perf_event.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/highmem.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <asm/apic.h>
  27. #include <asm/stacktrace.h>
  28. #include <asm/nmi.h>
  29. static u64 perf_event_mask __read_mostly;
  30. /* The maximal number of PEBS events: */
  31. #define MAX_PEBS_EVENTS 4
  32. /* The size of a BTS record in bytes: */
  33. #define BTS_RECORD_SIZE 24
  34. /* The size of a per-cpu BTS buffer in bytes: */
  35. #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
  36. /* The BTS overflow threshold in bytes from the end of the buffer: */
  37. #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
  38. /*
  39. * Bits in the debugctlmsr controlling branch tracing.
  40. */
  41. #define X86_DEBUGCTL_TR (1 << 6)
  42. #define X86_DEBUGCTL_BTS (1 << 7)
  43. #define X86_DEBUGCTL_BTINT (1 << 8)
  44. #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
  45. #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
  46. /*
  47. * A debug store configuration.
  48. *
  49. * We only support architectures that use 64bit fields.
  50. */
  51. struct debug_store {
  52. u64 bts_buffer_base;
  53. u64 bts_index;
  54. u64 bts_absolute_maximum;
  55. u64 bts_interrupt_threshold;
  56. u64 pebs_buffer_base;
  57. u64 pebs_index;
  58. u64 pebs_absolute_maximum;
  59. u64 pebs_interrupt_threshold;
  60. u64 pebs_event_reset[MAX_PEBS_EVENTS];
  61. };
  62. struct event_constraint {
  63. union {
  64. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  65. u64 idxmsk64;
  66. };
  67. u64 code;
  68. u64 cmask;
  69. int weight;
  70. };
  71. struct amd_nb {
  72. int nb_id; /* NorthBridge id */
  73. int refcnt; /* reference count */
  74. struct perf_event *owners[X86_PMC_IDX_MAX];
  75. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  76. };
  77. struct cpu_hw_events {
  78. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  79. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  80. unsigned long interrupts;
  81. int enabled;
  82. struct debug_store *ds;
  83. int n_events;
  84. int n_added;
  85. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  86. u64 tags[X86_PMC_IDX_MAX];
  87. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  88. struct amd_nb *amd_nb;
  89. };
  90. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  91. { .idxmsk64 = (n) }, \
  92. .code = (c), \
  93. .cmask = (m), \
  94. .weight = (w), \
  95. }
  96. #define EVENT_CONSTRAINT(c, n, m) \
  97. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  98. #define INTEL_EVENT_CONSTRAINT(c, n) \
  99. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
  100. #define FIXED_EVENT_CONSTRAINT(c, n) \
  101. EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
  102. #define EVENT_CONSTRAINT_END \
  103. EVENT_CONSTRAINT(0, 0, 0)
  104. #define for_each_event_constraint(e, c) \
  105. for ((e) = (c); (e)->cmask; (e)++)
  106. /*
  107. * struct x86_pmu - generic x86 pmu
  108. */
  109. struct x86_pmu {
  110. const char *name;
  111. int version;
  112. int (*handle_irq)(struct pt_regs *);
  113. void (*disable_all)(void);
  114. void (*enable_all)(void);
  115. void (*enable)(struct perf_event *);
  116. void (*disable)(struct perf_event *);
  117. unsigned eventsel;
  118. unsigned perfctr;
  119. u64 (*event_map)(int);
  120. u64 (*raw_event)(u64);
  121. int max_events;
  122. int num_events;
  123. int num_events_fixed;
  124. int event_bits;
  125. u64 event_mask;
  126. int apic;
  127. u64 max_period;
  128. u64 intel_ctrl;
  129. void (*enable_bts)(u64 config);
  130. void (*disable_bts)(void);
  131. struct event_constraint *
  132. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  133. struct perf_event *event);
  134. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  135. struct perf_event *event);
  136. struct event_constraint *event_constraints;
  137. void (*cpu_prepare)(int cpu);
  138. void (*cpu_starting)(int cpu);
  139. void (*cpu_dying)(int cpu);
  140. void (*cpu_dead)(int cpu);
  141. };
  142. static struct x86_pmu x86_pmu __read_mostly;
  143. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  144. .enabled = 1,
  145. };
  146. static int x86_perf_event_set_period(struct perf_event *event);
  147. /*
  148. * Generalized hw caching related hw_event table, filled
  149. * in on a per model basis. A value of 0 means
  150. * 'not supported', -1 means 'hw_event makes no sense on
  151. * this CPU', any other value means the raw hw_event
  152. * ID.
  153. */
  154. #define C(x) PERF_COUNT_HW_CACHE_##x
  155. static u64 __read_mostly hw_cache_event_ids
  156. [PERF_COUNT_HW_CACHE_MAX]
  157. [PERF_COUNT_HW_CACHE_OP_MAX]
  158. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  159. /*
  160. * Propagate event elapsed time into the generic event.
  161. * Can only be executed on the CPU where the event is active.
  162. * Returns the delta events processed.
  163. */
  164. static u64
  165. x86_perf_event_update(struct perf_event *event)
  166. {
  167. struct hw_perf_event *hwc = &event->hw;
  168. int shift = 64 - x86_pmu.event_bits;
  169. u64 prev_raw_count, new_raw_count;
  170. int idx = hwc->idx;
  171. s64 delta;
  172. if (idx == X86_PMC_IDX_FIXED_BTS)
  173. return 0;
  174. /*
  175. * Careful: an NMI might modify the previous event value.
