process.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/sched.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <linux/tracehook.h>
  32. #include <asm/cpu.h>
  33. #include <asm/delay.h>
  34. #include <asm/elf.h>
  35. #include <asm/irq.h>
  36. #include <asm/kexec.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sal.h>
  40. #include <asm/switch_to.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/unwind.h>
  44. #include <asm/user.h>
  45. #include "entry.h"
  46. #ifdef CONFIG_PERFMON
  47. # include <asm/perfmon.h>
  48. #endif
  49. #include "sigframe.h"
  50. void (*ia64_mark_idle)(int);
  51. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  52. EXPORT_SYMBOL(boot_option_idle_override);
  53. void (*pm_idle) (void);
  54. EXPORT_SYMBOL(pm_idle);
  55. void (*pm_power_off) (void);
  56. EXPORT_SYMBOL(pm_power_off);
  57. void
  58. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  59. {
  60. unsigned long ip, sp, bsp;
  61. char buf[128]; /* don't make it so big that it overflows the stack! */
  62. printk("\nCall Trace:\n");
  63. do {
  64. unw_get_ip(info, &ip);
  65. if (ip == 0)
  66. break;
  67. unw_get_sp(info, &sp);
  68. unw_get_bsp(info, &bsp);
  69. snprintf(buf, sizeof(buf),
  70. " [<%016lx>] %%s\n"
  71. " sp=%016lx bsp=%016lx\n",
  72. ip, sp, bsp);
  73. print_symbol(buf, ip);
  74. } while (unw_unwind(info) >= 0);
  75. }
  76. void
  77. show_stack (struct task_struct *task, unsigned long *sp)
  78. {
  79. if (!task)
  80. unw_init_running(ia64_do_show_stack, NULL);
  81. else {
  82. struct unw_frame_info info;
  83. unw_init_from_blocked_task(&info, task);
  84. ia64_do_show_stack(&info, NULL);
  85. }
  86. }
  87. void
  88. dump_stack (void)
  89. {
  90. show_stack(NULL, NULL);
  91. }
  92. EXPORT_SYMBOL(dump_stack);
  93. void
  94. show_regs (struct pt_regs *regs)
  95. {
  96. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  97. print_modules();
  98. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  99. smp_processor_id(), current->comm);
  100. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  101. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  102. init_utsname()->release);
  103. print_symbol("ip is at %s\n", ip);
  104. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  105. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  106. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  107. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  108. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  109. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  110. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  111. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  112. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  113. regs->f6.u.bits[1], regs->f6.u.bits[0],
  114. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  115. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  116. regs->f8.u.bits[1], regs->f8.u.bits[0],
  117. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  118. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  119. regs->f10.u.bits[1], regs->f10.u.bits[0],
  120. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  121. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  122. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  123. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  124. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  125. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  126. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  127. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  128. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  129. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  130. if (user_mode(regs)) {
  131. /* print the stacked registers */
  132. unsigned long val, *bsp, ndirty;
  133. int i, sof, is_nat = 0;
  134. sof = regs->cr_ifs & 0x7f; /* size of frame */
  135. ndirty = (regs->loadrs >> 19);
  136. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  137. for (i = 0; i < sof; ++i) {
  138. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  139. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  140. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  141. }
  142. } else
  143. show_stack(NULL, NULL);
  144. }
  145. /* local support for deprecated console_print */
  146. void
  147. console_print(const char *s)
  148. {
  149. printk(KERN_EMERG "%s", s);
  150. }
  151. void
  152. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  153. {
  154. if (fsys_mode(current, &scr->pt)) {
  155. /*
  156. * defer signal-handling etc. until we return to
  157. * privilege-level 0.
  158. */
  159. if (!ia64_psr(&scr->pt)->lp)
  160. ia64_psr(&scr->pt)->lp = 1;
  161. return;
  162. }
  163. #ifdef CONFIG_PERFMON
  164. if (current->thread.pfm_needs_checking)
  165. /*
  166. * Note: pfm_handle_work() allow us to call it with interrupts
  167. * disabled, and may enable interrupts within the function.
