mmu.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <asm/cputype.h>
  18. #include <asm/mach-types.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/smp_plat.h>
  24. #include <asm/tlb.h>
  25. #include <asm/highmem.h>
  26. #include <asm/mach/arch.h>
  27. #include <asm/mach/map.h>
  28. #include "mm.h"
  29. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  30. /*
  31. * empty_zero_page is a special page that is used for
  32. * zero-initialized data and COW.
  33. */
  34. struct page *empty_zero_page;
  35. EXPORT_SYMBOL(empty_zero_page);
  36. /*
  37. * The pmd table for the upper-most set of pages.
  38. */
  39. pmd_t *top_pmd;
  40. #define CPOLICY_UNCACHED 0
  41. #define CPOLICY_BUFFERED 1
  42. #define CPOLICY_WRITETHROUGH 2
  43. #define CPOLICY_WRITEBACK 3
  44. #define CPOLICY_WRITEALLOC 4
  45. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  46. static unsigned int ecc_mask __initdata = 0;
  47. pgprot_t pgprot_user;
  48. pgprot_t pgprot_kernel;
  49. EXPORT_SYMBOL(pgprot_user);
  50. EXPORT_SYMBOL(pgprot_kernel);
  51. struct cachepolicy {
  52. const char policy[16];
  53. unsigned int cr_mask;
  54. unsigned int pmd;
  55. unsigned int pte;
  56. };
  57. static struct cachepolicy cache_policies[] __initdata = {
  58. {
  59. .policy = "uncached",
  60. .cr_mask = CR_W|CR_C,
  61. .pmd = PMD_SECT_UNCACHED,
  62. .pte = L_PTE_MT_UNCACHED,
  63. }, {
  64. .policy = "buffered",
  65. .cr_mask = CR_C,
  66. .pmd = PMD_SECT_BUFFERED,
  67. .pte = L_PTE_MT_BUFFERABLE,
  68. }, {
  69. .policy = "writethrough",
  70. .cr_mask = 0,
  71. .pmd = PMD_SECT_WT,
  72. .pte = L_PTE_MT_WRITETHROUGH,
  73. }, {
  74. .policy = "writeback",
  75. .cr_mask = 0,
  76. .pmd = PMD_SECT_WB,
  77. .pte = L_PTE_MT_WRITEBACK,
  78. }, {
  79. .policy = "writealloc",
  80. .cr_mask = 0,
  81. .pmd = PMD_SECT_WBWA,
  82. .pte = L_PTE_MT_WRITEALLOC,
  83. }
  84. };
  85. /*
  86. * These are useful for identifying cache coherency
  87. * problems by allowing the cache or the cache and
  88. * writebuffer to be turned off. (Note: the write
  89. * buffer should not be on and the cache off).
  90. */
  91. static int __init early_cachepolicy(char *p)
  92. {
  93. int i;
  94. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  95. int len = strlen(cache_policies[i].policy);
  96. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  97. cachepolicy = i;
  98. cr_alignment &= ~cache_policies[i].cr_mask;
  99. cr_no_alignment &= ~cache_policies[i].cr_mask;
  100. break;
  101. }
  102. }
  103. if (i == ARRAY_SIZE(cache_policies))
  104. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  105. /*
  106. * This restriction is partly to do with the way we boot; it is
  107. * unpredictable to have memory mapped using two different sets of
  108. * memory attributes (shared, type, and cache attribs). We can not
  109. * change these attributes once the initial assembly has setup the
  110. * page tables.