  176. *
  177. * Our tactic to handle this is to first atomically read and
  178. * exchange a new raw count - then add that new-prev delta
  179. * count to the generic event atomically:
  180. */
  181. again:
  182. prev_raw_count = atomic64_read(&hwc->prev_count);
  183. rdmsrl(hwc->event_base + idx, new_raw_count);
  184. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  185. new_raw_count) != prev_raw_count)
  186. goto again;
  187. /*
  188. * Now we have the new raw value and have updated the prev
  189. * timestamp already. We can now calculate the elapsed delta
  190. * (event-)time and add that to the generic event.
  191. *
  192. * Careful, not all hw sign-extends above the physical width
  193. * of the count.
  194. */
  195. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  196. delta >>= shift;
  197. atomic64_add(delta, &event->count);
  198. atomic64_sub(delta, &hwc->period_left);
  199. return new_raw_count;
  200. }
  201. static atomic_t active_events;
  202. static DEFINE_MUTEX(pmc_reserve_mutex);
  203. static bool reserve_pmc_hardware(void)
  204. {
  205. #ifdef CONFIG_X86_LOCAL_APIC
  206. int i;
  207. if (nmi_watchdog == NMI_LOCAL_APIC)
  208. disable_lapic_nmi_watchdog();
  209. for (i = 0; i < x86_pmu.num_events; i++) {
  210. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  211. goto perfctr_fail;
  212. }
  213. for (i = 0; i < x86_pmu.num_events; i++) {
  214. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  215. goto eventsel_fail;
  216. }
  217. #endif
  218. return true;
  219. #ifdef CONFIG_X86_LOCAL_APIC
  220. eventsel_fail:
  221. for (i--; i >= 0; i--)
  222. release_evntsel_nmi(x86_pmu.eventsel + i);
  223. i = x86_pmu.num_events;
  224. perfctr_fail:
  225. for (i--; i >= 0; i--)
  226. release_perfctr_nmi(x86_pmu.perfctr + i);
  227. if (nmi_watchdog == NMI_LOCAL_APIC)
  228. enable_lapic_nmi_watchdog();
  229. return false;
  230. #endif
  231. }
  232. static void release_pmc_hardware(void)
  233. {
  234. #ifdef CONFIG_X86_LOCAL_APIC
  235. int i;
  236. for (i = 0; i < x86_pmu.num_events; i++) {
  237. release_perfctr_nmi(x86_pmu.perfctr + i);
  238. release_evntsel_nmi(x86_pmu.eventsel + i);
  239. }
  240. if (nmi_watchdog == NMI_LOCAL_APIC)
  241. enable_lapic_nmi_watchdog();
  242. #endif
  243. }
  244. static inline bool bts_available(void)
  245. {
  246. return x86_pmu.enable_bts != NULL;
  247. }
  248. static void init_debug_store_on_cpu(int cpu)
  249. {
  250. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  251. if (!ds)
  252. return;
  253. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
  254. (u32)((u64)(unsigned long)ds),
  255. (u32)((u64)(unsigned long)ds >> 32));
  256. }
  257. static void fini_debug_store_on_cpu(int cpu)
  258. {
  259. if (!per_cpu(cpu_hw_events, cpu).ds)
  260. return;
  261. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
  262. }
  263. static void release_bts_hardware(void)
  264. {
  265. int cpu;
  266. if (!bts_available())
  267. return;
  268. get_online_cpus();
  269. for_each_online_cpu(cpu)
  270. fini_debug_store_on_cpu(cpu);
  271. for_each_possible_cpu(cpu) {
  272. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  273. if (!ds)
  274. continue;
  275. per_cpu(cpu_hw_events, cpu).ds = NULL;
  276. kfree((void *)(unsigned long)ds->bts_buffer_base);
  277. kfree(ds);
  278. }
  279. put_online_cpus();
  280. }
  281. static int reserve_bts_hardware(void)
  282. {
  283. int cpu, err = 0;
  284. if (!bts_available())
  285. return 0;
  286. get_online_cpus();
  287. for_each_possible_cpu(cpu) {
  288. struct debug_store *ds;
  289. void *buffer;
  290. err = -ENOMEM;
  291. buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
  292. if (unlikely(!buffer))
  293. break;
  294. ds = kzalloc(sizeof(*ds), GFP_KERNEL);
  295. if (unlikely(!ds)) {
  296. kfree(buffer);
  297. break;
  298. }
  299. ds->bts_buffer_base = (u64)(unsigned long)buffer;
  300. ds->bts_index = ds->bts_buffer_base;
  301. ds->bts_absolute_maximum =
  302. ds->bts_buffer_base + BTS_BUFFER_SIZE;
  303. ds->bts_interrupt_threshold =
  304. ds->bts_absolute_maximum - BTS_OVFL_TH;
  305. per_cpu(cpu_hw_events, cpu).ds = ds;
  306. err = 0;
  307. }
  308. if (err)
  309. release_bts_hardware();
  310. else {
  311. for_each_online_cpu(cpu)
  312. init_debug_store_on_cpu(cpu);
  313. }
  314. put_online_cpus();
  315. return err;
  316. }
  317. static void hw_perf_event_destroy(struct perf_event *event)
  318. {
  319. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  320. release_pmc_hardware();
  321. release_bts_hardware();
  322. mutex_unlock(&pmc_reserve_mutex);
  323. }
  324. }
  325. static inline int x86_pmu_initialized(void)
  326. {
  327. return x86_pmu.handle_irq != NULL;
  328. }
  329. static inline int
  330. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  331. {
  332. unsigned int cache_type, cache_op, cache_result;
  333. u64 config, val;
  334. config = attr->config;
  335. cache_type = (config >> 0) & 0xff;
  336. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  337. return -EINVAL;
  338. cache_op = (config >> 8) & 0xff;
  339. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  340. return -EINVAL;
  341. cache_result = (config >> 16) & 0xff;
  342. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  343. return -EINVAL;
  344. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  345. if (val == 0)
  346. return -ENOENT;
  347. if (val == -1)
  348. return -EINVAL;
  349. hwc->config |= val;
  350. return 0;
  351. }
  352. /*
  353. * Setup the hardware configuration for a given attr_type
  354. */
  355. static int __hw_perf_event_init(struct perf_event *event)
  356. {
  357. struct perf_event_attr *attr = &event->attr;
  358. struct hw_perf_event *hwc = &event->hw;
  359. u64 config;
  360. int err;
  361. if (!x86_pmu_initialized())
  362. return -ENODEV;
  363. err = 0;
  364. if (!atomic_inc_not_zero(&active_events)) {
  365. mutex_lock(&pmc_reserve_mutex);
  366. if (atomic_read(&active_events) == 0) {
  367. if (!reserve_pmc_hardware())
  368. err = -EBUSY;
  369. else
  370. err = reserve_bts_hardware();
  371. }
  372. if (!err)
  373. atomic_inc(&active_events);
  374. mutex_unlock(&pmc_reserve_mutex);
  375. }
  376. if (err)
  377. return err;
  378. event->destroy = hw_perf_event_destroy;
  379. /*
  380. * Generate PMC IRQs:
  381. * (keep 'enabled' bit clear for now)
  382. */
  383. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  384. hwc->idx = -1;
  385. hwc->last_cpu = -1;
  386. hwc->last_tag = ~0ULL;
  387. /*
  388. * Count user and OS events unless requested not to.