  168. */
  169. pfm_handle_work();
  170. #endif
  171. /* deal with pending signal delivery */
  172. if (test_thread_flag(TIF_SIGPENDING)) {
  173. local_irq_enable(); /* force interrupt enable */
  174. ia64_do_signal(scr, in_syscall);
  175. }
  176. if (test_thread_flag(TIF_NOTIFY_RESUME)) {
  177. clear_thread_flag(TIF_NOTIFY_RESUME);
  178. tracehook_notify_resume(&scr->pt);
  179. if (current->replacement_session_keyring)
  180. key_replace_session_keyring();
  181. }
  182. /* copy user rbs to kernel rbs */
  183. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  184. local_irq_enable(); /* force interrupt enable */
  185. ia64_sync_krbs();
  186. }
  187. local_irq_disable(); /* force interrupt disable */
  188. }
  189. static int pal_halt = 1;
  190. static int can_do_pal_halt = 1;
  191. static int __init nohalt_setup(char * str)
  192. {
  193. pal_halt = can_do_pal_halt = 0;
  194. return 1;
  195. }
  196. __setup("nohalt", nohalt_setup);
  197. void
  198. update_pal_halt_status(int status)
  199. {
  200. can_do_pal_halt = pal_halt && status;
  201. }
  202. /*
  203. * We use this if we don't have any better idle routine..
  204. */
  205. void
  206. default_idle (void)
  207. {
  208. local_irq_enable();
  209. while (!need_resched()) {
  210. if (can_do_pal_halt) {
  211. local_irq_disable();
  212. if (!need_resched()) {
  213. safe_halt();
  214. }
  215. local_irq_enable();
  216. } else
  217. cpu_relax();
  218. }
  219. }
  220. #ifdef CONFIG_HOTPLUG_CPU
  221. /* We don't actually take CPU down, just spin without interrupts. */
  222. static inline void play_dead(void)
  223. {
  224. unsigned int this_cpu = smp_processor_id();
  225. /* Ack it */
  226. __get_cpu_var(cpu_state) = CPU_DEAD;
  227. max_xtp();
  228. local_irq_disable();
  229. idle_task_exit();
  230. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  231. /*
  232. * The above is a point of no-return, the processor is
  233. * expected to be in SAL loop now.
  234. */
  235. BUG();
  236. }
  237. #else
  238. static inline void play_dead(void)
  239. {
  240. BUG();
  241. }
  242. #endif /* CONFIG_HOTPLUG_CPU */
  243. void __attribute__((noreturn))
  244. cpu_idle (void)
  245. {
  246. void (*mark_idle)(int) = ia64_mark_idle;
  247. int cpu = smp_processor_id();
  248. /* endless idle loop with no priority at all */
  249. while (1) {
  250. if (can_do_pal_halt) {
  251. current_thread_info()->status &= ~TS_POLLING;
  252. /*
  253. * TS_POLLING-cleared state must be visible before we
  254. * test NEED_RESCHED:
  255. */
  256. smp_mb();
  257. } else {
  258. current_thread_info()->status |= TS_POLLING;
  259. }
  260. if (!need_resched()) {
  261. void (*idle)(void);
  262. #ifdef CONFIG_SMP
  263. min_xtp();
  264. #endif
  265. rmb();
  266. if (mark_idle)
  267. (*mark_idle)(1);
  268. idle = pm_idle;
  269. if (!idle)
  270. idle = default_idle;
  271. (*idle)();
  272. if (mark_idle)
  273. (*mark_idle)(0);
  274. #ifdef CONFIG_SMP
  275. normal_xtp();
  276. #endif
  277. }
  278. schedule_preempt_disabled();
  279. check_pgt_cache();
  280. if (cpu_is_offline(cpu))
  281. play_dead();
  282. }
  283. }
  284. void
  285. ia64_save_extra (struct task_struct *task)
  286. {
  287. #ifdef CONFIG_PERFMON
  288. unsigned long info;
  289. #endif
  290. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  291. ia64_save_debug_regs(&task->thread.dbr[0]);
  292. #ifdef CONFIG_PERFMON
  293. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  294. pfm_save_regs(task);
  295. info = __get_cpu_var(pfm_syst_info);
  296. if (info & PFM_CPUINFO_SYST_WIDE)
  297. pfm_syst_wide_update_task(task, info, 0);
  298. #endif
  299. }
  300. void
  301. ia64_load_extra (struct task_struct *task)
  302. {
  303. #ifdef CONFIG_PERFMON
  304. unsigned long info;
  305. #endif
  306. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  307. ia64_load_debug_regs(&task->thread.dbr[0]);
  308. #ifdef CONFIG_PERFMON
  309. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  310. pfm_load_regs(task);
  311. info = __get_cpu_var(pfm_syst_info);
  312. if (info & PFM_CPUINFO_SYST_WIDE)
  313. pfm_syst_wide_update_task(task, info, 1);
  314. #endif
  315. }
  316. /*
  317. * Copy the state of an ia-64 thread.
