hw_breakpoint.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License version 2 as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. *
  15. * Copyright (C) 2009, 2010 ARM Limited
  16. *
  17. * Author: Will Deacon <will.deacon@arm.com>
  18. */
  19. /*
  20. * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  21. * using the CPU's debug registers.
  22. */
  23. #define pr_fmt(fmt) "hw-breakpoint: " fmt
  24. #include <linux/errno.h>
  25. #include <linux/hardirq.h>
  26. #include <linux/perf_event.h>
  27. #include <linux/hw_breakpoint.h>
  28. #include <linux/smp.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cputype.h>
  31. #include <asm/current.h>
  32. #include <asm/hw_breakpoint.h>
  33. #include <asm/kdebug.h>
  34. #include <asm/traps.h>
  35. /* Breakpoint currently in use for each BRP. */
  36. static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
  37. /* Watchpoint currently in use for each WRP. */
  38. static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
  39. /* Number of BRP/WRP registers on this CPU. */
  40. static int core_num_brps;
  41. static int core_num_wrps;
  42. /* Debug architecture version. */
  43. static u8 debug_arch;
  44. /* Maximum supported watchpoint length. */
  45. static u8 max_watchpoint_len;
  46. #define READ_WB_REG_CASE(OP2, M, VAL) \
  47. case ((OP2 << 4) + M): \
  48. ARM_DBG_READ(c ## M, OP2, VAL); \
  49. break
  50. #define WRITE_WB_REG_CASE(OP2, M, VAL) \
  51. case ((OP2 << 4) + M): \
  52. ARM_DBG_WRITE(c ## M, OP2, VAL);\
  53. break
  54. #define GEN_READ_WB_REG_CASES(OP2, VAL) \
  55. READ_WB_REG_CASE(OP2, 0, VAL); \
  56. READ_WB_REG_CASE(OP2, 1, VAL); \
  57. READ_WB_REG_CASE(OP2, 2, VAL); \
  58. READ_WB_REG_CASE(OP2, 3, VAL); \
  59. READ_WB_REG_CASE(OP2, 4, VAL); \
  60. READ_WB_REG_CASE(OP2, 5, VAL); \
  61. READ_WB_REG_CASE(OP2, 6, VAL); \
  62. READ_WB_REG_CASE(OP2, 7, VAL); \
  63. READ_WB_REG_CASE(OP2, 8, VAL); \
  64. READ_WB_REG_CASE(OP2, 9, VAL); \
  65. READ_WB_REG_CASE(OP2, 10, VAL); \
  66. READ_WB_REG_CASE(OP2, 11, VAL); \
  67. READ_WB_REG_CASE(OP2, 12, VAL); \
  68. READ_WB_REG_CASE(OP2, 13, VAL); \
  69. READ_WB_REG_CASE(OP2, 14, VAL); \
  70. READ_WB_REG_CASE(OP2, 15, VAL)
  71. #define GEN_WRITE_WB_REG_CASES(OP2, VAL) \
  72. WRITE_WB_REG_CASE(OP2, 0, VAL); \
  73. WRITE_WB_REG_CASE(OP2, 1, VAL); \
  74. WRITE_WB_REG_CASE(OP2, 2, VAL); \
  75. WRITE_WB_REG_CASE(OP2, 3, VAL); \
  76. WRITE_WB_REG_CASE(OP2, 4, VAL); \
  77. WRITE_WB_REG_CASE(OP2, 5, VAL); \
  78. WRITE_WB_REG_CASE(OP2, 6, VAL); \
  79. WRITE_WB_REG_CASE(OP2, 7, VAL); \
  80. WRITE_WB_REG_CASE(OP2, 8, VAL); \
  81. WRITE_WB_REG_CASE(OP2, 9, VAL); \
  82. WRITE_WB_REG_CASE(OP2, 10, VAL); \
  83. WRITE_WB_REG_CASE(OP2, 11, VAL); \
  84. WRITE_WB_REG_CASE(OP2, 12, VAL); \
  85. WRITE_WB_REG_CASE(OP2, 13, VAL); \
  86. WRITE_WB_REG_CASE(OP2, 14, VAL); \
  87. WRITE_WB_REG_CASE(OP2, 15, VAL)
  88. static u32 read_wb_reg(int n)
  89. {
  90. u32 val = 0;
  91. switch (n) {
  92. GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
  93. GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
  94. GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
  95. GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
  96. default:
  97. pr_warning("attempt to read from unknown breakpoint "
  98. "register %d\n", n);
  99. }
  100. return val;
  101. }
  102. static void write_wb_reg(int n, u32 val)
  103. {
  104. switch (n) {
  105. GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
  106. GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
