pci.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049
  1. /*
  2. * Sonics Silicon Backplane PCI-Hostbus related functions.
  3. *
  4. * Copyright (C) 2005-2006 Michael Buesch <m@bues.ch>
  5. * Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
  6. * Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
  7. * Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
  8. * Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
  9. *
  10. * Derived from the Broadcom 4400 device driver.
  11. * Copyright (C) 2002 David S. Miller (davem@redhat.com)
  12. * Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
  13. * Copyright (C) 2006 Broadcom Corporation.
  14. *
  15. * Licensed under the GNU/GPL. See COPYING for details.
  16. */
  17. #include <linux/ssb/ssb.h>
  18. #include <linux/ssb/ssb_regs.h>
  19. #include <linux/slab.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include "ssb_private.h"
  23. /* Define the following to 1 to enable a printk on each coreswitch. */
  24. #define SSB_VERBOSE_PCICORESWITCH_DEBUG 0
  25. /* Lowlevel coreswitching */
  26. int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
  27. {
  28. int err;
  29. int attempts = 0;
  30. u32 cur_core;
  31. while (1) {
  32. err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
  33. (coreidx * SSB_CORE_SIZE)
  34. + SSB_ENUM_BASE);
  35. if (err)
  36. goto error;
  37. err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
  38. &cur_core);
  39. if (err)
  40. goto error;
  41. cur_core = (cur_core - SSB_ENUM_BASE)
  42. / SSB_CORE_SIZE;
  43. if (cur_core == coreidx)
  44. break;
  45. if (attempts++ > SSB_BAR0_MAX_RETRIES)
  46. goto error;
  47. udelay(10);
  48. }
  49. return 0;
  50. error:
  51. ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
  52. return -ENODEV;
  53. }
  54. int ssb_pci_switch_core(struct ssb_bus *bus,
  55. struct ssb_device *dev)
  56. {
  57. int err;
  58. unsigned long flags;
  59. #if SSB_VERBOSE_PCICORESWITCH_DEBUG
  60. ssb_printk(KERN_INFO PFX
  61. "Switching to %s core, index %d\n",
  62. ssb_core_name(dev->id.coreid),
  63. dev->core_index);
  64. #endif
  65. spin_lock_irqsave(&bus->bar_lock, flags);
  66. err = ssb_pci_switch_coreidx(bus, dev->core_index);
  67. if (!err)
  68. bus->mapped_device = dev;
  69. spin_unlock_irqrestore(&bus->bar_lock, flags);
  70. return err;
  71. }
  72. /* Enable/disable the on board crystal oscillator and/or PLL. */
  73. int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
  74. {
  75. int err;
  76. u32 in, out, outenable;
  77. u16 pci_status;
  78. if (bus->bustype != SSB_BUSTYPE_PCI)
  79. return 0;
  80. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
  81. if (err)
  82. goto err_pci;
  83. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
  84. if (err)
  85. goto err_pci;
  86. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
  87. if (err)
  88. goto err_pci;
  89. outenable |= what;
  90. if (turn_on) {
  91. /* Avoid glitching the clock if GPRS is already using it.
  92. * We can't actually read the state of the PLLPD so we infer it
  93. * by the value of XTAL_PU which *is* readable via gpioin.
  94. */
  95. if (!(in & SSB_GPIO_XTAL)) {
  96. if (what & SSB_GPIO_XTAL) {
  97. /* Turn the crystal on */
  98. out |= SSB_GPIO_XTAL;
  99. if (what & SSB_GPIO_PLL)
  100. out |= SSB_GPIO_PLL;
  101. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  102. if (err)
  103. goto err_pci;
  104. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
  105. outenable);
  106. if (err)
  107. goto err_pci;
  108. msleep(1);
  109. }
  110. if (what & SSB_GPIO_PLL) {
  111. /* Turn the PLL on */
  112. out &= ~SSB_GPIO_PLL;
  113. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  114. if (err)
  115. goto err_pci;
  116. msleep(5);
  117. }
  118. }
  119. err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
  120. if (err)
  121. goto err_pci;
  122. pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
  123. err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
  124. if (err)
  125. goto err_pci;
  126. } else {
  127. if (what & SSB_GPIO_XTAL) {
  128. /* Turn the crystal off */
  129. out &= ~SSB_GPIO_XTAL;
  130. }
  131. if (what & SSB_GPIO_PLL) {
  132. /* Turn the PLL off */
  133. out |= SSB_GPIO_PLL;
  134. }
  135. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  136. if (err)
  137. goto err_pci;
  138. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
  139. if (err)
  140. goto err_pci;
  141. }
  142. out:
  143. return err;
  144. err_pci:
  145. printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
  146. err = -EBUSY;
  147. goto out;
  148. }
  149. /* Get the word-offset for a SSB_SPROM_XXX define. */
  150. #define SPOFF(offset) ((offset) / sizeof(u16))
  151. /* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */
  152. #define SPEX16(_outvar, _offset, _mask, _shift) \