  389. */
  390. if (!attr->exclude_user)
  391. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  392. if (!attr->exclude_kernel)
  393. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  394. if (!hwc->sample_period) {
  395. hwc->sample_period = x86_pmu.max_period;
  396. hwc->last_period = hwc->sample_period;
  397. atomic64_set(&hwc->period_left, hwc->sample_period);
  398. } else {
  399. /*
  400. * If we have a PMU initialized but no APIC
  401. * interrupts, we cannot sample hardware
  402. * events (user-space has to fall back and
  403. * sample via a hrtimer based software event):
  404. */
  405. if (!x86_pmu.apic)
  406. return -EOPNOTSUPP;
  407. }
  408. /*
  409. * Raw hw_event type provide the config in the hw_event structure
  410. */
  411. if (attr->type == PERF_TYPE_RAW) {
  412. hwc->config |= x86_pmu.raw_event(attr->config);
  413. if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
  414. perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  415. return -EACCES;
  416. return 0;
  417. }
  418. if (attr->type == PERF_TYPE_HW_CACHE)
  419. return set_ext_hw_attr(hwc, attr);
  420. if (attr->config >= x86_pmu.max_events)
  421. return -EINVAL;
  422. /*
  423. * The generic map:
  424. */
  425. config = x86_pmu.event_map(attr->config);
  426. if (config == 0)
  427. return -ENOENT;
  428. if (config == -1LL)
  429. return -EINVAL;
  430. /*
  431. * Branch tracing:
  432. */
  433. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  434. (hwc->sample_period == 1)) {
  435. /* BTS is not supported by this architecture. */
  436. if (!bts_available())
  437. return -EOPNOTSUPP;
  438. /* BTS is currently only allowed for user-mode. */
  439. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  440. return -EOPNOTSUPP;
  441. }
  442. hwc->config |= config;
  443. return 0;
  444. }
  445. static void x86_pmu_disable_all(void)
  446. {
  447. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  448. int idx;
  449. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  450. u64 val;
  451. if (!test_bit(idx, cpuc->active_mask))
  452. continue;
  453. rdmsrl(x86_pmu.eventsel + idx, val);
  454. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  455. continue;
  456. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  457. wrmsrl(x86_pmu.eventsel + idx, val);
  458. }
  459. }
  460. void hw_perf_disable(void)
  461. {
  462. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  463. if (!x86_pmu_initialized())
  464. return;
  465. if (!cpuc->enabled)
  466. return;
  467. cpuc->n_added = 0;
  468. cpuc->enabled = 0;
  469. barrier();
  470. x86_pmu.disable_all();
  471. }
  472. static void x86_pmu_enable_all(void)
  473. {
  474. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  475. int idx;
  476. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  477. struct perf_event *event = cpuc->events[idx];
  478. u64 val;
  479. if (!test_bit(idx, cpuc->active_mask))
  480. continue;
  481. val = event->hw.config;
  482. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  483. wrmsrl(x86_pmu.eventsel + idx, val);
  484. }
  485. }
  486. static const struct pmu pmu;
  487. static inline int is_x86_event(struct perf_event *event)
  488. {
  489. return event->pmu == &pmu;
  490. }
  491. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  492. {
  493. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  494. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  495. int i, j, w, wmax, num = 0;
  496. struct hw_perf_event *hwc;
  497. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  498. for (i = 0; i < n; i++) {
  499. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  500. constraints[i] = c;
  501. }
  502. /*
  503. * fastpath, try to reuse previous register
  504. */
  505. for (i = 0; i < n; i++) {
  506. hwc = &cpuc->event_list[i]->hw;
  507. c = constraints[i];
  508. /* never assigned */
  509. if (hwc->idx == -1)
  510. break;
  511. /* constraint still honored */
  512. if (!test_bit(hwc->idx, c->idxmsk))
  513. break;
  514. /* not already used */
  515. if (test_bit(hwc->idx, used_mask))
  516. break;
  517. __set_bit(hwc->idx, used_mask);
  518. if (assign)
  519. assign[i] = hwc->idx;
  520. }
  521. if (i == n)
  522. goto done;
  523. /*
  524. * begin slow path
  525. */
  526. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  527. /*
  528. * weight = number of possible counters
  529. *
  530. * 1 = most constrained, only works on one counter
  531. * wmax = least constrained, works on any counter
  532. *
  533. * assign events to counters starting with most
  534. * constrained events.