  107. GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
  108. GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
  109. default:
  110. pr_warning("attempt to write to unknown breakpoint "
  111. "register %d\n", n);
  112. }
  113. isb();
  114. }
  115. /* Determine debug architecture. */
  116. static u8 get_debug_arch(void)
  117. {
  118. u32 didr;
  119. /* Do we implement the extended CPUID interface? */
  120. if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
  121. pr_warning("CPUID feature registers not supported. "
  122. "Assuming v6 debug is present.\n");
  123. return ARM_DEBUG_ARCH_V6;
  124. }
  125. ARM_DBG_READ(c0, 0, didr);
  126. return (didr >> 16) & 0xf;
  127. }
  128. u8 arch_get_debug_arch(void)
  129. {
  130. return debug_arch;
  131. }
  132. static int debug_arch_supported(void)
  133. {
  134. u8 arch = get_debug_arch();
  135. /* We don't support the memory-mapped interface. */
  136. return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
  137. arch >= ARM_DEBUG_ARCH_V7_1;
  138. }
  139. /* Can we determine the watchpoint access type from the fsr? */
  140. static int debug_exception_updates_fsr(void)
  141. {
  142. return 0;
  143. }
  144. /* Determine number of WRP registers available. */
  145. static int get_num_wrp_resources(void)
  146. {
  147. u32 didr;
  148. ARM_DBG_READ(c0, 0, didr);
  149. return ((didr >> 28) & 0xf) + 1;
  150. }
  151. /* Determine number of BRP registers available. */
  152. static int get_num_brp_resources(void)
  153. {
  154. u32 didr;
  155. ARM_DBG_READ(c0, 0, didr);
  156. return ((didr >> 24) & 0xf) + 1;
  157. }
  158. /* Does this core support mismatch breakpoints? */
  159. static int core_has_mismatch_brps(void)
  160. {
  161. return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
  162. get_num_brp_resources() > 1);
  163. }
  164. /* Determine number of usable WRPs available. */
  165. static int get_num_wrps(void)
  166. {
  167. /*
  168. * On debug architectures prior to 7.1, when a watchpoint fires, the
  169. * only way to work out which watchpoint it was is by disassembling
  170. * the faulting instruction and working out the address of the memory
  171. * access.
  172. *
  173. * Furthermore, we can only do this if the watchpoint was precise
  174. * since imprecise watchpoints prevent us from calculating register
  175. * based addresses.
  176. *
  177. * Providing we have more than 1 breakpoint register, we only report
  178. * a single watchpoint register for the time being. This way, we always
  179. * know which watchpoint fired. In the future we can either add a
  180. * disassembler and address generation emulator, or we can insert a
  181. * check to see if the DFAR is set on watchpoint exception entry
  182. * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
  183. * that it is set on some implementations].
  184. */
  185. if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
  186. return 1;
  187. return get_num_wrp_resources();
  188. }
  189. /* Determine number of usable BRPs available. */
  190. static int get_num_brps(void)
  191. {
  192. int brps = get_num_brp_resources();
  193. return core_has_mismatch_brps() ? brps - 1 : brps;
  194. }
  195. /*
  196. * In order to access the breakpoint/watchpoint control registers,
  197. * we must be running in debug monitor mode. Unfortunately, we can
  198. * be put into halting debug mode at any time by an external debugger
  199. * but there is nothing we can do to prevent that.