  111. */
  112. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  113. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  114. cachepolicy = CPOLICY_WRITEBACK;
  115. }
  116. flush_cache_all();
  117. set_cr(cr_alignment);
  118. return 0;
  119. }
  120. early_param("cachepolicy", early_cachepolicy);
  121. static int __init early_nocache(char *__unused)
  122. {
  123. char *p = "buffered";
  124. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  125. early_cachepolicy(p);
  126. return 0;
  127. }
  128. early_param("nocache", early_nocache);
  129. static int __init early_nowrite(char *__unused)
  130. {
  131. char *p = "uncached";
  132. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  133. early_cachepolicy(p);
  134. return 0;
  135. }
  136. early_param("nowb", early_nowrite);
  137. static int __init early_ecc(char *p)
  138. {
  139. if (memcmp(p, "on", 2) == 0)
  140. ecc_mask = PMD_PROTECTION;
  141. else if (memcmp(p, "off", 3) == 0)
  142. ecc_mask = 0;
  143. return 0;
  144. }
  145. early_param("ecc", early_ecc);
  146. static int __init noalign_setup(char *__unused)
  147. {
  148. cr_alignment &= ~CR_A;
  149. cr_no_alignment &= ~CR_A;
  150. set_cr(cr_alignment);
  151. return 1;
  152. }
  153. __setup("noalign", noalign_setup);
  154. #ifndef CONFIG_SMP
  155. void adjust_cr(unsigned long mask, unsigned long set)
  156. {
  157. unsigned long flags;
  158. mask &= ~CR_A;
  159. set &= mask;
  160. local_irq_save(flags);
  161. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  162. cr_alignment = (cr_alignment & ~mask) | set;
  163. set_cr((get_cr() & ~mask) | set);
  164. local_irq_restore(flags);
  165. }
  166. #endif
  167. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  168. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  169. static struct mem_type mem_types[] = {
  170. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  171. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  172. L_PTE_SHARED,
  173. .prot_l1 = PMD_TYPE_TABLE,
  174. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  175. .domain = DOMAIN_IO,
  176. },
  177. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  178. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  179. .prot_l1 = PMD_TYPE_TABLE,
  180. .prot_sect = PROT_SECT_DEVICE,
  181. .domain = DOMAIN_IO,
  182. },
  183. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  184. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  185. .prot_l1 = PMD_TYPE_TABLE,
  186. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  187. .domain = DOMAIN_IO,
  188. },
  189. [MT_DEVICE_WC] = { /* ioremap_wc */
  190. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  191. .prot_l1 = PMD_TYPE_TABLE,
  192. .prot_sect = PROT_SECT_DEVICE,
  193. .domain = DOMAIN_IO,
  194. },
  195. [MT_UNCACHED] = {
  196. .prot_pte = PROT_PTE_DEVICE,
  197. .prot_l1 = PMD_TYPE_TABLE,
  198. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  199. .domain = DOMAIN_IO,
  200. },
  201. [MT_CACHECLEAN] = {
  202. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  203. .domain = DOMAIN_KERNEL,
  204. },
  205. [MT_MINICLEAN] = {
  206. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  207. .domain = DOMAIN_KERNEL,
  208. },
  209. [MT_LOW_VECTORS] = {
  210. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  211. L_PTE_EXEC,
  212. .prot_l1 = PMD_TYPE_TABLE,
  213. .domain = DOMAIN_USER,
  214. },
  215. [MT_HIGH_VECTORS] = {
  216. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  217. L_PTE_USER | L_PTE_EXEC,
  218. .prot_l1 = PMD_TYPE_TABLE,
  219. .domain = DOMAIN_USER,
  220. },
  221. [MT_MEMORY] = {
  222. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  223. .domain = DOMAIN_KERNEL,
  224. },
  225. [MT_ROM] = {
  226. .prot_sect = PMD_TYPE_SECT,
  227. .domain = DOMAIN_KERNEL,
  228. },
  229. [MT_MEMORY_NONCACHED] = {
  230. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  231. .domain = DOMAIN_KERNEL,
  232. },
  233. };
  234. const struct mem_type *get_mem_type(unsigned int type)
  235. {
  236. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  237. }
  238. EXPORT_SYMBOL(get_mem_type);
  239. /*
  240. * Adjust the PMD section entries according to the CPU in use.