  535. */
  536. wmax = x86_pmu.num_events;
  537. /*
  538. * when fixed event counters are present,
  539. * wmax is incremented by 1 to account
  540. * for one more choice
  541. */
  542. if (x86_pmu.num_events_fixed)
  543. wmax++;
  544. for (w = 1, num = n; num && w <= wmax; w++) {
  545. /* for each event */
  546. for (i = 0; num && i < n; i++) {
  547. c = constraints[i];
  548. hwc = &cpuc->event_list[i]->hw;
  549. if (c->weight != w)
  550. continue;
  551. for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  552. if (!test_bit(j, used_mask))
  553. break;
  554. }
  555. if (j == X86_PMC_IDX_MAX)
  556. break;
  557. __set_bit(j, used_mask);
  558. if (assign)
  559. assign[i] = j;
  560. num--;
  561. }
  562. }
  563. done:
  564. /*
  565. * scheduling failed or is just a simulation,
  566. * free resources if necessary
  567. */
  568. if (!assign || num) {
  569. for (i = 0; i < n; i++) {
  570. if (x86_pmu.put_event_constraints)
  571. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  572. }
  573. }
  574. return num ? -ENOSPC : 0;
  575. }
  576. /*
  577. * dogrp: true if must collect siblings events (group)
  578. * returns total number of events and error code
  579. */
  580. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  581. {
  582. struct perf_event *event;
  583. int n, max_count;
  584. max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
  585. /* current number of events already accepted */
  586. n = cpuc->n_events;
  587. if (is_x86_event(leader)) {
  588. if (n >= max_count)
  589. return -ENOSPC;
  590. cpuc->event_list[n] = leader;
  591. n++;
  592. }
  593. if (!dogrp)
  594. return n;
  595. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  596. if (!is_x86_event(event) ||
  597. event->state <= PERF_EVENT_STATE_OFF)
  598. continue;
  599. if (n >= max_count)
  600. return -ENOSPC;
  601. cpuc->event_list[n] = event;
  602. n++;
  603. }
  604. return n;
  605. }
  606. static inline void x86_assign_hw_event(struct perf_event *event,
  607. struct cpu_hw_events *cpuc, int i)
  608. {
  609. struct hw_perf_event *hwc = &event->hw;
  610. hwc->idx = cpuc->assign[i];
  611. hwc->last_cpu = smp_processor_id();
  612. hwc->last_tag = ++cpuc->tags[i];
  613. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  614. hwc->config_base = 0;
  615. hwc->event_base = 0;
  616. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  617. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  618. /*
  619. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  620. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  621. */
  622. hwc->event_base =
  623. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  624. } else {
  625. hwc->config_base = x86_pmu.eventsel;
  626. hwc->event_base = x86_pmu.perfctr;
  627. }
  628. }
  629. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  630. struct cpu_hw_events *cpuc,
  631. int i)
  632. {
  633. return hwc->idx == cpuc->assign[i] &&
  634. hwc->last_cpu == smp_processor_id() &&
  635. hwc->last_tag == cpuc->tags[i];
  636. }
  637. static int x86_pmu_start(struct perf_event *event);
  638. static void x86_pmu_stop(struct perf_event *event);
  639. void hw_perf_enable(void)
  640. {
  641. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  642. struct perf_event *event;
  643. struct hw_perf_event *hwc;
  644. int i;
  645. if (!x86_pmu_initialized())
  646. return;
  647. if (cpuc->enabled)
  648. return;
  649. if (cpuc->n_added) {
  650. int n_running = cpuc->n_events - cpuc->n_added;
  651. /*
  652. * apply assignment obtained either from
  653. * hw_perf_group_sched_in() or x86_pmu_enable()
  654. *
  655. * step1: save events moving to new counters
  656. * step2: reprogram moved events into new counters
  657. */
  658. for (i = 0; i < n_running; i++) {
  659. event = cpuc->event_list[i];
  660. hwc = &event->hw;
  661. /*
  662. * we can avoid reprogramming counter if:
  663. * - assigned same counter as last time
  664. * - running on same CPU as last time
  665. * - no other event has used the counter since
  666. */
  667. if (hwc->idx == -1 ||
  668. match_prev_assignment(hwc, cpuc, i))
  669. continue;
  670. x86_pmu_stop(event);
  671. }
  672. for (i = 0; i < cpuc->n_events; i++) {
  673. event = cpuc->event_list[i];
  674. hwc = &event->hw;
  675. if (!match_prev_assignment(hwc, cpuc, i))
  676. x86_assign_hw_event(event, cpuc, i);
  677. else if (i < n_running)
  678. continue;
  679. x86_pmu_start(event);
  680. }
  681. cpuc->n_added = 0;
  682. perf_events_lapic_init();
  683. }
  684. cpuc->enabled = 1;
  685. barrier();
  686. x86_pmu.enable_all();
  687. }
  688. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
  689. {
  690. (void)checking_wrmsrl(hwc->config_base + hwc->idx,
  691. hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
  692. }
  693. static inline void x86_pmu_disable_event(struct perf_event *event)
  694. {
  695. struct hw_perf_event *hwc = &event->hw;
  696. (void)checking_wrmsrl(hwc->config_base + hwc->idx, hwc->config);
  697. }
  698. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  699. /*
  700. * Set the next IRQ period, based on the hwc->period_left value.