  200. */
  201. static int enable_monitor_mode(void)
  202. {
  203. u32 dscr;
  204. int ret = 0;
  205. ARM_DBG_READ(c1, 0, dscr);
  206. /* Ensure that halting mode is disabled. */
  207. if (WARN_ONCE(dscr & ARM_DSCR_HDBGEN,
  208. "halting debug mode enabled. Unable to access hardware resources.\n")) {
  209. ret = -EPERM;
  210. goto out;
  211. }
  212. /* If monitor mode is already enabled, just return. */
  213. if (dscr & ARM_DSCR_MDBGEN)
  214. goto out;
  215. /* Write to the corresponding DSCR. */
  216. switch (get_debug_arch()) {
  217. case ARM_DEBUG_ARCH_V6:
  218. case ARM_DEBUG_ARCH_V6_1:
  219. ARM_DBG_WRITE(c1, 0, (dscr | ARM_DSCR_MDBGEN));
  220. break;
  221. case ARM_DEBUG_ARCH_V7_ECP14:
  222. case ARM_DEBUG_ARCH_V7_1:
  223. ARM_DBG_WRITE(c2, 2, (dscr | ARM_DSCR_MDBGEN));
  224. break;
  225. default:
  226. ret = -ENODEV;
  227. goto out;
  228. }
  229. /* Check that the write made it through. */
  230. ARM_DBG_READ(c1, 0, dscr);
  231. if (!(dscr & ARM_DSCR_MDBGEN))
  232. ret = -EPERM;
  233. out:
  234. return ret;
  235. }
  236. int hw_breakpoint_slots(int type)
  237. {
  238. if (!debug_arch_supported())
  239. return 0;
  240. /*
  241. * We can be called early, so don't rely on
  242. * our static variables being initialised.
  243. */
  244. switch (type) {
  245. case TYPE_INST:
  246. return get_num_brps();
  247. case TYPE_DATA:
  248. return get_num_wrps();
  249. default:
  250. pr_warning("unknown slot type: %d\n", type);
  251. return 0;
  252. }
  253. }
  254. /*
  255. * Check if 8-bit byte-address select is available.
  256. * This clobbers WRP 0.
  257. */
  258. static u8 get_max_wp_len(void)
  259. {
  260. u32 ctrl_reg;
  261. struct arch_hw_breakpoint_ctrl ctrl;
  262. u8 size = 4;
  263. if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
  264. goto out;
  265. memset(&ctrl, 0, sizeof(ctrl));
  266. ctrl.len = ARM_BREAKPOINT_LEN_8;
  267. ctrl_reg = encode_ctrl_reg(ctrl);
  268. write_wb_reg(ARM_BASE_WVR, 0);
  269. write_wb_reg(ARM_BASE_WCR, ctrl_reg);
  270. if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
  271. size = 8;
  272. out:
  273. return size;
  274. }
  275. u8 arch_get_max_wp_len(void)
  276. {
  277. return max_watchpoint_len;
  278. }
  279. /*
  280. * Install a perf counter breakpoint.
  281. */
  282. int arch_install_hw_breakpoint(struct perf_event *bp)
  283. {
  284. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  285. struct perf_event **slot, **slots;
  286. int i, max_slots, ctrl_base, val_base, ret = 0;
  287. u32 addr, ctrl;
  288. /* Ensure that we are in monitor mode and halting mode is disabled. */
  289. ret = enable_monitor_mode();
  290. if (ret)
  291. goto out;
  292. addr = info->address;
  293. ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
  294. if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
  295. /* Breakpoint */
  296. ctrl_base = ARM_BASE_BCR;
  297. val_base = ARM_BASE_BVR;
  298. slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
  299. max_slots = core_num_brps;
  300. } else {
  301. /* Watchpoint */
  302. ctrl_base = ARM_BASE_WCR;
  303. val_base = ARM_BASE_WVR;
  304. slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
  305. max_slots = core_num_wrps;
  306. }
  307. for (i = 0; i < max_slots; ++i) {
  308. slot = &slots[i];
  309. if (!*slot) {
  310. *slot = bp;
  311. break;
  312. }
  313. }
  314. if (WARN_ONCE(i == max_slots, "Can't find any breakpoint slot\n")) {
  315. ret = -EBUSY;
  316. goto out;
  317. }
  318. /* Override the breakpoint data with the step data. */
  319. if (info->step_ctrl.enabled) {
  320. addr = info->trigger & ~0x3;
  321. ctrl = encode_ctrl_reg(info->step_ctrl);