  153. out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
  154. #define SPEX32(_outvar, _offset, _mask, _shift) \
  155. out->_outvar = ((((u32)in[SPOFF((_offset)+2)] << 16 | \
  156. in[SPOFF(_offset)]) & (_mask)) >> (_shift))
  157. #define SPEX(_outvar, _offset, _mask, _shift) \
  158. SPEX16(_outvar, _offset, _mask, _shift)
  159. static inline u8 ssb_crc8(u8 crc, u8 data)
  160. {
  161. /* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
  162. static const u8 t[] = {
  163. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  164. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  165. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  166. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  167. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  168. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  169. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  170. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  171. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  172. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  173. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  174. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  175. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  176. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  177. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  178. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  179. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  180. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  181. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  182. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  183. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  184. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  185. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  186. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  187. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  188. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  189. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  190. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  191. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  192. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  193. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  194. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  195. };
  196. return t[crc ^ data];
  197. }
  198. static u8 ssb_sprom_crc(const u16 *sprom, u16 size)
  199. {
  200. int word;
  201. u8 crc = 0xFF;
  202. for (word = 0; word < size - 1; word++) {
  203. crc = ssb_crc8(crc, sprom[word] & 0x00FF);
  204. crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  205. }
  206. crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF);
  207. crc ^= 0xFF;
  208. return crc;
  209. }
  210. static int sprom_check_crc(const u16 *sprom, size_t size)
  211. {
  212. u8 crc;
  213. u8 expected_crc;
  214. u16 tmp;
  215. crc = ssb_sprom_crc(sprom, size);
  216. tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC;
  217. expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
  218. if (crc != expected_crc)
  219. return -EPROTO;
  220. return 0;
  221. }
  222. static int sprom_do_read(struct ssb_bus *bus, u16 *sprom)
  223. {
  224. int i;
  225. for (i = 0; i < bus->sprom_size; i++)
  226. sprom[i] = ioread16(bus->mmio + bus->sprom_offset + (i * 2));
  227. return 0;
  228. }
  229. static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom)
  230. {
  231. struct pci_dev *pdev = bus->host_pci;
  232. int i, err;
  233. u32 spromctl;
  234. u16 size = bus->sprom_size;
  235. ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  236. err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
  237. if (err)
  238. goto err_ctlreg;
  239. spromctl |= SSB_SPROMCTL_WE;
  240. err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
  241. if (err)
  242. goto err_ctlreg;
  243. ssb_printk(KERN_NOTICE PFX "[ 0%%");
  244. msleep(500);
  245. for (i = 0; i < size; i++) {
  246. if (i == size / 4)
  247. ssb_printk("25%%");
  248. else if (i == size / 2)
  249. ssb_printk("50%%");
  250. else if (i == (size * 3) / 4)
  251. ssb_printk("75%%");
  252. else if (i % 2)
  253. ssb_printk(".");
  254. writew(sprom[i], bus->mmio + bus->sprom_offset + (i * 2));
  255. mmiowb();
  256. msleep(20);
  257. }
  258. err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
  259. if (err)
  260. goto err_ctlreg;
  261. spromctl &= ~SSB_SPROMCTL_WE;
  262. err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
  263. if (err)
  264. goto err_ctlreg;
  265. msleep(500);
  266. ssb_printk("100%% ]\n");
  267. ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
  268. return 0;
  269. err_ctlreg:
  270. ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  271. return err;
  272. }