  241. */
  242. static void __init build_mem_type_table(void)
  243. {
  244. struct cachepolicy *cp;
  245. unsigned int cr = get_cr();
  246. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  247. int cpu_arch = cpu_architecture();
  248. int i;
  249. if (cpu_arch < CPU_ARCH_ARMv6) {
  250. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  251. if (cachepolicy > CPOLICY_BUFFERED)
  252. cachepolicy = CPOLICY_BUFFERED;
  253. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  254. if (cachepolicy > CPOLICY_WRITETHROUGH)
  255. cachepolicy = CPOLICY_WRITETHROUGH;
  256. #endif
  257. }
  258. if (cpu_arch < CPU_ARCH_ARMv5) {
  259. if (cachepolicy >= CPOLICY_WRITEALLOC)
  260. cachepolicy = CPOLICY_WRITEBACK;
  261. ecc_mask = 0;
  262. }
  263. #ifdef CONFIG_SMP
  264. cachepolicy = CPOLICY_WRITEALLOC;
  265. #endif
  266. /*
  267. * Strip out features not present on earlier architectures.
  268. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  269. * without extended page tables don't have the 'Shared' bit.
  270. */
  271. if (cpu_arch < CPU_ARCH_ARMv5)
  272. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  273. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  274. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  275. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  276. mem_types[i].prot_sect &= ~PMD_SECT_S;
  277. /*
  278. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  279. * "update-able on write" bit on ARM610). However, Xscale and
  280. * Xscale3 require this bit to be cleared.
  281. */
  282. if (cpu_is_xscale() || cpu_is_xsc3()) {
  283. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  284. mem_types[i].prot_sect &= ~PMD_BIT4;
  285. mem_types[i].prot_l1 &= ~PMD_BIT4;
  286. }
  287. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  288. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  289. if (mem_types[i].prot_l1)
  290. mem_types[i].prot_l1 |= PMD_BIT4;
  291. if (mem_types[i].prot_sect)
  292. mem_types[i].prot_sect |= PMD_BIT4;
  293. }
  294. }
  295. /*
  296. * Mark the device areas according to the CPU/architecture.
  297. */
  298. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  299. if (!cpu_is_xsc3()) {
  300. /*
  301. * Mark device regions on ARMv6+ as execute-never
  302. * to prevent speculative instruction fetches.
  303. */
  304. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  305. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  306. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  307. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  308. }
  309. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  310. /*
  311. * For ARMv7 with TEX remapping,
  312. * - shared device is SXCB=1100
  313. * - nonshared device is SXCB=0100
  314. * - write combine device mem is SXCB=0001
  315. * (Uncached Normal memory)
  316. */
  317. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  318. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  319. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  320. } else if (cpu_is_xsc3()) {
  321. /*
  322. * For Xscale3,
  323. * - shared device is TEXCB=00101
  324. * - nonshared device is TEXCB=01000
  325. * - write combine device mem is TEXCB=00100
  326. * (Inner/Outer Uncacheable in xsc3 parlance)
  327. */
  328. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  329. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  330. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  331. } else {
  332. /*
  333. * For ARMv6 and ARMv7 without TEX remapping,
  334. * - shared device is TEXCB=00001
  335. * - nonshared device is TEXCB=01000
  336. * - write combine device mem is TEXCB=00100
  337. * (Uncached Normal in ARMv6 parlance).
  338. */
  339. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  340. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  341. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  342. }
  343. } else {
  344. /*
  345. * On others, write combining is "Uncached/Buffered"
  346. */
  347. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  348. }
  349. /*
  350. * Now deal with the memory-type mappings
  351. */
  352. cp = &cache_policies[cachepolicy];
  353. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  354. #ifndef CONFIG_SMP
  355. /*
  356. * Only use write-through for non-SMP systems
  357. */
  358. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  359. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  360. #endif
  361. /*
  362. * Enable CPU-specific coherency if supported.
  363. * (Only available on XSC3 at the moment.)
  364. */
  365. if (arch_is_coherent() && cpu_is_xsc3())
  366. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  367. /*
  368. * ARMv6 and above have extended page tables.
  369. */
  370. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  371. /*
  372. * Mark cache clean areas and XIP ROM read only
  373. * from SVC mode and no access from userspace.