  322. if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
  323. i = 0;
  324. ctrl_base = ARM_BASE_BCR + core_num_brps;
  325. val_base = ARM_BASE_BVR + core_num_brps;
  326. }
  327. }
  328. /* Setup the address register. */
  329. write_wb_reg(val_base + i, addr);
  330. /* Setup the control register. */
  331. write_wb_reg(ctrl_base + i, ctrl);
  332. out:
  333. return ret;
  334. }
  335. void arch_uninstall_hw_breakpoint(struct perf_event *bp)
  336. {
  337. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  338. struct perf_event **slot, **slots;
  339. int i, max_slots, base;
  340. if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
  341. /* Breakpoint */
  342. base = ARM_BASE_BCR;
  343. slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
  344. max_slots = core_num_brps;
  345. } else {
  346. /* Watchpoint */
  347. base = ARM_BASE_WCR;
  348. slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
  349. max_slots = core_num_wrps;
  350. }
  351. /* Remove the breakpoint. */
  352. for (i = 0; i < max_slots; ++i) {
  353. slot = &slots[i];
  354. if (*slot == bp) {
  355. *slot = NULL;
  356. break;
  357. }
  358. }
  359. if (WARN_ONCE(i == max_slots, "Can't find any breakpoint slot\n"))
  360. return;
  361. /* Ensure that we disable the mismatch breakpoint. */
  362. if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
  363. info->step_ctrl.enabled) {
  364. i = 0;
  365. base = ARM_BASE_BCR + core_num_brps;
  366. }
  367. /* Reset the control register. */
  368. write_wb_reg(base + i, 0);
  369. }
  370. static int get_hbp_len(u8 hbp_len)
  371. {
  372. unsigned int len_in_bytes = 0;
  373. switch (hbp_len) {
  374. case ARM_BREAKPOINT_LEN_1:
  375. len_in_bytes = 1;
  376. break;
  377. case ARM_BREAKPOINT_LEN_2:
  378. len_in_bytes = 2;
  379. break;
  380. case ARM_BREAKPOINT_LEN_4:
  381. len_in_bytes = 4;
  382. break;
  383. case ARM_BREAKPOINT_LEN_8:
  384. len_in_bytes = 8;
  385. break;
  386. }
  387. return len_in_bytes;
  388. }
  389. /*
  390. * Check whether bp virtual address is in kernel space.
  391. */
  392. int arch_check_bp_in_kernelspace(struct perf_event *bp)
  393. {
  394. unsigned int len;
  395. unsigned long va;
  396. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  397. va = info->address;
  398. len = get_hbp_len(info->ctrl.len);
  399. return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
  400. }
  401. /*
  402. * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
  403. * Hopefully this will disappear when ptrace can bypass the conversion
  404. * to generic breakpoint descriptions.
  405. */
  406. int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
  407. int *gen_len, int *gen_type)
  408. {
  409. /* Type */
  410. switch (ctrl.type) {
  411. case ARM_BREAKPOINT_EXECUTE:
  412. *gen_type = HW_BREAKPOINT_X;
  413. break;
  414. case ARM_BREAKPOINT_LOAD:
  415. *gen_type = HW_BREAKPOINT_R;
  416. break;
  417. case ARM_BREAKPOINT_STORE:
  418. *gen_type = HW_BREAKPOINT_W;
  419. break;
  420. case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
  421. *gen_type = HW_BREAKPOINT_RW;
  422. break;
  423. default:
  424. return -EINVAL;
  425. }
  426. /* Len */
  427. switch (ctrl.len) {
  428. case ARM_BREAKPOINT_LEN_1:
  429. *gen_len = HW_BREAKPOINT_LEN_1;
  430. break;
  431. case ARM_BREAKPOINT_LEN_2:
  432. *gen_len = HW_BREAKPOINT_LEN_2;
  433. break;
  434. case ARM_BREAKPOINT_LEN_4:
  435. *gen_len = HW_BREAKPOINT_LEN_4;
  436. break;
  437. case ARM_BREAKPOINT_LEN_8:
  438. *gen_len = HW_BREAKPOINT_LEN_8;
  439. break;
  440. default:
  441. return -EINVAL;
  442. }
  443. return 0;
  444. }
  445. /*
  446. * Construct an arch_hw_breakpoint from a perf_event.