  273. static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in,
  274. u16 mask, u16 shift)
  275. {
  276. u16 v;
  277. u8 gain;
  278. v = in[SPOFF(SSB_SPROM1_AGAIN)];
  279. gain = (v & mask) >> shift;
  280. if (gain == 0xFF)
  281. gain = 2; /* If unset use 2dBm */
  282. if (sprom_revision == 1) {
  283. /* Convert to Q5.2 */
  284. gain <<= 2;
  285. } else {
  286. /* Q5.2 Fractional part is stored in 0xC0 */
  287. gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
  288. }
  289. return (s8)gain;
  290. }
  291. static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in)
  292. {
  293. int i;
  294. u16 v;
  295. u16 loc[3];
  296. if (out->revision == 3) /* rev 3 moved MAC */
  297. loc[0] = SSB_SPROM3_IL0MAC;
  298. else {
  299. loc[0] = SSB_SPROM1_IL0MAC;
  300. loc[1] = SSB_SPROM1_ET0MAC;
  301. loc[2] = SSB_SPROM1_ET1MAC;
  302. }
  303. for (i = 0; i < 3; i++) {
  304. v = in[SPOFF(loc[0]) + i];
  305. *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
  306. }
  307. if (out->revision < 3) { /* only rev 1-2 have et0, et1 */
  308. for (i = 0; i < 3; i++) {
  309. v = in[SPOFF(loc[1]) + i];
  310. *(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
  311. }
  312. for (i = 0; i < 3; i++) {
  313. v = in[SPOFF(loc[2]) + i];
  314. *(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
  315. }
  316. }
  317. SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
  318. SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
  319. SSB_SPROM1_ETHPHY_ET1A_SHIFT);
  320. SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
  321. SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
  322. SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
  323. if (out->revision == 1)
  324. SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
  325. SSB_SPROM1_BINF_CCODE_SHIFT);
  326. SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
  327. SSB_SPROM1_BINF_ANTA_SHIFT);
  328. SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
  329. SSB_SPROM1_BINF_ANTBG_SHIFT);
  330. SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
  331. SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
  332. SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
  333. SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
  334. SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
  335. SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
  336. SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
  337. SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
  338. SSB_SPROM1_GPIOA_P1_SHIFT);
  339. SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
  340. SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
  341. SSB_SPROM1_GPIOB_P3_SHIFT);
  342. SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A,
  343. SSB_SPROM1_MAXPWR_A_SHIFT);
  344. SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0);
  345. SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A,
  346. SSB_SPROM1_ITSSI_A_SHIFT);
  347. SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0);
  348. SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
  349. if (out->revision >= 2)
  350. SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
  351. SPEX(alpha2[0], SSB_SPROM1_CCODE, 0xff00, 8);
  352. SPEX(alpha2[1], SSB_SPROM1_CCODE, 0x00ff, 0);
  353. /* Extract the antenna gain values. */
  354. out->antenna_gain.a0 = r123_extract_antgain(out->revision, in,
  355. SSB_SPROM1_AGAIN_BG,
  356. SSB_SPROM1_AGAIN_BG_SHIFT);
  357. out->antenna_gain.a1 = r123_extract_antgain(out->revision, in,
  358. SSB_SPROM1_AGAIN_A,
  359. SSB_SPROM1_AGAIN_A_SHIFT);
  360. }
  361. /* Revs 4 5 and 8 have partially shared layout */
  362. static void sprom_extract_r458(struct ssb_sprom *out, const u16 *in)
  363. {
  364. SPEX(txpid2g[0], SSB_SPROM4_TXPID2G01,
  365. SSB_SPROM4_TXPID2G0, SSB_SPROM4_TXPID2G0_SHIFT);
  366. SPEX(txpid2g[1], SSB_SPROM4_TXPID2G01,
  367. SSB_SPROM4_TXPID2G1, SSB_SPROM4_TXPID2G1_SHIFT);
  368. SPEX(txpid2g[2], SSB_SPROM4_TXPID2G23,
  369. SSB_SPROM4_TXPID2G2, SSB_SPROM4_TXPID2G2_SHIFT);
  370. SPEX(txpid2g[3], SSB_SPROM4_TXPID2G23,
  371. SSB_SPROM4_TXPID2G3, SSB_SPROM4_TXPID2G3_SHIFT);
  372. SPEX(txpid5gl[0], SSB_SPROM4_TXPID5GL01,
  373. SSB_SPROM4_TXPID5GL0, SSB_SPROM4_TXPID5GL0_SHIFT);
  374. SPEX(txpid5gl[1], SSB_SPROM4_TXPID5GL01,
  375. SSB_SPROM4_TXPID5GL1, SSB_SPROM4_TXPID5GL1_SHIFT);
  376. SPEX(txpid5gl[2], SSB_SPROM4_TXPID5GL23,
  377. SSB_SPROM4_TXPID5GL2, SSB_SPROM4_TXPID5GL2_SHIFT);
  378. SPEX(txpid5gl[3], SSB_SPROM4_TXPID5GL23,
  379. SSB_SPROM4_TXPID5GL3, SSB_SPROM4_TXPID5GL3_SHIFT);
  380. SPEX(txpid5g[0], SSB_SPROM4_TXPID5G01,
  381. SSB_SPROM4_TXPID5G0, SSB_SPROM4_TXPID5G0_SHIFT);
  382. SPEX(txpid5g[1], SSB_SPROM4_TXPID5G01,
  383. SSB_SPROM4_TXPID5G1, SSB_SPROM4_TXPID5G1_SHIFT);
  384. SPEX(txpid5g[2], SSB_SPROM4_TXPID5G23,
  385. SSB_SPROM4_TXPID5G2, SSB_SPROM4_TXPID5G2_SHIFT);
