vmx.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  52. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  53. #define KVM_GUEST_CR0_MASK \
  54. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  55. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  56. (X86_CR0_WP | X86_CR0_NE)
  57. #define KVM_VM_CR0_ALWAYS_ON \
  58. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  59. #define KVM_CR4_GUEST_OWNED_BITS \
  60. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  61. | X86_CR4_OSXMMEXCPT)
  62. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  63. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  64. /*
  65. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  66. * ple_gap: upper bound on the amount of time between two successive
  67. * executions of PAUSE in a loop. Also indicate if ple enabled.
  68. * According to test, this time is usually small than 41 cycles.
  69. * ple_window: upper bound on the amount of time a guest is allowed to execute
  70. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  71. * less than 2^12 cycles
  72. * Time is measured based on a counter that runs at the same rate as the TSC,
  73. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  74. */
  75. #define KVM_VMX_DEFAULT_PLE_GAP 41
  76. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  77. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  78. module_param(ple_gap, int, S_IRUGO);
  79. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  80. module_param(ple_window, int, S_IRUGO);
  81. struct vmcs {
  82. u32 revision_id;
  83. u32 abort;
  84. char data[0];
  85. };
  86. struct shared_msr_entry {
  87. unsigned index;
  88. u64 data;
  89. u64 mask;
  90. };
  91. struct vcpu_vmx {
  92. struct kvm_vcpu vcpu;
  93. struct list_head local_vcpus_link;
  94. unsigned long host_rsp;
  95. int launched;
  96. u8 fail;
  97. u32 idt_vectoring_info;
  98. struct shared_msr_entry *guest_msrs;
  99. int nmsrs;
  100. int save_nmsrs;
  101. #ifdef CONFIG_X86_64
  102. u64 msr_host_kernel_gs_base;
  103. u64 msr_guest_kernel_gs_base;
  104. #endif
  105. struct vmcs *vmcs;
  106. struct {
  107. int loaded;
  108. u16 fs_sel, gs_sel, ldt_sel;
  109. int gs_ldt_reload_needed;
  110. int fs_reload_needed;
  111. } host_state;
  112. struct {
  113. int vm86_active;
  114. u8 save_iopl;
  115. struct kvm_save_segment {
  116. u16 selector;
  117. unsigned long base;
  118. u32 limit;
  119. u32 ar;
  120. } tr, es, ds, fs, gs;
  121. struct {
  122. bool pending;
  123. u8 vector;
  124. unsigned rip;
  125. } irq;
  126. } rmode;
  127. int vpid;
  128. bool emulation_required;
  129. /* Support for vnmi-less CPUs */
  130. int soft_vnmi_blocked;
  131. ktime_t entry_time;
  132. s64 vnmi_blocked_time;
  133. u32 exit_reason;
  134. bool rdtscp_enabled;
  135. };
  136. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  137. {
  138. return container_of(vcpu, struct vcpu_vmx, vcpu);
  139. }
  140. static int init_rmode(struct kvm *kvm);
  141. static u64 construct_eptp(unsigned long root_hpa);
  142. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  143. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  144. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  145. static unsigned long *vmx_io_bitmap_a;
  146. static unsigned long *vmx_io_bitmap_b;
  147. static unsigned long *vmx_msr_bitmap_legacy;
  148. static unsigned long *vmx_msr_bitmap_longmode;
  149. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  150. static DEFINE_SPINLOCK(vmx_vpid_lock);
  151. static struct vmcs_config {
  152. int size;
  153. int order;
  154. u32 revision_id;
  155. u32 pin_based_exec_ctrl;
  156. u32 cpu_based_exec_ctrl;
  157. u32 cpu_based_2nd_exec_ctrl;
  158. u32 vmexit_ctrl;
  159. u32 vmentry_ctrl;
  160. } vmcs_config;
  161. static struct vmx_capability {
  162. u32 ept;
  163. u32 vpid;
  164. } vmx_capability;
  165. #define VMX_SEGMENT_FIELD(seg) \
  166. [VCPU_SREG_##seg] = { \
  167. .selector = GUEST_##seg##_SELECTOR, \
  168. .base = GUEST_##seg##_BASE, \
  169. .limit = GUEST_##seg##_LIMIT, \
  170. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  171. }
  172. static struct kvm_vmx_segment_field {
  173. unsigned selector;
  174. unsigned base;
  175. unsigned limit;
  176. unsigned ar_bytes;
  177. } kvm_vmx_segment_fields[] = {
  178. VMX_SEGMENT_FIELD(CS),
  179. VMX_SEGMENT_FIELD(DS),
  180. VMX_SEGMENT_FIELD(ES),
  181. VMX_SEGMENT_FIELD(FS),
  182. VMX_SEGMENT_FIELD(GS),
  183. VMX_SEGMENT_FIELD(SS),
  184. VMX_SEGMENT_FIELD(TR),
  185. VMX_SEGMENT_FIELD(LDTR),
  186. };
  187. static u64 host_efer;
  188. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  189. /*
  190. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  191. * away by decrementing the array size.
  192. */
  193. static const u32 vmx_msr_index[] = {
  194. #ifdef CONFIG_X86_64
  195. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  196. #endif
  197. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  198. };
  199. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  200. static inline int is_page_fault(u32 intr_info)
  201. {
  202. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  203. INTR_INFO_VALID_MASK)) ==
  204. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  205. }
  206. static inline int is_no_device(u32 intr_info)
  207. {
  208. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  209. INTR_INFO_VALID_MASK)) ==
  210. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  211. }
  212. static inline int is_invalid_opcode(u32 intr_info)
  213. {
  214. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  215. INTR_INFO_VALID_MASK)) ==
  216. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  217. }
  218. static inline int is_external_interrupt(u32 intr_info)
  219. {
  220. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  221. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  222. }
  223. static inline int is_machine_check(u32 intr_info)
  224. {
  225. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  226. INTR_INFO_VALID_MASK)) ==
  227. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  228. }
  229. static inline int cpu_has_vmx_msr_bitmap(void)
  230. {
  231. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  232. }
  233. static inline int cpu_has_vmx_tpr_shadow(void)
  234. {
  235. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  236. }
  237. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  238. {
  239. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  240. }
  241. static inline int cpu_has_secondary_exec_ctrls(void)
  242. {
  243. return vmcs_config.cpu_based_exec_ctrl &
  244. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  245. }
  246. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  247. {
  248. return vmcs_config.cpu_based_2nd_exec_ctrl &
  249. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  250. }
  251. static inline bool cpu_has_vmx_flexpriority(void)
  252. {
  253. return cpu_has_vmx_tpr_shadow() &&
  254. cpu_has_vmx_virtualize_apic_accesses();
  255. }
  256. static inline bool cpu_has_vmx_ept_execute_only(void)
  257. {
  258. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  259. }
  260. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  261. {
  262. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  263. }
  264. static inline bool cpu_has_vmx_eptp_writeback(void)
  265. {
  266. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  267. }
  268. static inline bool cpu_has_vmx_ept_2m_page(void)
  269. {
  270. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  271. }
  272. static inline bool cpu_has_vmx_ept_1g_page(void)
  273. {
  274. return !!(vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT);
  275. }
  276. static inline int cpu_has_vmx_invept_individual_addr(void)
  277. {
  278. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  279. }
  280. static inline int cpu_has_vmx_invept_context(void)
  281. {
  282. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  283. }
  284. static inline int cpu_has_vmx_invept_global(void)
  285. {
  286. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  287. }
  288. static inline int cpu_has_vmx_ept(void)
  289. {
  290. return vmcs_config.cpu_based_2nd_exec_ctrl &
  291. SECONDARY_EXEC_ENABLE_EPT;
  292. }
  293. static inline int cpu_has_vmx_unrestricted_guest(void)
  294. {
  295. return vmcs_config.cpu_based_2nd_exec_ctrl &
  296. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  297. }
  298. static inline int cpu_has_vmx_ple(void)
  299. {
  300. return vmcs_config.cpu_based_2nd_exec_ctrl &
  301. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  302. }
  303. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  304. {
  305. return flexpriority_enabled && irqchip_in_kernel(kvm);
  306. }
  307. static inline int cpu_has_vmx_vpid(void)
  308. {
  309. return vmcs_config.cpu_based_2nd_exec_ctrl &
  310. SECONDARY_EXEC_ENABLE_VPID;
  311. }
  312. static inline int cpu_has_vmx_rdtscp(void)
  313. {
  314. return vmcs_config.cpu_based_2nd_exec_ctrl &
  315. SECONDARY_EXEC_RDTSCP;
  316. }
  317. static inline int cpu_has_virtual_nmis(void)
  318. {
  319. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  320. }
  321. static inline bool report_flexpriority(void)
  322. {
  323. return flexpriority_enabled;
  324. }
  325. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  326. {
  327. int i;
  328. for (i = 0; i < vmx->nmsrs; ++i)
  329. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  330. return i;
  331. return -1;
  332. }
  333. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  334. {
  335. struct {
  336. u64 vpid : 16;
  337. u64 rsvd : 48;
  338. u64 gva;
  339. } operand = { vpid, 0, gva };
  340. asm volatile (__ex(ASM_VMX_INVVPID)
  341. /* CF==1 or ZF==1 --> rc = -1 */
  342. "; ja 1f ; ud2 ; 1:"
  343. : : "a"(&operand), "c"(ext) : "cc", "memory");
  344. }
  345. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  346. {
  347. struct {
  348. u64 eptp, gpa;
  349. } operand = {eptp, gpa};
  350. asm volatile (__ex(ASM_VMX_INVEPT)
  351. /* CF==1 or ZF==1 --> rc = -1 */
  352. "; ja 1f ; ud2 ; 1:\n"
  353. : : "a" (&operand), "c" (ext) : "cc", "memory");
  354. }
  355. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  356. {
  357. int i;
  358. i = __find_msr_index(vmx, msr);
  359. if (i >= 0)
  360. return &vmx->guest_msrs[i];
  361. return NULL;
  362. }
  363. static void vmcs_clear(struct vmcs *vmcs)
  364. {
  365. u64 phys_addr = __pa(vmcs);
  366. u8 error;
  367. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  368. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  369. : "cc", "memory");
  370. if (error)
  371. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  372. vmcs, phys_addr);
  373. }
  374. static void __vcpu_clear(void *arg)
  375. {
  376. struct vcpu_vmx *vmx = arg;
  377. int cpu = raw_smp_processor_id();
  378. if (vmx->vcpu.cpu == cpu)
  379. vmcs_clear(vmx->vmcs);
  380. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  381. per_cpu(current_vmcs, cpu) = NULL;
  382. rdtscll(vmx->vcpu.arch.host_tsc);
  383. list_del(&vmx->local_vcpus_link);
  384. vmx->vcpu.cpu = -1;
  385. vmx->launched = 0;
  386. }
  387. static void vcpu_clear(struct vcpu_vmx *vmx)
  388. {
  389. if (vmx->vcpu.cpu == -1)
  390. return;
  391. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  392. }
  393. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  394. {
  395. if (vmx->vpid == 0)
  396. return;
  397. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  398. }
  399. static inline void ept_sync_global(void)
  400. {
  401. if (cpu_has_vmx_invept_global())
  402. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  403. }
  404. static inline void ept_sync_context(u64 eptp)
  405. {
  406. if (enable_ept) {
  407. if (cpu_has_vmx_invept_context())
  408. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  409. else
  410. ept_sync_global();
  411. }
  412. }
  413. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  414. {
  415. if (enable_ept) {
  416. if (cpu_has_vmx_invept_individual_addr())
  417. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  418. eptp, gpa);
  419. else
  420. ept_sync_context(eptp);
  421. }
  422. }
  423. static unsigned long vmcs_readl(unsigned long field)
  424. {
  425. unsigned long value;
  426. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  427. : "=a"(value) : "d"(field) : "cc");
  428. return value;
  429. }
  430. static u16 vmcs_read16(unsigned long field)
  431. {
  432. return vmcs_readl(field);
  433. }
  434. static u32 vmcs_read32(unsigned long field)
  435. {
  436. return vmcs_readl(field);
  437. }
  438. static u64 vmcs_read64(unsigned long field)
  439. {
  440. #ifdef CONFIG_X86_64
  441. return vmcs_readl(field);
  442. #else
  443. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  444. #endif
  445. }
  446. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  447. {
  448. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  449. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  450. dump_stack();
  451. }
  452. static void vmcs_writel(unsigned long field, unsigned long value)
  453. {
  454. u8 error;
  455. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  456. : "=q"(error) : "a"(value), "d"(field) : "cc");
  457. if (unlikely(error))
  458. vmwrite_error(field, value);
  459. }
  460. static void vmcs_write16(unsigned long field, u16 value)
  461. {
  462. vmcs_writel(field, value);
  463. }
  464. static void vmcs_write32(unsigned long field, u32 value)
  465. {
  466. vmcs_writel(field, value);
  467. }
  468. static void vmcs_write64(unsigned long field, u64 value)
  469. {
  470. vmcs_writel(field, value);
  471. #ifndef CONFIG_X86_64
  472. asm volatile ("");
  473. vmcs_writel(field+1, value >> 32);
  474. #endif
  475. }
  476. static void vmcs_clear_bits(unsigned long field, u32 mask)
  477. {
  478. vmcs_writel(field, vmcs_readl(field) & ~mask);
  479. }
  480. static void vmcs_set_bits(unsigned long field, u32 mask)
  481. {
  482. vmcs_writel(field, vmcs_readl(field) | mask);
  483. }
  484. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  485. {
  486. u32 eb;
  487. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  488. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  489. if ((vcpu->guest_debug &
  490. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  491. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  492. eb |= 1u << BP_VECTOR;
  493. if (to_vmx(vcpu)->rmode.vm86_active)
  494. eb = ~0;
  495. if (enable_ept)
  496. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  497. if (vcpu->fpu_active)
  498. eb &= ~(1u << NM_VECTOR);
  499. vmcs_write32(EXCEPTION_BITMAP, eb);
  500. }
  501. static void reload_tss(void)
  502. {
  503. /*
  504. * VT restores TR but not its size. Useless.