  374. */
  375. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  376. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  377. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  378. #ifdef CONFIG_SMP
  379. /*
  380. * Mark memory with the "shared" attribute for SMP systems
  381. */
  382. user_pgprot |= L_PTE_SHARED;
  383. kern_pgprot |= L_PTE_SHARED;
  384. vecs_pgprot |= L_PTE_SHARED;
  385. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  386. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  387. #endif
  388. }
  389. /*
  390. * Non-cacheable Normal - intended for memory areas that must
  391. * not cause dirty cache line writebacks when used
  392. */
  393. if (cpu_arch >= CPU_ARCH_ARMv6) {
  394. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  395. /* Non-cacheable Normal is XCB = 001 */
  396. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  397. PMD_SECT_BUFFERED;
  398. } else {
  399. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  400. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  401. PMD_SECT_TEX(1);
  402. }
  403. } else {
  404. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  405. }
  406. for (i = 0; i < 16; i++) {
  407. unsigned long v = pgprot_val(protection_map[i]);
  408. protection_map[i] = __pgprot(v | user_pgprot);
  409. }
  410. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  411. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  412. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  413. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  414. L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
  415. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  416. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  417. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  418. mem_types[MT_ROM].prot_sect |= cp->pmd;
  419. switch (cp->pmd) {
  420. case PMD_SECT_WT:
  421. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  422. break;
  423. case PMD_SECT_WB:
  424. case PMD_SECT_WBWA:
  425. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  426. break;
  427. }
  428. printk("Memory policy: ECC %sabled, Data cache %s\n",
  429. ecc_mask ? "en" : "dis", cp->policy);
  430. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  431. struct mem_type *t = &mem_types[i];
  432. if (t->prot_l1)
  433. t->prot_l1 |= PMD_DOMAIN(t->domain);
  434. if (t->prot_sect)
  435. t->prot_sect |= PMD_DOMAIN(t->domain);
  436. }
  437. }
  438. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  439. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  440. unsigned long end, unsigned long pfn,
  441. const struct mem_type *type)
  442. {
  443. pte_t *pte;
  444. if (pmd_none(*pmd)) {
  445. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  446. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  447. }
  448. pte = pte_offset_kernel(pmd, addr);
  449. do {
  450. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  451. pfn++;
  452. } while (pte++, addr += PAGE_SIZE, addr != end);
  453. }
  454. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  455. unsigned long end, unsigned long phys,
  456. const struct mem_type *type)
  457. {
  458. pmd_t *pmd = pmd_offset(pgd, addr);
  459. /*
  460. * Try a section mapping - end, addr and phys must all be aligned
  461. * to a section boundary. Note that PMDs refer to the individual
  462. * L1 entries, whereas PGDs refer to a group of L1 entries making
  463. * up one logical pointer to an L2 table.
  464. */
  465. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  466. pmd_t *p = pmd;
  467. if (addr & SECTION_SIZE)
  468. pmd++;
  469. do {
  470. *pmd = __pmd(phys | type->prot_sect);
  471. phys += SECTION_SIZE;
  472. } while (pmd++, addr += SECTION_SIZE, addr != end);
  473. flush_pmd_entry(p);
  474. } else {
  475. /*
  476. * No need to loop; pte's aren't interested in the
  477. * individual L1 entries.
  478. */
  479. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  480. }
  481. }
  482. static void __init create_36bit_mapping(struct map_desc *md,
  483. const struct mem_type *type)
  484. {
  485. unsigned long phys, addr, length, end;
  486. pgd_t *pgd;
  487. addr = md->virtual;
  488. phys = (unsigned long)__pfn_to_phys(md->pfn);
  489. length = PAGE_ALIGN(md->length);
  490. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  491. printk(KERN_ERR "MM: CPU does not support supersection "
  492. "mapping for 0x%08llx at 0x%08lx\n",
  493. __pfn_to_phys((u64)md->pfn), addr);
  494. return;
  495. }
  496. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  497. * Since domain assignments can in fact be arbitrary, the
  498. * 'domain == 0' check below is required to insure that ARMv6
  499. * supersections are only allocated for domain 0 regardless
  500. * of the actual domain assignments in use.