  386. SPEX(txpid5g[3], SSB_SPROM4_TXPID5G23,
  387. SSB_SPROM4_TXPID5G3, SSB_SPROM4_TXPID5G3_SHIFT);
  388. SPEX(txpid5gh[0], SSB_SPROM4_TXPID5GH01,
  389. SSB_SPROM4_TXPID5GH0, SSB_SPROM4_TXPID5GH0_SHIFT);
  390. SPEX(txpid5gh[1], SSB_SPROM4_TXPID5GH01,
  391. SSB_SPROM4_TXPID5GH1, SSB_SPROM4_TXPID5GH1_SHIFT);
  392. SPEX(txpid5gh[2], SSB_SPROM4_TXPID5GH23,
  393. SSB_SPROM4_TXPID5GH2, SSB_SPROM4_TXPID5GH2_SHIFT);
  394. SPEX(txpid5gh[3], SSB_SPROM4_TXPID5GH23,
  395. SSB_SPROM4_TXPID5GH3, SSB_SPROM4_TXPID5GH3_SHIFT);
  396. }
  397. static void sprom_extract_r45(struct ssb_sprom *out, const u16 *in)
  398. {
  399. int i;
  400. u16 v;
  401. u16 il0mac_offset;
  402. if (out->revision == 4)
  403. il0mac_offset = SSB_SPROM4_IL0MAC;
  404. else
  405. il0mac_offset = SSB_SPROM5_IL0MAC;
  406. /* extract the MAC address */
  407. for (i = 0; i < 3; i++) {
  408. v = in[SPOFF(il0mac_offset) + i];
  409. *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
  410. }
  411. SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0);
  412. SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A,
  413. SSB_SPROM4_ETHPHY_ET1A_SHIFT);
  414. if (out->revision == 4) {
  415. SPEX(alpha2[0], SSB_SPROM4_CCODE, 0xff00, 8);
  416. SPEX(alpha2[1], SSB_SPROM4_CCODE, 0x00ff, 0);
  417. SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0);
  418. SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0);
  419. SPEX(boardflags2_lo, SSB_SPROM4_BFL2LO, 0xFFFF, 0);
  420. SPEX(boardflags2_hi, SSB_SPROM4_BFL2HI, 0xFFFF, 0);
  421. } else {
  422. SPEX(alpha2[0], SSB_SPROM5_CCODE, 0xff00, 8);
  423. SPEX(alpha2[1], SSB_SPROM5_CCODE, 0x00ff, 0);
  424. SPEX(boardflags_lo, SSB_SPROM5_BFLLO, 0xFFFF, 0);
  425. SPEX(boardflags_hi, SSB_SPROM5_BFLHI, 0xFFFF, 0);
  426. SPEX(boardflags2_lo, SSB_SPROM5_BFL2LO, 0xFFFF, 0);
  427. SPEX(boardflags2_hi, SSB_SPROM5_BFL2HI, 0xFFFF, 0);
  428. }
  429. SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A,
  430. SSB_SPROM4_ANTAVAIL_A_SHIFT);
  431. SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG,
  432. SSB_SPROM4_ANTAVAIL_BG_SHIFT);
  433. SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0);
  434. SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG,
  435. SSB_SPROM4_ITSSI_BG_SHIFT);
  436. SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0);
  437. SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A,
  438. SSB_SPROM4_ITSSI_A_SHIFT);
  439. if (out->revision == 4) {
  440. SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0);
  441. SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1,
  442. SSB_SPROM4_GPIOA_P1_SHIFT);
  443. SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0);
  444. SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3,
  445. SSB_SPROM4_GPIOB_P3_SHIFT);
  446. } else {
  447. SPEX(gpio0, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P0, 0);
  448. SPEX(gpio1, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P1,
  449. SSB_SPROM5_GPIOA_P1_SHIFT);
  450. SPEX(gpio2, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P2, 0);
  451. SPEX(gpio3, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P3,
  452. SSB_SPROM5_GPIOB_P3_SHIFT);
  453. }
  454. /* Extract the antenna gain values. */
  455. SPEX(antenna_gain.a0, SSB_SPROM4_AGAIN01,
  456. SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT);
  457. SPEX(antenna_gain.a1, SSB_SPROM4_AGAIN01,
  458. SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT);
  459. SPEX(antenna_gain.a2, SSB_SPROM4_AGAIN23,
  460. SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT);
  461. SPEX(antenna_gain.a3, SSB_SPROM4_AGAIN23,
  462. SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT);
  463. sprom_extract_r458(out, in);
  464. /* TODO - get remaining rev 4 stuff needed */
  465. }
  466. static void sprom_extract_r8(struct ssb_sprom *out, const u16 *in)
  467. {
  468. int i;
  469. u16 v, o;
  470. u16 pwr_info_offset[] = {
  471. SSB_SROM8_PWR_INFO_CORE0, SSB_SROM8_PWR_INFO_CORE1,
  472. SSB_SROM8_PWR_INFO_CORE2, SSB_SROM8_PWR_INFO_CORE3
  473. };
  474. BUILD_BUG_ON(ARRAY_SIZE(pwr_info_offset) !=
  475. ARRAY_SIZE(out->core_pwr_info));
  476. /* extract the MAC address */
  477. for (i = 0; i < 3; i++) {
  478. v = in[SPOFF(SSB_SPROM8_IL0MAC) + i];
  479. *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
  480. }
  481. SPEX(alpha2[0], SSB_SPROM8_CCODE, 0xff00, 8);
  482. SPEX(alpha2[1], SSB_SPROM8_CCODE, 0x00ff, 0);
  483. SPEX(boardflags_lo, SSB_SPROM8_BFLLO, 0xFFFF, 0);
  484. SPEX(boardflags_hi, SSB_SPROM8_BFLHI, 0xFFFF, 0);
  485. SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, 0xFFFF, 0);
  486. SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, 0xFFFF, 0);
  487. SPEX(ant_available_a, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_A,
  488. SSB_SPROM8_ANTAVAIL_A_SHIFT);
  489. SPEX(ant_available_bg, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_BG,