  318. *
  319. * We get here through the following call chain:
  320. *
  321. * from user-level: from kernel:
  322. *
  323. * <clone syscall> <some kernel call frames>
  324. * sys_clone :
  325. * do_fork do_fork
  326. * copy_thread copy_thread
  327. *
  328. * This means that the stack layout is as follows:
  329. *
  330. * +---------------------+ (highest addr)
  331. * | struct pt_regs |
  332. * +---------------------+
  333. * | struct switch_stack |
  334. * +---------------------+
  335. * | |
  336. * | memory stack |
  337. * | | <-- sp (lowest addr)
  338. * +---------------------+
  339. *
  340. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  341. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  342. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  343. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  344. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  345. * so there is nothing to worry about.
  346. */
  347. int
  348. copy_thread(unsigned long clone_flags,
  349. unsigned long user_stack_base, unsigned long user_stack_size,
  350. struct task_struct *p, struct pt_regs *regs)
  351. {
  352. extern char ia64_ret_from_clone;
  353. struct switch_stack *child_stack, *stack;
  354. unsigned long rbs, child_rbs, rbs_size;
  355. struct pt_regs *child_ptregs;
  356. int retval = 0;
  357. #ifdef CONFIG_SMP
  358. /*
  359. * For SMP idle threads, fork_by_hand() calls do_fork with
  360. * NULL regs.
  361. */
  362. if (!regs)
  363. return 0;
  364. #endif
  365. stack = ((struct switch_stack *) regs) - 1;
  366. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  367. child_stack = (struct switch_stack *) child_ptregs - 1;
  368. /* copy parent's switch_stack & pt_regs to child: */
  369. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  370. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  371. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  372. rbs_size = stack->ar_bspstore - rbs;
  373. /* copy the parent's register backing store to the child: */
  374. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  375. if (likely(user_mode(child_ptregs))) {
  376. if (clone_flags & CLONE_SETTLS)
  377. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  378. if (user_stack_base) {
  379. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  380. child_ptregs->ar_bspstore = user_stack_base;
  381. child_ptregs->ar_rnat = 0;
  382. child_ptregs->loadrs = 0;
  383. }
  384. } else {
  385. /*
  386. * Note: we simply preserve the relative position of
  387. * the stack pointer here. There is no need to
  388. * allocate a scratch area here, since that will have
  389. * been taken care of by the caller of sys_clone()
  390. * already.
  391. */
  392. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  393. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  394. }
  395. child_stack->ar_bspstore = child_rbs + rbs_size;
  396. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  397. /* copy parts of thread_struct: */
  398. p->thread.ksp = (unsigned long) child_stack - 16;
  399. /* stop some PSR bits from being inherited.
  400. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  401. * therefore we must specify them explicitly here and not include them in
  402. * IA64_PSR_BITS_TO_CLEAR.