  505. */
  506. struct descriptor_table gdt;
  507. struct desc_struct *descs;
  508. kvm_get_gdt(&gdt);
  509. descs = (void *)gdt.base;
  510. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  511. load_TR_desc();
  512. }
  513. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  514. {
  515. u64 guest_efer;
  516. u64 ignore_bits;
  517. guest_efer = vmx->vcpu.arch.efer;
  518. /*
  519. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  520. * outside long mode
  521. */
  522. ignore_bits = EFER_NX | EFER_SCE;
  523. #ifdef CONFIG_X86_64
  524. ignore_bits |= EFER_LMA | EFER_LME;
  525. /* SCE is meaningful only in long mode on Intel */
  526. if (guest_efer & EFER_LMA)
  527. ignore_bits &= ~(u64)EFER_SCE;
  528. #endif
  529. guest_efer &= ~ignore_bits;
  530. guest_efer |= host_efer & ignore_bits;
  531. vmx->guest_msrs[efer_offset].data = guest_efer;
  532. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  533. return true;
  534. }
  535. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  536. {
  537. struct vcpu_vmx *vmx = to_vmx(vcpu);
  538. int i;
  539. if (vmx->host_state.loaded)
  540. return;
  541. vmx->host_state.loaded = 1;
  542. /*
  543. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  544. * allow segment selectors with cpl > 0 or ti == 1.
  545. */
  546. vmx->host_state.ldt_sel = kvm_read_ldt();
  547. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  548. vmx->host_state.fs_sel = kvm_read_fs();
  549. if (!(vmx->host_state.fs_sel & 7)) {
  550. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  551. vmx->host_state.fs_reload_needed = 0;
  552. } else {
  553. vmcs_write16(HOST_FS_SELECTOR, 0);
  554. vmx->host_state.fs_reload_needed = 1;
  555. }
  556. vmx->host_state.gs_sel = kvm_read_gs();
  557. if (!(vmx->host_state.gs_sel & 7))
  558. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  559. else {
  560. vmcs_write16(HOST_GS_SELECTOR, 0);
  561. vmx->host_state.gs_ldt_reload_needed = 1;
  562. }
  563. #ifdef CONFIG_X86_64
  564. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  565. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  566. #else
  567. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  568. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  569. #endif
  570. #ifdef CONFIG_X86_64
  571. if (is_long_mode(&vmx->vcpu)) {
  572. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  573. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  574. }
  575. #endif
  576. for (i = 0; i < vmx->save_nmsrs; ++i)
  577. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  578. vmx->guest_msrs[i].data,
  579. vmx->guest_msrs[i].mask);
  580. }
  581. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  582. {
  583. unsigned long flags;
  584. if (!vmx->host_state.loaded)
  585. return;
  586. ++vmx->vcpu.stat.host_state_reload;
  587. vmx->host_state.loaded = 0;
  588. if (vmx->host_state.fs_reload_needed)
  589. kvm_load_fs(vmx->host_state.fs_sel);
  590. if (vmx->host_state.gs_ldt_reload_needed) {
  591. kvm_load_ldt(vmx->host_state.ldt_sel);
  592. /*
  593. * If we have to reload gs, we must take care to
  594. * preserve our gs base.
  595. */
  596. local_irq_save(flags);
  597. kvm_load_gs(vmx->host_state.gs_sel);
  598. #ifdef CONFIG_X86_64
  599. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  600. #endif
  601. local_irq_restore(flags);
  602. }
  603. reload_tss();
  604. #ifdef CONFIG_X86_64
  605. if (is_long_mode(&vmx->vcpu)) {
  606. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  607. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  608. }
  609. #endif
  610. }
  611. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  612. {
  613. preempt_disable();
  614. __vmx_load_host_state(vmx);
  615. preempt_enable();
  616. }
  617. /*
  618. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  619. * vcpu mutex is already taken.
  620. */
  621. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  622. {
  623. struct vcpu_vmx *vmx = to_vmx(vcpu);
  624. u64 phys_addr = __pa(vmx->vmcs);
  625. u64 tsc_this, delta, new_offset;
  626. if (vcpu->cpu != cpu) {
  627. vcpu_clear(vmx);
  628. kvm_migrate_timers(vcpu);
  629. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  630. local_irq_disable();
  631. list_add(&vmx->local_vcpus_link,
  632. &per_cpu(vcpus_on_cpu, cpu));
  633. local_irq_enable();
  634. }
  635. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  636. u8 error;
  637. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  638. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  639. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  640. : "cc");
  641. if (error)
  642. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  643. vmx->vmcs, phys_addr);
  644. }
  645. if (vcpu->cpu != cpu) {
  646. struct descriptor_table dt;
  647. unsigned long sysenter_esp;
  648. vcpu->cpu = cpu;
  649. /*
  650. * Linux uses per-cpu TSS and GDT, so set these when switching
  651. * processors.
  652. */
  653. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  654. kvm_get_gdt(&dt);
  655. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  656. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  657. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  658. /*
  659. * Make sure the time stamp counter is monotonous.
  660. */
  661. rdtscll(tsc_this);
  662. if (tsc_this < vcpu->arch.host_tsc) {
  663. delta = vcpu->arch.host_tsc - tsc_this;
  664. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  665. vmcs_write64(TSC_OFFSET, new_offset);
  666. }
  667. }
  668. }
  669. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  670. {
  671. __vmx_load_host_state(to_vmx(vcpu));
  672. }
  673. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  674. {
  675. ulong cr0;
  676. if (vcpu->fpu_active)
  677. return;
  678. vcpu->fpu_active = 1;
  679. cr0 = vmcs_readl(GUEST_CR0);
  680. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  681. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  682. vmcs_writel(GUEST_CR0, cr0);
  683. update_exception_bitmap(vcpu);
  684. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  685. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  686. }
  687. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  688. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  689. {
  690. vmx_decache_cr0_guest_bits(vcpu);
  691. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  692. update_exception_bitmap(vcpu);
  693. vcpu->arch.cr0_guest_owned_bits = 0;
  694. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  695. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  696. }
  697. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  698. {
  699. unsigned long rflags;
  700. rflags = vmcs_readl(GUEST_RFLAGS);
  701. if (to_vmx(vcpu)->rmode.vm86_active)
  702. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  703. return rflags;
  704. }
  705. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  706. {
  707. if (to_vmx(vcpu)->rmode.vm86_active)
  708. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  709. vmcs_writel(GUEST_RFLAGS, rflags);
  710. }
  711. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  712. {
  713. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  714. int ret = 0;
  715. if (interruptibility & GUEST_INTR_STATE_STI)
  716. ret |= X86_SHADOW_INT_STI;
  717. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  718. ret |= X86_SHADOW_INT_MOV_SS;
  719. return ret & mask;
  720. }
  721. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  722. {
  723. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  724. u32 interruptibility = interruptibility_old;
  725. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  726. if (mask & X86_SHADOW_INT_MOV_SS)
  727. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  728. if (mask & X86_SHADOW_INT_STI)
  729. interruptibility |= GUEST_INTR_STATE_STI;
  730. if ((interruptibility != interruptibility_old))
  731. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  732. }
  733. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  734. {
  735. unsigned long rip;
  736. rip = kvm_rip_read(vcpu);
  737. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  738. kvm_rip_write(vcpu, rip);
  739. /* skipping an emulated instruction also counts */
  740. vmx_set_interrupt_shadow(vcpu, 0);
  741. }
  742. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  743. bool has_error_code, u32 error_code)
  744. {
  745. struct vcpu_vmx *vmx = to_vmx(vcpu);
  746. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  747. if (has_error_code) {
  748. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  749. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  750. }
  751. if (vmx->rmode.vm86_active) {
  752. vmx->rmode.irq.pending = true;
  753. vmx->rmode.irq.vector = nr;
  754. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  755. if (kvm_exception_is_soft(nr))
  756. vmx->rmode.irq.rip +=
  757. vmx->vcpu.arch.event_exit_inst_len;
  758. intr_info |= INTR_TYPE_SOFT_INTR;
  759. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  760. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  761. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  762. return;
  763. }
  764. if (kvm_exception_is_soft(nr)) {
  765. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  766. vmx->vcpu.arch.event_exit_inst_len);
  767. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  768. } else
  769. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  770. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  771. }
  772. static bool vmx_rdtscp_supported(void)
  773. {
  774. return cpu_has_vmx_rdtscp();
  775. }
  776. /*
  777. * Swap MSR entry in host/guest MSR entry array.
  778. */
  779. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  780. {
  781. struct shared_msr_entry tmp;
  782. tmp = vmx->guest_msrs[to];
  783. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  784. vmx->guest_msrs[from] = tmp;
  785. }
  786. /*
  787. * Set up the vmcs to automatically save and restore system
  788. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  789. * mode, as fiddling with msrs is very expensive.
  790. */
  791. static void setup_msrs(struct vcpu_vmx *vmx)
  792. {
  793. int save_nmsrs, index;
  794. unsigned long *msr_bitmap;
  795. vmx_load_host_state(vmx);
  796. save_nmsrs = 0;
  797. #ifdef CONFIG_X86_64
  798. if (is_long_mode(&vmx->vcpu)) {
  799. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  800. if (index >= 0)
  801. move_msr_up(vmx, index, save_nmsrs++);
  802. index = __find_msr_index(vmx, MSR_LSTAR);
  803. if (index >= 0)
  804. move_msr_up(vmx, index, save_nmsrs++);
  805. index = __find_msr_index(vmx, MSR_CSTAR);
  806. if (index >= 0)
  807. move_msr_up(vmx, index, save_nmsrs++);
  808. index = __find_msr_index(vmx, MSR_TSC_AUX);
  809. if (index >= 0 && vmx->rdtscp_enabled)
  810. move_msr_up(vmx, index, save_nmsrs++);
  811. /*
  812. * MSR_K6_STAR is only needed on long mode guests, and only
  813. * if efer.sce is enabled.
  814. */
  815. index = __find_msr_index(vmx, MSR_K6_STAR);
  816. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  817. move_msr_up(vmx, index, save_nmsrs++);
  818. }
  819. #endif
  820. index = __find_msr_index(vmx, MSR_EFER);
  821. if (index >= 0 && update_transition_efer(vmx, index))
  822. move_msr_up(vmx, index, save_nmsrs++);
  823. vmx->save_nmsrs = save_nmsrs;
  824. if (cpu_has_vmx_msr_bitmap()) {
  825. if (is_long_mode(&vmx->vcpu))
  826. msr_bitmap = vmx_msr_bitmap_longmode;
  827. else
  828. msr_bitmap = vmx_msr_bitmap_legacy;
  829. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  830. }
  831. }
  832. /*
  833. * reads and returns guest's timestamp counter "register"
  834. * guest_tsc = host_tsc + tsc_offset -- 21.3
  835. */
  836. static u64 guest_read_tsc(void)
  837. {
  838. u64 host_tsc, tsc_offset;
  839. rdtscll(host_tsc);
  840. tsc_offset = vmcs_read64(TSC_OFFSET);
  841. return host_tsc + tsc_offset;
  842. }
  843. /*
  844. * writes 'guest_tsc' into guest's timestamp counter "register"
  845. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  846. */
  847. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  848. {
  849. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  850. }
  851. /*
  852. * Reads an msr value (of 'msr_index') into 'pdata'.
  853. * Returns 0 on success, non-0 otherwise.
  854. * Assumes vcpu_load() was already called.
  855. */
  856. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  857. {
  858. u64 data;
  859. struct shared_msr_entry *msr;
  860. if (!pdata) {
  861. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  862. return -EINVAL;
  863. }
  864. switch (msr_index) {
  865. #ifdef CONFIG_X86_64
  866. case MSR_FS_BASE:
  867. data = vmcs_readl(GUEST_FS_BASE);
  868. break;
  869. case MSR_GS_BASE:
  870. data = vmcs_readl(GUEST_GS_BASE);
  871. break;
  872. case MSR_KERNEL_GS_BASE:
  873. vmx_load_host_state(to_vmx(vcpu));
  874. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  875. break;
  876. #endif
  877. case MSR_EFER:
  878. return kvm_get_msr_common(vcpu, msr_index, pdata);
  879. case MSR_IA32_TSC:
  880. data = guest_read_tsc();
  881. break;
  882. case MSR_IA32_SYSENTER_CS:
  883. data = vmcs_read32(GUEST_SYSENTER_CS);
  884. break;
  885. case MSR_IA32_SYSENTER_EIP:
  886. data = vmcs_readl(GUEST_SYSENTER_EIP);
  887. break;
  888. case MSR_IA32_SYSENTER_ESP:
  889. data = vmcs_readl(GUEST_SYSENTER_ESP);
  890. break;
  891. case MSR_TSC_AUX:
  892. if (!to_vmx(vcpu)->rdtscp_enabled)
  893. return 1;
  894. /* Otherwise falls through */
  895. default:
  896. vmx_load_host_state(to_vmx(vcpu));
  897. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  898. if (msr) {
  899. vmx_load_host_state(to_vmx(vcpu));
  900. data = msr->data;
  901. break;
  902. }
  903. return kvm_get_msr_common(vcpu, msr_index, pdata);
  904. }
  905. *pdata = data;
  906. return 0;
  907. }
  908. /*
  909. * Writes msr value into into the appropriate "register".
  910. * Returns 0 on success, non-0 otherwise.
  911. * Assumes vcpu_load() was already called.