  701. * To be called with the event disabled in hw:
  702. */
  703. static int
  704. x86_perf_event_set_period(struct perf_event *event)
  705. {
  706. struct hw_perf_event *hwc = &event->hw;
  707. s64 left = atomic64_read(&hwc->period_left);
  708. s64 period = hwc->sample_period;
  709. int err, ret = 0, idx = hwc->idx;
  710. if (idx == X86_PMC_IDX_FIXED_BTS)
  711. return 0;
  712. /*
  713. * If we are way outside a reasonable range then just skip forward:
  714. */
  715. if (unlikely(left <= -period)) {
  716. left = period;
  717. atomic64_set(&hwc->period_left, left);
  718. hwc->last_period = period;
  719. ret = 1;
  720. }
  721. if (unlikely(left <= 0)) {
  722. left += period;
  723. atomic64_set(&hwc->period_left, left);
  724. hwc->last_period = period;
  725. ret = 1;
  726. }
  727. /*
  728. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  729. */
  730. if (unlikely(left < 2))
  731. left = 2;
  732. if (left > x86_pmu.max_period)
  733. left = x86_pmu.max_period;
  734. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  735. /*
  736. * The hw event starts counting from this event offset,
  737. * mark it to be able to extra future deltas:
  738. */
  739. atomic64_set(&hwc->prev_count, (u64)-left);
  740. err = checking_wrmsrl(hwc->event_base + idx,
  741. (u64)(-left) & x86_pmu.event_mask);
  742. perf_event_update_userpage(event);
  743. return ret;
  744. }
  745. static void x86_pmu_enable_event(struct perf_event *event)
  746. {
  747. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  748. if (cpuc->enabled)
  749. __x86_pmu_enable_event(&event->hw);
  750. }
  751. /*
  752. * activate a single event
  753. *
  754. * The event is added to the group of enabled events
  755. * but only if it can be scehduled with existing events.
  756. *
  757. * Called with PMU disabled. If successful and return value 1,
  758. * then guaranteed to call perf_enable() and hw_perf_enable()
  759. */
  760. static int x86_pmu_enable(struct perf_event *event)
  761. {
  762. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  763. struct hw_perf_event *hwc;
  764. int assign[X86_PMC_IDX_MAX];
  765. int n, n0, ret;
  766. hwc = &event->hw;
  767. n0 = cpuc->n_events;
  768. n = collect_events(cpuc, event, false);
  769. if (n < 0)
  770. return n;
  771. ret = x86_schedule_events(cpuc, n, assign);
  772. if (ret)
  773. return ret;
  774. /*
  775. * copy new assignment, now we know it is possible
  776. * will be used by hw_perf_enable()
  777. */
  778. memcpy(cpuc->assign, assign, n*sizeof(int));
  779. cpuc->n_events = n;
  780. cpuc->n_added += n - n0;
  781. return 0;
  782. }
  783. static int x86_pmu_start(struct perf_event *event)
  784. {
  785. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  786. int idx = event->hw.idx;
  787. if (idx == -1)
  788. return -EAGAIN;
  789. x86_perf_event_set_period(event);
  790. cpuc->events[idx] = event;
  791. __set_bit(idx, cpuc->active_mask);
  792. x86_pmu.enable(event);
  793. perf_event_update_userpage(event);
  794. return 0;
  795. }
  796. static void x86_pmu_unthrottle(struct perf_event *event)
  797. {
  798. int ret = x86_pmu_start(event);
  799. WARN_ON_ONCE(ret);
  800. }
  801. void perf_event_print_debug(void)
  802. {
  803. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  804. struct cpu_hw_events *cpuc;
  805. unsigned long flags;
  806. int cpu, idx;
  807. if (!x86_pmu.num_events)
  808. return;
  809. local_irq_save(flags);
  810. cpu = smp_processor_id();
  811. cpuc = &per_cpu(cpu_hw_events, cpu);
  812. if (x86_pmu.version >= 2) {
  813. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  814. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  815. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  816. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  817. pr_info("\n");
  818. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  819. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  820. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  821. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  822. }
  823. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  824. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  825. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  826. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  827. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  828. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  829. cpu, idx, pmc_ctrl);
  830. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  831. cpu, idx, pmc_count);
  832. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  833. cpu, idx, prev_left);
  834. }
  835. for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
  836. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  837. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  838. cpu, idx, pmc_count);
  839. }
  840. local_irq_restore(flags);
  841. }
  842. static void x86_pmu_stop(struct perf_event *event)
  843. {
  844. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  845. struct hw_perf_event *hwc = &event->hw;
  846. int idx = hwc->idx;
  847. if (!__test_and_clear_bit(idx, cpuc->active_mask))
  848. return;
  849. x86_pmu.disable(event);
