init.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. /*
  2. * Copyright (C) 2007-2008 Michal Simek <monstr@monstr.eu>
  3. * Copyright (C) 2006 Atmark Techno, Inc.
  4. *
  5. * This file is subject to the terms and conditions of the GNU General Public
  6. * License. See the file "COPYING" in the main directory of this archive
  7. * for more details.
  8. */
  9. #include <linux/bootmem.h>
  10. #include <linux/init.h>
  11. #include <linux/kernel.h>
  12. #include <linux/lmb.h>
  13. #include <linux/mm.h> /* mem_init */
  14. #include <linux/initrd.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/pfn.h>
  17. #include <linux/swap.h>
  18. #include <asm/page.h>
  19. #include <asm/mmu_context.h>
  20. #include <asm/pgalloc.h>
  21. #include <asm/sections.h>
  22. #include <asm/tlb.h>
  23. /* Use for MMU and noMMU because of PCI generic code */
  24. int mem_init_done;
  25. #ifndef CONFIG_MMU
  26. unsigned int __page_offset;
  27. EXPORT_SYMBOL(__page_offset);
  28. #else
  29. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  30. static int init_bootmem_done;
  31. #endif /* CONFIG_MMU */
  32. char *klimit = _end;
  33. /*
  34. * Initialize the bootmem system and give it all the memory we
  35. * have available.
  36. */
  37. unsigned long memory_start;
  38. EXPORT_SYMBOL(memory_start);
  39. unsigned long memory_end; /* due to mm/nommu.c */
  40. unsigned long memory_size;
  41. /*
  42. * paging_init() sets up the page tables - in fact we've already done this.
  43. */
  44. static void __init paging_init(void)
  45. {
  46. unsigned long zones_size[MAX_NR_ZONES];
  47. /* Clean every zones */
  48. memset(zones_size, 0, sizeof(zones_size));
  49. /*
  50. * old: we can DMA to/from any address.put all page into ZONE_DMA
  51. * We use only ZONE_NORMAL
  52. */
  53. zones_size[ZONE_NORMAL] = max_mapnr;
  54. free_area_init(zones_size);
  55. }
  56. void __init setup_memory(void)
  57. {
  58. int i;
  59. unsigned long map_size;
  60. #ifndef CONFIG_MMU
  61. u32 kernel_align_start, kernel_align_size;
  62. /* Find main memory where is the kernel */
  63. for (i = 0; i < lmb.memory.cnt; i++) {
  64. memory_start = (u32) lmb.memory.region[i].base;
  65. memory_end = (u32) lmb.memory.region[i].base
  66. + (u32) lmb.memory.region[i].size;
  67. if ((memory_start <= (u32)_text) &&
  68. ((u32)_text <= memory_end)) {
  69. memory_size = memory_end - memory_start;
  70. PAGE_OFFSET = memory_start;
  71. printk(KERN_INFO "%s: Main mem: 0x%x-0x%x, "
  72. "size 0x%08x\n", __func__, (u32) memory_start,
  73. (u32) memory_end, (u32) memory_size);
  74. break;
  75. }
  76. }
  77. if (!memory_start || !memory_end) {
  78. panic("%s: Missing memory setting 0x%08x-0x%08x\n",
  79. __func__, (u32) memory_start, (u32) memory_end);
  80. }
  81. /* reservation of region where is the kernel */
  82. kernel_align_start = PAGE_DOWN((u32)_text);
  83. /* ALIGN can be remove because _end in vmlinux.lds.S is align */
  84. kernel_align_size = PAGE_UP((u32)klimit) - kernel_align_start;
  85. lmb_reserve(kernel_align_start, kernel_align_size);
  86. printk(KERN_INFO "%s: kernel addr=0x%08x-0x%08x size=0x%08x\n",
  87. __func__, kernel_align_start, kernel_align_start
  88. + kernel_align_size, kernel_align_size);
  89. #endif
  90. /*
  91. * Kernel:
  92. * start: base phys address of kernel - page align
  93. * end: base phys address of kernel - page align
  94. *
  95. * min_low_pfn - the first page (mm/bootmem.c - node_boot_start)
  96. * max_low_pfn
  97. * max_mapnr - the first unused page (mm/bootmem.c - node_low_pfn)
  98. * num_physpages - number of all pages
  99. */
  100. /* memory start is from the kernel end (aligned) to higher addr */
  101. min_low_pfn = memory_start >> PAGE_SHIFT; /* minimum for allocation */
  102. /* RAM is assumed contiguous */
  103. num_physpages = max_mapnr = memory_size >> PAGE_SHIFT;
  104. max_pfn = max_low_pfn = memory_end >> PAGE_SHIFT;
  105. printk(KERN_INFO "%s: max_mapnr: %#lx\n", __func__, max_mapnr);
  106. printk(KERN_INFO "%s: min_low_pfn: %#lx\n", __func__, min_low_pfn);
  107. printk(KERN_INFO "%s: max_low_pfn: %#lx\n", __func__, max_low_pfn);
  108. /*
  109. * Find an area to use for the bootmem bitmap.