  912. */
  913. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  914. {
  915. struct vcpu_vmx *vmx = to_vmx(vcpu);
  916. struct shared_msr_entry *msr;
  917. u64 host_tsc;
  918. int ret = 0;
  919. switch (msr_index) {
  920. case MSR_EFER:
  921. vmx_load_host_state(vmx);
  922. ret = kvm_set_msr_common(vcpu, msr_index, data);
  923. break;
  924. #ifdef CONFIG_X86_64
  925. case MSR_FS_BASE:
  926. vmcs_writel(GUEST_FS_BASE, data);
  927. break;
  928. case MSR_GS_BASE:
  929. vmcs_writel(GUEST_GS_BASE, data);
  930. break;
  931. case MSR_KERNEL_GS_BASE:
  932. vmx_load_host_state(vmx);
  933. vmx->msr_guest_kernel_gs_base = data;
  934. break;
  935. #endif
  936. case MSR_IA32_SYSENTER_CS:
  937. vmcs_write32(GUEST_SYSENTER_CS, data);
  938. break;
  939. case MSR_IA32_SYSENTER_EIP:
  940. vmcs_writel(GUEST_SYSENTER_EIP, data);
  941. break;
  942. case MSR_IA32_SYSENTER_ESP:
  943. vmcs_writel(GUEST_SYSENTER_ESP, data);
  944. break;
  945. case MSR_IA32_TSC:
  946. rdtscll(host_tsc);
  947. guest_write_tsc(data, host_tsc);
  948. break;
  949. case MSR_IA32_CR_PAT:
  950. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  951. vmcs_write64(GUEST_IA32_PAT, data);
  952. vcpu->arch.pat = data;
  953. break;
  954. }
  955. ret = kvm_set_msr_common(vcpu, msr_index, data);
  956. break;
  957. case MSR_TSC_AUX:
  958. if (!vmx->rdtscp_enabled)
  959. return 1;
  960. /* Check reserved bit, higher 32 bits should be zero */
  961. if ((data >> 32) != 0)
  962. return 1;
  963. /* Otherwise falls through */
  964. default:
  965. msr = find_msr_entry(vmx, msr_index);
  966. if (msr) {
  967. vmx_load_host_state(vmx);
  968. msr->data = data;
  969. break;
  970. }
  971. ret = kvm_set_msr_common(vcpu, msr_index, data);
  972. }
  973. return ret;
  974. }
  975. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  976. {
  977. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  978. switch (reg) {
  979. case VCPU_REGS_RSP:
  980. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  981. break;
  982. case VCPU_REGS_RIP:
  983. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  984. break;
  985. case VCPU_EXREG_PDPTR:
  986. if (enable_ept)
  987. ept_save_pdptrs(vcpu);
  988. break;
  989. default:
  990. break;
  991. }
  992. }
  993. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  994. {
  995. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  996. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  997. else
  998. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  999. update_exception_bitmap(vcpu);
  1000. }
  1001. static __init int cpu_has_kvm_support(void)
  1002. {
  1003. return cpu_has_vmx();
  1004. }
  1005. static __init int vmx_disabled_by_bios(void)
  1006. {
  1007. u64 msr;
  1008. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1009. return (msr & (FEATURE_CONTROL_LOCKED |
  1010. FEATURE_CONTROL_VMXON_ENABLED))
  1011. == FEATURE_CONTROL_LOCKED;
  1012. /* locked but not enabled */
  1013. }
  1014. static int hardware_enable(void *garbage)
  1015. {
  1016. int cpu = raw_smp_processor_id();
  1017. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1018. u64 old;
  1019. if (read_cr4() & X86_CR4_VMXE)
  1020. return -EBUSY;
  1021. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1022. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1023. if ((old & (FEATURE_CONTROL_LOCKED |
  1024. FEATURE_CONTROL_VMXON_ENABLED))
  1025. != (FEATURE_CONTROL_LOCKED |
  1026. FEATURE_CONTROL_VMXON_ENABLED))
  1027. /* enable and lock */
  1028. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  1029. FEATURE_CONTROL_LOCKED |
  1030. FEATURE_CONTROL_VMXON_ENABLED);
  1031. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1032. asm volatile (ASM_VMX_VMXON_RAX
  1033. : : "a"(&phys_addr), "m"(phys_addr)
  1034. : "memory", "cc");
  1035. ept_sync_global();
  1036. return 0;
  1037. }
  1038. static void vmclear_local_vcpus(void)
  1039. {
  1040. int cpu = raw_smp_processor_id();
  1041. struct vcpu_vmx *vmx, *n;
  1042. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1043. local_vcpus_link)
  1044. __vcpu_clear(vmx);
  1045. }
  1046. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1047. * tricks.
  1048. */
  1049. static void kvm_cpu_vmxoff(void)
  1050. {
  1051. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1052. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1053. }
  1054. static void hardware_disable(void *garbage)
  1055. {
  1056. vmclear_local_vcpus();
  1057. kvm_cpu_vmxoff();
  1058. }
  1059. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1060. u32 msr, u32 *result)
  1061. {
  1062. u32 vmx_msr_low, vmx_msr_high;
  1063. u32 ctl = ctl_min | ctl_opt;
  1064. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1065. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1066. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1067. /* Ensure minimum (required) set of control bits are supported. */
  1068. if (ctl_min & ~ctl)
  1069. return -EIO;
  1070. *result = ctl;
  1071. return 0;
  1072. }
  1073. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1074. {
  1075. u32 vmx_msr_low, vmx_msr_high;
  1076. u32 min, opt, min2, opt2;
  1077. u32 _pin_based_exec_control = 0;
  1078. u32 _cpu_based_exec_control = 0;
  1079. u32 _cpu_based_2nd_exec_control = 0;
  1080. u32 _vmexit_control = 0;
  1081. u32 _vmentry_control = 0;
  1082. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1083. opt = PIN_BASED_VIRTUAL_NMIS;
  1084. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1085. &_pin_based_exec_control) < 0)
  1086. return -EIO;
  1087. min = CPU_BASED_HLT_EXITING |
  1088. #ifdef CONFIG_X86_64
  1089. CPU_BASED_CR8_LOAD_EXITING |
  1090. CPU_BASED_CR8_STORE_EXITING |
  1091. #endif
  1092. CPU_BASED_CR3_LOAD_EXITING |
  1093. CPU_BASED_CR3_STORE_EXITING |
  1094. CPU_BASED_USE_IO_BITMAPS |
  1095. CPU_BASED_MOV_DR_EXITING |
  1096. CPU_BASED_USE_TSC_OFFSETING |
  1097. CPU_BASED_MWAIT_EXITING |
  1098. CPU_BASED_MONITOR_EXITING |
  1099. CPU_BASED_INVLPG_EXITING;
  1100. opt = CPU_BASED_TPR_SHADOW |
  1101. CPU_BASED_USE_MSR_BITMAPS |
  1102. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1103. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1104. &_cpu_based_exec_control) < 0)
  1105. return -EIO;
  1106. #ifdef CONFIG_X86_64
  1107. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1108. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1109. ~CPU_BASED_CR8_STORE_EXITING;
  1110. #endif
  1111. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1112. min2 = 0;
  1113. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1114. SECONDARY_EXEC_WBINVD_EXITING |
  1115. SECONDARY_EXEC_ENABLE_VPID |
  1116. SECONDARY_EXEC_ENABLE_EPT |
  1117. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1118. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1119. SECONDARY_EXEC_RDTSCP;
  1120. if (adjust_vmx_controls(min2, opt2,
  1121. MSR_IA32_VMX_PROCBASED_CTLS2,
  1122. &_cpu_based_2nd_exec_control) < 0)
  1123. return -EIO;
  1124. }
  1125. #ifndef CONFIG_X86_64
  1126. if (!(_cpu_based_2nd_exec_control &
  1127. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1128. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1129. #endif
  1130. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1131. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1132. enabled */
  1133. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1134. CPU_BASED_CR3_STORE_EXITING |
  1135. CPU_BASED_INVLPG_EXITING);
  1136. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1137. vmx_capability.ept, vmx_capability.vpid);
  1138. }
  1139. min = 0;
  1140. #ifdef CONFIG_X86_64
  1141. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1142. #endif
  1143. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1144. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1145. &_vmexit_control) < 0)
  1146. return -EIO;
  1147. min = 0;
  1148. opt = VM_ENTRY_LOAD_IA32_PAT;
  1149. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1150. &_vmentry_control) < 0)
  1151. return -EIO;
  1152. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1153. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1154. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1155. return -EIO;
  1156. #ifdef CONFIG_X86_64
  1157. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1158. if (vmx_msr_high & (1u<<16))
  1159. return -EIO;
  1160. #endif
  1161. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1162. if (((vmx_msr_high >> 18) & 15) != 6)
  1163. return -EIO;
  1164. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1165. vmcs_conf->order = get_order(vmcs_config.size);
  1166. vmcs_conf->revision_id = vmx_msr_low;
  1167. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1168. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1169. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1170. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1171. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1172. return 0;
  1173. }
  1174. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1175. {
  1176. int node = cpu_to_node(cpu);
  1177. struct page *pages;
  1178. struct vmcs *vmcs;
  1179. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1180. if (!pages)
  1181. return NULL;
  1182. vmcs = page_address(pages);
  1183. memset(vmcs, 0, vmcs_config.size);
  1184. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1185. return vmcs;
  1186. }
  1187. static struct vmcs *alloc_vmcs(void)
  1188. {
  1189. return alloc_vmcs_cpu(raw_smp_processor_id());
  1190. }
  1191. static void free_vmcs(struct vmcs *vmcs)
  1192. {
  1193. free_pages((unsigned long)vmcs, vmcs_config.order);
  1194. }
  1195. static void free_kvm_area(void)
  1196. {
  1197. int cpu;
  1198. for_each_possible_cpu(cpu) {
  1199. free_vmcs(per_cpu(vmxarea, cpu));
  1200. per_cpu(vmxarea, cpu) = NULL;
  1201. }
  1202. }
  1203. static __init int alloc_kvm_area(void)
  1204. {
  1205. int cpu;
  1206. for_each_possible_cpu(cpu) {
  1207. struct vmcs *vmcs;
  1208. vmcs = alloc_vmcs_cpu(cpu);
  1209. if (!vmcs) {
  1210. free_kvm_area();
  1211. return -ENOMEM;
  1212. }
  1213. per_cpu(vmxarea, cpu) = vmcs;
  1214. }
  1215. return 0;
  1216. }
  1217. static __init int hardware_setup(void)
  1218. {
  1219. if (setup_vmcs_config(&vmcs_config) < 0)
  1220. return -EIO;
  1221. if (boot_cpu_has(X86_FEATURE_NX))
  1222. kvm_enable_efer_bits(EFER_NX);
  1223. if (!cpu_has_vmx_vpid())
  1224. enable_vpid = 0;
  1225. if (!cpu_has_vmx_ept()) {
  1226. enable_ept = 0;
  1227. enable_unrestricted_guest = 0;
  1228. }
  1229. if (!cpu_has_vmx_unrestricted_guest())
  1230. enable_unrestricted_guest = 0;
  1231. if (!cpu_has_vmx_flexpriority())
  1232. flexpriority_enabled = 0;
  1233. if (!cpu_has_vmx_tpr_shadow())
  1234. kvm_x86_ops->update_cr8_intercept = NULL;
  1235. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1236. kvm_disable_largepages();
  1237. if (!cpu_has_vmx_ple())
  1238. ple_gap = 0;
  1239. return alloc_kvm_area();
  1240. }
  1241. static __exit void hardware_unsetup(void)
  1242. {
  1243. free_kvm_area();
  1244. }
  1245. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1246. {
  1247. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1248. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1249. vmcs_write16(sf->selector, save->selector);
  1250. vmcs_writel(sf->base, save->base);
  1251. vmcs_write32(sf->limit, save->limit);
  1252. vmcs_write32(sf->ar_bytes, save->ar);
  1253. } else {
  1254. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1255. << AR_DPL_SHIFT;
  1256. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1257. }
  1258. }
  1259. static void enter_pmode(struct kvm_vcpu *vcpu)
  1260. {
  1261. unsigned long flags;
  1262. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1263. vmx->emulation_required = 1;
  1264. vmx->rmode.vm86_active = 0;
  1265. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1266. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1267. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1268. flags = vmcs_readl(GUEST_RFLAGS);
  1269. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1270. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1271. vmcs_writel(GUEST_RFLAGS, flags);
  1272. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1273. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1274. update_exception_bitmap(vcpu);
  1275. if (emulate_invalid_guest_state)
  1276. return;
  1277. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1278. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1279. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1280. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1281. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1282. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1283. vmcs_write16(GUEST_CS_SELECTOR,
  1284. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1285. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1286. }
  1287. static gva_t rmode_tss_base(struct kvm *kvm)
  1288. {
  1289. if (!kvm->arch.tss_addr) {
  1290. struct kvm_memslots *slots;
  1291. gfn_t base_gfn;
  1292. slots = rcu_dereference(kvm->memslots);
  1293. base_gfn = kvm->memslots->memslots[0].base_gfn +
  1294. kvm->memslots->memslots[0].npages - 3;
  1295. return base_gfn << PAGE_SHIFT;
  1296. }
  1297. return kvm->arch.tss_addr;
  1298. }
  1299. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1300. {
  1301. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1302. save->selector = vmcs_read16(sf->selector);
  1303. save->base = vmcs_readl(sf->base);
  1304. save->limit = vmcs_read32(sf->limit);
  1305. save->ar = vmcs_read32(sf->ar_bytes);
  1306. vmcs_write16(sf->selector, save->base >> 4);
  1307. vmcs_write32(sf->base, save->base & 0xfffff);
  1308. vmcs_write32(sf->limit, 0xffff);
  1309. vmcs_write32(sf->ar_bytes, 0xf3);
  1310. }
  1311. static void enter_rmode(struct kvm_vcpu *vcpu)
  1312. {
  1313. unsigned long flags;
  1314. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1315. if (enable_unrestricted_guest)
  1316. return;
  1317. vmx->emulation_required = 1;
  1318. vmx->rmode.vm86_active = 1;
  1319. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1320. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1321. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1322. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1323. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1324. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1325. flags = vmcs_readl(GUEST_RFLAGS);
  1326. vmx->rmode.save_iopl
  1327. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1328. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1329. vmcs_writel(GUEST_RFLAGS, flags);
  1330. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1331. update_exception_bitmap(vcpu);
  1332. if (emulate_invalid_guest_state)
  1333. goto continue_rmode;
  1334. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1335. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1336. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1337. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1338. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1339. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1340. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1341. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1342. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1343. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1344. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1345. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1346. continue_rmode:
  1347. kvm_mmu_reset_context(vcpu);
  1348. init_rmode(vcpu->kvm);
  1349. }
  1350. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1351. {
  1352. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1353. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1354. if (!msr)
  1355. return;
  1356. /*
  1357. * Force kernel_gs_base reloading before EFER changes, as control
  1358. * of this msr depends on is_long_mode().