  447. */
  448. static int arch_build_bp_info(struct perf_event *bp)
  449. {
  450. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  451. /* Type */
  452. switch (bp->attr.bp_type) {
  453. case HW_BREAKPOINT_X:
  454. info->ctrl.type = ARM_BREAKPOINT_EXECUTE;
  455. break;
  456. case HW_BREAKPOINT_R:
  457. info->ctrl.type = ARM_BREAKPOINT_LOAD;
  458. break;
  459. case HW_BREAKPOINT_W:
  460. info->ctrl.type = ARM_BREAKPOINT_STORE;
  461. break;
  462. case HW_BREAKPOINT_RW:
  463. info->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
  464. break;
  465. default:
  466. return -EINVAL;
  467. }
  468. /* Len */
  469. switch (bp->attr.bp_len) {
  470. case HW_BREAKPOINT_LEN_1:
  471. info->ctrl.len = ARM_BREAKPOINT_LEN_1;
  472. break;
  473. case HW_BREAKPOINT_LEN_2:
  474. info->ctrl.len = ARM_BREAKPOINT_LEN_2;
  475. break;
  476. case HW_BREAKPOINT_LEN_4:
  477. info->ctrl.len = ARM_BREAKPOINT_LEN_4;
  478. break;
  479. case HW_BREAKPOINT_LEN_8:
  480. info->ctrl.len = ARM_BREAKPOINT_LEN_8;
  481. if ((info->ctrl.type != ARM_BREAKPOINT_EXECUTE)
  482. && max_watchpoint_len >= 8)
  483. break;
  484. default:
  485. return -EINVAL;
  486. }
  487. /*
  488. * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
  489. * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
  490. * by the hardware and must be aligned to the appropriate number of
  491. * bytes.
  492. */
  493. if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
  494. info->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
  495. info->ctrl.len != ARM_BREAKPOINT_LEN_4)
  496. return -EINVAL;
  497. /* Address */
  498. info->address = bp->attr.bp_addr;
  499. /* Privilege */
  500. info->ctrl.privilege = ARM_BREAKPOINT_USER;
  501. if (arch_check_bp_in_kernelspace(bp))
  502. info->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
  503. /* Enabled? */
  504. info->ctrl.enabled = !bp->attr.disabled;
  505. /* Mismatch */
  506. info->ctrl.mismatch = 0;
  507. return 0;
  508. }
  509. /*
  510. * Validate the arch-specific HW Breakpoint register settings.
  511. */
  512. int arch_validate_hwbkpt_settings(struct perf_event *bp)
  513. {
  514. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  515. int ret = 0;
  516. u32 offset, alignment_mask = 0x3;
  517. /* Build the arch_hw_breakpoint. */
  518. ret = arch_build_bp_info(bp);
  519. if (ret)
  520. goto out;
  521. /* Check address alignment. */
  522. if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
  523. alignment_mask = 0x7;
  524. offset = info->address & alignment_mask;
  525. switch (offset) {
  526. case 0:
  527. /* Aligned */
  528. break;
  529. case 1:
  530. /* Allow single byte watchpoint. */
  531. if (info->ctrl.len == ARM_BREAKPOINT_LEN_1)
  532. break;
  533. case 2:
  534. /* Allow halfword watchpoints and breakpoints. */
  535. if (info->ctrl.len == ARM_BREAKPOINT_LEN_2)
  536. break;
  537. default:
  538. ret = -EINVAL;
  539. goto out;
  540. }
  541. info->address &= ~alignment_mask;
  542. info->ctrl.len <<= offset;
  543. if (!bp->overflow_handler) {
  544. /*
  545. * Mismatch breakpoints are required for single-stepping
  546. * breakpoints.
  547. */
  548. if (!core_has_mismatch_brps())
  549. return -EINVAL;
  550. /* We don't allow mismatch breakpoints in kernel space. */
  551. if (arch_check_bp_in_kernelspace(bp))
  552. return -EPERM;
  553. /*
  554. * Per-cpu breakpoints are not supported by our stepping
  555. * mechanism.
  556. */
  557. if (!bp->hw.bp_target)
  558. return -EINVAL;
  559. /*
  560. * We only support specific access types if the fsr
  561. * reports them.
  562. */
  563. if (!debug_exception_updates_fsr() &&
  564. (info->ctrl.type == ARM_BREAKPOINT_LOAD ||
  565. info->ctrl.type == ARM_BREAKPOINT_STORE))
  566. return -EINVAL;
  567. }
  568. out:
  569. return ret;
  570. }
  571. /*
  572. * Enable/disable single-stepping over the breakpoint bp at address addr.