  501. */
  502. if (type->domain) {
  503. printk(KERN_ERR "MM: invalid domain in supersection "
  504. "mapping for 0x%08llx at 0x%08lx\n",
  505. __pfn_to_phys((u64)md->pfn), addr);
  506. return;
  507. }
  508. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  509. printk(KERN_ERR "MM: cannot create mapping for "
  510. "0x%08llx at 0x%08lx invalid alignment\n",
  511. __pfn_to_phys((u64)md->pfn), addr);
  512. return;
  513. }
  514. /*
  515. * Shift bits [35:32] of address into bits [23:20] of PMD
  516. * (See ARMv6 spec).
  517. */
  518. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  519. pgd = pgd_offset_k(addr);
  520. end = addr + length;
  521. do {
  522. pmd_t *pmd = pmd_offset(pgd, addr);
  523. int i;
  524. for (i = 0; i < 16; i++)
  525. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  526. addr += SUPERSECTION_SIZE;
  527. phys += SUPERSECTION_SIZE;
  528. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  529. } while (addr != end);
  530. }
  531. /*
  532. * Create the page directory entries and any necessary
  533. * page tables for the mapping specified by `md'. We
  534. * are able to cope here with varying sizes and address
  535. * offsets, and we take full advantage of sections and
  536. * supersections.
  537. */
  538. void __init create_mapping(struct map_desc *md)
  539. {
  540. unsigned long phys, addr, length, end;
  541. const struct mem_type *type;
  542. pgd_t *pgd;
  543. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  544. printk(KERN_WARNING "BUG: not creating mapping for "
  545. "0x%08llx at 0x%08lx in user region\n",
  546. __pfn_to_phys((u64)md->pfn), md->virtual);
  547. return;
  548. }
  549. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  550. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  551. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  552. "overlaps vmalloc space\n",
  553. __pfn_to_phys((u64)md->pfn), md->virtual);
  554. }
  555. type = &mem_types[md->type];
  556. /*
  557. * Catch 36-bit addresses
  558. */
  559. if (md->pfn >= 0x100000) {
  560. create_36bit_mapping(md, type);
  561. return;
  562. }
  563. addr = md->virtual & PAGE_MASK;
  564. phys = (unsigned long)__pfn_to_phys(md->pfn);
  565. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  566. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  567. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  568. "be mapped using pages, ignoring.\n",
  569. __pfn_to_phys(md->pfn), addr);
  570. return;
  571. }
  572. pgd = pgd_offset_k(addr);
  573. end = addr + length;
  574. do {
  575. unsigned long next = pgd_addr_end(addr, end);
  576. alloc_init_section(pgd, addr, next, phys, type);
  577. phys += next - addr;
  578. addr = next;
  579. } while (pgd++, addr != end);
  580. }
  581. /*
  582. * Create the architecture specific mappings
  583. */
  584. void __init iotable_init(struct map_desc *io_desc, int nr)
  585. {
  586. int i;
  587. for (i = 0; i < nr; i++)
  588. create_mapping(io_desc + i);
  589. }
  590. static unsigned long __initdata vmalloc_reserve = SZ_128M;
  591. /*
  592. * vmalloc=size forces the vmalloc area to be exactly 'size'
  593. * bytes. This can be used to increase (or decrease) the vmalloc
  594. * area - the default is 128m.