  1359. */
  1360. vmx_load_host_state(to_vmx(vcpu));
  1361. vcpu->arch.efer = efer;
  1362. if (efer & EFER_LMA) {
  1363. vmcs_write32(VM_ENTRY_CONTROLS,
  1364. vmcs_read32(VM_ENTRY_CONTROLS) |
  1365. VM_ENTRY_IA32E_MODE);
  1366. msr->data = efer;
  1367. } else {
  1368. vmcs_write32(VM_ENTRY_CONTROLS,
  1369. vmcs_read32(VM_ENTRY_CONTROLS) &
  1370. ~VM_ENTRY_IA32E_MODE);
  1371. msr->data = efer & ~EFER_LME;
  1372. }
  1373. setup_msrs(vmx);
  1374. }
  1375. #ifdef CONFIG_X86_64
  1376. static void enter_lmode(struct kvm_vcpu *vcpu)
  1377. {
  1378. u32 guest_tr_ar;
  1379. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1380. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1381. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1382. __func__);
  1383. vmcs_write32(GUEST_TR_AR_BYTES,
  1384. (guest_tr_ar & ~AR_TYPE_MASK)
  1385. | AR_TYPE_BUSY_64_TSS);
  1386. }
  1387. vcpu->arch.efer |= EFER_LMA;
  1388. vmx_set_efer(vcpu, vcpu->arch.efer);
  1389. }
  1390. static void exit_lmode(struct kvm_vcpu *vcpu)
  1391. {
  1392. vcpu->arch.efer &= ~EFER_LMA;
  1393. vmcs_write32(VM_ENTRY_CONTROLS,
  1394. vmcs_read32(VM_ENTRY_CONTROLS)
  1395. & ~VM_ENTRY_IA32E_MODE);
  1396. }
  1397. #endif
  1398. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1399. {
  1400. vpid_sync_vcpu_all(to_vmx(vcpu));
  1401. if (enable_ept)
  1402. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1403. }
  1404. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1405. {
  1406. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1407. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1408. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1409. }
  1410. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1411. {
  1412. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1413. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1414. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1415. }
  1416. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1417. {
  1418. if (!test_bit(VCPU_EXREG_PDPTR,
  1419. (unsigned long *)&vcpu->arch.regs_dirty))
  1420. return;
  1421. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1422. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1423. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1424. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1425. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1426. }
  1427. }
  1428. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1429. {
  1430. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1431. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1432. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1433. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1434. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1435. }
  1436. __set_bit(VCPU_EXREG_PDPTR,
  1437. (unsigned long *)&vcpu->arch.regs_avail);
  1438. __set_bit(VCPU_EXREG_PDPTR,
  1439. (unsigned long *)&vcpu->arch.regs_dirty);
  1440. }
  1441. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1442. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1443. unsigned long cr0,
  1444. struct kvm_vcpu *vcpu)
  1445. {
  1446. if (!(cr0 & X86_CR0_PG)) {
  1447. /* From paging/starting to nonpaging */
  1448. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1449. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1450. (CPU_BASED_CR3_LOAD_EXITING |
  1451. CPU_BASED_CR3_STORE_EXITING));
  1452. vcpu->arch.cr0 = cr0;
  1453. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1454. } else if (!is_paging(vcpu)) {
  1455. /* From nonpaging to paging */
  1456. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1457. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1458. ~(CPU_BASED_CR3_LOAD_EXITING |
  1459. CPU_BASED_CR3_STORE_EXITING));
  1460. vcpu->arch.cr0 = cr0;
  1461. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1462. }
  1463. if (!(cr0 & X86_CR0_WP))
  1464. *hw_cr0 &= ~X86_CR0_WP;
  1465. }
  1466. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1467. {
  1468. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1469. unsigned long hw_cr0;
  1470. if (enable_unrestricted_guest)
  1471. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1472. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1473. else
  1474. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1475. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1476. enter_pmode(vcpu);
  1477. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1478. enter_rmode(vcpu);
  1479. #ifdef CONFIG_X86_64
  1480. if (vcpu->arch.efer & EFER_LME) {
  1481. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1482. enter_lmode(vcpu);
  1483. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1484. exit_lmode(vcpu);
  1485. }
  1486. #endif
  1487. if (enable_ept)
  1488. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1489. if (!vcpu->fpu_active)
  1490. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1491. vmcs_writel(CR0_READ_SHADOW, cr0);
  1492. vmcs_writel(GUEST_CR0, hw_cr0);
  1493. vcpu->arch.cr0 = cr0;
  1494. }
  1495. static u64 construct_eptp(unsigned long root_hpa)
  1496. {
  1497. u64 eptp;
  1498. /* TODO write the value reading from MSR */
  1499. eptp = VMX_EPT_DEFAULT_MT |
  1500. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1501. eptp |= (root_hpa & PAGE_MASK);
  1502. return eptp;
  1503. }
  1504. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1505. {
  1506. unsigned long guest_cr3;
  1507. u64 eptp;
  1508. guest_cr3 = cr3;
  1509. if (enable_ept) {
  1510. eptp = construct_eptp(cr3);
  1511. vmcs_write64(EPT_POINTER, eptp);
  1512. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1513. vcpu->kvm->arch.ept_identity_map_addr;
  1514. ept_load_pdptrs(vcpu);
  1515. }
  1516. vmx_flush_tlb(vcpu);
  1517. vmcs_writel(GUEST_CR3, guest_cr3);
  1518. }
  1519. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1520. {
  1521. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1522. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1523. vcpu->arch.cr4 = cr4;
  1524. if (enable_ept) {
  1525. if (!is_paging(vcpu)) {
  1526. hw_cr4 &= ~X86_CR4_PAE;
  1527. hw_cr4 |= X86_CR4_PSE;
  1528. } else if (!(cr4 & X86_CR4_PAE)) {
  1529. hw_cr4 &= ~X86_CR4_PAE;
  1530. }
  1531. }
  1532. vmcs_writel(CR4_READ_SHADOW, cr4);
  1533. vmcs_writel(GUEST_CR4, hw_cr4);
  1534. }
  1535. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1536. {
  1537. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1538. return vmcs_readl(sf->base);
  1539. }
  1540. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1541. struct kvm_segment *var, int seg)
  1542. {
  1543. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1544. u32 ar;
  1545. var->base = vmcs_readl(sf->base);
  1546. var->limit = vmcs_read32(sf->limit);
  1547. var->selector = vmcs_read16(sf->selector);
  1548. ar = vmcs_read32(sf->ar_bytes);
  1549. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1550. ar = 0;
  1551. var->type = ar & 15;
  1552. var->s = (ar >> 4) & 1;
  1553. var->dpl = (ar >> 5) & 3;
  1554. var->present = (ar >> 7) & 1;
  1555. var->avl = (ar >> 12) & 1;
  1556. var->l = (ar >> 13) & 1;
  1557. var->db = (ar >> 14) & 1;
  1558. var->g = (ar >> 15) & 1;
  1559. var->unusable = (ar >> 16) & 1;
  1560. }
  1561. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1562. {
  1563. if (!is_protmode(vcpu))
  1564. return 0;
  1565. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1566. return 3;
  1567. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1568. }
  1569. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1570. {
  1571. u32 ar;
  1572. if (var->unusable)
  1573. ar = 1 << 16;
  1574. else {
  1575. ar = var->type & 15;
  1576. ar |= (var->s & 1) << 4;
  1577. ar |= (var->dpl & 3) << 5;
  1578. ar |= (var->present & 1) << 7;
  1579. ar |= (var->avl & 1) << 12;
  1580. ar |= (var->l & 1) << 13;
  1581. ar |= (var->db & 1) << 14;
  1582. ar |= (var->g & 1) << 15;
  1583. }
  1584. if (ar == 0) /* a 0 value means unusable */
  1585. ar = AR_UNUSABLE_MASK;
  1586. return ar;
  1587. }
  1588. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1589. struct kvm_segment *var, int seg)
  1590. {
  1591. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1592. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1593. u32 ar;
  1594. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1595. vmx->rmode.tr.selector = var->selector;
  1596. vmx->rmode.tr.base = var->base;
  1597. vmx->rmode.tr.limit = var->limit;
  1598. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1599. return;
  1600. }
  1601. vmcs_writel(sf->base, var->base);
  1602. vmcs_write32(sf->limit, var->limit);
  1603. vmcs_write16(sf->selector, var->selector);
  1604. if (vmx->rmode.vm86_active && var->s) {
  1605. /*
  1606. * Hack real-mode segments into vm86 compatibility.
  1607. */
  1608. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1609. vmcs_writel(sf->base, 0xf0000);
  1610. ar = 0xf3;
  1611. } else
  1612. ar = vmx_segment_access_rights(var);
  1613. /*
  1614. * Fix the "Accessed" bit in AR field of segment registers for older
  1615. * qemu binaries.
  1616. * IA32 arch specifies that at the time of processor reset the
  1617. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1618. * is setting it to 0 in the usedland code. This causes invalid guest
  1619. * state vmexit when "unrestricted guest" mode is turned on.
  1620. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1621. * tree. Newer qemu binaries with that qemu fix would not need this
  1622. * kvm hack.
  1623. */
  1624. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1625. ar |= 0x1; /* Accessed */
  1626. vmcs_write32(sf->ar_bytes, ar);
  1627. }
  1628. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1629. {
  1630. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1631. *db = (ar >> 14) & 1;
  1632. *l = (ar >> 13) & 1;
  1633. }
  1634. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1635. {
  1636. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1637. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1638. }
  1639. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1640. {
  1641. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1642. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1643. }
  1644. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1645. {
  1646. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1647. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1648. }
  1649. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1650. {
  1651. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1652. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1653. }
  1654. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1655. {
  1656. struct kvm_segment var;
  1657. u32 ar;
  1658. vmx_get_segment(vcpu, &var, seg);
  1659. ar = vmx_segment_access_rights(&var);
  1660. if (var.base != (var.selector << 4))
  1661. return false;
  1662. if (var.limit != 0xffff)
  1663. return false;
  1664. if (ar != 0xf3)
  1665. return false;
  1666. return true;
  1667. }
  1668. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1669. {
  1670. struct kvm_segment cs;
  1671. unsigned int cs_rpl;
  1672. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1673. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1674. if (cs.unusable)
  1675. return false;
  1676. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1677. return false;
  1678. if (!cs.s)
  1679. return false;
  1680. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1681. if (cs.dpl > cs_rpl)
  1682. return false;
  1683. } else {
  1684. if (cs.dpl != cs_rpl)
  1685. return false;
  1686. }
  1687. if (!cs.present)
  1688. return false;
  1689. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1690. return true;
  1691. }
  1692. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1693. {
  1694. struct kvm_segment ss;
  1695. unsigned int ss_rpl;
  1696. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1697. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1698. if (ss.unusable)
  1699. return true;
  1700. if (ss.type != 3 && ss.type != 7)
  1701. return false;
  1702. if (!ss.s)
  1703. return false;
  1704. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1705. return false;
  1706. if (!ss.present)
  1707. return false;
  1708. return true;
  1709. }
  1710. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1711. {
  1712. struct kvm_segment var;
  1713. unsigned int rpl;
  1714. vmx_get_segment(vcpu, &var, seg);
  1715. rpl = var.selector & SELECTOR_RPL_MASK;
  1716. if (var.unusable)
  1717. return true;
  1718. if (!var.s)
  1719. return false;
  1720. if (!var.present)
  1721. return false;
  1722. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1723. if (var.dpl < rpl) /* DPL < RPL */
  1724. return false;
  1725. }
  1726. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1727. * rights flags
  1728. */
  1729. return true;
  1730. }
  1731. static bool tr_valid(struct kvm_vcpu *vcpu)
  1732. {
  1733. struct kvm_segment tr;
  1734. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1735. if (tr.unusable)
  1736. return false;
  1737. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1738. return false;
  1739. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1740. return false;
  1741. if (!tr.present)
  1742. return false;
  1743. return true;
  1744. }
  1745. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1746. {
  1747. struct kvm_segment ldtr;
  1748. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1749. if (ldtr.unusable)
  1750. return true;
  1751. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1752. return false;
  1753. if (ldtr.type != 2)
  1754. return false;
  1755. if (!ldtr.present)
  1756. return false;
  1757. return true;
  1758. }
  1759. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1760. {
  1761. struct kvm_segment cs, ss;
  1762. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1763. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1764. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1765. (ss.selector & SELECTOR_RPL_MASK));
  1766. }
  1767. /*
  1768. * Check if guest state is valid. Returns true if valid, false if
  1769. * not.