  573. */
  574. static void enable_single_step(struct perf_event *bp, u32 addr)
  575. {
  576. struct arch_hw_breakpoint *info = counter_arch_bp(bp);
  577. arch_uninstall_hw_breakpoint(bp);
  578. info->step_ctrl.mismatch = 1;
  579. info->step_ctrl.len = ARM_BREAKPOINT_LEN_4;
  580. info->step_ctrl.type = ARM_BREAKPOINT_EXECUTE;
  581. info->step_ctrl.privilege = info->ctrl.privilege;
  582. info->step_ctrl.enabled = 1;
  583. info->trigger = addr;
  584. arch_install_hw_breakpoint(bp);
  585. }
  586. static void disable_single_step(struct perf_event *bp)
  587. {
  588. arch_uninstall_hw_breakpoint(bp);
  589. counter_arch_bp(bp)->step_ctrl.enabled = 0;
  590. arch_install_hw_breakpoint(bp);
  591. }
  592. static void watchpoint_handler(unsigned long addr, unsigned int fsr,
  593. struct pt_regs *regs)
  594. {
  595. int i, access;
  596. u32 val, ctrl_reg, alignment_mask;
  597. struct perf_event *wp, **slots;
  598. struct arch_hw_breakpoint *info;
  599. struct arch_hw_breakpoint_ctrl ctrl;
  600. slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
  601. for (i = 0; i < core_num_wrps; ++i) {
  602. rcu_read_lock();
  603. wp = slots[i];
  604. if (wp == NULL)
  605. goto unlock;
  606. info = counter_arch_bp(wp);
  607. /*
  608. * The DFAR is an unknown value on debug architectures prior
  609. * to 7.1. Since we only allow a single watchpoint on these
  610. * older CPUs, we can set the trigger to the lowest possible
  611. * faulting address.
  612. */
  613. if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
  614. BUG_ON(i > 0);
  615. info->trigger = wp->attr.bp_addr;
  616. } else {
  617. if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
  618. alignment_mask = 0x7;
  619. else
  620. alignment_mask = 0x3;
  621. /* Check if the watchpoint value matches. */
  622. val = read_wb_reg(ARM_BASE_WVR + i);
  623. if (val != (addr & ~alignment_mask))
  624. goto unlock;
  625. /* Possible match, check the byte address select. */
  626. ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
  627. decode_ctrl_reg(ctrl_reg, &ctrl);
  628. if (!((1 << (addr & alignment_mask)) & ctrl.len))
  629. goto unlock;
  630. /* Check that the access type matches. */
  631. if (debug_exception_updates_fsr()) {
  632. access = (fsr & ARM_FSR_ACCESS_MASK) ?
  633. HW_BREAKPOINT_W : HW_BREAKPOINT_R;
  634. if (!(access & hw_breakpoint_type(wp)))
  635. goto unlock;
  636. }
  637. /* We have a winner. */
  638. info->trigger = addr;
  639. }
  640. pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
  641. perf_bp_event(wp, regs);
  642. /*
  643. * If no overflow handler is present, insert a temporary
  644. * mismatch breakpoint so we can single-step over the
  645. * watchpoint trigger.
  646. */
  647. if (!wp->overflow_handler)
  648. enable_single_step(wp, instruction_pointer(regs));
  649. unlock:
  650. rcu_read_unlock();
  651. }
  652. }
  653. static void watchpoint_single_step_handler(unsigned long pc)
  654. {
  655. int i;
  656. struct perf_event *wp, **slots;
  657. struct arch_hw_breakpoint *info;
  658. slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
  659. for (i = 0; i < core_num_wrps; ++i) {
  660. rcu_read_lock();
  661. wp = slots[i];
  662. if (wp == NULL)
  663. goto unlock;
  664. info = counter_arch_bp(wp);
  665. if (!info->step_ctrl.enabled)
  666. goto unlock;
  667. /*
  668. * Restore the original watchpoint if we've completed the
  669. * single-step.
