sched_rt.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_SMP
  6. static inline int rt_overloaded(struct rq *rq)
  7. {
  8. return atomic_read(&rq->rd->rto_count);
  9. }
  10. static inline void rt_set_overload(struct rq *rq)
  11. {
  12. if (!rq->online)
  13. return;
  14. cpu_set(rq->cpu, rq->rd->rto_mask);
  15. /*
  16. * Make sure the mask is visible before we set
  17. * the overload count. That is checked to determine
  18. * if we should look at the mask. It would be a shame
  19. * if we looked at the mask, but the mask was not
  20. * updated yet.
  21. */
  22. wmb();
  23. atomic_inc(&rq->rd->rto_count);
  24. }
  25. static inline void rt_clear_overload(struct rq *rq)
  26. {
  27. if (!rq->online)
  28. return;
  29. /* the order here really doesn't matter */
  30. atomic_dec(&rq->rd->rto_count);
  31. cpu_clear(rq->cpu, rq->rd->rto_mask);
  32. }
  33. static void update_rt_migration(struct rq *rq)
  34. {
  35. if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
  36. if (!rq->rt.overloaded) {
  37. rt_set_overload(rq);
  38. rq->rt.overloaded = 1;
  39. }
  40. } else if (rq->rt.overloaded) {
  41. rt_clear_overload(rq);
  42. rq->rt.overloaded = 0;
  43. }
  44. }
  45. #endif /* CONFIG_SMP */
  46. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  47. {
  48. return container_of(rt_se, struct task_struct, rt);
  49. }
  50. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  51. {
  52. return !list_empty(&rt_se->run_list);
  53. }
  54. #ifdef CONFIG_RT_GROUP_SCHED
  55. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  56. {
  57. if (!rt_rq->tg)
  58. return RUNTIME_INF;
  59. return rt_rq->rt_runtime;
  60. }
  61. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  62. {
  63. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  64. }
  65. #define for_each_leaf_rt_rq(rt_rq, rq) \
  66. list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  67. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  68. {
  69. return rt_rq->rq;
  70. }
  71. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  72. {
  73. return rt_se->rt_rq;
  74. }
  75. #define for_each_sched_rt_entity(rt_se) \
  76. for (; rt_se; rt_se = rt_se->parent)
  77. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  78. {
  79. return rt_se->my_q;
  80. }
  81. static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
  82. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  83. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  84. {
  85. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  86. if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
  87. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  88. enqueue_rt_entity(rt_se);
  89. if (rt_rq->highest_prio < curr->prio)
  90. resched_task(curr);
  91. }
  92. }
  93. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  94. {
  95. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  96. if (rt_se && on_rt_rq(rt_se))
  97. dequeue_rt_entity(rt_se);
  98. }
  99. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  100. {
  101. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  102. }
  103. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  104. {
  105. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  106. struct task_struct *p;
  107. if (rt_rq)
  108. return !!rt_rq->rt_nr_boosted;
  109. p = rt_task_of(rt_se);
  110. return p->prio != p->normal_prio;
  111. }
  112. #ifdef CONFIG_SMP
  113. static inline cpumask_t sched_rt_period_mask(void)
  114. {
  115. return cpu_rq(smp_processor_id())->rd->span;
  116. }
  117. #else
  118. static inline cpumask_t sched_rt_period_mask(void)
  119. {
  120. return cpu_online_map;
  121. }
  122. #endif
  123. static inline
  124. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  125. {