  850. /*
  851. * Drain the remaining delta count out of a event
  852. * that we are disabling:
  853. */
  854. x86_perf_event_update(event);
  855. cpuc->events[idx] = NULL;
  856. }
  857. static void x86_pmu_disable(struct perf_event *event)
  858. {
  859. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  860. int i;
  861. x86_pmu_stop(event);
  862. for (i = 0; i < cpuc->n_events; i++) {
  863. if (event == cpuc->event_list[i]) {
  864. if (x86_pmu.put_event_constraints)
  865. x86_pmu.put_event_constraints(cpuc, event);
  866. while (++i < cpuc->n_events)
  867. cpuc->event_list[i-1] = cpuc->event_list[i];
  868. --cpuc->n_events;
  869. break;
  870. }
  871. }
  872. perf_event_update_userpage(event);
  873. }
  874. static int x86_pmu_handle_irq(struct pt_regs *regs)
  875. {
  876. struct perf_sample_data data;
  877. struct cpu_hw_events *cpuc;
  878. struct perf_event *event;
  879. struct hw_perf_event *hwc;
  880. int idx, handled = 0;
  881. u64 val;
  882. perf_sample_data_init(&data, 0);
  883. cpuc = &__get_cpu_var(cpu_hw_events);
  884. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  885. if (!test_bit(idx, cpuc->active_mask))
  886. continue;
  887. event = cpuc->events[idx];
  888. hwc = &event->hw;
  889. val = x86_perf_event_update(event);
  890. if (val & (1ULL << (x86_pmu.event_bits - 1)))
  891. continue;
  892. /*
  893. * event overflow
  894. */
  895. handled = 1;
  896. data.period = event->hw.last_period;
  897. if (!x86_perf_event_set_period(event))
  898. continue;
  899. if (perf_event_overflow(event, 1, &data, regs))
  900. x86_pmu_stop(event);
  901. }
  902. if (handled)
  903. inc_irq_stat(apic_perf_irqs);
  904. return handled;
  905. }
  906. void smp_perf_pending_interrupt(struct pt_regs *regs)
  907. {
  908. irq_enter();
  909. ack_APIC_irq();
  910. inc_irq_stat(apic_pending_irqs);
  911. perf_event_do_pending();
  912. irq_exit();
  913. }
  914. void set_perf_event_pending(void)
  915. {
  916. #ifdef CONFIG_X86_LOCAL_APIC
  917. if (!x86_pmu.apic || !x86_pmu_initialized())
  918. return;
  919. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  920. #endif
  921. }
  922. void perf_events_lapic_init(void)
  923. {
  924. #ifdef CONFIG_X86_LOCAL_APIC
  925. if (!x86_pmu.apic || !x86_pmu_initialized())
  926. return;
  927. /*
  928. * Always use NMI for PMU
  929. */
  930. apic_write(APIC_LVTPC, APIC_DM_NMI);
  931. #endif
  932. }
  933. static int __kprobes
  934. perf_event_nmi_handler(struct notifier_block *self,
  935. unsigned long cmd, void *__args)
  936. {
  937. struct die_args *args = __args;
  938. struct pt_regs *regs;
  939. if (!atomic_read(&active_events))
  940. return NOTIFY_DONE;
  941. switch (cmd) {
  942. case DIE_NMI:
  943. case DIE_NMI_IPI:
  944. break;
  945. default:
  946. return NOTIFY_DONE;
  947. }
  948. regs = args->regs;
  949. #ifdef CONFIG_X86_LOCAL_APIC
  950. apic_write(APIC_LVTPC, APIC_DM_NMI);
  951. #endif
  952. /*
  953. * Can't rely on the handled return value to say it was our NMI, two
  954. * events could trigger 'simultaneously' raising two back-to-back NMIs.
  955. *
  956. * If the first NMI handles both, the latter will be empty and daze
  957. * the CPU.
  958. */
  959. x86_pmu.handle_irq(regs);
  960. return NOTIFY_STOP;
  961. }
  962. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  963. .notifier_call = perf_event_nmi_handler,
  964. .next = NULL,
  965. .priority = 1
  966. };
  967. static struct event_constraint unconstrained;
  968. static struct event_constraint emptyconstraint;
  969. static struct event_constraint *
  970. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  971. {
  972. struct event_constraint *c;
  973. if (x86_pmu.event_constraints) {
  974. for_each_event_constraint(c, x86_pmu.event_constraints) {
  975. if ((event->hw.config & c->cmask) == c->code)
  976. return c;
  977. }
  978. }
  979. return &unconstrained;
  980. }
  981. static int x86_event_sched_in(struct perf_event *event,
  982. struct perf_cpu_context *cpuctx)
  983. {
  984. int ret = 0;
  985. event->state = PERF_EVENT_STATE_ACTIVE;
  986. event->oncpu = smp_processor_id();
  987. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  988. if (!is_x86_event(event))
  989. ret = event->pmu->enable(event);
  990. if (!ret && !is_software_event(event))
  991. cpuctx->active_oncpu++;
  992. if (!ret && event->attr.exclusive)
  993. cpuctx->exclusive = 1;
  994. return ret;
  995. }
  996. static void x86_event_sched_out(struct perf_event *event,
  997. struct perf_cpu_context *cpuctx)
  998. {
  999. event->state = PERF_EVENT_STATE_INACTIVE;
  1000. event->oncpu = -1;
  1001. if (!is_x86_event(event))
  1002. event->pmu->disable(event);
  1003. event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
  1004. if (!is_software_event(event))
  1005. cpuctx->active_oncpu--;
  1006. if (event->attr.exclusive || !cpuctx->active_oncpu)
  1007. cpuctx->exclusive = 0;
  1008. }
  1009. /*
  1010. * Called to enable a whole group of events.
  1011. * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
  1012. * Assumes the caller has disabled interrupts and has
  1013. * frozen the PMU with hw_perf_save_disable.