  490. SSB_SPROM8_ANTAVAIL_BG_SHIFT);
  491. SPEX(maxpwr_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_MAXP_BG_MASK, 0);
  492. SPEX(itssi_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_ITSSI_BG,
  493. SSB_SPROM8_ITSSI_BG_SHIFT);
  494. SPEX(maxpwr_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_MAXP_A_MASK, 0);
  495. SPEX(itssi_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_ITSSI_A,
  496. SSB_SPROM8_ITSSI_A_SHIFT);
  497. SPEX(maxpwr_ah, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AH_MASK, 0);
  498. SPEX(maxpwr_al, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AL_MASK,
  499. SSB_SPROM8_MAXP_AL_SHIFT);
  500. SPEX(gpio0, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P0, 0);
  501. SPEX(gpio1, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P1,
  502. SSB_SPROM8_GPIOA_P1_SHIFT);
  503. SPEX(gpio2, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P2, 0);
  504. SPEX(gpio3, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P3,
  505. SSB_SPROM8_GPIOB_P3_SHIFT);
  506. SPEX(tri2g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI2G, 0);
  507. SPEX(tri5g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI5G,
  508. SSB_SPROM8_TRI5G_SHIFT);
  509. SPEX(tri5gl, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GL, 0);
  510. SPEX(tri5gh, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GH,
  511. SSB_SPROM8_TRI5GH_SHIFT);
  512. SPEX(rxpo2g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO2G, 0);
  513. SPEX(rxpo5g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO5G,
  514. SSB_SPROM8_RXPO5G_SHIFT);
  515. SPEX(rssismf2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMF2G, 0);
  516. SPEX(rssismc2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMC2G,
  517. SSB_SPROM8_RSSISMC2G_SHIFT);
  518. SPEX(rssisav2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISAV2G,
  519. SSB_SPROM8_RSSISAV2G_SHIFT);
  520. SPEX(bxa2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_BXA2G,
  521. SSB_SPROM8_BXA2G_SHIFT);
  522. SPEX(rssismf5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMF5G, 0);
  523. SPEX(rssismc5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMC5G,
  524. SSB_SPROM8_RSSISMC5G_SHIFT);
  525. SPEX(rssisav5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISAV5G,
  526. SSB_SPROM8_RSSISAV5G_SHIFT);
  527. SPEX(bxa5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_BXA5G,
  528. SSB_SPROM8_BXA5G_SHIFT);
  529. SPEX(pa0b0, SSB_SPROM8_PA0B0, 0xFFFF, 0);
  530. SPEX(pa0b1, SSB_SPROM8_PA0B1, 0xFFFF, 0);
  531. SPEX(pa0b2, SSB_SPROM8_PA0B2, 0xFFFF, 0);
  532. SPEX(pa1b0, SSB_SPROM8_PA1B0, 0xFFFF, 0);
  533. SPEX(pa1b1, SSB_SPROM8_PA1B1, 0xFFFF, 0);
  534. SPEX(pa1b2, SSB_SPROM8_PA1B2, 0xFFFF, 0);
  535. SPEX(pa1lob0, SSB_SPROM8_PA1LOB0, 0xFFFF, 0);
  536. SPEX(pa1lob1, SSB_SPROM8_PA1LOB1, 0xFFFF, 0);
  537. SPEX(pa1lob2, SSB_SPROM8_PA1LOB2, 0xFFFF, 0);
  538. SPEX(pa1hib0, SSB_SPROM8_PA1HIB0, 0xFFFF, 0);
  539. SPEX(pa1hib1, SSB_SPROM8_PA1HIB1, 0xFFFF, 0);
  540. SPEX(pa1hib2, SSB_SPROM8_PA1HIB2, 0xFFFF, 0);
  541. SPEX(cck2gpo, SSB_SPROM8_CCK2GPO, 0xFFFF, 0);
  542. SPEX32(ofdm2gpo, SSB_SPROM8_OFDM2GPO, 0xFFFFFFFF, 0);
  543. SPEX32(ofdm5glpo, SSB_SPROM8_OFDM5GLPO, 0xFFFFFFFF, 0);
  544. SPEX32(ofdm5gpo, SSB_SPROM8_OFDM5GPO, 0xFFFFFFFF, 0);
  545. SPEX32(ofdm5ghpo, SSB_SPROM8_OFDM5GHPO, 0xFFFFFFFF, 0);
  546. /* Extract the antenna gain values. */
  547. SPEX(antenna_gain.a0, SSB_SPROM8_AGAIN01,
  548. SSB_SPROM8_AGAIN0, SSB_SPROM8_AGAIN0_SHIFT);
  549. SPEX(antenna_gain.a1, SSB_SPROM8_AGAIN01,
  550. SSB_SPROM8_AGAIN1, SSB_SPROM8_AGAIN1_SHIFT);
  551. SPEX(antenna_gain.a2, SSB_SPROM8_AGAIN23,
  552. SSB_SPROM8_AGAIN2, SSB_SPROM8_AGAIN2_SHIFT);
  553. SPEX(antenna_gain.a3, SSB_SPROM8_AGAIN23,
  554. SSB_SPROM8_AGAIN3, SSB_SPROM8_AGAIN3_SHIFT);
  555. /* Extract cores power info info */
  556. for (i = 0; i < ARRAY_SIZE(pwr_info_offset); i++) {
  557. o = pwr_info_offset[i];
  558. SPEX(core_pwr_info[i].itssi_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
  559. SSB_SPROM8_2G_ITSSI, SSB_SPROM8_2G_ITSSI_SHIFT);
  560. SPEX(core_pwr_info[i].maxpwr_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
  561. SSB_SPROM8_2G_MAXP, 0);
  562. SPEX(core_pwr_info[i].pa_2g[0], o + SSB_SROM8_2G_PA_0, ~0, 0);
  563. SPEX(core_pwr_info[i].pa_2g[1], o + SSB_SROM8_2G_PA_1, ~0, 0);
  564. SPEX(core_pwr_info[i].pa_2g[2], o + SSB_SROM8_2G_PA_2, ~0, 0);
  565. SPEX(core_pwr_info[i].itssi_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
  566. SSB_SPROM8_5G_ITSSI, SSB_SPROM8_5G_ITSSI_SHIFT);
  567. SPEX(core_pwr_info[i].maxpwr_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
  568. SSB_SPROM8_5G_MAXP, 0);
  569. SPEX(core_pwr_info[i].maxpwr_5gh, o + SSB_SPROM8_5GHL_MAXP,
  570. SSB_SPROM8_5GH_MAXP, 0);
  571. SPEX(core_pwr_info[i].maxpwr_5gl, o + SSB_SPROM8_5GHL_MAXP,