  126. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  127. }
  128. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  129. {
  130. return &rt_rq->tg->rt_bandwidth;
  131. }
  132. #else
  133. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  134. {
  135. return rt_rq->rt_runtime;
  136. }
  137. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  138. {
  139. return ktime_to_ns(def_rt_bandwidth.rt_period);
  140. }
  141. #define for_each_leaf_rt_rq(rt_rq, rq) \
  142. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  143. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  144. {
  145. return container_of(rt_rq, struct rq, rt);
  146. }
  147. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  148. {
  149. struct task_struct *p = rt_task_of(rt_se);
  150. struct rq *rq = task_rq(p);
  151. return &rq->rt;
  152. }
  153. #define for_each_sched_rt_entity(rt_se) \
  154. for (; rt_se; rt_se = NULL)
  155. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  156. {
  157. return NULL;
  158. }
  159. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  160. {
  161. }
  162. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  163. {
  164. }
  165. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  166. {
  167. return rt_rq->rt_throttled;
  168. }
  169. static inline cpumask_t sched_rt_period_mask(void)
  170. {
  171. return cpu_online_map;
  172. }
  173. static inline
  174. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  175. {
  176. return &cpu_rq(cpu)->rt;
  177. }
  178. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  179. {
  180. return &def_rt_bandwidth;
  181. }
  182. #endif
  183. #ifdef CONFIG_SMP
  184. static int do_balance_runtime(struct rt_rq *rt_rq)
  185. {
  186. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  187. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  188. int i, weight, more = 0;
  189. u64 rt_period;
  190. weight = cpus_weight(rd->span);
  191. spin_lock(&rt_b->rt_runtime_lock);
  192. rt_period = ktime_to_ns(rt_b->rt_period);
  193. for_each_cpu_mask(i, rd->span) {
  194. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  195. s64 diff;
  196. if (iter == rt_rq)
  197. continue;
  198. spin_lock(&iter->rt_runtime_lock);
  199. if (iter->rt_runtime == RUNTIME_INF)
  200. goto next;
  201. diff = iter->rt_runtime - iter->rt_time;
  202. if (diff > 0) {
  203. do_div(diff, weight);
  204. if (rt_rq->rt_runtime + diff > rt_period)
  205. diff = rt_period - rt_rq->rt_runtime;
  206. iter->rt_runtime -= diff;
  207. rt_rq->rt_runtime += diff;
  208. more = 1;
  209. if (rt_rq->rt_runtime == rt_period) {
  210. spin_unlock(&iter->rt_runtime_lock);
  211. break;
  212. }
  213. }
  214. next:
  215. spin_unlock(&iter->rt_runtime_lock);
  216. }
  217. spin_unlock(&rt_b->rt_runtime_lock);
  218. return more;
  219. }
  220. static void __disable_runtime(struct rq *rq)
  221. {
  222. struct root_domain *rd = rq->rd;
  223. struct rt_rq *rt_rq;
  224. if (unlikely(!scheduler_running))
  225. return;
  226. for_each_leaf_rt_rq(rt_rq, rq) {
  227. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  228. s64 want;
  229. int i;
  230. spin_lock(&rt_b->rt_runtime_lock);
  231. spin_lock(&rt_rq->rt_runtime_lock);
  232. if (rt_rq->rt_runtime == RUNTIME_INF ||
  233. rt_rq->rt_runtime == rt_b->rt_runtime)
  234. goto balanced;
  235. spin_unlock(&rt_rq->rt_runtime_lock);
  236. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  237. for_each_cpu_mask(i, rd->span) {
  238. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  239. s64 diff;
  240. if (iter == rt_rq)
  241. continue;
  242. spin_lock(&iter->rt_runtime_lock);
  243. if (want > 0) {
  244. diff = min_t(s64, iter->rt_runtime, want);
  245. iter->rt_runtime -= diff;
  246. want -= diff;
  247. } else {
  248. iter->rt_runtime -= want;
  249. want -= want;