  1014. *
  1015. * called with PMU disabled. If successful and return value 1,
  1016. * then guaranteed to call perf_enable() and hw_perf_enable()
  1017. */
  1018. int hw_perf_group_sched_in(struct perf_event *leader,
  1019. struct perf_cpu_context *cpuctx,
  1020. struct perf_event_context *ctx)
  1021. {
  1022. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1023. struct perf_event *sub;
  1024. int assign[X86_PMC_IDX_MAX];
  1025. int n0, n1, ret;
  1026. /* n0 = total number of events */
  1027. n0 = collect_events(cpuc, leader, true);
  1028. if (n0 < 0)
  1029. return n0;
  1030. ret = x86_schedule_events(cpuc, n0, assign);
  1031. if (ret)
  1032. return ret;
  1033. ret = x86_event_sched_in(leader, cpuctx);
  1034. if (ret)
  1035. return ret;
  1036. n1 = 1;
  1037. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1038. if (sub->state > PERF_EVENT_STATE_OFF) {
  1039. ret = x86_event_sched_in(sub, cpuctx);
  1040. if (ret)
  1041. goto undo;
  1042. ++n1;
  1043. }
  1044. }
  1045. /*
  1046. * copy new assignment, now we know it is possible
  1047. * will be used by hw_perf_enable()
  1048. */
  1049. memcpy(cpuc->assign, assign, n0*sizeof(int));
  1050. cpuc->n_events = n0;
  1051. cpuc->n_added += n1;
  1052. ctx->nr_active += n1;
  1053. /*
  1054. * 1 means successful and events are active
  1055. * This is not quite true because we defer
  1056. * actual activation until hw_perf_enable() but
  1057. * this way we* ensure caller won't try to enable
  1058. * individual events
  1059. */
  1060. return 1;
  1061. undo:
  1062. x86_event_sched_out(leader, cpuctx);
  1063. n0 = 1;
  1064. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1065. if (sub->state == PERF_EVENT_STATE_ACTIVE) {
  1066. x86_event_sched_out(sub, cpuctx);
  1067. if (++n0 == n1)
  1068. break;
  1069. }
  1070. }
  1071. return ret;
  1072. }
  1073. #include "perf_event_amd.c"
  1074. #include "perf_event_p6.c"
  1075. #include "perf_event_intel.c"
  1076. static int __cpuinit
  1077. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1078. {
  1079. unsigned int cpu = (long)hcpu;
  1080. switch (action & ~CPU_TASKS_FROZEN) {
  1081. case CPU_UP_PREPARE:
  1082. if (x86_pmu.cpu_prepare)
  1083. x86_pmu.cpu_prepare(cpu);
  1084. break;
  1085. case CPU_STARTING:
  1086. if (x86_pmu.cpu_starting)
  1087. x86_pmu.cpu_starting(cpu);
  1088. break;
  1089. case CPU_DYING:
  1090. if (x86_pmu.cpu_dying)
  1091. x86_pmu.cpu_dying(cpu);
  1092. break;
  1093. case CPU_DEAD:
  1094. if (x86_pmu.cpu_dead)
  1095. x86_pmu.cpu_dead(cpu);
  1096. break;
  1097. default:
  1098. break;
  1099. }
  1100. return NOTIFY_OK;
  1101. }
  1102. static void __init pmu_check_apic(void)
  1103. {
  1104. if (cpu_has_apic)
  1105. return;
  1106. x86_pmu.apic = 0;
  1107. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1108. pr_info("no hardware sampling interrupt available.\n");
  1109. }
  1110. void __init init_hw_perf_events(void)
  1111. {
  1112. struct event_constraint *c;
  1113. int err;
  1114. pr_info("Performance Events: ");
  1115. switch (boot_cpu_data.x86_vendor) {
  1116. case X86_VENDOR_INTEL:
  1117. err = intel_pmu_init();
  1118. break;
  1119. case X86_VENDOR_AMD:
  1120. err = amd_pmu_init();
  1121. break;
  1122. default:
  1123. return;
  1124. }
  1125. if (err != 0) {
  1126. pr_cont("no PMU driver, software events only.\n");
  1127. return;
  1128. }
  1129. pmu_check_apic();
  1130. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1131. if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
  1132. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1133. x86_pmu.num_events, X86_PMC_MAX_GENERIC);
  1134. x86_pmu.num_events = X86_PMC_MAX_GENERIC;
  1135. }
  1136. perf_event_mask = (1 << x86_pmu.num_events) - 1;
  1137. perf_max_events = x86_pmu.num_events;
  1138. if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
  1139. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1140. x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
  1141. x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
  1142. }
  1143. perf_event_mask |=
  1144. ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
  1145. x86_pmu.intel_ctrl = perf_event_mask;
  1146. perf_events_lapic_init();
  1147. register_die_notifier(&perf_event_nmi_notifier);
  1148. unconstrained = (struct event_constraint)
  1149. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
  1150. 0, x86_pmu.num_events);
  1151. if (x86_pmu.event_constraints) {
  1152. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1153. if (c->cmask != INTEL_ARCH_FIXED_MASK)
  1154. continue;
  1155. c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
  1156. c->weight += x86_pmu.num_events;
  1157. }
  1158. }
  1159. pr_info("... version: %d\n", x86_pmu.version);
  1160. pr_info("... bit width: %d\n", x86_pmu.event_bits);
  1161. pr_info("... generic registers: %d\n", x86_pmu.num_events);
  1162. pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
  1163. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1164. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
  1165. pr_info("... event mask: %016Lx\n", perf_event_mask);
  1166. perf_cpu_notifier(x86_pmu_notifier);
  1167. }
  1168. static inline void x86_pmu_read(struct perf_event *event)
  1169. {
  1170. x86_perf_event_update(event);
  1171. }
  1172. static const struct pmu pmu = {
  1173. .enable = x86_pmu_enable,
  1174. .disable = x86_pmu_disable,
  1175. .start = x86_pmu_start,
  1176. .stop = x86_pmu_stop,
  1177. .read = x86_pmu_read,
  1178. .unthrottle = x86_pmu_unthrottle,
  1179. };
  1180. /*
  1181. * validate a single event group
  1182. *
  1183. * validation include:
  1184. * - check events are compatible which each other
  1185. * - events do not compete for the same counter
  1186. * - number of events <= number of counters
  1187. *
  1188. * validation ensures the group can be loaded onto the
  1189. * PMU if it was the only group available.