  595. */
  596. static int __init early_vmalloc(char *arg)
  597. {
  598. vmalloc_reserve = memparse(arg, NULL);
  599. if (vmalloc_reserve < SZ_16M) {
  600. vmalloc_reserve = SZ_16M;
  601. printk(KERN_WARNING
  602. "vmalloc area too small, limiting to %luMB\n",
  603. vmalloc_reserve >> 20);
  604. }
  605. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  606. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  607. printk(KERN_WARNING
  608. "vmalloc area is too big, limiting to %luMB\n",
  609. vmalloc_reserve >> 20);
  610. }
  611. return 0;
  612. }
  613. early_param("vmalloc", early_vmalloc);
  614. #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
  615. static void __init sanity_check_meminfo(void)
  616. {
  617. int i, j, highmem = 0;
  618. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  619. struct membank *bank = &meminfo.bank[j];
  620. *bank = meminfo.bank[i];
  621. #ifdef CONFIG_HIGHMEM
  622. if (__va(bank->start) > VMALLOC_MIN ||
  623. __va(bank->start) < (void *)PAGE_OFFSET)
  624. highmem = 1;
  625. bank->highmem = highmem;
  626. /*
  627. * Split those memory banks which are partially overlapping
  628. * the vmalloc area greatly simplifying things later.
  629. */
  630. if (__va(bank->start) < VMALLOC_MIN &&
  631. bank->size > VMALLOC_MIN - __va(bank->start)) {
  632. if (meminfo.nr_banks >= NR_BANKS) {
  633. printk(KERN_CRIT "NR_BANKS too low, "
  634. "ignoring high memory\n");
  635. } else {
  636. memmove(bank + 1, bank,
  637. (meminfo.nr_banks - i) * sizeof(*bank));
  638. meminfo.nr_banks++;
  639. i++;
  640. bank[1].size -= VMALLOC_MIN - __va(bank->start);
  641. bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
  642. bank[1].highmem = highmem = 1;
  643. j++;
  644. }
  645. bank->size = VMALLOC_MIN - __va(bank->start);
  646. }
  647. #else
  648. bank->highmem = highmem;
  649. /*
  650. * Check whether this memory bank would entirely overlap
  651. * the vmalloc area.
  652. */
  653. if (__va(bank->start) >= VMALLOC_MIN ||
  654. __va(bank->start) < (void *)PAGE_OFFSET) {
  655. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  656. "(vmalloc region overlap).\n",
  657. bank->start, bank->start + bank->size - 1);
  658. continue;
  659. }
  660. /*
  661. * Check whether this memory bank would partially overlap
  662. * the vmalloc area.
  663. */
  664. if (__va(bank->start + bank->size) > VMALLOC_MIN ||
  665. __va(bank->start + bank->size) < __va(bank->start)) {
  666. unsigned long newsize = VMALLOC_MIN - __va(bank->start);
  667. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  668. "to -%.8lx (vmalloc region overlap).\n",
  669. bank->start, bank->start + bank->size - 1,
  670. bank->start + newsize - 1);
  671. bank->size = newsize;
  672. }
  673. #endif
  674. j++;
  675. }
  676. #ifdef CONFIG_HIGHMEM
  677. if (highmem) {
  678. const char *reason = NULL;
  679. if (cache_is_vipt_aliasing()) {
  680. /*
  681. * Interactions between kmap and other mappings
  682. * make highmem support with aliasing VIPT caches
  683. * rather difficult.
  684. */
  685. reason = "with VIPT aliasing cache";
  686. #ifdef CONFIG_SMP
  687. } else if (tlb_ops_need_broadcast()) {
  688. /*
  689. * kmap_high needs to occasionally flush TLB entries,
  690. * however, if the TLB entries need to be broadcast
  691. * we may deadlock:
  692. * kmap_high(irqs off)->flush_all_zero_pkmaps->
  693. * flush_tlb_kernel_range->smp_call_function_many
  694. * (must not be called with irqs off)
  695. */
  696. reason = "without hardware TLB ops broadcasting";
  697. #endif
  698. }
  699. if (reason) {
  700. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  701. reason);
  702. while (j > 0 && meminfo.bank[j - 1].highmem)
  703. j--;
  704. }
  705. }
  706. #endif
  707. meminfo.nr_banks = j;
  708. }
  709. static inline void prepare_page_table(void)
  710. {
  711. unsigned long addr;
  712. /*
  713. * Clear out all the mappings below the kernel image.