  250. }
  251. spin_unlock(&iter->rt_runtime_lock);
  252. if (!want)
  253. break;
  254. }
  255. spin_lock(&rt_rq->rt_runtime_lock);
  256. BUG_ON(want);
  257. balanced:
  258. rt_rq->rt_runtime = RUNTIME_INF;
  259. spin_unlock(&rt_rq->rt_runtime_lock);
  260. spin_unlock(&rt_b->rt_runtime_lock);
  261. }
  262. }
  263. static void disable_runtime(struct rq *rq)
  264. {
  265. unsigned long flags;
  266. spin_lock_irqsave(&rq->lock, flags);
  267. __disable_runtime(rq);
  268. spin_unlock_irqrestore(&rq->lock, flags);
  269. }
  270. static void __enable_runtime(struct rq *rq)
  271. {
  272. struct rt_rq *rt_rq;
  273. if (unlikely(!scheduler_running))
  274. return;
  275. for_each_leaf_rt_rq(rt_rq, rq) {
  276. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  277. spin_lock(&rt_b->rt_runtime_lock);
  278. spin_lock(&rt_rq->rt_runtime_lock);
  279. rt_rq->rt_runtime = rt_b->rt_runtime;
  280. rt_rq->rt_time = 0;
  281. spin_unlock(&rt_rq->rt_runtime_lock);
  282. spin_unlock(&rt_b->rt_runtime_lock);
  283. }
  284. }
  285. static void enable_runtime(struct rq *rq)
  286. {
  287. unsigned long flags;
  288. spin_lock_irqsave(&rq->lock, flags);
  289. __enable_runtime(rq);
  290. spin_unlock_irqrestore(&rq->lock, flags);
  291. }
  292. static int balance_runtime(struct rt_rq *rt_rq)
  293. {
  294. int more = 0;
  295. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  296. spin_unlock(&rt_rq->rt_runtime_lock);
  297. more = do_balance_runtime(rt_rq);
  298. spin_lock(&rt_rq->rt_runtime_lock);
  299. }
  300. return more;
  301. }
  302. #else
  303. static inline int balance_runtime(struct rt_rq *rt_rq)
  304. {
  305. return 0;
  306. }
  307. #endif
  308. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  309. {
  310. int i, idle = 1;
  311. cpumask_t span;
  312. if (rt_b->rt_runtime == RUNTIME_INF)
  313. return 1;
  314. span = sched_rt_period_mask();
  315. for_each_cpu_mask(i, span) {
  316. int enqueue = 0;
  317. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  318. struct rq *rq = rq_of_rt_rq(rt_rq);
  319. spin_lock(&rq->lock);
  320. if (rt_rq->rt_time) {
  321. u64 runtime;
  322. spin_lock(&rt_rq->rt_runtime_lock);
  323. if (rt_rq->rt_throttled)
  324. balance_runtime(rt_rq);
  325. runtime = rt_rq->rt_runtime;
  326. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  327. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  328. rt_rq->rt_throttled = 0;
  329. enqueue = 1;
  330. }
  331. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  332. idle = 0;
  333. spin_unlock(&rt_rq->rt_runtime_lock);
  334. } else if (rt_rq->rt_nr_running)
  335. idle = 0;
  336. if (enqueue)
  337. sched_rt_rq_enqueue(rt_rq);
  338. spin_unlock(&rq->lock);
  339. }
  340. return idle;
  341. }
  342. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  343. {
  344. #ifdef CONFIG_RT_GROUP_SCHED
  345. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  346. if (rt_rq)
  347. return rt_rq->highest_prio;
  348. #endif
  349. return rt_task_of(rt_se)->prio;
  350. }
  351. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  352. {
  353. u64 runtime = sched_rt_runtime(rt_rq);
  354. if (runtime == RUNTIME_INF)
  355. return 0;
  356. if (rt_rq->rt_throttled)
  357. return rt_rq_throttled(rt_rq);
  358. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  359. return 0;
  360. balance_runtime(rt_rq);
  361. runtime = sched_rt_runtime(rt_rq);
  362. if (runtime == RUNTIME_INF)
  363. return 0;
  364. if (rt_rq->rt_time > runtime) {
  365. rt_rq->rt_throttled = 1;
  366. if (rt_rq_throttled(rt_rq)) {
  367. sched_rt_rq_dequeue(rt_rq);
  368. return 1;
  369. }
  370. }
  371. return 0;
  372. }
  373. /*
  374. * Update the current task's runtime statistics. Skip current tasks that
  375. * are not in our scheduling class.