  1190. */
  1191. static int validate_group(struct perf_event *event)
  1192. {
  1193. struct perf_event *leader = event->group_leader;
  1194. struct cpu_hw_events *fake_cpuc;
  1195. int ret, n;
  1196. ret = -ENOMEM;
  1197. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1198. if (!fake_cpuc)
  1199. goto out;
  1200. /*
  1201. * the event is not yet connected with its
  1202. * siblings therefore we must first collect
  1203. * existing siblings, then add the new event
  1204. * before we can simulate the scheduling
  1205. */
  1206. ret = -ENOSPC;
  1207. n = collect_events(fake_cpuc, leader, true);
  1208. if (n < 0)
  1209. goto out_free;
  1210. fake_cpuc->n_events = n;
  1211. n = collect_events(fake_cpuc, event, false);
  1212. if (n < 0)
  1213. goto out_free;
  1214. fake_cpuc->n_events = n;
  1215. ret = x86_schedule_events(fake_cpuc, n, NULL);
  1216. out_free:
  1217. kfree(fake_cpuc);
  1218. out:
  1219. return ret;
  1220. }
  1221. const struct pmu *hw_perf_event_init(struct perf_event *event)
  1222. {
  1223. const struct pmu *tmp;
  1224. int err;
  1225. err = __hw_perf_event_init(event);
  1226. if (!err) {
  1227. /*
  1228. * we temporarily connect event to its pmu
  1229. * such that validate_group() can classify
  1230. * it as an x86 event using is_x86_event()
  1231. */
  1232. tmp = event->pmu;
  1233. event->pmu = &pmu;
  1234. if (event->group_leader != event)
  1235. err = validate_group(event);
  1236. event->pmu = tmp;
  1237. }
  1238. if (err) {
  1239. if (event->destroy)
  1240. event->destroy(event);
  1241. return ERR_PTR(err);
  1242. }
  1243. return &pmu;
  1244. }
  1245. /*
  1246. * callchain support
  1247. */
  1248. static inline
  1249. void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1250. {
  1251. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1252. entry->ip[entry->nr++] = ip;
  1253. }
  1254. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  1255. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
  1256. static void
  1257. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1258. {
  1259. /* Ignore warnings */
  1260. }
  1261. static void backtrace_warning(void *data, char *msg)
  1262. {
  1263. /* Ignore warnings */
  1264. }
  1265. static int backtrace_stack(void *data, char *name)
  1266. {
  1267. return 0;
  1268. }
  1269. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1270. {
  1271. struct perf_callchain_entry *entry = data;
  1272. if (reliable)
  1273. callchain_store(entry, addr);
  1274. }
  1275. static const struct stacktrace_ops backtrace_ops = {
  1276. .warning = backtrace_warning,
  1277. .warning_symbol = backtrace_warning_symbol,
  1278. .stack = backtrace_stack,
  1279. .address = backtrace_address,
  1280. .walk_stack = print_context_stack_bp,
  1281. };
  1282. #include "../dumpstack.h"
  1283. static void
  1284. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1285. {
  1286. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1287. callchain_store(entry, regs->ip);
  1288. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1289. }
  1290. /*
  1291. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  1292. */
  1293. static unsigned long
  1294. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  1295. {
  1296. unsigned long offset, addr = (unsigned long)from;
  1297. int type = in_nmi() ? KM_NMI : KM_IRQ0;
  1298. unsigned long size, len = 0;
  1299. struct page *page;
  1300. void *map;
  1301. int ret;
  1302. do {
  1303. ret = __get_user_pages_fast(addr, 1, 0, &page);
  1304. if (!ret)
  1305. break;
  1306. offset = addr & (PAGE_SIZE - 1);
  1307. size = min(PAGE_SIZE - offset, n - len);
  1308. map = kmap_atomic(page, type);
  1309. memcpy(to, map+offset, size);
  1310. kunmap_atomic(map, type);
  1311. put_page(page);
  1312. len += size;
  1313. to += size;
  1314. addr += size;
  1315. } while (len < n);
  1316. return len;
  1317. }
  1318. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  1319. {
  1320. unsigned long bytes;
  1321. bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
  1322. return bytes == sizeof(*frame);
  1323. }
  1324. static void
  1325. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1326. {
  1327. struct stack_frame frame;
  1328. const void __user *fp;
  1329. if (!user_mode(regs))
  1330. regs = task_pt_regs(current);
  1331. fp = (void __user *)regs->bp;
  1332. callchain_store(entry, PERF_CONTEXT_USER);
  1333. callchain_store(entry, regs->ip);
  1334. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1335. frame.next_frame = NULL;
  1336. frame.return_address = 0;
  1337. if (!copy_stack_frame(fp, &frame))
  1338. break;
  1339. if ((unsigned long)fp < regs->sp)
  1340. break;
  1341. callchain_store(entry, frame.return_address);
  1342. fp = frame.next_frame;
  1343. }
  1344. }
  1345. static void
  1346. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1347. {
  1348. int is_user;
  1349. if (!regs)
  1350. return;
  1351. is_user = user_mode(regs);
  1352. if (is_user && current->state != TASK_RUNNING)
  1353. return;
  1354. if (!is_user)
  1355. perf_callchain_kernel(regs, entry);
  1356. if (current->mm)
  1357. perf_callchain_user(regs, entry);
  1358. }
  1359. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1360. {
  1361. struct perf_callchain_entry *entry;
  1362. if (in_nmi())
  1363. entry = &__get_cpu_var(pmc_nmi_entry);
  1364. else
  1365. entry = &__get_cpu_var(pmc_irq_entry);
  1366. entry->nr = 0;
  1367. perf_do_callchain(regs, entry);
  1368. return entry;
  1369. }
  1370. #ifdef CONFIG_EVENT_TRACING
  1371. void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
  1372. {
  1373. regs->ip = ip;
  1374. /*
  1375. * perf_arch_fetch_caller_regs adds another call, we need to increment
  1376. * the skip level
  1377. */
  1378. regs->bp = rewind_frame_pointer(skip + 1);
  1379. regs->cs = __KERNEL_CS;
  1380. local_save_flags(regs->flags);
  1381. }
  1382. #endif