  403. */
  404. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  405. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  406. /*
  407. * NOTE: The calling convention considers all floating point
  408. * registers in the high partition (fph) to be scratch. Since
  409. * the only way to get to this point is through a system call,
  410. * we know that the values in fph are all dead. Hence, there
  411. * is no need to inherit the fph state from the parent to the
  412. * child and all we have to do is to make sure that
  413. * IA64_THREAD_FPH_VALID is cleared in the child.
  414. *
  415. * XXX We could push this optimization a bit further by
  416. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  417. * However, it's not clear this is worth doing. Also, it
  418. * would be a slight deviation from the normal Linux system
  419. * call behavior where scratch registers are preserved across
  420. * system calls (unless used by the system call itself).
  421. */
  422. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  423. | IA64_THREAD_PM_VALID)
  424. # define THREAD_FLAGS_TO_SET 0
  425. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  426. | THREAD_FLAGS_TO_SET);
  427. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  428. #ifdef CONFIG_PERFMON
  429. if (current->thread.pfm_context)
  430. pfm_inherit(p, child_ptregs);
  431. #endif
  432. return retval;
  433. }
  434. static void
  435. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  436. {
  437. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  438. unsigned long uninitialized_var(ip); /* GCC be quiet */
  439. elf_greg_t *dst = arg;
  440. struct pt_regs *pt;
  441. char nat;
  442. int i;
  443. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  444. if (unw_unwind_to_user(info) < 0)
  445. return;
  446. unw_get_sp(info, &sp);
  447. pt = (struct pt_regs *) (sp + 16);
  448. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  449. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  450. return;
  451. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  452. &ar_rnat);
  453. /*
  454. * coredump format:
  455. * r0-r31
  456. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  457. * predicate registers (p0-p63)
  458. * b0-b7
  459. * ip cfm user-mask
  460. * ar.rsc ar.bsp ar.bspstore ar.rnat
  461. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  462. */
  463. /* r0 is zero */
  464. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  465. unw_get_gr(info, i, &dst[i], &nat);
  466. if (nat)
  467. nat_bits |= mask;
  468. mask <<= 1;
  469. }
  470. dst[32] = nat_bits;
  471. unw_get_pr(info, &dst[33]);
  472. for (i = 0; i < 8; ++i)
  473. unw_get_br(info, i, &dst[34 + i]);
  474. unw_get_rp(info, &ip);
  475. dst[42] = ip + ia64_psr(pt)->ri;
  476. dst[43] = cfm;
  477. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  478. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  479. /*
  480. * For bsp and bspstore, unw_get_ar() would return the kernel
  481. * addresses, but we need the user-level addresses instead:
  482. */
  483. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  484. dst[47] = pt->ar_bspstore;
  485. dst[48] = ar_rnat;
  486. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  487. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  488. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  489. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  490. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  491. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  492. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  493. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  494. }
  495. void
  496. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  497. {
  498. elf_fpreg_t *dst = arg;
  499. int i;
  500. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  501. if (unw_unwind_to_user(info) < 0)
  502. return;
  503. /* f0 is 0.0, f1 is 1.0 */
  504. for (i = 2; i < 32; ++i)
  505. unw_get_fr(info, i, dst + i);
  506. ia64_flush_fph(task);
  507. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  508. memcpy(dst + 32, task->thread.fph, 96*16);
  509. }
  510. void
  511. do_copy_regs (struct unw_frame_info *info, void *arg)
  512. {
  513. do_copy_task_regs(current, info, arg);
  514. }
  515. void
  516. do_dump_fpu (struct unw_frame_info *info, void *arg)
  517. {
  518. do_dump_task_fpu(current, info, arg);
  519. }
  520. void
  521. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  522. {
  523. unw_init_running(do_copy_regs, dst);
  524. }
  525. int
  526. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  527. {
  528. unw_init_running(do_dump_fpu, dst);
  529. return 1; /* f0-f31 are always valid so we always return 1 */
  530. }
  531. long
  532. sys_execve (const char __user *filename,
  533. const char __user *const __user *argv,
  534. const char __user *const __user *envp,
  535. struct pt_regs *regs)
  536. {
  537. char *fname;
  538. int error;
  539. fname = getname(filename);
  540. error = PTR_ERR(fname);
  541. if (IS_ERR(fname))
  542. goto out;
  543. error = do_execve(fname, argv, envp, regs);
  544. putname(fname);
  545. out:
  546. return error;
  547. }
  548. pid_t
  549. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  550. {
  551. extern void start_kernel_thread (void);
  552. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  553. struct {
  554. struct switch_stack sw;
  555. struct pt_regs pt;
  556. } regs;
  557. memset(&regs, 0, sizeof(regs));
  558. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  559. regs.pt.r1 = helper_fptr[1]; /* set GP */
  560. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  561. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  562. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  563. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  564. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  565. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  566. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  567. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  568. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  569. }
  570. EXPORT_SYMBOL(kernel_thread);
  571. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  572. int
  573. kernel_thread_helper (int (*fn)(void *), void *arg)
  574. {
  575. return (*fn)(arg);
  576. }
  577. /*
  578. * Flush thread state. This is called when a thread does an execve().