  376. */
  377. static void update_curr_rt(struct rq *rq)
  378. {
  379. struct task_struct *curr = rq->curr;
  380. struct sched_rt_entity *rt_se = &curr->rt;
  381. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  382. u64 delta_exec;
  383. if (!task_has_rt_policy(curr))
  384. return;
  385. delta_exec = rq->clock - curr->se.exec_start;
  386. if (unlikely((s64)delta_exec < 0))
  387. delta_exec = 0;
  388. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  389. curr->se.sum_exec_runtime += delta_exec;
  390. curr->se.exec_start = rq->clock;
  391. cpuacct_charge(curr, delta_exec);
  392. for_each_sched_rt_entity(rt_se) {
  393. rt_rq = rt_rq_of_se(rt_se);
  394. spin_lock(&rt_rq->rt_runtime_lock);
  395. rt_rq->rt_time += delta_exec;
  396. if (sched_rt_runtime_exceeded(rt_rq))
  397. resched_task(curr);
  398. spin_unlock(&rt_rq->rt_runtime_lock);
  399. }
  400. }
  401. static inline
  402. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  403. {
  404. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  405. rt_rq->rt_nr_running++;
  406. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  407. if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
  408. struct rq *rq = rq_of_rt_rq(rt_rq);
  409. rt_rq->highest_prio = rt_se_prio(rt_se);
  410. #ifdef CONFIG_SMP
  411. if (rq->online)
  412. cpupri_set(&rq->rd->cpupri, rq->cpu,
  413. rt_se_prio(rt_se));
  414. #endif
  415. }
  416. #endif
  417. #ifdef CONFIG_SMP
  418. if (rt_se->nr_cpus_allowed > 1) {
  419. struct rq *rq = rq_of_rt_rq(rt_rq);
  420. rq->rt.rt_nr_migratory++;
  421. }
  422. update_rt_migration(rq_of_rt_rq(rt_rq));
  423. #endif
  424. #ifdef CONFIG_RT_GROUP_SCHED
  425. if (rt_se_boosted(rt_se))
  426. rt_rq->rt_nr_boosted++;
  427. if (rt_rq->tg)
  428. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  429. #else
  430. start_rt_bandwidth(&def_rt_bandwidth);
  431. #endif
  432. }
  433. static inline
  434. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  435. {
  436. #ifdef CONFIG_SMP
  437. int highest_prio = rt_rq->highest_prio;
  438. #endif
  439. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  440. WARN_ON(!rt_rq->rt_nr_running);
  441. rt_rq->rt_nr_running--;
  442. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  443. if (rt_rq->rt_nr_running) {
  444. struct rt_prio_array *array;
  445. WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
  446. if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
  447. /* recalculate */
  448. array = &rt_rq->active;
  449. rt_rq->highest_prio =
  450. sched_find_first_bit(array->bitmap);
  451. } /* otherwise leave rq->highest prio alone */
  452. } else
  453. rt_rq->highest_prio = MAX_RT_PRIO;
  454. #endif
  455. #ifdef CONFIG_SMP
  456. if (rt_se->nr_cpus_allowed > 1) {
  457. struct rq *rq = rq_of_rt_rq(rt_rq);
  458. rq->rt.rt_nr_migratory--;
  459. }
  460. if (rt_rq->highest_prio != highest_prio) {
  461. struct rq *rq = rq_of_rt_rq(rt_rq);
  462. if (rq->online)
  463. cpupri_set(&rq->rd->cpupri, rq->cpu,
  464. rt_rq->highest_prio);
  465. }
  466. update_rt_migration(rq_of_rt_rq(rt_rq));
  467. #endif /* CONFIG_SMP */
  468. #ifdef CONFIG_RT_GROUP_SCHED
  469. if (rt_se_boosted(rt_se))
  470. rt_rq->rt_nr_boosted--;
  471. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  472. #endif
  473. }
  474. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
  475. {
  476. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  477. struct rt_prio_array *array = &rt_rq->active;
  478. struct rt_rq *group_rq = group_rt_rq(rt_se);
  479. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  480. /*
  481. * Don't enqueue the group if its throttled, or when empty.
  482. * The latter is a consequence of the former when a child group
  483. * get throttled and the current group doesn't have any other
  484. * active members.
  485. */
  486. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  487. return;
  488. if (rt_se->nr_cpus_allowed == 1)
  489. list_add(&rt_se->run_list, queue);
  490. else
  491. list_add_tail(&rt_se->run_list, queue);
  492. __set_bit(rt_se_prio(rt_se), array->bitmap);
  493. inc_rt_tasks(rt_se, rt_rq);
  494. }
  495. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  496. {
  497. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  498. struct rt_prio_array *array = &rt_rq->active;
  499. list_del_init(&rt_se->run_list);
  500. if (list_empty(array->queue + rt_se_prio(rt_se)))
  501. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  502. dec_rt_tasks(rt_se, rt_rq);
  503. }
  504. /*
  505. * Because the prio of an upper entry depends on the lower
  506. * entries, we must remove entries top - down.