  572. SSB_SPROM8_5GL_MAXP, SSB_SPROM8_5GL_MAXP_SHIFT);
  573. SPEX(core_pwr_info[i].pa_5gl[0], o + SSB_SROM8_5GL_PA_0, ~0, 0);
  574. SPEX(core_pwr_info[i].pa_5gl[1], o + SSB_SROM8_5GL_PA_1, ~0, 0);
  575. SPEX(core_pwr_info[i].pa_5gl[2], o + SSB_SROM8_5GL_PA_2, ~0, 0);
  576. SPEX(core_pwr_info[i].pa_5g[0], o + SSB_SROM8_5G_PA_0, ~0, 0);
  577. SPEX(core_pwr_info[i].pa_5g[1], o + SSB_SROM8_5G_PA_1, ~0, 0);
  578. SPEX(core_pwr_info[i].pa_5g[2], o + SSB_SROM8_5G_PA_2, ~0, 0);
  579. SPEX(core_pwr_info[i].pa_5gh[0], o + SSB_SROM8_5GH_PA_0, ~0, 0);
  580. SPEX(core_pwr_info[i].pa_5gh[1], o + SSB_SROM8_5GH_PA_1, ~0, 0);
  581. SPEX(core_pwr_info[i].pa_5gh[2], o + SSB_SROM8_5GH_PA_2, ~0, 0);
  582. }
  583. /* Extract FEM info */
  584. SPEX(fem.ghz2.tssipos, SSB_SPROM8_FEM2G,
  585. SSB_SROM8_FEM_TSSIPOS, SSB_SROM8_FEM_TSSIPOS_SHIFT);
  586. SPEX(fem.ghz2.extpa_gain, SSB_SPROM8_FEM2G,
  587. SSB_SROM8_FEM_EXTPA_GAIN, SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
  588. SPEX(fem.ghz2.pdet_range, SSB_SPROM8_FEM2G,
  589. SSB_SROM8_FEM_PDET_RANGE, SSB_SROM8_FEM_PDET_RANGE_SHIFT);
  590. SPEX(fem.ghz2.tr_iso, SSB_SPROM8_FEM2G,
  591. SSB_SROM8_FEM_TR_ISO, SSB_SROM8_FEM_TR_ISO_SHIFT);
  592. SPEX(fem.ghz2.antswlut, SSB_SPROM8_FEM2G,
  593. SSB_SROM8_FEM_ANTSWLUT, SSB_SROM8_FEM_ANTSWLUT_SHIFT);
  594. SPEX(fem.ghz5.tssipos, SSB_SPROM8_FEM5G,
  595. SSB_SROM8_FEM_TSSIPOS, SSB_SROM8_FEM_TSSIPOS_SHIFT);
  596. SPEX(fem.ghz5.extpa_gain, SSB_SPROM8_FEM5G,
  597. SSB_SROM8_FEM_EXTPA_GAIN, SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
  598. SPEX(fem.ghz5.pdet_range, SSB_SPROM8_FEM5G,
  599. SSB_SROM8_FEM_PDET_RANGE, SSB_SROM8_FEM_PDET_RANGE_SHIFT);
  600. SPEX(fem.ghz5.tr_iso, SSB_SPROM8_FEM5G,
  601. SSB_SROM8_FEM_TR_ISO, SSB_SROM8_FEM_TR_ISO_SHIFT);
  602. SPEX(fem.ghz5.antswlut, SSB_SPROM8_FEM5G,
  603. SSB_SROM8_FEM_ANTSWLUT, SSB_SROM8_FEM_ANTSWLUT_SHIFT);
  604. sprom_extract_r458(out, in);
  605. /* TODO - get remaining rev 8 stuff needed */
  606. }
  607. static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out,
  608. const u16 *in, u16 size)
  609. {
  610. memset(out, 0, sizeof(*out));
  611. out->revision = in[size - 1] & 0x00FF;
  612. ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision);
  613. memset(out->et0mac, 0xFF, 6); /* preset et0 and et1 mac */
  614. memset(out->et1mac, 0xFF, 6);
  615. if ((bus->chip_id & 0xFF00) == 0x4400) {
  616. /* Workaround: The BCM44XX chip has a stupid revision
  617. * number stored in the SPROM.
  618. * Always extract r1. */
  619. out->revision = 1;
  620. ssb_dprintk(KERN_DEBUG PFX "SPROM treated as revision %d\n", out->revision);
  621. }
  622. switch (out->revision) {
  623. case 1:
  624. case 2:
  625. case 3:
  626. sprom_extract_r123(out, in);
  627. break;
  628. case 4:
  629. case 5:
  630. sprom_extract_r45(out, in);
  631. break;
  632. case 8:
  633. sprom_extract_r8(out, in);
  634. break;
  635. default:
  636. ssb_printk(KERN_WARNING PFX "Unsupported SPROM"
  637. " revision %d detected. Will extract"
  638. " v1\n", out->revision);
  639. out->revision = 1;
  640. sprom_extract_r123(out, in);
  641. }
  642. if (out->boardflags_lo == 0xFFFF)
  643. out->boardflags_lo = 0; /* per specs */
  644. if (out->boardflags_hi == 0xFFFF)
  645. out->boardflags_hi = 0; /* per specs */
  646. return 0;
  647. }
  648. static int ssb_pci_sprom_get(struct ssb_bus *bus,
  649. struct ssb_sprom *sprom)
  650. {
  651. int err;
  652. u16 *buf;
  653. if (!ssb_is_sprom_available(bus)) {
  654. ssb_printk(KERN_ERR PFX "No SPROM available!\n");
  655. return -ENODEV;
  656. }
  657. if (bus->chipco.dev) { /* can be unavailable! */
  658. /*
  659. * get SPROM offset: SSB_SPROM_BASE1 except for
  660. * chipcommon rev >= 31 or chip ID is 0x4312 and
  661. * chipcommon status & 3 == 2
  662. */
  663. if (bus->chipco.dev->id.revision >= 31)
  664. bus->sprom_offset = SSB_SPROM_BASE31;
  665. else if (bus->chip_id == 0x4312 &&
  666. (bus->chipco.status & 0x03) == 2)
  667. bus->sprom_offset = SSB_SPROM_BASE31;
  668. else
  669. bus->sprom_offset = SSB_SPROM_BASE1;
  670. } else {
  671. bus->sprom_offset = SSB_SPROM_BASE1;
  672. }
  673. ssb_dprintk(KERN_INFO PFX "SPROM offset is 0x%x\n", bus->sprom_offset);
  674. buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL);
  675. if (!buf)
  676. return -ENOMEM;
  677. bus->sprom_size = SSB_SPROMSIZE_WORDS_R123;
  678. sprom_do_read(bus, buf);
  679. err = sprom_check_crc(buf, bus->sprom_size);
  680. if (err) {
  681. /* try for a 440 byte SPROM - revision 4 and higher */
  682. kfree(buf);
  683. buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
  684. GFP_KERNEL);
  685. if (!buf)
  686. return -ENOMEM;
  687. bus->sprom_size = SSB_SPROMSIZE_WORDS_R4;
  688. sprom_do_read(bus, buf);
  689. err = sprom_check_crc(buf, bus->sprom_size);
  690. if (err) {
  691. /* All CRC attempts failed.