  110. * We look for the first area which is at least
  111. * 128kB in length (128kB is enough for a bitmap
  112. * for 4GB of memory, using 4kB pages), plus 1 page
  113. * (in case the address isn't page-aligned).
  114. */
  115. #ifndef CONFIG_MMU
  116. map_size = init_bootmem_node(NODE_DATA(0), PFN_UP(TOPHYS((u32)klimit)),
  117. min_low_pfn, max_low_pfn);
  118. #else
  119. map_size = init_bootmem_node(&contig_page_data,
  120. PFN_UP(TOPHYS((u32)klimit)), min_low_pfn, max_low_pfn);
  121. #endif
  122. lmb_reserve(PFN_UP(TOPHYS((u32)klimit)) << PAGE_SHIFT, map_size);
  123. /* free bootmem is whole main memory */
  124. free_bootmem(memory_start, memory_size);
  125. /* reserve allocate blocks */
  126. for (i = 0; i < lmb.reserved.cnt; i++) {
  127. pr_debug("reserved %d - 0x%08x-0x%08x\n", i,
  128. (u32) lmb.reserved.region[i].base,
  129. (u32) lmb_size_bytes(&lmb.reserved, i));
  130. reserve_bootmem(lmb.reserved.region[i].base,
  131. lmb_size_bytes(&lmb.reserved, i) - 1, BOOTMEM_DEFAULT);
  132. }
  133. #ifdef CONFIG_MMU
  134. init_bootmem_done = 1;
  135. #endif
  136. paging_init();
  137. }
  138. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  139. {
  140. unsigned long addr;
  141. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  142. ClearPageReserved(virt_to_page(addr));
  143. init_page_count(virt_to_page(addr));
  144. memset((void *)addr, 0xcc, PAGE_SIZE);
  145. free_page(addr);
  146. totalram_pages++;
  147. }
  148. printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
  149. }
  150. #ifdef CONFIG_BLK_DEV_INITRD
  151. void free_initrd_mem(unsigned long start, unsigned long end)
  152. {
  153. int pages = 0;
  154. for (; start < end; start += PAGE_SIZE) {
  155. ClearPageReserved(virt_to_page(start));
  156. init_page_count(virt_to_page(start));
  157. free_page(start);
  158. totalram_pages++;
  159. pages++;
  160. }
  161. printk(KERN_NOTICE "Freeing initrd memory: %dk freed\n",
  162. (int)(pages * (PAGE_SIZE / 1024)));
  163. }
  164. #endif
  165. void free_initmem(void)
  166. {
  167. free_init_pages("unused kernel memory",
  168. (unsigned long)(&__init_begin),
  169. (unsigned long)(&__init_end));
  170. }
  171. void __init mem_init(void)
  172. {
  173. high_memory = (void *)__va(memory_end);
  174. /* this will put all memory onto the freelists */
  175. totalram_pages += free_all_bootmem();
  176. printk(KERN_INFO "Memory: %luk/%luk available\n",
  177. nr_free_pages() << (PAGE_SHIFT-10),
  178. num_physpages << (PAGE_SHIFT-10));
  179. mem_init_done = 1;
  180. }
  181. #ifndef CONFIG_MMU
  182. /* Check against bounds of physical memory */
  183. int ___range_ok(unsigned long addr, unsigned long size)
  184. {
  185. return ((addr < memory_start) ||
  186. ((addr + size) > memory_end));
  187. }
  188. EXPORT_SYMBOL(___range_ok);
  189. int page_is_ram(unsigned long pfn)
  190. {
  191. return __range_ok(pfn, 0);
  192. }
  193. #else
  194. int page_is_ram(unsigned long pfn)
  195. {
  196. return pfn < max_low_pfn;
  197. }
  198. /*
  199. * Check for command-line options that affect what MMU_init will do.
  200. */
  201. static void mm_cmdline_setup(void)
  202. {
  203. unsigned long maxmem = 0;
  204. char *p = cmd_line;
  205. /* Look for mem= option on command line */
  206. p = strstr(cmd_line, "mem=");
  207. if (p) {
  208. p += 4;
  209. maxmem = memparse(p, &p);
  210. if (maxmem && memory_size > maxmem) {
  211. memory_size = maxmem;
  212. memory_end = memory_start + memory_size;
  213. lmb.memory.region[0].size = memory_size;
  214. }
  215. }
  216. }
  217. /*
  218. * MMU_init_hw does the chip-specific initialization of the MMU hardware.