  507. */
  508. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  509. {
  510. struct sched_rt_entity *back = NULL;
  511. for_each_sched_rt_entity(rt_se) {
  512. rt_se->back = back;
  513. back = rt_se;
  514. }
  515. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  516. if (on_rt_rq(rt_se))
  517. __dequeue_rt_entity(rt_se);
  518. }
  519. }
  520. static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
  521. {
  522. dequeue_rt_stack(rt_se);
  523. for_each_sched_rt_entity(rt_se)
  524. __enqueue_rt_entity(rt_se);
  525. }
  526. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  527. {
  528. dequeue_rt_stack(rt_se);
  529. for_each_sched_rt_entity(rt_se) {
  530. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  531. if (rt_rq && rt_rq->rt_nr_running)
  532. __enqueue_rt_entity(rt_se);
  533. }
  534. }
  535. /*
  536. * Adding/removing a task to/from a priority array:
  537. */
  538. static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
  539. {
  540. struct sched_rt_entity *rt_se = &p->rt;
  541. if (wakeup)
  542. rt_se->timeout = 0;
  543. enqueue_rt_entity(rt_se);
  544. }
  545. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  546. {
  547. struct sched_rt_entity *rt_se = &p->rt;
  548. update_curr_rt(rq);
  549. dequeue_rt_entity(rt_se);
  550. }
  551. /*
  552. * Put task to the end of the run list without the overhead of dequeue
  553. * followed by enqueue.
  554. */
  555. static
  556. void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
  557. {
  558. struct rt_prio_array *array = &rt_rq->active;
  559. if (on_rt_rq(rt_se)) {
  560. list_del_init(&rt_se->run_list);
  561. list_add_tail(&rt_se->run_list,
  562. array->queue + rt_se_prio(rt_se));
  563. }
  564. }
  565. static void requeue_task_rt(struct rq *rq, struct task_struct *p)
  566. {
  567. struct sched_rt_entity *rt_se = &p->rt;
  568. struct rt_rq *rt_rq;
  569. for_each_sched_rt_entity(rt_se) {
  570. rt_rq = rt_rq_of_se(rt_se);
  571. requeue_rt_entity(rt_rq, rt_se);
  572. }
  573. }
  574. static void yield_task_rt(struct rq *rq)
  575. {
  576. requeue_task_rt(rq, rq->curr);
  577. }
  578. #ifdef CONFIG_SMP
  579. static int find_lowest_rq(struct task_struct *task);
  580. static int select_task_rq_rt(struct task_struct *p, int sync)
  581. {
  582. struct rq *rq = task_rq(p);
  583. /*
  584. * If the current task is an RT task, then
  585. * try to see if we can wake this RT task up on another
  586. * runqueue. Otherwise simply start this RT task
  587. * on its current runqueue.
  588. *
  589. * We want to avoid overloading runqueues. Even if
  590. * the RT task is of higher priority than the current RT task.
  591. * RT tasks behave differently than other tasks. If
  592. * one gets preempted, we try to push it off to another queue.
  593. * So trying to keep a preempting RT task on the same
  594. * cache hot CPU will force the running RT task to
  595. * a cold CPU. So we waste all the cache for the lower
  596. * RT task in hopes of saving some of a RT task
  597. * that is just being woken and probably will have
  598. * cold cache anyway.
  599. */
  600. if (unlikely(rt_task(rq->curr)) &&
  601. (p->rt.nr_cpus_allowed > 1)) {
  602. int cpu = find_lowest_rq(p);
  603. return (cpu == -1) ? task_cpu(p) : cpu;
  604. }
  605. /*
  606. * Otherwise, just let it ride on the affined RQ and the
  607. * post-schedule router will push the preempted task away
  608. */
  609. return task_cpu(p);
  610. }
  611. #endif /* CONFIG_SMP */
  612. /*
  613. * Preempt the current task with a newly woken task if needed:
  614. */
  615. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
  616. {
  617. if (p->prio < rq->curr->prio) {
  618. resched_task(rq->curr);
  619. return;
  620. }
  621. #ifdef CONFIG_SMP
  622. /*
  623. * If:
  624. *
  625. * - the newly woken task is of equal priority to the current task
  626. * - the newly woken task is non-migratable while current is migratable
  627. * - current will be preempted on the next reschedule
  628. *
  629. * we should check to see if current can readily move to a different
  630. * cpu. If so, we will reschedule to allow the push logic to try
  631. * to move current somewhere else, making room for our non-migratable
  632. * task.