  692. * Maybe there is no SPROM on the device?
  693. * Now we ask the arch code if there is some sprom
  694. * available for this device in some other storage */
  695. err = ssb_fill_sprom_with_fallback(bus, sprom);
  696. if (err) {
  697. ssb_printk(KERN_WARNING PFX "WARNING: Using"
  698. " fallback SPROM failed (err %d)\n",
  699. err);
  700. } else {
  701. ssb_dprintk(KERN_DEBUG PFX "Using SPROM"
  702. " revision %d provided by"
  703. " platform.\n", sprom->revision);
  704. err = 0;
  705. goto out_free;
  706. }
  707. ssb_printk(KERN_WARNING PFX "WARNING: Invalid"
  708. " SPROM CRC (corrupt SPROM)\n");
  709. }
  710. }
  711. err = sprom_extract(bus, sprom, buf, bus->sprom_size);
  712. out_free:
  713. kfree(buf);
  714. return err;
  715. }
  716. static void ssb_pci_get_boardinfo(struct ssb_bus *bus,
  717. struct ssb_boardinfo *bi)
  718. {
  719. bi->vendor = bus->host_pci->subsystem_vendor;
  720. bi->type = bus->host_pci->subsystem_device;
  721. }
  722. int ssb_pci_get_invariants(struct ssb_bus *bus,
  723. struct ssb_init_invariants *iv)
  724. {
  725. int err;
  726. err = ssb_pci_sprom_get(bus, &iv->sprom);
  727. if (err)
  728. goto out;
  729. ssb_pci_get_boardinfo(bus, &iv->boardinfo);
  730. out:
  731. return err;
  732. }
  733. #ifdef CONFIG_SSB_DEBUG
  734. static int ssb_pci_assert_buspower(struct ssb_bus *bus)
  735. {
  736. if (likely(bus->powered_up))
  737. return 0;
  738. printk(KERN_ERR PFX "FATAL ERROR: Bus powered down "
  739. "while accessing PCI MMIO space\n");
  740. if (bus->power_warn_count <= 10) {
  741. bus->power_warn_count++;
  742. dump_stack();
  743. }
  744. return -ENODEV;
  745. }
  746. #else /* DEBUG */
  747. static inline int ssb_pci_assert_buspower(struct ssb_bus *bus)
  748. {
  749. return 0;
  750. }
  751. #endif /* DEBUG */
  752. static u8 ssb_pci_read8(struct ssb_device *dev, u16 offset)
  753. {
  754. struct ssb_bus *bus = dev->bus;
  755. if (unlikely(ssb_pci_assert_buspower(bus)))
  756. return 0xFF;
  757. if (unlikely(bus->mapped_device != dev)) {
  758. if (unlikely(ssb_pci_switch_core(bus, dev)))
  759. return 0xFF;
  760. }
  761. return ioread8(bus->mmio + offset);
  762. }
  763. static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
  764. {
  765. struct ssb_bus *bus = dev->bus;
  766. if (unlikely(ssb_pci_assert_buspower(bus)))
  767. return 0xFFFF;
  768. if (unlikely(bus->mapped_device != dev)) {
  769. if (unlikely(ssb_pci_switch_core(bus, dev)))
  770. return 0xFFFF;
  771. }
  772. return ioread16(bus->mmio + offset);
  773. }
  774. static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
  775. {
  776. struct ssb_bus *bus = dev->bus;
  777. if (unlikely(ssb_pci_assert_buspower(bus)))
  778. return 0xFFFFFFFF;
  779. if (unlikely(bus->mapped_device != dev)) {
  780. if (unlikely(ssb_pci_switch_core(bus, dev)))
  781. return 0xFFFFFFFF;
  782. }
  783. return ioread32(bus->mmio + offset);
  784. }
  785. #ifdef CONFIG_SSB_BLOCKIO
  786. static void ssb_pci_block_read(struct ssb_device *dev, void *buffer,
  787. size_t count, u16 offset, u8 reg_width)
  788. {
  789. struct ssb_bus *bus = dev->bus;
  790. void __iomem *addr = bus->mmio + offset;
  791. if (unlikely(ssb_pci_assert_buspower(bus)))
  792. goto error;
  793. if (unlikely(bus->mapped_device != dev)) {
  794. if (unlikely(ssb_pci_switch_core(bus, dev)))
  795. goto error;
  796. }
  797. switch (reg_width) {
  798. case sizeof(u8):
  799. ioread8_rep(addr, buffer, count);
  800. break;
  801. case sizeof(u16):
  802. SSB_WARN_ON(count & 1);
  803. ioread16_rep(addr, buffer, count >> 1);
  804. break;
  805. case sizeof(u32):
  806. SSB_WARN_ON(count & 3);
  807. ioread32_rep(addr, buffer, count >> 2);
  808. break;
  809. default:
  810. SSB_WARN_ON(1);
  811. }
  812. return;
  813. error:
  814. memset(buffer, 0xFF, count);
  815. }
  816. #endif /* CONFIG_SSB_BLOCKIO */
