flush.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. /*
  2. * linux/arch/arm/mm/flush.c
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/mm.h>
  12. #include <linux/pagemap.h>
  13. #include <asm/cacheflush.h>
  14. #include <asm/cachetype.h>
  15. #include <asm/smp_plat.h>
  16. #include <asm/system.h>
  17. #include <asm/tlbflush.h>
  18. #include "mm.h"
  19. #ifdef CONFIG_CPU_CACHE_VIPT
  20. #define ALIAS_FLUSH_START 0xffff4000
  21. static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
  22. {
  23. unsigned long to = ALIAS_FLUSH_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
  24. const int zero = 0;
  25. set_pte_ext(TOP_PTE(to), pfn_pte(pfn, PAGE_KERNEL), 0);
  26. flush_tlb_kernel_page(to);
  27. asm( "mcrr p15, 0, %1, %0, c14\n"
  28. " mcr p15, 0, %2, c7, c10, 4"
  29. :
  30. : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
  31. : "cc");
  32. }
  33. void flush_cache_mm(struct mm_struct *mm)
  34. {
  35. if (cache_is_vivt()) {
  36. vivt_flush_cache_mm(mm);
  37. return;
  38. }
  39. if (cache_is_vipt_aliasing()) {
  40. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  41. " mcr p15, 0, %0, c7, c10, 4"
  42. :
  43. : "r" (0)
  44. : "cc");
  45. }
  46. }
  47. void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  48. {
  49. if (cache_is_vivt()) {
  50. vivt_flush_cache_range(vma, start, end);
  51. return;
  52. }
  53. if (cache_is_vipt_aliasing()) {
  54. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  55. " mcr p15, 0, %0, c7, c10, 4"
  56. :
  57. : "r" (0)
  58. : "cc");
  59. }
  60. if (vma->vm_flags & VM_EXEC)
  61. __flush_icache_all();
  62. }
  63. void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
  64. {
  65. if (cache_is_vivt()) {
  66. vivt_flush_cache_page(vma, user_addr, pfn);
  67. return;
  68. }
  69. if (cache_is_vipt_aliasing()) {
  70. flush_pfn_alias(pfn, user_addr);
  71. __flush_icache_all();
  72. }
  73. if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
  74. __flush_icache_all();
  75. }
  76. #else
  77. #define flush_pfn_alias(pfn,vaddr) do { } while (0)
  78. #endif
  79. #ifdef CONFIG_SMP
  80. static void flush_ptrace_access_other(void *args)
  81. {
  82. __flush_icache_all();
  83. }
  84. #endif
  85. static
  86. void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
  87. unsigned long uaddr, void *kaddr, unsigned long len)
  88. {
  89. if (cache_is_vivt()) {
  90. if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
  91. unsigned long addr = (unsigned long)kaddr;
  92. __cpuc_coherent_kern_range(addr, addr + len);
  93. }
  94. return;
  95. }
  96. if (cache_is_vipt_aliasing()) {
  97. flush_pfn_alias(page_to_pfn(page), uaddr);
  98. __flush_icache_all();
  99. return;
  100. }
  101. /* VIPT non-aliasing cache */
  102. if (vma->vm_flags & VM_EXEC) {
  103. unsigned long addr = (unsigned long)kaddr;
  104. __cpuc_coherent_kern_range(addr, addr + len);
  105. #ifdef CONFIG_SMP
  106. if (cache_ops_need_broadcast())
  107. smp_call_function(flush_ptrace_access_other,
  108. NULL, 1);
  109. #endif
  110. }
  111. }
  112. /*
  113. * Copy user data from/to a page which is mapped into a different
  114. * processes address space. Really, we want to allow our "user
  115. * space" model to handle this.
  116. *
  117. * Note that this code needs to run on the current CPU.
  118. */
  119. void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
  120. unsigned long uaddr, void *dst, const void *src,
  121. unsigned long len)
  122. {
  123. #ifdef CONFIG_SMP
  124. preempt_disable();
  125. #endif
  126. memcpy(dst, src, len);
  127. flush_ptrace_access(vma, page, uaddr, dst, len);
  128. #ifdef CONFIG_SMP
  129. preempt_enable();
  130. #endif
  131. }
  132. void __flush_dcache_page(struct address_space *mapping, struct page *page)
  133. {
  134. void *addr = page_address(page);
  135. /*
  136. * Writeback any data associated with the kernel mapping of this
  137. * page. This ensures that data in the physical page is mutually
  138. * coherent with the kernels mapping.