  714. */
  715. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  716. pmd_clear(pmd_off_k(addr));
  717. #ifdef CONFIG_XIP_KERNEL
  718. /* The XIP kernel is mapped in the module area -- skip over it */
  719. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  720. #endif
  721. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  722. pmd_clear(pmd_off_k(addr));
  723. /*
  724. * Clear out all the kernel space mappings, except for the first
  725. * memory bank, up to the end of the vmalloc region.
  726. */
  727. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  728. addr < VMALLOC_END; addr += PGDIR_SIZE)
  729. pmd_clear(pmd_off_k(addr));
  730. }
  731. /*
  732. * Reserve the various regions of node 0
  733. */
  734. void __init reserve_node_zero(pg_data_t *pgdat)
  735. {
  736. unsigned long res_size = 0;
  737. /*
  738. * Register the kernel text and data with bootmem.
  739. * Note that this can only be in node 0.
  740. */
  741. #ifdef CONFIG_XIP_KERNEL
  742. reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
  743. BOOTMEM_DEFAULT);
  744. #else
  745. reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
  746. BOOTMEM_DEFAULT);
  747. #endif
  748. /*
  749. * Reserve the page tables. These are already in use,
  750. * and can only be in node 0.
  751. */
  752. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  753. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  754. /*
  755. * Hmm... This should go elsewhere, but we really really need to
  756. * stop things allocating the low memory; ideally we need a better
  757. * implementation of GFP_DMA which does not assume that DMA-able
  758. * memory starts at zero.
  759. */
  760. if (machine_is_integrator() || machine_is_cintegrator())
  761. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  762. /*
  763. * These should likewise go elsewhere. They pre-reserve the
  764. * screen memory region at the start of main system memory.
  765. */
  766. if (machine_is_edb7211())
  767. res_size = 0x00020000;
  768. if (machine_is_p720t())
  769. res_size = 0x00014000;
  770. /* H1940 and RX3715 need to reserve this for suspend */
  771. if (machine_is_h1940() || machine_is_rx3715()) {
  772. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  773. BOOTMEM_DEFAULT);
  774. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  775. BOOTMEM_DEFAULT);
  776. }
  777. if (machine_is_palmld() || machine_is_palmtx()) {
  778. reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
  779. BOOTMEM_EXCLUSIVE);
  780. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  781. BOOTMEM_EXCLUSIVE);
  782. }
  783. if (machine_is_treo680() || machine_is_centro()) {
  784. reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
  785. BOOTMEM_EXCLUSIVE);
  786. reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
  787. BOOTMEM_EXCLUSIVE);
  788. }
  789. if (machine_is_palmt5())
  790. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  791. BOOTMEM_EXCLUSIVE);
  792. /*
  793. * U300 - This platform family can share physical memory
  794. * between two ARM cpus, one running Linux and the other
  795. * running another OS.
  796. */
  797. if (machine_is_u300()) {
  798. #ifdef CONFIG_MACH_U300_SINGLE_RAM
  799. #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
  800. CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
  801. res_size = 0x00100000;
  802. #endif
  803. #endif
  804. }
  805. #ifdef CONFIG_SA1111
  806. /*
  807. * Because of the SA1111 DMA bug, we want to preserve our
  808. * precious DMA-able memory...
  809. */
  810. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  811. #endif
  812. if (res_size)
  813. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  814. BOOTMEM_DEFAULT);
  815. }
  816. /*
  817. * Set up device the mappings. Since we clear out the page tables for all
  818. * mappings above VMALLOC_END, we will remove any debug device mappings.
  819. * This means you have to be careful how you debug this function, or any
  820. * called function. This means you can't use any function or debugging
  821. * method which may touch any device, otherwise the kernel _will_ crash.
  822. */
  823. static void __init devicemaps_init(struct machine_desc *mdesc)
  824. {
  825. struct map_desc map;
  826. unsigned long addr;
  827. void *vectors;
  828. /*
  829. * Allocate the vector page early.
