUG
  658. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  659. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  660. printk(KERN_INFO "Testing CPA: again\n");
  661. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  662. #endif
  663. free_init_pages("unused kernel memory",
  664. (unsigned long) page_address(virt_to_page(text_end)),
  665. (unsigned long)
  666. page_address(virt_to_page(rodata_start)));
  667. free_init_pages("unused kernel memory",
  668. (unsigned long) page_address(virt_to_page(rodata_end)),
  669. (unsigned long) page_address(virt_to_page(data_start)));
  670. }
  671. #endif
  672. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  673. int flags)
  674. {
  675. #ifdef CONFIG_NUMA
  676. int nid, next_nid;
  677. int ret;
  678. #endif
  679. unsigned long pfn = phys >> PAGE_SHIFT;
  680. if (pfn >= max_pfn) {
  681. /*
  682. * This can happen with kdump kernels when accessing
  683. * firmware tables:
  684. */
  685. if (pfn < max_pfn_mapped)
  686. return -EFAULT;
  687. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  688. phys, len);
  689. return -EFAULT;
  690. }
  691. /* Should check here against the e820 map to avoid double free */
  692. #ifdef CONFIG_NUMA
  693. nid = phys_to_nid(phys);
  694. next_nid = phys_to_nid(phys + len - 1);
  695. if (nid == next_nid)
  696. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  697. else
  698. ret = reserve_bootmem(phys, len, flags);
  699. if (ret != 0)
  700. return ret;
  701. #else
  702. reserve_bootmem(phys, len, flags);
  703. #endif
  704. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  705. dma_reserve += len / PAGE_SIZE;
  706. set_dma_reserve(dma_reserve);
  707. }
  708. return 0;
  709. }
  710. int kern_addr_valid(unsigned long addr)
  711. {
  712. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  713. pgd_t *pgd;
  714. pud_t *pud;
  715. pmd_t *pmd;
  716. pte_t *pte;
  717. if (above != 0 && above != -1UL)
  718. return 0;
  719. pgd = pgd_offset_k(addr);
  720. if (pgd_none(*pgd))
  721. return 0;
  722. pud = pud_offset(pgd, addr);
  723. if (pud_none(*pud))
  724. return 0;
  725. pmd = pmd_offset(pud, addr);
  726. if (pmd_none(*pmd))
  727. return 0;
  728. if (pmd_large(*pmd))
  729. return pfn_valid(pmd_pfn(*pmd));
  730. pte = pte_offset_kernel(pmd, addr);
  731. if (pte_none(*pte))
  732. return 0;
  733. return pfn_valid(pte_pfn(*pte));
  734. }
  735. /*
  736. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  737. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  738. * not need special handling anymore:
  739. */
  740. static struct vm_area_struct gate_vma = {
  741. .vm_start = VSYSCALL_START,
  742. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  743. .vm_page_prot = PAGE_READONLY_EXEC,
  744. .vm_flags = VM_READ | VM_EXEC
  745. };
  746. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  747. {
  748. #ifdef CONFIG_IA32_EMULATION
  749. if (test_tsk_thread_flag(tsk, TIF_IA32))
  750. return NULL;
  751. #endif
  752. return &gate_vma;
  753. }
  754. int in_gate_area(struct task_struct *task, unsigned long addr)
  755. {
  756. struct vm_area_struct *vma = get_gate_vma(task);
  757. if (!vma)
  758. return 0;
  759. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  760. }
  761. /*
  762. * Use this when you have no reliable task/vma, typically from interrupt
  763. * context. It is less reliable than using the task's vma and may give
  764. * false positives:
  765. */
  766. int in_gate_area_no_task(unsigned long addr)
  767. {
  768. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  769. }
  770. const char *arch_vma_name(struct vm_area_struct *vma)
  771. {
  772. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  773. return "[vdso]";
  774. if (vma == &gate_vma)
  775. return "[vsyscall]";
  776. return NULL;
  777. }
  778. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  779. /*
  780. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  781. */
  782. static long __meminitdata addr_start, addr_end;
  783. static void __meminitdata *p_start, *p_end;
  784. static int __meminitdata node_start;
  785. int __meminit
  786. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  787. {
  788. unsigned long addr = (unsigned long)start_page;
  789. unsigned long end = (unsigned long)(start_page + size);
  790. unsigned long next;
  791. pgd_t *pgd;
  792. pud_t *pud;
  793. pmd_t *pmd;
  794. for (; addr < end; addr = next) {
  795. void *p = NULL;
  796. pgd = vmemmap_pgd_populate(addr, node);
  797. if (!pgd)
  798. return -ENOMEM;
  799. pud = vmemmap_pud_populate(pgd, addr, node);
  800. if (!pud)
  801. return -ENOMEM;
  802. if (!cpu_has_pse) {
  803. next = (addr + PAGE_SIZE) & PAGE_MASK;
  804. pmd = vmemmap_pmd_populate(pud, addr, node);
  805. if (!pmd)
  806. return -ENOMEM;
  807. p = vmemmap_pte_populate(pmd, addr, node);
  808. if (!p)
  809. return -ENOMEM;
  810. addr_end = addr + PAGE_SIZE;
  811. p_end = p + PAGE_SIZE;
  812. } else {
  813. next = pmd_addr_end(addr, end);
  814. pmd = pmd_offset(pud, addr);
  815. if (pmd_none(*pmd)) {
  816. pte_t entry;
  817. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  818. if (!p)
  819. return -ENOMEM;
  820. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  821. PAGE_KERNEL_LARGE);
  822. set_pmd(pmd, __pmd(pte_val(entry)));
  823. /* check to see if we have contiguous blocks */
  824. if (p_end != p || node_start != node) {
  825. if (p_start)
  826. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  827. addr_start, addr_end-1, p_start, p_end-1, node_start);
  828. addr_start = addr;
  829. node_start = node;
  830. p_start = p;
  831. }
  832. addr_end = addr + PMD_SIZE;
  833. p_end = p + PMD_SIZE;
  834. } else
  835. vmemmap_verify((pte_t *)pmd, node, addr, next);
  836. }
  837. }
  838. return 0;
  839. }
  840. void __meminit vmemmap_populate_print_last(void)
  841. {
  842. if (p_start) {
  843. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  844. addr_start, addr_end-1, p_start, p_end-1, node_start);
  845. p_start = NULL;
  846. p_end = NULL;
  847. node_start = 0;
  848. }
  849. }
  850. #endif