  670. */
  671. if (info->trigger != pc)
  672. disable_single_step(wp);
  673. unlock:
  674. rcu_read_unlock();
  675. }
  676. }
  677. static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
  678. {
  679. int i;
  680. u32 ctrl_reg, val, addr;
  681. struct perf_event *bp, **slots;
  682. struct arch_hw_breakpoint *info;
  683. struct arch_hw_breakpoint_ctrl ctrl;
  684. slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
  685. /* The exception entry code places the amended lr in the PC. */
  686. addr = regs->ARM_pc;
  687. /* Check the currently installed breakpoints first. */
  688. for (i = 0; i < core_num_brps; ++i) {
  689. rcu_read_lock();
  690. bp = slots[i];
  691. if (bp == NULL)
  692. goto unlock;
  693. info = counter_arch_bp(bp);
  694. /* Check if the breakpoint value matches. */
  695. val = read_wb_reg(ARM_BASE_BVR + i);
  696. if (val != (addr & ~0x3))
  697. goto mismatch;
  698. /* Possible match, check the byte address select to confirm. */
  699. ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
  700. decode_ctrl_reg(ctrl_reg, &ctrl);
  701. if ((1 << (addr & 0x3)) & ctrl.len) {
  702. info->trigger = addr;
  703. pr_debug("breakpoint fired: address = 0x%x\n", addr);
  704. perf_bp_event(bp, regs);
  705. if (!bp->overflow_handler)
  706. enable_single_step(bp, addr);
  707. goto unlock;
  708. }
  709. mismatch:
  710. /* If we're stepping a breakpoint, it can now be restored. */
  711. if (info->step_ctrl.enabled)
  712. disable_single_step(bp);
  713. unlock:
  714. rcu_read_unlock();
  715. }
  716. /* Handle any pending watchpoint single-step breakpoints. */
  717. watchpoint_single_step_handler(addr);
  718. }
  719. /*
  720. * Called from either the Data Abort Handler [watchpoint] or the
  721. * Prefetch Abort Handler [breakpoint] with interrupts disabled.
  722. */
  723. static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
  724. struct pt_regs *regs)
  725. {
  726. int ret = 0;
  727. u32 dscr;
  728. preempt_disable();
  729. if (interrupts_enabled(regs))
  730. local_irq_enable();
  731. /* We only handle watchpoints and hardware breakpoints. */
  732. ARM_DBG_READ(c1, 0, dscr);
  733. /* Perform perf callbacks. */
  734. switch (ARM_DSCR_MOE(dscr)) {
  735. case ARM_ENTRY_BREAKPOINT:
  736. breakpoint_handler(addr, regs);
  737. break;
  738. case ARM_ENTRY_ASYNC_WATCHPOINT:
  739. WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
  740. case ARM_ENTRY_SYNC_WATCHPOINT:
  741. watchpoint_handler(addr, fsr, regs);
  742. break;
  743. default:
  744. ret = 1; /* Unhandled fault. */
  745. }
  746. preempt_enable();
  747. return ret;
  748. }
  749. /*
  750. * One-time initialisation.
  751. */
  752. static cpumask_t debug_err_mask;
  753. static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
  754. {
  755. int cpu = smp_processor_id();
  756. pr_warning("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
  757. instr, cpu);
  758. /* Set the error flag for this CPU and skip the faulting instruction. */
  759. cpumask_set_cpu(cpu, &debug_err_mask);
  760. instruction_pointer(regs) += 4;
  761. return 0;
  762. }
  763. static struct undef_hook debug_reg_hook = {
  764. .instr_mask = 0x0fe80f10,
  765. .instr_val = 0x0e000e10,
  766. .fn = debug_reg_trap,
  767. };
  768. static void reset_ctrl_regs(void *unused)
  769. {
  770. int i, raw_num_brps, err = 0, cpu = smp_processor_id();
  771. u32 dbg_power;
  772. /*
  773. * v7 debug contains save and restore registers so that debug state
  774. * can be maintained across low-power modes without leaving the debug
  775. * logic powered up. It is IMPLEMENTATION DEFINED whether we can access
  776. * the debug registers out of reset, so we must unlock the OS Lock
  777. * Access Register to avoid taking undefined instruction exceptions
  778. * later on.
  779. */
  780. switch (debug_arch) {
  781. case ARM_DEBUG_ARCH_V6:
  782. case ARM_DEBUG_ARCH_V6_1:
  783. /* ARMv6 cores just need to reset the registers. */
  784. goto reset_regs;
  785. case ARM_DEBUG_ARCH_V7_ECP14:
  786. /*
  787. * Ensure sticky power-down is clear (i.e. debug logic is
  788. * powered up).
  789. */
  790. asm volatile("mrc p14, 0, %0, c1, c5, 4" : "=r" (dbg_power));
  791. if ((dbg_power & 0x1) == 0)
  792. err = -EPERM;
  793. break;
  794. case ARM_DEBUG_ARCH_V7_1:
  795. /*
  796. * Ensure the OS double lock is clear.