  579. */
  580. void
  581. flush_thread (void)
  582. {
  583. /* drop floating-point and debug-register state if it exists: */
  584. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  585. ia64_drop_fpu(current);
  586. }
  587. /*
  588. * Clean up state associated with current thread. This is called when
  589. * the thread calls exit().
  590. */
  591. void
  592. exit_thread (void)
  593. {
  594. ia64_drop_fpu(current);
  595. #ifdef CONFIG_PERFMON
  596. /* if needed, stop monitoring and flush state to perfmon context */
  597. if (current->thread.pfm_context)
  598. pfm_exit_thread(current);
  599. /* free debug register resources */
  600. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  601. pfm_release_debug_registers(current);
  602. #endif
  603. }
  604. unsigned long
  605. get_wchan (struct task_struct *p)
  606. {
  607. struct unw_frame_info info;
  608. unsigned long ip;
  609. int count = 0;
  610. if (!p || p == current || p->state == TASK_RUNNING)
  611. return 0;
  612. /*
  613. * Note: p may not be a blocked task (it could be current or
  614. * another process running on some other CPU. Rather than
  615. * trying to determine if p is really blocked, we just assume
  616. * it's blocked and rely on the unwind routines to fail
  617. * gracefully if the process wasn't really blocked after all.
  618. * --davidm 99/12/15
  619. */
  620. unw_init_from_blocked_task(&info, p);
  621. do {
  622. if (p->state == TASK_RUNNING)
  623. return 0;
  624. if (unw_unwind(&info) < 0)
  625. return 0;
  626. unw_get_ip(&info, &ip);
  627. if (!in_sched_functions(ip))
  628. return ip;
  629. } while (count++ < 16);
  630. return 0;
  631. }
  632. void
  633. cpu_halt (void)
  634. {
  635. pal_power_mgmt_info_u_t power_info[8];
  636. unsigned long min_power;
  637. int i, min_power_state;
  638. if (ia64_pal_halt_info(power_info) != 0)
  639. return;
  640. min_power_state = 0;
  641. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  642. for (i = 1; i < 8; ++i)
  643. if (power_info[i].pal_power_mgmt_info_s.im
  644. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  645. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  646. min_power_state = i;
  647. }
  648. while (1)
  649. ia64_pal_halt(min_power_state);
  650. }
  651. void machine_shutdown(void)
  652. {
  653. #ifdef CONFIG_HOTPLUG_CPU
  654. int cpu;
  655. for_each_online_cpu(cpu) {
  656. if (cpu != smp_processor_id())
  657. cpu_down(cpu);
  658. }
  659. #endif
  660. #ifdef CONFIG_KEXEC
  661. kexec_disable_iosapic();
  662. #endif
  663. }
  664. void
  665. machine_restart (char *restart_cmd)
  666. {
  667. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  668. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  669. }
  670. void
  671. machine_halt (void)
  672. {
  673. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  674. cpu_halt();
  675. }
  676. void
  677. machine_power_off (void)
  678. {
  679. if (pm_power_off)
  680. pm_power_off();
  681. machine_halt();
  682. }