  830. */
  831. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  832. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  833. pmd_clear(pmd_off_k(addr));
  834. /*
  835. * Map the kernel if it is XIP.
  836. * It is always first in the modulearea.
  837. */
  838. #ifdef CONFIG_XIP_KERNEL
  839. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  840. map.virtual = MODULES_VADDR;
  841. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  842. map.type = MT_ROM;
  843. create_mapping(&map);
  844. #endif
  845. /*
  846. * Map the cache flushing regions.
  847. */
  848. #ifdef FLUSH_BASE
  849. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  850. map.virtual = FLUSH_BASE;
  851. map.length = SZ_1M;
  852. map.type = MT_CACHECLEAN;
  853. create_mapping(&map);
  854. #endif
  855. #ifdef FLUSH_BASE_MINICACHE
  856. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  857. map.virtual = FLUSH_BASE_MINICACHE;
  858. map.length = SZ_1M;
  859. map.type = MT_MINICLEAN;
  860. create_mapping(&map);
  861. #endif
  862. /*
  863. * Create a mapping for the machine vectors at the high-vectors
  864. * location (0xffff0000). If we aren't using high-vectors, also
  865. * create a mapping at the low-vectors virtual address.
  866. */
  867. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  868. map.virtual = 0xffff0000;
  869. map.length = PAGE_SIZE;
  870. map.type = MT_HIGH_VECTORS;
  871. create_mapping(&map);
  872. if (!vectors_high()) {
  873. map.virtual = 0;
  874. map.type = MT_LOW_VECTORS;
  875. create_mapping(&map);
  876. }
  877. /*
  878. * Ask the machine support to map in the statically mapped devices.
  879. */
  880. if (mdesc->map_io)
  881. mdesc->map_io();
  882. /*
  883. * Finally flush the caches and tlb to ensure that we're in a
  884. * consistent state wrt the writebuffer. This also ensures that
  885. * any write-allocated cache lines in the vector page are written
  886. * back. After this point, we can start to touch devices again.
  887. */
  888. local_flush_tlb_all();
  889. flush_cache_all();
  890. }
  891. static void __init kmap_init(void)
  892. {
  893. #ifdef CONFIG_HIGHMEM
  894. pmd_t *pmd = pmd_off_k(PKMAP_BASE);
  895. pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  896. BUG_ON(!pmd_none(*pmd) || !pte);
  897. __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
  898. pkmap_page_table = pte + PTRS_PER_PTE;
  899. #endif
  900. }
  901. /*
  902. * paging_init() sets up the page tables, initialises the zone memory
  903. * maps, and sets up the zero page, bad page and bad page tables.
  904. */
  905. void __init paging_init(struct machine_desc *mdesc)
  906. {
  907. void *zero_page;
  908. build_mem_type_table();
  909. sanity_check_meminfo();
  910. prepare_page_table();
  911. bootmem_init();
  912. devicemaps_init(mdesc);
  913. kmap_init();
  914. top_pmd = pmd_off_k(0xffff0000);
  915. /*
  916. * allocate the zero page. Note that this always succeeds and
  917. * returns a zeroed result.
  918. */
  919. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  920. empty_zero_page = virt_to_page(zero_page);
  921. __flush_dcache_page(NULL, empty_zero_page);
  922. }
  923. /*
  924. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  925. * the user-mode pages. This will then ensure that we have predictable
  926. * results when turning the mmu off
  927. */
  928. void setup_mm_for_reboot(char mode)
  929. {
  930. unsigned long base_pmdval;
  931. pgd_t *pgd;
  932. int i;
  933. if (current->mm && current->mm->pgd)
  934. pgd = current->mm->pgd;
  935. else
  936. pgd = init_mm.pgd;
  937. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  938. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  939. base_pmdval |= PMD_BIT4;
  940. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  941. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  942. pmd_t *pmd;
  943. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  944. pmd[0] = __pmd(pmdval);
  945. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  946. flush_pmd_entry(pmd);
  947. }
  948. local_flush_tlb_all();
  949. }