  1770. * We assume that registers are always usable
  1771. */
  1772. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1773. {
  1774. /* real mode guest state checks */
  1775. if (!is_protmode(vcpu)) {
  1776. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1777. return false;
  1778. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1779. return false;
  1780. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1781. return false;
  1782. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1783. return false;
  1784. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1785. return false;
  1786. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1787. return false;
  1788. } else {
  1789. /* protected mode guest state checks */
  1790. if (!cs_ss_rpl_check(vcpu))
  1791. return false;
  1792. if (!code_segment_valid(vcpu))
  1793. return false;
  1794. if (!stack_segment_valid(vcpu))
  1795. return false;
  1796. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1797. return false;
  1798. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1799. return false;
  1800. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1801. return false;
  1802. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1803. return false;
  1804. if (!tr_valid(vcpu))
  1805. return false;
  1806. if (!ldtr_valid(vcpu))
  1807. return false;
  1808. }
  1809. /* TODO:
  1810. * - Add checks on RIP
  1811. * - Add checks on RFLAGS
  1812. */
  1813. return true;
  1814. }
  1815. static int init_rmode_tss(struct kvm *kvm)
  1816. {
  1817. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1818. u16 data = 0;
  1819. int ret = 0;
  1820. int r;
  1821. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1822. if (r < 0)
  1823. goto out;
  1824. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1825. r = kvm_write_guest_page(kvm, fn++, &data,
  1826. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1827. if (r < 0)
  1828. goto out;
  1829. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1830. if (r < 0)
  1831. goto out;
  1832. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1833. if (r < 0)
  1834. goto out;
  1835. data = ~0;
  1836. r = kvm_write_guest_page(kvm, fn, &data,
  1837. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1838. sizeof(u8));
  1839. if (r < 0)
  1840. goto out;
  1841. ret = 1;
  1842. out:
  1843. return ret;
  1844. }
  1845. static int init_rmode_identity_map(struct kvm *kvm)
  1846. {
  1847. int i, r, ret;
  1848. pfn_t identity_map_pfn;
  1849. u32 tmp;
  1850. if (!enable_ept)
  1851. return 1;
  1852. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1853. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1854. "haven't been allocated!\n");
  1855. return 0;
  1856. }
  1857. if (likely(kvm->arch.ept_identity_pagetable_done))
  1858. return 1;
  1859. ret = 0;
  1860. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1861. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1862. if (r < 0)
  1863. goto out;
  1864. /* Set up identity-mapping pagetable for EPT in real mode */
  1865. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1866. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1867. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1868. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1869. &tmp, i * sizeof(tmp), sizeof(tmp));
  1870. if (r < 0)
  1871. goto out;
  1872. }
  1873. kvm->arch.ept_identity_pagetable_done = true;
  1874. ret = 1;
  1875. out:
  1876. return ret;
  1877. }
  1878. static void seg_setup(int seg)
  1879. {
  1880. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1881. unsigned int ar;
  1882. vmcs_write16(sf->selector, 0);
  1883. vmcs_writel(sf->base, 0);
  1884. vmcs_write32(sf->limit, 0xffff);
  1885. if (enable_unrestricted_guest) {
  1886. ar = 0x93;
  1887. if (seg == VCPU_SREG_CS)
  1888. ar |= 0x08; /* code segment */
  1889. } else
  1890. ar = 0xf3;
  1891. vmcs_write32(sf->ar_bytes, ar);
  1892. }
  1893. static int alloc_apic_access_page(struct kvm *kvm)
  1894. {
  1895. struct kvm_userspace_memory_region kvm_userspace_mem;
  1896. int r = 0;
  1897. mutex_lock(&kvm->slots_lock);
  1898. if (kvm->arch.apic_access_page)
  1899. goto out;
  1900. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1901. kvm_userspace_mem.flags = 0;
  1902. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1903. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1904. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1905. if (r)
  1906. goto out;
  1907. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1908. out:
  1909. mutex_unlock(&kvm->slots_lock);
  1910. return r;
  1911. }
  1912. static int alloc_identity_pagetable(struct kvm *kvm)
  1913. {
  1914. struct kvm_userspace_memory_region kvm_userspace_mem;
  1915. int r = 0;
  1916. mutex_lock(&kvm->slots_lock);
  1917. if (kvm->arch.ept_identity_pagetable)
  1918. goto out;
  1919. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1920. kvm_userspace_mem.flags = 0;
  1921. kvm_userspace_mem.guest_phys_addr =
  1922. kvm->arch.ept_identity_map_addr;
  1923. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1924. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1925. if (r)
  1926. goto out;
  1927. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1928. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1929. out:
  1930. mutex_unlock(&kvm->slots_lock);
  1931. return r;
  1932. }
  1933. static void allocate_vpid(struct vcpu_vmx *vmx)
  1934. {
  1935. int vpid;
  1936. vmx->vpid = 0;
  1937. if (!enable_vpid)
  1938. return;
  1939. spin_lock(&vmx_vpid_lock);
  1940. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1941. if (vpid < VMX_NR_VPIDS) {
  1942. vmx->vpid = vpid;
  1943. __set_bit(vpid, vmx_vpid_bitmap);
  1944. }
  1945. spin_unlock(&vmx_vpid_lock);
  1946. }
  1947. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1948. {
  1949. int f = sizeof(unsigned long);
  1950. if (!cpu_has_vmx_msr_bitmap())
  1951. return;
  1952. /*
  1953. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1954. * have the write-low and read-high bitmap offsets the wrong way round.
  1955. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1956. */
  1957. if (msr <= 0x1fff) {
  1958. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1959. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1960. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1961. msr &= 0x1fff;
  1962. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1963. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1964. }
  1965. }
  1966. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1967. {
  1968. if (!longmode_only)
  1969. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1970. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1971. }
  1972. /*
  1973. * Sets up the vmcs for emulated real mode.
  1974. */
  1975. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1976. {
  1977. u32 host_sysenter_cs, msr_low, msr_high;
  1978. u32 junk;
  1979. u64 host_pat, tsc_this, tsc_base;
  1980. unsigned long a;
  1981. struct descriptor_table dt;
  1982. int i;
  1983. unsigned long kvm_vmx_return;
  1984. u32 exec_control;
  1985. /* I/O */
  1986. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1987. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1988. if (cpu_has_vmx_msr_bitmap())
  1989. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1990. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1991. /* Control */
  1992. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1993. vmcs_config.pin_based_exec_ctrl);
  1994. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1995. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1996. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1997. #ifdef CONFIG_X86_64
  1998. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1999. CPU_BASED_CR8_LOAD_EXITING;
  2000. #endif
  2001. }
  2002. if (!enable_ept)
  2003. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2004. CPU_BASED_CR3_LOAD_EXITING |
  2005. CPU_BASED_INVLPG_EXITING;
  2006. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2007. if (cpu_has_secondary_exec_ctrls()) {
  2008. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2009. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2010. exec_control &=
  2011. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2012. if (vmx->vpid == 0)
  2013. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2014. if (!enable_ept) {
  2015. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2016. enable_unrestricted_guest = 0;
  2017. }
  2018. if (!enable_unrestricted_guest)
  2019. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2020. if (!ple_gap)
  2021. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2022. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2023. }
  2024. if (ple_gap) {
  2025. vmcs_write32(PLE_GAP, ple_gap);
  2026. vmcs_write32(PLE_WINDOW, ple_window);
  2027. }
  2028. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2029. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2030. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2031. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  2032. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2033. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2034. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2035. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2036. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2037. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2038. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2039. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2040. #ifdef CONFIG_X86_64
  2041. rdmsrl(MSR_FS_BASE, a);
  2042. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2043. rdmsrl(MSR_GS_BASE, a);
  2044. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2045. #else
  2046. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2047. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2048. #endif
  2049. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2050. kvm_get_idt(&dt);
  2051. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2052. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2053. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2054. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2055. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2056. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2057. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2058. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2059. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2060. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2061. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2062. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2063. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2064. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2065. host_pat = msr_low | ((u64) msr_high << 32);
  2066. vmcs_write64(HOST_IA32_PAT, host_pat);
  2067. }
  2068. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2069. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2070. host_pat = msr_low | ((u64) msr_high << 32);
  2071. /* Write the default value follow host pat */
  2072. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2073. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2074. vmx->vcpu.arch.pat = host_pat;
  2075. }
  2076. for (i = 0; i < NR_VMX_MSR; ++i) {
  2077. u32 index = vmx_msr_index[i];
  2078. u32 data_low, data_high;
  2079. int j = vmx->nmsrs;
  2080. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2081. continue;
  2082. if (wrmsr_safe(index, data_low, data_high) < 0)
  2083. continue;
  2084. vmx->guest_msrs[j].index = i;
  2085. vmx->guest_msrs[j].data = 0;
  2086. vmx->guest_msrs[j].mask = -1ull;
  2087. ++vmx->nmsrs;
  2088. }
  2089. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2090. /* 22.2.1, 20.8.1 */
  2091. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2092. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2093. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2094. if (enable_ept)
  2095. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2096. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2097. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2098. rdtscll(tsc_this);
  2099. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2100. tsc_base = tsc_this;
  2101. guest_write_tsc(0, tsc_base);
  2102. return 0;
  2103. }
  2104. static int init_rmode(struct kvm *kvm)
  2105. {
  2106. if (!init_rmode_tss(kvm))
  2107. return 0;
  2108. if (!init_rmode_identity_map(kvm))
  2109. return 0;
  2110. return 1;
  2111. }
  2112. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2113. {
  2114. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2115. u64 msr;
  2116. int ret, idx;
  2117. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2118. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2119. if (!init_rmode(vmx->vcpu.kvm)) {
  2120. ret = -ENOMEM;
  2121. goto out;
  2122. }
  2123. vmx->rmode.vm86_active = 0;
  2124. vmx->soft_vnmi_blocked = 0;
  2125. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2126. kvm_set_cr8(&vmx->vcpu, 0);
  2127. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2128. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2129. msr |= MSR_IA32_APICBASE_BSP;
  2130. kvm_set_apic_base(&vmx->vcpu, msr);
  2131. fx_init(&vmx->vcpu);
  2132. seg_setup(VCPU_SREG_CS);
  2133. /*
  2134. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2135. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2136. */
  2137. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2138. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2139. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2140. } else {
  2141. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2142. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2143. }
  2144. seg_setup(VCPU_SREG_DS);
  2145. seg_setup(VCPU_SREG_ES);
  2146. seg_setup(VCPU_SREG_FS);
  2147. seg_setup(VCPU_SREG_GS);
  2148. seg_setup(VCPU_SREG_SS);
  2149. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2150. vmcs_writel(GUEST_TR_BASE, 0);
  2151. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2152. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2153. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2154. vmcs_writel(GUEST_LDTR_BASE, 0);
  2155. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2156. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2157. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2158. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2159. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2160. vmcs_writel(GUEST_RFLAGS, 0x02);
  2161. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2162. kvm_rip_write(vcpu, 0xfff0);
  2163. else
  2164. kvm_rip_write(vcpu, 0);
  2165. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2166. vmcs_writel(GUEST_DR7, 0x400);
  2167. vmcs_writel(GUEST_GDTR_BASE, 0);
  2168. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2169. vmcs_writel(GUEST_IDTR_BASE, 0);
  2170. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2171. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2172. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2173. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2174. /* Special registers */
  2175. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2176. setup_msrs(vmx);
  2177. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2178. if (cpu_has_vmx_tpr_shadow()) {
  2179. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2180. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2181. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2182. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2183. vmcs_write32(TPR_THRESHOLD, 0);
  2184. }
  2185. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2186. vmcs_write64(APIC_ACCESS_ADDR,
  2187. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2188. if (vmx->vpid != 0)
  2189. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2190. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2191. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2192. vmx_set_cr4(&vmx->vcpu, 0);
  2193. vmx_set_efer(&vmx->vcpu, 0);
  2194. vmx_fpu_activate(&vmx->vcpu);
  2195. update_exception_bitmap(&vmx->vcpu);
  2196. vpid_sync_vcpu_all(vmx);
  2197. ret = 0;
  2198. /* HACK: Don't enable emulation on guest boot/reset */
  2199. vmx->emulation_required = 0;
  2200. out:
  2201. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2202. return ret;
  2203. }
  2204. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2205. {
  2206. u32 cpu_based_vm_exec_control;
  2207. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2208. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2209. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2210. }
  2211. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2212. {
  2213. u32 cpu_based_vm_exec_control;
  2214. if (!cpu_has_virtual_nmis()) {
  2215. enable_irq_window(vcpu);
  2216. return;
  2217. }
  2218. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2219. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2220. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2221. }
  2222. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2223. {
  2224. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2225. uint32_t intr;
  2226. int irq = vcpu->arch.interrupt.nr;
  2227. trace_kvm_inj_virq(irq);
  2228. ++vcpu->stat.irq_injections;
  2229. if (vmx->rmode.vm86_active) {
  2230. vmx->rmode.irq.pending = true;
  2231. vmx->rmode.irq.vector = irq;
  2232. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2233. if (vcpu->arch.interrupt.soft)
  2234. vmx->rmode.irq.rip +=
  2235. vmx->vcpu.arch.event_exit_inst_len;
  2236. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2237. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2238. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2239. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2240. return;
  2241. }
  2242. intr = irq | INTR_INFO_VALID_MASK;
  2243. if (vcpu->arch.interrupt.soft) {
  2244. intr |= INTR_TYPE_SOFT_INTR;
  2245. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2246. vmx->vcpu.arch.event_exit_inst_len);
  2247. } else
  2248. intr |= INTR_TYPE_EXT_INTR;
  2249. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2250. }
  2251. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2252. {
  2253. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2254. if (!cpu_has_virtual_nmis()) {
  2255. /*
  2256. * Tracking the NMI-blocked state in software is built upon
  2257. * finding the next open IRQ window. This, in turn, depends on
  2258. * well-behaving guests: They have to keep IRQs disabled at
  2259. * least as long as the NMI handler runs. Otherwise we may
  2260. * cause NMI nesting, maybe breaking the guest. But as this is
  2261. * highly unlikely, we can live with the residual risk.
  2262. */
  2263. vmx->soft_vnmi_blocked = 1;
  2264. vmx->vnmi_blocked_time = 0;
  2265. }
  2266. ++vcpu->stat.nmi_injections;
  2267. if (vmx->rmode.vm86_active) {
  2268. vmx->rmode.irq.pending = true;
  2269. vmx->rmode.irq.vector = NMI_VECTOR;
  2270. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2271. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2272. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2273. INTR_INFO_VALID_MASK);
  2274. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2275. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2276. return;
  2277. }
  2278. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2279. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2280. }
  2281. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2282. {
  2283. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2284. return 0;
  2285. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2286. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2287. GUEST_INTR_STATE_NMI));
  2288. }
  2289. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2290. {
  2291. if (!cpu_has_virtual_nmis())
  2292. return to_vmx(vcpu)->soft_vnmi_blocked;
  2293. else
  2294. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2295. GUEST_INTR_STATE_NMI);
  2296. }
  2297. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2298. {
  2299. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2300. if (!cpu_has_virtual_nmis()) {
  2301. if (vmx->soft_vnmi_blocked != masked) {
  2302. vmx->soft_vnmi_blocked = masked;
  2303. vmx->vnmi_blocked_time = 0;
  2304. }
  2305. } else {
  2306. if (masked)
  2307. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2308. GUEST_INTR_STATE_NMI);
  2309. else
  2310. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2311. GUEST_INTR_STATE_NMI);
  2312. }
  2313. }
  2314. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2315. {
  2316. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2317. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2318. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2319. }
  2320. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2321. {
  2322. int ret;
  2323. struct kvm_userspace_memory_region tss_mem = {
  2324. .slot = TSS_PRIVATE_MEMSLOT,
  2325. .guest_phys_addr = addr,
  2326. .memory_size = PAGE_SIZE * 3,
  2327. .flags = 0,
  2328. };
  2329. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2330. if (ret)
  2331. return ret;
  2332. kvm->arch.tss_addr = addr;
  2333. return 0;
  2334. }
  2335. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2336. int vec, u32 err_code)
  2337. {
  2338. /*
  2339. * Instruction with address size override prefix opcode 0x67
  2340. * Cause the #SS fault with 0 error code in VM86 mode.
  2341. */
  2342. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2343. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2344. return 1;
  2345. /*
  2346. * Forward all other exceptions that are valid in real mode.
  2347. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2348. * the required debugging infrastructure rework.
  2349. */
  2350. switch (vec) {
  2351. case DB_VECTOR:
  2352. if (vcpu->guest_debug &
  2353. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2354. return 0;
  2355. kvm_queue_exception(vcpu, vec);
  2356. return 1;
  2357. case BP_VECTOR:
  2358. /*
  2359. * Update instruction length as we may reinject the exception
  2360. * from user space while in guest debugging mode.