  797. */
  798. asm volatile("mrc p14, 0, %0, c1, c3, 4" : "=r" (dbg_power));
  799. if ((dbg_power & 0x1) == 1)
  800. err = -EPERM;
  801. break;
  802. }
  803. if (err) {
  804. pr_warning("CPU %d debug is powered down!\n", cpu);
  805. cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
  806. return;
  807. }
  808. /*
  809. * Unconditionally clear the lock by writing a value
  810. * other than 0xC5ACCE55 to the access register.
  811. */
  812. asm volatile("mcr p14, 0, %0, c1, c0, 4" : : "r" (0));
  813. isb();
  814. /*
  815. * Clear any configured vector-catch events before
  816. * enabling monitor mode.
  817. */
  818. asm volatile("mcr p14, 0, %0, c0, c7, 0" : : "r" (0));
  819. isb();
  820. reset_regs:
  821. if (enable_monitor_mode())
  822. return;
  823. /* We must also reset any reserved registers. */
  824. raw_num_brps = get_num_brp_resources();
  825. for (i = 0; i < raw_num_brps; ++i) {
  826. write_wb_reg(ARM_BASE_BCR + i, 0UL);
  827. write_wb_reg(ARM_BASE_BVR + i, 0UL);
  828. }
  829. for (i = 0; i < core_num_wrps; ++i) {
  830. write_wb_reg(ARM_BASE_WCR + i, 0UL);
  831. write_wb_reg(ARM_BASE_WVR + i, 0UL);
  832. }
  833. }
  834. static int __cpuinit dbg_reset_notify(struct notifier_block *self,
  835. unsigned long action, void *cpu)
  836. {
  837. if (action == CPU_ONLINE)
  838. smp_call_function_single((int)cpu, reset_ctrl_regs, NULL, 1);
  839. return NOTIFY_OK;
  840. }
  841. static struct notifier_block __cpuinitdata dbg_reset_nb = {
  842. .notifier_call = dbg_reset_notify,
  843. };
  844. static int __init arch_hw_breakpoint_init(void)
  845. {
  846. u32 dscr;
  847. debug_arch = get_debug_arch();
  848. if (!debug_arch_supported()) {
  849. pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
  850. return 0;
  851. }
  852. /* Determine how many BRPs/WRPs are available. */
  853. core_num_brps = get_num_brps();
  854. core_num_wrps = get_num_wrps();
  855. /*
  856. * We need to tread carefully here because DBGSWENABLE may be
  857. * driven low on this core and there isn't an architected way to
  858. * determine that.
  859. */
  860. register_undef_hook(&debug_reg_hook);
  861. /*
  862. * Reset the breakpoint resources. We assume that a halting
  863. * debugger will leave the world in a nice state for us.
  864. */
  865. on_each_cpu(reset_ctrl_regs, NULL, 1);
  866. unregister_undef_hook(&debug_reg_hook);
  867. if (!cpumask_empty(&debug_err_mask)) {
  868. core_num_brps = 0;
  869. core_num_wrps = 0;
  870. return 0;
  871. }
  872. pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
  873. core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
  874. "", core_num_wrps);
  875. ARM_DBG_READ(c1, 0, dscr);
  876. if (dscr & ARM_DSCR_HDBGEN) {
  877. max_watchpoint_len = 4;
  878. pr_warning("halting debug mode enabled. Assuming maximum watchpoint size of %u bytes.\n",
  879. max_watchpoint_len);
  880. } else {
  881. /* Work out the maximum supported watchpoint length. */
  882. max_watchpoint_len = get_max_wp_len();
  883. pr_info("maximum watchpoint size is %u bytes.\n",
  884. max_watchpoint_len);
  885. }
  886. /* Register debug fault handler. */
  887. hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
  888. TRAP_HWBKPT, "watchpoint debug exception");
  889. hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
  890. TRAP_HWBKPT, "breakpoint debug exception");
  891. /* Register hotplug notifier. */
  892. register_cpu_notifier(&dbg_reset_nb);
  893. return 0;
  894. }
  895. arch_initcall(arch_hw_breakpoint_init);
  896. void hw_breakpoint_pmu_read(struct perf_event *bp)
  897. {
  898. }
  899. /*
  900. * Dummy function to register with die_notifier.
  901. */
  902. int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
  903. unsigned long val, void *data)
  904. {
  905. return NOTIFY_DONE;
  906. }