  817. static void ssb_pci_write8(struct ssb_device *dev, u16 offset, u8 value)
  818. {
  819. struct ssb_bus *bus = dev->bus;
  820. if (unlikely(ssb_pci_assert_buspower(bus)))
  821. return;
  822. if (unlikely(bus->mapped_device != dev)) {
  823. if (unlikely(ssb_pci_switch_core(bus, dev)))
  824. return;
  825. }
  826. iowrite8(value, bus->mmio + offset);
  827. }
  828. static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
  829. {
  830. struct ssb_bus *bus = dev->bus;
  831. if (unlikely(ssb_pci_assert_buspower(bus)))
  832. return;
  833. if (unlikely(bus->mapped_device != dev)) {
  834. if (unlikely(ssb_pci_switch_core(bus, dev)))
  835. return;
  836. }
  837. iowrite16(value, bus->mmio + offset);
  838. }
  839. static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
  840. {
  841. struct ssb_bus *bus = dev->bus;
  842. if (unlikely(ssb_pci_assert_buspower(bus)))
  843. return;
  844. if (unlikely(bus->mapped_device != dev)) {
  845. if (unlikely(ssb_pci_switch_core(bus, dev)))
  846. return;
  847. }
  848. iowrite32(value, bus->mmio + offset);
  849. }
  850. #ifdef CONFIG_SSB_BLOCKIO
  851. static void ssb_pci_block_write(struct ssb_device *dev, const void *buffer,
  852. size_t count, u16 offset, u8 reg_width)
  853. {
  854. struct ssb_bus *bus = dev->bus;
  855. void __iomem *addr = bus->mmio + offset;
  856. if (unlikely(ssb_pci_assert_buspower(bus)))
  857. return;
  858. if (unlikely(bus->mapped_device != dev)) {
  859. if (unlikely(ssb_pci_switch_core(bus, dev)))
  860. return;
  861. }
  862. switch (reg_width) {
  863. case sizeof(u8):
  864. iowrite8_rep(addr, buffer, count);
  865. break;
  866. case sizeof(u16):
  867. SSB_WARN_ON(count & 1);
  868. iowrite16_rep(addr, buffer, count >> 1);
  869. break;
  870. case sizeof(u32):
  871. SSB_WARN_ON(count & 3);
  872. iowrite32_rep(addr, buffer, count >> 2);
  873. break;
  874. default:
  875. SSB_WARN_ON(1);
  876. }
  877. }
  878. #endif /* CONFIG_SSB_BLOCKIO */
  879. /* Not "static", as it's used in main.c */
  880. const struct ssb_bus_ops ssb_pci_ops = {
  881. .read8 = ssb_pci_read8,
  882. .read16 = ssb_pci_read16,
  883. .read32 = ssb_pci_read32,
  884. .write8 = ssb_pci_write8,
  885. .write16 = ssb_pci_write16,
  886. .write32 = ssb_pci_write32,
  887. #ifdef CONFIG_SSB_BLOCKIO
  888. .block_read = ssb_pci_block_read,
  889. .block_write = ssb_pci_block_write,
  890. #endif
  891. };
  892. static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev,
  893. struct device_attribute *attr,
  894. char *buf)
  895. {
  896. struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
  897. struct ssb_bus *bus;
  898. bus = ssb_pci_dev_to_bus(pdev);
  899. if (!bus)
  900. return -ENODEV;
  901. return ssb_attr_sprom_show(bus, buf, sprom_do_read);
  902. }
  903. static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev,
  904. struct device_attribute *attr,
  905. const char *buf, size_t count)
  906. {
  907. struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
  908. struct ssb_bus *bus;
  909. bus = ssb_pci_dev_to_bus(pdev);
  910. if (!bus)
  911. return -ENODEV;
  912. return ssb_attr_sprom_store(bus, buf, count,
  913. sprom_check_crc, sprom_do_write);
  914. }
  915. static DEVICE_ATTR(ssb_sprom, 0600,
  916. ssb_pci_attr_sprom_show,
  917. ssb_pci_attr_sprom_store);
  918. void ssb_pci_exit(struct ssb_bus *bus)
  919. {
  920. struct pci_dev *pdev;
  921. if (bus->bustype != SSB_BUSTYPE_PCI)
  922. return;
  923. pdev = bus->host_pci;
  924. device_remove_file(&pdev->dev, &dev_attr_ssb_sprom);
  925. }
  926. int ssb_pci_init(struct ssb_bus *bus)
  927. {
  928. struct pci_dev *pdev;
  929. int err;
  930. if (bus->bustype != SSB_BUSTYPE_PCI)
  931. return 0;
  932. pdev = bus->host_pci;
  933. mutex_init(&bus->sprom_mutex);
  934. err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom);
  935. if (err)
  936. goto out;
  937. out:
  938. return err;
  939. }