  2361. */
  2362. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2363. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2364. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2365. return 0;
  2366. /* fall through */
  2367. case DE_VECTOR:
  2368. case OF_VECTOR:
  2369. case BR_VECTOR:
  2370. case UD_VECTOR:
  2371. case DF_VECTOR:
  2372. case SS_VECTOR:
  2373. case GP_VECTOR:
  2374. case MF_VECTOR:
  2375. kvm_queue_exception(vcpu, vec);
  2376. return 1;
  2377. }
  2378. return 0;
  2379. }
  2380. /*
  2381. * Trigger machine check on the host. We assume all the MSRs are already set up
  2382. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2383. * We pass a fake environment to the machine check handler because we want
  2384. * the guest to be always treated like user space, no matter what context
  2385. * it used internally.
  2386. */
  2387. static void kvm_machine_check(void)
  2388. {
  2389. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2390. struct pt_regs regs = {
  2391. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2392. .flags = X86_EFLAGS_IF,
  2393. };
  2394. do_machine_check(&regs, 0);
  2395. #endif
  2396. }
  2397. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2398. {
  2399. /* already handled by vcpu_run */
  2400. return 1;
  2401. }
  2402. static int handle_exception(struct kvm_vcpu *vcpu)
  2403. {
  2404. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2405. struct kvm_run *kvm_run = vcpu->run;
  2406. u32 intr_info, ex_no, error_code;
  2407. unsigned long cr2, rip, dr6;
  2408. u32 vect_info;
  2409. enum emulation_result er;
  2410. vect_info = vmx->idt_vectoring_info;
  2411. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2412. if (is_machine_check(intr_info))
  2413. return handle_machine_check(vcpu);
  2414. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2415. !is_page_fault(intr_info)) {
  2416. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2417. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2418. vcpu->run->internal.ndata = 2;
  2419. vcpu->run->internal.data[0] = vect_info;
  2420. vcpu->run->internal.data[1] = intr_info;
  2421. return 0;
  2422. }
  2423. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2424. return 1; /* already handled by vmx_vcpu_run() */
  2425. if (is_no_device(intr_info)) {
  2426. vmx_fpu_activate(vcpu);
  2427. return 1;
  2428. }
  2429. if (is_invalid_opcode(intr_info)) {
  2430. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2431. if (er != EMULATE_DONE)
  2432. kvm_queue_exception(vcpu, UD_VECTOR);
  2433. return 1;
  2434. }
  2435. error_code = 0;
  2436. rip = kvm_rip_read(vcpu);
  2437. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2438. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2439. if (is_page_fault(intr_info)) {
  2440. /* EPT won't cause page fault directly */
  2441. if (enable_ept)
  2442. BUG();
  2443. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2444. trace_kvm_page_fault(cr2, error_code);
  2445. if (kvm_event_needs_reinjection(vcpu))
  2446. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2447. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2448. }
  2449. if (vmx->rmode.vm86_active &&
  2450. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2451. error_code)) {
  2452. if (vcpu->arch.halt_request) {
  2453. vcpu->arch.halt_request = 0;
  2454. return kvm_emulate_halt(vcpu);
  2455. }
  2456. return 1;
  2457. }
  2458. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2459. switch (ex_no) {
  2460. case DB_VECTOR:
  2461. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2462. if (!(vcpu->guest_debug &
  2463. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2464. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2465. kvm_queue_exception(vcpu, DB_VECTOR);
  2466. return 1;
  2467. }
  2468. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2469. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2470. /* fall through */
  2471. case BP_VECTOR:
  2472. /*
  2473. * Update instruction length as we may reinject #BP from
  2474. * user space while in guest debugging mode. Reading it for
  2475. * #DB as well causes no harm, it is not used in that case.
  2476. */
  2477. vmx->vcpu.arch.event_exit_inst_len =
  2478. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2479. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2480. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2481. kvm_run->debug.arch.exception = ex_no;
  2482. break;
  2483. default:
  2484. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2485. kvm_run->ex.exception = ex_no;
  2486. kvm_run->ex.error_code = error_code;
  2487. break;
  2488. }
  2489. return 0;
  2490. }
  2491. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2492. {
  2493. ++vcpu->stat.irq_exits;
  2494. return 1;
  2495. }
  2496. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2497. {
  2498. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2499. return 0;
  2500. }
  2501. static int handle_io(struct kvm_vcpu *vcpu)
  2502. {
  2503. unsigned long exit_qualification;
  2504. int size, in, string;
  2505. unsigned port;
  2506. ++vcpu->stat.io_exits;
  2507. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2508. string = (exit_qualification & 16) != 0;
  2509. if (string) {
  2510. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2511. return 0;
  2512. return 1;
  2513. }
  2514. size = (exit_qualification & 7) + 1;
  2515. in = (exit_qualification & 8) != 0;
  2516. port = exit_qualification >> 16;
  2517. skip_emulated_instruction(vcpu);
  2518. return kvm_emulate_pio(vcpu, in, size, port);
  2519. }
  2520. static void
  2521. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2522. {
  2523. /*
  2524. * Patch in the VMCALL instruction:
  2525. */
  2526. hypercall[0] = 0x0f;
  2527. hypercall[1] = 0x01;
  2528. hypercall[2] = 0xc1;
  2529. }
  2530. static int handle_cr(struct kvm_vcpu *vcpu)
  2531. {
  2532. unsigned long exit_qualification, val;
  2533. int cr;
  2534. int reg;
  2535. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2536. cr = exit_qualification & 15;
  2537. reg = (exit_qualification >> 8) & 15;
  2538. switch ((exit_qualification >> 4) & 3) {
  2539. case 0: /* mov to cr */
  2540. val = kvm_register_read(vcpu, reg);
  2541. trace_kvm_cr_write(cr, val);
  2542. switch (cr) {
  2543. case 0:
  2544. kvm_set_cr0(vcpu, val);
  2545. skip_emulated_instruction(vcpu);
  2546. return 1;
  2547. case 3:
  2548. kvm_set_cr3(vcpu, val);
  2549. skip_emulated_instruction(vcpu);
  2550. return 1;
  2551. case 4:
  2552. kvm_set_cr4(vcpu, val);
  2553. skip_emulated_instruction(vcpu);
  2554. return 1;
  2555. case 8: {
  2556. u8 cr8_prev = kvm_get_cr8(vcpu);
  2557. u8 cr8 = kvm_register_read(vcpu, reg);
  2558. kvm_set_cr8(vcpu, cr8);
  2559. skip_emulated_instruction(vcpu);
  2560. if (irqchip_in_kernel(vcpu->kvm))
  2561. return 1;
  2562. if (cr8_prev <= cr8)
  2563. return 1;
  2564. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2565. return 0;
  2566. }
  2567. };
  2568. break;
  2569. case 2: /* clts */
  2570. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2571. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2572. skip_emulated_instruction(vcpu);
  2573. vmx_fpu_activate(vcpu);
  2574. return 1;
  2575. case 1: /*mov from cr*/
  2576. switch (cr) {
  2577. case 3:
  2578. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2579. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2580. skip_emulated_instruction(vcpu);
  2581. return 1;
  2582. case 8:
  2583. val = kvm_get_cr8(vcpu);
  2584. kvm_register_write(vcpu, reg, val);
  2585. trace_kvm_cr_read(cr, val);
  2586. skip_emulated_instruction(vcpu);
  2587. return 1;
  2588. }
  2589. break;
  2590. case 3: /* lmsw */
  2591. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2592. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2593. kvm_lmsw(vcpu, val);
  2594. skip_emulated_instruction(vcpu);
  2595. return 1;
  2596. default:
  2597. break;
  2598. }
  2599. vcpu->run->exit_reason = 0;
  2600. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2601. (int)(exit_qualification >> 4) & 3, cr);
  2602. return 0;
  2603. }
  2604. static int check_dr_alias(struct kvm_vcpu *vcpu)
  2605. {
  2606. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  2607. kvm_queue_exception(vcpu, UD_VECTOR);
  2608. return -1;
  2609. }
  2610. return 0;
  2611. }
  2612. static int handle_dr(struct kvm_vcpu *vcpu)
  2613. {
  2614. unsigned long exit_qualification;
  2615. unsigned long val;
  2616. int dr, reg;
  2617. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2618. if (!kvm_require_cpl(vcpu, 0))
  2619. return 1;
  2620. dr = vmcs_readl(GUEST_DR7);
  2621. if (dr & DR7_GD) {
  2622. /*
  2623. * As the vm-exit takes precedence over the debug trap, we
  2624. * need to emulate the latter, either for the host or the
  2625. * guest debugging itself.
  2626. */
  2627. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2628. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2629. vcpu->run->debug.arch.dr7 = dr;
  2630. vcpu->run->debug.arch.pc =
  2631. vmcs_readl(GUEST_CS_BASE) +
  2632. vmcs_readl(GUEST_RIP);
  2633. vcpu->run->debug.arch.exception = DB_VECTOR;
  2634. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2635. return 0;
  2636. } else {
  2637. vcpu->arch.dr7 &= ~DR7_GD;
  2638. vcpu->arch.dr6 |= DR6_BD;
  2639. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2640. kvm_queue_exception(vcpu, DB_VECTOR);
  2641. return 1;
  2642. }
  2643. }
  2644. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2645. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2646. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2647. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2648. switch (dr) {
  2649. case 0 ... 3:
  2650. val = vcpu->arch.db[dr];
  2651. break;
  2652. case 4:
  2653. if (check_dr_alias(vcpu) < 0)
  2654. return 1;
  2655. /* fall through */
  2656. case 6:
  2657. val = vcpu->arch.dr6;
  2658. break;
  2659. case 5:
  2660. if (check_dr_alias(vcpu) < 0)
  2661. return 1;
  2662. /* fall through */
  2663. default: /* 7 */
  2664. val = vcpu->arch.dr7;
  2665. break;
  2666. }
  2667. kvm_register_write(vcpu, reg, val);
  2668. } else {
  2669. val = vcpu->arch.regs[reg];
  2670. switch (dr) {
  2671. case 0 ... 3:
  2672. vcpu->arch.db[dr] = val;
  2673. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2674. vcpu->arch.eff_db[dr] = val;
  2675. break;
  2676. case 4:
  2677. if (check_dr_alias(vcpu) < 0)
  2678. return 1;
  2679. /* fall through */
  2680. case 6:
  2681. if (val & 0xffffffff00000000ULL) {
  2682. kvm_inject_gp(vcpu, 0);
  2683. return 1;
  2684. }
  2685. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2686. break;
  2687. case 5:
  2688. if (check_dr_alias(vcpu) < 0)
  2689. return 1;
  2690. /* fall through */
  2691. default: /* 7 */
  2692. if (val & 0xffffffff00000000ULL) {
  2693. kvm_inject_gp(vcpu, 0);
  2694. return 1;
  2695. }
  2696. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2697. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2698. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2699. vcpu->arch.switch_db_regs =
  2700. (val & DR7_BP_EN_MASK);
  2701. }
  2702. break;
  2703. }
  2704. }
  2705. skip_emulated_instruction(vcpu);
  2706. return 1;
  2707. }
  2708. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2709. {
  2710. kvm_emulate_cpuid(vcpu);
  2711. return 1;
  2712. }
  2713. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2714. {
  2715. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2716. u64 data;
  2717. if (vmx_get_msr(vcpu, ecx, &data)) {
  2718. trace_kvm_msr_read_ex(ecx);
  2719. kvm_inject_gp(vcpu, 0);
  2720. return 1;
  2721. }
  2722. trace_kvm_msr_read(ecx, data);
  2723. /* FIXME: handling of bits 32:63 of rax, rdx */
  2724. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2725. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2726. skip_emulated_instruction(vcpu);
  2727. return 1;
  2728. }
  2729. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2730. {
  2731. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2732. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2733. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2734. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2735. trace_kvm_msr_write_ex(ecx, data);
  2736. kvm_inject_gp(vcpu, 0);
  2737. return 1;
  2738. }
  2739. trace_kvm_msr_write(ecx, data);
  2740. skip_emulated_instruction(vcpu);
  2741. return 1;
  2742. }
  2743. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2744. {
  2745. return 1;
  2746. }
  2747. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2748. {
  2749. u32 cpu_based_vm_exec_control;
  2750. /* clear pending irq */
  2751. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2752. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2753. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2754. ++vcpu->stat.irq_window_exits;
  2755. /*
  2756. * If the user space waits to inject interrupts, exit as soon as
  2757. * possible
  2758. */
  2759. if (!irqchip_in_kernel(vcpu->kvm) &&
  2760. vcpu->run->request_interrupt_window &&
  2761. !kvm_cpu_has_interrupt(vcpu)) {
  2762. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2763. return 0;
  2764. }
  2765. return 1;
  2766. }
  2767. static int handle_halt(struct kvm_vcpu *vcpu)
  2768. {
  2769. skip_emulated_instruction(vcpu);
  2770. return kvm_emulate_halt(vcpu);
  2771. }
  2772. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2773. {
  2774. skip_emulated_instruction(vcpu);
  2775. kvm_emulate_hypercall(vcpu);
  2776. return 1;
  2777. }
  2778. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2779. {
  2780. kvm_queue_exception(vcpu, UD_VECTOR);
  2781. return 1;
  2782. }
  2783. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2784. {
  2785. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2786. kvm_mmu_invlpg(vcpu, exit_qualification);
  2787. skip_emulated_instruction(vcpu);
  2788. return 1;
  2789. }
  2790. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2791. {
  2792. skip_emulated_instruction(vcpu);
  2793. /* TODO: Add support for VT-d/pass-through device */
  2794. return 1;
  2795. }
  2796. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2797. {
  2798. unsigned long exit_qualification;
  2799. enum emulation_result er;
  2800. unsigned long offset;
  2801. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2802. offset = exit_qualification & 0xffful;
  2803. er = emulate_instruction(vcpu, 0, 0, 0);
  2804. if (er != EMULATE_DONE) {
  2805. printk(KERN_ERR
  2806. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2807. offset);
  2808. return -ENOEXEC;
  2809. }
  2810. return 1;
  2811. }
  2812. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2813. {
  2814. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2815. unsigned long exit_qualification;
  2816. u16 tss_selector;
  2817. int reason, type, idt_v;
  2818. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2819. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2820. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2821. reason = (u32)exit_qualification >> 30;
  2822. if (reason == TASK_SWITCH_GATE && idt_v) {
  2823. switch (type) {
  2824. case INTR_TYPE_NMI_INTR:
  2825. vcpu->arch.nmi_injected = false;
  2826. if (cpu_has_virtual_nmis())
  2827. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2828. GUEST_INTR_STATE_NMI);
  2829. break;
  2830. case INTR_TYPE_EXT_INTR:
  2831. case INTR_TYPE_SOFT_INTR:
  2832. kvm_clear_interrupt_queue(vcpu);
  2833. break;
  2834. case INTR_TYPE_HARD_EXCEPTION:
  2835. case INTR_TYPE_SOFT_EXCEPTION:
  2836. kvm_clear_exception_queue(vcpu);
  2837. break;
  2838. default:
  2839. break;
  2840. }
  2841. }
  2842. tss_selector = exit_qualification;
  2843. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2844. type != INTR_TYPE_EXT_INTR &&
  2845. type != INTR_TYPE_NMI_INTR))
  2846. skip_emulated_instruction(vcpu);
  2847. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2848. return 0;
  2849. /* clear all local breakpoint enable flags */
  2850. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2851. /*
  2852. * TODO: What about debug traps on tss switch?