  139. */
  140. #ifdef CONFIG_HIGHMEM
  141. /*
  142. * kmap_atomic() doesn't set the page virtual address, and
  143. * kunmap_atomic() takes care of cache flushing already.
  144. */
  145. if (addr)
  146. #endif
  147. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  148. /*
  149. * If this is a page cache page, and we have an aliasing VIPT cache,
  150. * we only need to do one flush - which would be at the relevant
  151. * userspace colour, which is congruent with page->index.
  152. */
  153. if (mapping && cache_is_vipt_aliasing())
  154. flush_pfn_alias(page_to_pfn(page),
  155. page->index << PAGE_CACHE_SHIFT);
  156. }
  157. static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
  158. {
  159. struct mm_struct *mm = current->active_mm;
  160. struct vm_area_struct *mpnt;
  161. struct prio_tree_iter iter;
  162. pgoff_t pgoff;
  163. /*
  164. * There are possible user space mappings of this page:
  165. * - VIVT cache: we need to also write back and invalidate all user
  166. * data in the current VM view associated with this page.
  167. * - aliasing VIPT: we only need to find one mapping of this page.
  168. */
  169. pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  170. flush_dcache_mmap_lock(mapping);
  171. vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
  172. unsigned long offset;
  173. /*
  174. * If this VMA is not in our MM, we can ignore it.
  175. */
  176. if (mpnt->vm_mm != mm)
  177. continue;
  178. if (!(mpnt->vm_flags & VM_MAYSHARE))
  179. continue;
  180. offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
  181. flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
  182. }
  183. flush_dcache_mmap_unlock(mapping);
  184. }
  185. /*
  186. * Ensure cache coherency between kernel mapping and userspace mapping
  187. * of this page.
  188. *
  189. * We have three cases to consider:
  190. * - VIPT non-aliasing cache: fully coherent so nothing required.
  191. * - VIVT: fully aliasing, so we need to handle every alias in our
  192. * current VM view.
  193. * - VIPT aliasing: need to handle one alias in our current VM view.
  194. *
  195. * If we need to handle aliasing:
  196. * If the page only exists in the page cache and there are no user
  197. * space mappings, we can be lazy and remember that we may have dirty
  198. * kernel cache lines for later. Otherwise, we assume we have
  199. * aliasing mappings.
  200. *
  201. * Note that we disable the lazy flush for SMP.
  202. */
  203. void flush_dcache_page(struct page *page)
  204. {
  205. struct address_space *mapping;
  206. /*
  207. * The zero page is never written to, so never has any dirty
  208. * cache lines, and therefore never needs to be flushed.
  209. */
  210. if (page == ZERO_PAGE(0))
  211. return;
  212. mapping = page_mapping(page);
  213. #ifndef CONFIG_SMP
  214. if (!PageHighMem(page) && mapping && !mapping_mapped(mapping))
  215. set_bit(PG_dcache_dirty, &page->flags);
  216. else
  217. #endif
  218. {
  219. __flush_dcache_page(mapping, page);
  220. if (mapping && cache_is_vivt())
  221. __flush_dcache_aliases(mapping, page);
  222. else if (mapping)
  223. __flush_icache_all();
  224. }
  225. }
  226. EXPORT_SYMBOL(flush_dcache_page);
  227. /*
  228. * Flush an anonymous page so that users of get_user_pages()
  229. * can safely access the data. The expected sequence is:
  230. *
  231. * get_user_pages()
  232. * -> flush_anon_page
  233. * memcpy() to/from page
  234. * if written to page, flush_dcache_page()
  235. */
  236. void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
  237. {
  238. unsigned long pfn;
  239. /* VIPT non-aliasing caches need do nothing */
  240. if (cache_is_vipt_nonaliasing())
  241. return;
  242. /*
  243. * Write back and invalidate userspace mapping.
  244. */
  245. pfn = page_to_pfn(page);
  246. if (cache_is_vivt()) {
  247. flush_cache_page(vma, vmaddr, pfn);
  248. } else {
  249. /*
  250. * For aliasing VIPT, we can flush an alias of the
  251. * userspace address only.
  252. */
  253. flush_pfn_alias(pfn, vmaddr);
  254. __flush_icache_all();
  255. }
  256. /*
  257. * Invalidate kernel mapping. No data should be contained
  258. * in this mapping of the page. FIXME: this is overkill
  259. * since we actually ask for a write-back and invalidate.
  260. */
  261. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  262. }