  219. */
  220. static void __init mmu_init_hw(void)
  221. {
  222. /*
  223. * The Zone Protection Register (ZPR) defines how protection will
  224. * be applied to every page which is a member of a given zone. At
  225. * present, we utilize only two of the zones.
  226. * The zone index bits (of ZSEL) in the PTE are used for software
  227. * indicators, except the LSB. For user access, zone 1 is used,
  228. * for kernel access, zone 0 is used. We set all but zone 1
  229. * to zero, allowing only kernel access as indicated in the PTE.
  230. * For zone 1, we set a 01 binary (a value of 10 will not work)
  231. * to allow user access as indicated in the PTE. This also allows
  232. * kernel access as indicated in the PTE.
  233. */
  234. __asm__ __volatile__ ("ori r11, r0, 0x10000000;" \
  235. "mts rzpr, r11;"
  236. : : : "r11");
  237. }
  238. /*
  239. * MMU_init sets up the basic memory mappings for the kernel,
  240. * including both RAM and possibly some I/O regions,
  241. * and sets up the page tables and the MMU hardware ready to go.
  242. */
  243. /* called from head.S */
  244. asmlinkage void __init mmu_init(void)
  245. {
  246. unsigned int kstart, ksize;
  247. if (!lmb.reserved.cnt) {
  248. printk(KERN_EMERG "Error memory count\n");
  249. machine_restart(NULL);
  250. }
  251. if ((u32) lmb.memory.region[0].size < 0x1000000) {
  252. printk(KERN_EMERG "Memory must be greater than 16MB\n");
  253. machine_restart(NULL);
  254. }
  255. /* Find main memory where the kernel is */
  256. memory_start = (u32) lmb.memory.region[0].base;
  257. memory_end = (u32) lmb.memory.region[0].base +
  258. (u32) lmb.memory.region[0].size;
  259. memory_size = memory_end - memory_start;
  260. mm_cmdline_setup(); /* FIXME parse args from command line - not used */
  261. /*
  262. * Map out the kernel text/data/bss from the available physical
  263. * memory.
  264. */
  265. kstart = __pa(CONFIG_KERNEL_START); /* kernel start */
  266. /* kernel size */
  267. ksize = PAGE_ALIGN(((u32)_end - (u32)CONFIG_KERNEL_START));
  268. lmb_reserve(kstart, ksize);
  269. #if defined(CONFIG_BLK_DEV_INITRD)
  270. /* Remove the init RAM disk from the available memory. */
  271. /* if (initrd_start) {
  272. mem_pieces_remove(&phys_avail, __pa(initrd_start),
  273. initrd_end - initrd_start, 1);
  274. }*/
  275. #endif /* CONFIG_BLK_DEV_INITRD */
  276. /* Initialize the MMU hardware */
  277. mmu_init_hw();
  278. /* Map in all of RAM starting at CONFIG_KERNEL_START */
  279. mapin_ram();
  280. #ifdef HIGHMEM_START_BOOL
  281. ioremap_base = HIGHMEM_START;
  282. #else
  283. ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */
  284. #endif /* CONFIG_HIGHMEM */
  285. ioremap_bot = ioremap_base;
  286. /* Initialize the context management stuff */
  287. mmu_context_init();
  288. }
  289. /* This is only called until mem_init is done. */
  290. void __init *early_get_page(void)
  291. {
  292. void *p;
  293. if (init_bootmem_done) {
  294. p = alloc_bootmem_pages(PAGE_SIZE);
  295. } else {
  296. /*
  297. * Mem start + 32MB -> here is limit
  298. * because of mem mapping from head.S
  299. */
  300. p = __va(lmb_alloc_base(PAGE_SIZE, PAGE_SIZE,
  301. memory_start + 0x2000000));
  302. }
  303. return p;
  304. }
  305. #endif /* CONFIG_MMU */
  306. void * __init_refok alloc_maybe_bootmem(size_t size, gfp_t mask)
  307. {
  308. if (mem_init_done)
  309. return kmalloc(size, mask);
  310. else
  311. return alloc_bootmem(size);
  312. }
  313. void * __init_refok zalloc_maybe_bootmem(size_t size, gfp_t mask)
  314. {
  315. void *p;
  316. if (mem_init_done)
  317. p = kzalloc(size, mask);
  318. else {
  319. p = alloc_bootmem(size);
  320. if (p)
  321. memset(p, 0, size);
  322. }
  323. return p;
  324. }