  2853. * Are we supposed to inject them and update dr6?
  2854. */
  2855. return 1;
  2856. }
  2857. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2858. {
  2859. unsigned long exit_qualification;
  2860. gpa_t gpa;
  2861. int gla_validity;
  2862. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2863. if (exit_qualification & (1 << 6)) {
  2864. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2865. return -EINVAL;
  2866. }
  2867. gla_validity = (exit_qualification >> 7) & 0x3;
  2868. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2869. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2870. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2871. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2872. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2873. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2874. (long unsigned int)exit_qualification);
  2875. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2876. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2877. return 0;
  2878. }
  2879. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2880. trace_kvm_page_fault(gpa, exit_qualification);
  2881. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2882. }
  2883. static u64 ept_rsvd_mask(u64 spte, int level)
  2884. {
  2885. int i;
  2886. u64 mask = 0;
  2887. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2888. mask |= (1ULL << i);
  2889. if (level > 2)
  2890. /* bits 7:3 reserved */
  2891. mask |= 0xf8;
  2892. else if (level == 2) {
  2893. if (spte & (1ULL << 7))
  2894. /* 2MB ref, bits 20:12 reserved */
  2895. mask |= 0x1ff000;
  2896. else
  2897. /* bits 6:3 reserved */
  2898. mask |= 0x78;
  2899. }
  2900. return mask;
  2901. }
  2902. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2903. int level)
  2904. {
  2905. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2906. /* 010b (write-only) */
  2907. WARN_ON((spte & 0x7) == 0x2);
  2908. /* 110b (write/execute) */
  2909. WARN_ON((spte & 0x7) == 0x6);
  2910. /* 100b (execute-only) and value not supported by logical processor */
  2911. if (!cpu_has_vmx_ept_execute_only())
  2912. WARN_ON((spte & 0x7) == 0x4);
  2913. /* not 000b */
  2914. if ((spte & 0x7)) {
  2915. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2916. if (rsvd_bits != 0) {
  2917. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2918. __func__, rsvd_bits);
  2919. WARN_ON(1);
  2920. }
  2921. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2922. u64 ept_mem_type = (spte & 0x38) >> 3;
  2923. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2924. ept_mem_type == 7) {
  2925. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2926. __func__, ept_mem_type);
  2927. WARN_ON(1);
  2928. }
  2929. }
  2930. }
  2931. }
  2932. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2933. {
  2934. u64 sptes[4];
  2935. int nr_sptes, i;
  2936. gpa_t gpa;
  2937. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2938. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2939. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2940. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2941. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2942. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2943. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2944. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2945. return 0;
  2946. }
  2947. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2948. {
  2949. u32 cpu_based_vm_exec_control;
  2950. /* clear pending NMI */
  2951. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2952. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2953. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2954. ++vcpu->stat.nmi_window_exits;
  2955. return 1;
  2956. }
  2957. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2958. {
  2959. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2960. enum emulation_result err = EMULATE_DONE;
  2961. int ret = 1;
  2962. while (!guest_state_valid(vcpu)) {
  2963. err = emulate_instruction(vcpu, 0, 0, 0);
  2964. if (err == EMULATE_DO_MMIO) {
  2965. ret = 0;
  2966. goto out;
  2967. }
  2968. if (err != EMULATE_DONE) {
  2969. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2970. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2971. vcpu->run->internal.ndata = 0;
  2972. ret = 0;
  2973. goto out;
  2974. }
  2975. if (signal_pending(current))
  2976. goto out;
  2977. if (need_resched())
  2978. schedule();
  2979. }
  2980. vmx->emulation_required = 0;
  2981. out:
  2982. return ret;
  2983. }
  2984. /*
  2985. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2986. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2987. */
  2988. static int handle_pause(struct kvm_vcpu *vcpu)
  2989. {
  2990. skip_emulated_instruction(vcpu);
  2991. kvm_vcpu_on_spin(vcpu);
  2992. return 1;
  2993. }
  2994. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  2995. {
  2996. kvm_queue_exception(vcpu, UD_VECTOR);
  2997. return 1;
  2998. }
  2999. /*
  3000. * The exit handlers return 1 if the exit was handled fully and guest execution
  3001. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3002. * to be done to userspace and return 0.
  3003. */
  3004. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3005. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3006. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3007. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3008. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3009. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3010. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3011. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3012. [EXIT_REASON_CPUID] = handle_cpuid,
  3013. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3014. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3015. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3016. [EXIT_REASON_HLT] = handle_halt,
  3017. [EXIT_REASON_INVLPG] = handle_invlpg,
  3018. [EXIT_REASON_VMCALL] = handle_vmcall,
  3019. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3020. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3021. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3022. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3023. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3024. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3025. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3026. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3027. [EXIT_REASON_VMON] = handle_vmx_insn,
  3028. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3029. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3030. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3031. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3032. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3033. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3034. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3035. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3036. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3037. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3038. };
  3039. static const int kvm_vmx_max_exit_handlers =
  3040. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3041. /*
  3042. * The guest has exited. See if we can fix it or if we need userspace
  3043. * assistance.
  3044. */
  3045. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3046. {
  3047. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3048. u32 exit_reason = vmx->exit_reason;
  3049. u32 vectoring_info = vmx->idt_vectoring_info;
  3050. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  3051. /* If guest state is invalid, start emulating */
  3052. if (vmx->emulation_required && emulate_invalid_guest_state)
  3053. return handle_invalid_guest_state(vcpu);
  3054. /* Access CR3 don't cause VMExit in paging mode, so we need
  3055. * to sync with guest real CR3. */
  3056. if (enable_ept && is_paging(vcpu))
  3057. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3058. if (unlikely(vmx->fail)) {
  3059. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3060. vcpu->run->fail_entry.hardware_entry_failure_reason
  3061. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3062. return 0;
  3063. }
  3064. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3065. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3066. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3067. exit_reason != EXIT_REASON_TASK_SWITCH))
  3068. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3069. "(0x%x) and exit reason is 0x%x\n",
  3070. __func__, vectoring_info, exit_reason);
  3071. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3072. if (vmx_interrupt_allowed(vcpu)) {
  3073. vmx->soft_vnmi_blocked = 0;
  3074. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3075. vcpu->arch.nmi_pending) {
  3076. /*
  3077. * This CPU don't support us in finding the end of an
  3078. * NMI-blocked window if the guest runs with IRQs
  3079. * disabled. So we pull the trigger after 1 s of
  3080. * futile waiting, but inform the user about this.
  3081. */
  3082. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3083. "state on VCPU %d after 1 s timeout\n",
  3084. __func__, vcpu->vcpu_id);
  3085. vmx->soft_vnmi_blocked = 0;
  3086. }
  3087. }
  3088. if (exit_reason < kvm_vmx_max_exit_handlers
  3089. && kvm_vmx_exit_handlers[exit_reason])
  3090. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3091. else {
  3092. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3093. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3094. }
  3095. return 0;
  3096. }
  3097. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3098. {
  3099. if (irr == -1 || tpr < irr) {
  3100. vmcs_write32(TPR_THRESHOLD, 0);
  3101. return;
  3102. }
  3103. vmcs_write32(TPR_THRESHOLD, irr);
  3104. }
  3105. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3106. {
  3107. u32 exit_intr_info;
  3108. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3109. bool unblock_nmi;
  3110. u8 vector;
  3111. int type;
  3112. bool idtv_info_valid;
  3113. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3114. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3115. /* Handle machine checks before interrupts are enabled */
  3116. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3117. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3118. && is_machine_check(exit_intr_info)))
  3119. kvm_machine_check();
  3120. /* We need to handle NMIs before interrupts are enabled */
  3121. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3122. (exit_intr_info & INTR_INFO_VALID_MASK))
  3123. asm("int $2");
  3124. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3125. if (cpu_has_virtual_nmis()) {
  3126. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3127. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3128. /*
  3129. * SDM 3: 27.7.1.2 (September 2008)
  3130. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3131. * a guest IRET fault.
  3132. * SDM 3: 23.2.2 (September 2008)
  3133. * Bit 12 is undefined in any of the following cases:
  3134. * If the VM exit sets the valid bit in the IDT-vectoring
  3135. * information field.
  3136. * If the VM exit is due to a double fault.
  3137. */
  3138. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3139. vector != DF_VECTOR && !idtv_info_valid)
  3140. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3141. GUEST_INTR_STATE_NMI);
  3142. } else if (unlikely(vmx->soft_vnmi_blocked))
  3143. vmx->vnmi_blocked_time +=
  3144. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3145. vmx->vcpu.arch.nmi_injected = false;
  3146. kvm_clear_exception_queue(&vmx->vcpu);
  3147. kvm_clear_interrupt_queue(&vmx->vcpu);
  3148. if (!idtv_info_valid)
  3149. return;
  3150. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3151. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3152. switch (type) {
  3153. case INTR_TYPE_NMI_INTR:
  3154. vmx->vcpu.arch.nmi_injected = true;
  3155. /*
  3156. * SDM 3: 27.7.1.2 (September 2008)
  3157. * Clear bit "block by NMI" before VM entry if a NMI
  3158. * delivery faulted.
  3159. */
  3160. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3161. GUEST_INTR_STATE_NMI);
  3162. break;
  3163. case INTR_TYPE_SOFT_EXCEPTION:
  3164. vmx->vcpu.arch.event_exit_inst_len =
  3165. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3166. /* fall through */
  3167. case INTR_TYPE_HARD_EXCEPTION:
  3168. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3169. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3170. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3171. } else
  3172. kvm_queue_exception(&vmx->vcpu, vector);
  3173. break;
  3174. case INTR_TYPE_SOFT_INTR:
  3175. vmx->vcpu.arch.event_exit_inst_len =
  3176. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3177. /* fall through */
  3178. case INTR_TYPE_EXT_INTR:
  3179. kvm_queue_interrupt(&vmx->vcpu, vector,
  3180. type == INTR_TYPE_SOFT_INTR);
  3181. break;
  3182. default:
  3183. break;
  3184. }
  3185. }
  3186. /*
  3187. * Failure to inject an interrupt should give us the information
  3188. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3189. * when fetching the interrupt redirection bitmap in the real-mode
  3190. * tss, this doesn't happen. So we do it ourselves.
  3191. */
  3192. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3193. {
  3194. vmx->rmode.irq.pending = 0;
  3195. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3196. return;
  3197. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3198. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3199. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3200. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3201. return;
  3202. }
  3203. vmx->idt_vectoring_info =
  3204. VECTORING_INFO_VALID_MASK
  3205. | INTR_TYPE_EXT_INTR
  3206. | vmx->rmode.irq.vector;
  3207. }
  3208. #ifdef CONFIG_X86_64
  3209. #define R "r"
  3210. #define Q "q"
  3211. #else
  3212. #define R "e"
  3213. #define Q "l"
  3214. #endif
  3215. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3216. {
  3217. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3218. /* Record the guest's net vcpu time for enforced NMI injections. */
  3219. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3220. vmx->entry_time = ktime_get();
  3221. /* Don't enter VMX if guest state is invalid, let the exit handler
  3222. start emulation until we arrive back to a valid state */
  3223. if (vmx->emulation_required && emulate_invalid_guest_state)
  3224. return;
  3225. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3226. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3227. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3228. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3229. /* When single-stepping over STI and MOV SS, we must clear the
  3230. * corresponding interruptibility bits in the guest state. Otherwise
  3231. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3232. * exceptions being set, but that's not correct for the guest debugging
  3233. * case. */
  3234. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3235. vmx_set_interrupt_shadow(vcpu, 0);
  3236. /*
  3237. * Loading guest fpu may have cleared host cr0.ts
  3238. */
  3239. vmcs_writel(HOST_CR0, read_cr0());
  3240. asm(
  3241. /* Store host registers */
  3242. "push %%"R"dx; push %%"R"bp;"
  3243. "push %%"R"cx \n\t"
  3244. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3245. "je 1f \n\t"
  3246. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3247. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3248. "1: \n\t"
  3249. /* Reload cr2 if changed */
  3250. "mov %c[cr2](%0), %%"R"ax \n\t"
  3251. "mov %%cr2, %%"R"dx \n\t"
  3252. "cmp %%"R"ax, %%"R"dx \n\t"
  3253. "je 2f \n\t"
  3254. "mov %%"R"ax, %%cr2 \n\t"
  3255. "2: \n\t"
  3256. /* Check if vmlaunch of vmresume is needed */
  3257. "cmpl $0, %c[launched](%0) \n\t"
  3258. /* Load guest registers. Don't clobber flags. */
  3259. "mov %c[rax](%0), %%"R"ax \n\t"
  3260. "mov %c[rbx](%0), %%"R"bx \n\t"
  3261. "mov %c[rdx](%0), %%"R"dx \n\t"
  3262. "mov %c[rsi](%0), %%"R"si \n\t"
  3263. "mov %c[rdi](%0), %%"R"di \n\t"
  3264. "mov %c[rbp](%0), %%"R"bp \n\t"
  3265. #ifdef CONFIG_X86_64
  3266. "mov %c[r8](%0), %%r8 \n\t"
  3267. "mov %c[r9](%0), %%r9 \n\t"
  3268. "mov %c[r10](%0), %%r10 \n\t"
  3269. "mov %c[r11](%0), %%r11 \n\t"
  3270. "mov %c[r12](%0), %%r12 \n\t"
  3271. "mov %c[r13](%0), %%r13 \n\t"
  3272. "mov %c[r14](%0), %%r14 \n\t"
  3273. "mov %c[r15](%0), %%r15 \n\t"
  3274. #endif
  3275. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3276. /* Enter guest mode */
  3277. "jne .Llaunched \n\t"
  3278. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3279. "jmp .Lkvm_vmx_return \n\t"
  3280. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3281. ".Lkvm_vmx_return: "
  3282. /* Save guest registers, load host registers, keep flags */
  3283. "xchg %0, (%%"R"sp) \n\t"
  3284. "mov %%"R"ax, %c[rax](%0) \n\t"
  3285. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3286. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3287. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3288. "mov %%"R"si, %c[rsi](%0) \n\t"
  3289. "mov %%"R"di, %c[rdi](%0) \n\t"
  3290. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3291. #ifdef CONFIG_X86_64
  3292. "mov %%r8, %c[r8](%0) \n\t"
  3293. "mov %%r9, %c[r9](%0) \n\t"
  3294. "mov %%r10, %c[r10](%0) \n\t"
  3295. "mov %%r11, %c[r11](%0) \n\t"
  3296. "mov %%r12, %c[r12](%0) \n\t"
  3297. "mov %%r13, %c[r13](%0) \n\t"
  3298. "mov %%r14, %c[r14](%0) \n\t"
  3299. "mov %%r15, %c[r15](%0) \n\t"
  3300. #endif
  3301. "mov %%cr2, %%"R"ax \n\t"
  3302. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3303. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3304. "setbe %c[fail](%0) \n\t"
  3305. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3306. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3307. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3308. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3309. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3310. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3311. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3312. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3313. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3314. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3315. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3316. #ifdef CONFIG_X86_64
  3317. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3318. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3319. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3320. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3321. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3322. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3323. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3324. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3325. #endif
  3326. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3327. : "cc", "memory"
  3328. , R"bx", R"di", R"si"
  3329. #ifdef CONFIG_X86_64
  3330. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3331. #endif
  3332. );
  3333. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3334. | (1 << VCPU_EXREG_PDPTR));
  3335. vcpu->arch.regs_dirty = 0;
  3336. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3337. if (vmx->rmode.irq.pending)
  3338. fixup_rmode_irq(vmx);
  3339. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3340. vmx->launched = 1;
  3341. vmx_complete_interrupts(vmx);
  3342. }
  3343. #undef R
  3344. #undef Q
  3345. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3346. {
  3347. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3348. if (vmx->vmcs) {
  3349. vcpu_clear(vmx);
  3350. free_vmcs(vmx->vmcs);
  3351. vmx->vmcs = NULL;
  3352. }
  3353. }
  3354. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3355. {
  3356. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3357. spin_lock(&vmx_vpid_lock);
  3358. if (vmx->vpid != 0)
  3359. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3360. spin_unlock(&vmx_vpid_lock);
  3361. vmx_free_vmcs(vcpu);
  3362. kfree(vmx->guest_msrs);
  3363. kvm_vcpu_uninit(vcpu);
  3364. kmem_cache_free(kvm_vcpu_cache, vmx);
  3365. }
  3366. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3367. {
  3368. int err;
  3369. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3370. int cpu;
  3371. if (!vmx)
  3372. return ERR_PTR(-ENOMEM);
  3373. allocate_vpid(vmx);
  3374. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3375. if (err)
  3376. goto free_vcpu;
  3377. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3378. if (!vmx->guest_msrs) {
  3379. err = -ENOMEM;
  3380. goto uninit_vcpu;
  3381. }
  3382. vmx->vmcs = alloc_vmcs();
  3383. if (!vmx->vmcs)
  3384. goto free_msrs;
  3385. vmcs_clear(vmx->vmcs);
  3386. cpu = get_cpu();
  3387. vmx_vcpu_load(&vmx->vcpu, cpu);
  3388. err = vmx_vcpu_setup(vmx);
  3389. vmx_vcpu_put(&vmx->vcpu);
  3390. put_cpu();
  3391. if (err)
  3392. goto free_vmcs;
  3393. if (vm_need_virtualize_apic_accesses(kvm))
  3394. if (alloc_apic_access_page(kvm) != 0)
  3395. goto free_vmcs;
  3396. if (enable_ept) {
  3397. if (!kvm->arch.ept_identity_map_addr)
  3398. kvm->arch.ept_identity_map_addr =
  3399. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3400. if (alloc_identity_pagetable(kvm) != 0)
  3401. goto free_vmcs;
  3402. }
  3403. return &vmx->vcpu;
  3404. free_vmcs:
  3405. free_vmcs(vmx->vmcs);
  3406. free_msrs:
  3407. kfree(vmx->guest_msrs);
  3408. uninit_vcpu:
  3409. kvm_vcpu_uninit(&vmx->vcpu);
  3410. free_vcpu:
  3411. kmem_cache_free(kvm_vcpu_cache, vmx);
  3412. return ERR_PTR(err);
  3413. }
  3414. static void __init vmx_check_processor_compat(void *rtn)
  3415. {
  3416. struct vmcs_config vmcs_conf;
  3417. *(int *)rtn = 0;
  3418. if (setup_vmcs_config(&vmcs_conf) < 0)
  3419. *(int *)rtn = -EIO;
  3420. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3421. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3422. smp_processor_id());
  3423. *(int *)rtn = -EIO;
  3424. }
  3425. }
  3426. static int get_ept_level(void)
  3427. {
  3428. return VMX_EPT_DEFAULT_GAW + 1;
  3429. }
  3430. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3431. {
  3432. u64 ret;
  3433. /* For VT-d and EPT combination
  3434. * 1. MMIO: always map as UC
  3435. * 2. EPT with VT-d:
  3436. * a. VT-d without snooping control feature: can't guarantee the
  3437. * result, try to trust guest.
  3438. * b. VT-d with snooping control feature: snooping control feature of
  3439. * VT-d engine can guarantee the cache correctness. Just set it
  3440. * to WB to keep consistent with host. So the same as item 3.
  3441. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3442. * consistent with host MTRR
  3443. */
  3444. if (is_mmio)
  3445. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3446. else if (vcpu->kvm->arch.iommu_domain &&
  3447. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3448. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3449. VMX_EPT_MT_EPTE_SHIFT;
  3450. else
  3451. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3452. | VMX_EPT_IPAT_BIT;
  3453. return ret;
  3454. }
  3455. #define _ER(x) { EXIT_REASON_##x, #x }
  3456. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3457. _ER(EXCEPTION_NMI),
  3458. _ER(EXTERNAL_INTERRUPT),
  3459. _ER(TRIPLE_FAULT),
  3460. _ER(PENDING_INTERRUPT),
  3461. _ER(NMI_WINDOW),
  3462. _ER(TASK_SWITCH),
  3463. _ER(CPUID),
  3464. _ER(HLT),
  3465. _ER(INVLPG),
  3466. _ER(RDPMC),
  3467. _ER(RDTSC),
  3468. _ER(VMCALL),
  3469. _ER(VMCLEAR),
  3470. _ER(VMLAUNCH),
  3471. _ER(VMPTRLD),
  3472. _ER(VMPTRST),
  3473. _ER(VMREAD),
  3474. _ER(VMRESUME),
  3475. _ER(VMWRITE),
  3476. _ER(VMOFF),
  3477. _ER(VMON),
  3478. _ER(CR_ACCESS),
  3479. _ER(DR_ACCESS),
  3480. _ER(IO_INSTRUCTION),
  3481. _ER(MSR_READ),
  3482. _ER(MSR_WRITE),
  3483. _ER(MWAIT_INSTRUCTION),
  3484. _ER(MONITOR_INSTRUCTION),
  3485. _ER(PAUSE_INSTRUCTION),
  3486. _ER(MCE_DURING_VMENTRY),
  3487. _ER(TPR_BELOW_THRESHOLD),
  3488. _ER(APIC_ACCESS),
  3489. _ER(EPT_VIOLATION),
  3490. _ER(EPT_MISCONFIG),
  3491. _ER(WBINVD),
  3492. { -1, NULL }
  3493. };
  3494. #undef _ER
  3495. static int vmx_get_lpage_level(void)
  3496. {
  3497. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3498. return PT_DIRECTORY_LEVEL;
  3499. else
  3500. /* For shadow and EPT supported 1GB page */
  3501. return PT_PDPE_LEVEL;
  3502. }
  3503. static inline u32 bit(int bitno)
  3504. {
  3505. return 1 << (bitno & 31);
  3506. }
  3507. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3508. {
  3509. struct kvm_cpuid_entry2 *best;
  3510. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3511. u32 exec_control;
  3512. vmx->rdtscp_enabled = false;
  3513. if (vmx_rdtscp_supported()) {
  3514. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3515. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3516. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3517. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3518. vmx->rdtscp_enabled = true;
  3519. else {
  3520. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3521. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3522. exec_control);
  3523. }
  3524. }
  3525. }
  3526. }
  3527. static struct kvm_x86_ops vmx_x86_ops = {
  3528. .cpu_has_kvm_support = cpu_has_kvm_support,
  3529. .disabled_by_bios = vmx_disabled_by_bios,
  3530. .hardware_setup = hardware_setup,
  3531. .hardware_unsetup = hardware_unsetup,
  3532. .check_processor_compatibility = vmx_check_processor_compat,
  3533. .hardware_enable = hardware_enable,
  3534. .hardware_disable = hardware_disable,
  3535. .cpu_has_accelerated_tpr = report_flexpriority,
  3536. .vcpu_create = vmx_create_vcpu,
  3537. .vcpu_free = vmx_free_vcpu,
  3538. .vcpu_reset = vmx_vcpu_reset,
  3539. .prepare_guest_switch = vmx_save_host_state,
  3540. .vcpu_load = vmx_vcpu_load,
  3541. .vcpu_put = vmx_vcpu_put,
  3542. .set_guest_debug = set_guest_debug,
  3543. .get_msr = vmx_get_msr,
  3544. .set_msr = vmx_set_msr,
  3545. .get_segment_base = vmx_get_segment_base,
  3546. .get_segment = vmx_get_segment,
  3547. .set_segment = vmx_set_segment,
  3548. .get_cpl = vmx_get_cpl,
  3549. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3550. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3551. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3552. .set_cr0 = vmx_set_cr0,
  3553. .set_cr3 = vmx_set_cr3,
  3554. .set_cr4 = vmx_set_cr4,
  3555. .set_efer = vmx_set_efer,
  3556. .get_idt = vmx_get_idt,
  3557. .set_idt = vmx_set_idt,
  3558. .get_gdt = vmx_get_gdt,
  3559. .set_gdt = vmx_set_gdt,
  3560. .cache_reg = vmx_cache_reg,
  3561. .get_rflags = vmx_get_rflags,
  3562. .set_rflags = vmx_set_rflags,
  3563. .fpu_activate = vmx_fpu_activate,
  3564. .fpu_deactivate = vmx_fpu_deactivate,
  3565. .tlb_flush = vmx_flush_tlb,
  3566. .run = vmx_vcpu_run,
  3567. .handle_exit = vmx_handle_exit,
  3568. .skip_emulated_instruction = skip_emulated_instruction,
  3569. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3570. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3571. .patch_hypercall = vmx_patch_hypercall,
  3572. .set_irq = vmx_inject_irq,
  3573. .set_nmi = vmx_inject_nmi,
  3574. .queue_exception = vmx_queue_exception,
  3575. .interrupt_allowed = vmx_interrupt_allowed,
  3576. .nmi_allowed = vmx_nmi_allowed,
  3577. .get_nmi_mask = vmx_get_nmi_mask,
  3578. .set_nmi_mask = vmx_set_nmi_mask,
  3579. .enable_nmi_window = enable_nmi_window,
  3580. .enable_irq_window = enable_irq_window,
  3581. .update_cr8_intercept = update_cr8_intercept,
  3582. .set_tss_addr = vmx_set_tss_addr,
  3583. .get_tdp_level = get_ept_level,
  3584. .get_mt_mask = vmx_get_mt_mask,
  3585. .exit_reasons_str = vmx_exit_reasons_str,
  3586. .get_lpage_level = vmx_get_lpage_level,
  3587. .cpuid_update = vmx_cpuid_update,
  3588. .rdtscp_supported = vmx_rdtscp_supported,
  3589. };
  3590. static int __init vmx_init(void)
  3591. {
  3592. int r, i;
  3593. rdmsrl_safe(MSR_EFER, &host_efer);
  3594. for (i = 0; i < NR_VMX_MSR; ++i)
  3595. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3596. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3597. if (!vmx_io_bitmap_a)
  3598. return -ENOMEM;
  3599. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3600. if (!vmx_io_bitmap_b) {
  3601. r = -ENOMEM;
  3602. goto out;
  3603. }
  3604. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3605. if (!vmx_msr_bitmap_legacy) {
  3606. r = -ENOMEM;
  3607. goto out1;
  3608. }
  3609. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3610. if (!vmx_msr_bitmap_longmode) {
  3611. r = -ENOMEM;
  3612. goto out2;
  3613. }
  3614. /*
  3615. * Allow direct access to the PC debug port (it is often used for I/O
  3616. * delays, but the vmexits simply slow things down).
  3617. */
  3618. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3619. clear_bit(0x80, vmx_io_bitmap_a);
  3620. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3621. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3622. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3623. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3624. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3625. if (r)
  3626. goto out3;
  3627. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3628. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3629. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3630. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3631. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3632. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3633. if (enable_ept) {
  3634. bypass_guest_pf = 0;
  3635. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3636. VMX_EPT_WRITABLE_MASK);
  3637. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3638. VMX_EPT_EXECUTABLE_MASK);
  3639. kvm_enable_tdp();
  3640. } else
  3641. kvm_disable_tdp();
  3642. if (bypass_guest_pf)
  3643. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3644. return 0;
  3645. out3:
  3646. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3647. out2:
  3648. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3649. out1:
  3650. free_page((unsigned long)vmx_io_bitmap_b);
  3651. out:
  3652. free_page((unsigned long)vmx_io_bitmap_a);
  3653. return r;
  3654. }
  3655. static void __exit vmx_exit(void)
  3656. {
  3657. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3658. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3659. free_page((unsigned long)vmx_io_bitmap_b);
  3660. free_page((unsigned long)vmx_io_bitmap_a);
  3661. kvm_exit();
  3662. }
  3663. module_init(vmx_init)
  3664. module_exit(vmx_exit)