  633. */
  634. if((p->prio == rq->curr->prio)
  635. && p->rt.nr_cpus_allowed == 1
  636. && rq->curr->rt.nr_cpus_allowed != 1) {
  637. cpumask_t mask;
  638. if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
  639. /*
  640. * There appears to be other cpus that can accept
  641. * current, so lets reschedule to try and push it away
  642. */
  643. resched_task(rq->curr);
  644. }
  645. #endif
  646. }
  647. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  648. struct rt_rq *rt_rq)
  649. {
  650. struct rt_prio_array *array = &rt_rq->active;
  651. struct sched_rt_entity *next = NULL;
  652. struct list_head *queue;
  653. int idx;
  654. idx = sched_find_first_bit(array->bitmap);
  655. BUG_ON(idx >= MAX_RT_PRIO);
  656. queue = array->queue + idx;
  657. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  658. return next;
  659. }
  660. static struct task_struct *pick_next_task_rt(struct rq *rq)
  661. {
  662. struct sched_rt_entity *rt_se;
  663. struct task_struct *p;
  664. struct rt_rq *rt_rq;
  665. rt_rq = &rq->rt;
  666. if (unlikely(!rt_rq->rt_nr_running))
  667. return NULL;
  668. if (rt_rq_throttled(rt_rq))
  669. return NULL;
  670. do {
  671. rt_se = pick_next_rt_entity(rq, rt_rq);
  672. BUG_ON(!rt_se);
  673. rt_rq = group_rt_rq(rt_se);
  674. } while (rt_rq);
  675. p = rt_task_of(rt_se);
  676. p->se.exec_start = rq->clock;
  677. return p;
  678. }
  679. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  680. {
  681. update_curr_rt(rq);
  682. p->se.exec_start = 0;
  683. }
  684. #ifdef CONFIG_SMP
  685. /* Only try algorithms three times */
  686. #define RT_MAX_TRIES 3
  687. static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
  688. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  689. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  690. {
  691. if (!task_running(rq, p) &&
  692. (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
  693. (p->rt.nr_cpus_allowed > 1))
  694. return 1;
  695. return 0;
  696. }
  697. /* Return the second highest RT task, NULL otherwise */
  698. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  699. {
  700. struct task_struct *next = NULL;
  701. struct sched_rt_entity *rt_se;
  702. struct rt_prio_array *array;
  703. struct rt_rq *rt_rq;
  704. int idx;
  705. for_each_leaf_rt_rq(rt_rq, rq) {
  706. array = &rt_rq->active;
  707. idx = sched_find_first_bit(array->bitmap);
  708. next_idx:
  709. if (idx >= MAX_RT_PRIO)
  710. continue;
  711. if (next && next->prio < idx)
  712. continue;
  713. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  714. struct task_struct *p = rt_task_of(rt_se);
  715. if (pick_rt_task(rq, p, cpu)) {
  716. next = p;
  717. break;
  718. }
  719. }
  720. if (!next) {
  721. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  722. goto next_idx;
  723. }
  724. }
  725. return next;
  726. }
  727. static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
  728. static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
  729. {
  730. int first;
  731. /* "this_cpu" is cheaper to preempt than a remote processor */
  732. if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
  733. return this_cpu;
  734. first = first_cpu(*mask);
  735. if (first != NR_CPUS)
  736. return first;
  737. return -1;
  738. }
  739. static int find_lowest_rq(struct task_struct *task)
  740. {
  741. struct sched_domain *sd;
  742. cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
  743. int this_cpu = smp_processor_id();
  744. int cpu = task_cpu(task);
  745. if (task->rt.nr_cpus_allowed == 1)
  746. return -1; /* No other targets possible */
  747. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  748. return -1; /* No targets found */
  749. /*
  750. * At this point we have built a mask of cpus representing the
  751. * lowest priority tasks in the system. Now we want to elect
  752. * the best one based on our affinity and topology.
  753. *
  754. * We prioritize the last cpu that the task executed on since
  755. * it is most likely cache-hot in that location.
  756. */
  757. if (cpu_isset(cpu, *lowest_mask))
  758. return cpu;
  759. /*
  760. * Otherwise, we consult the sched_domains span maps to figure
  761. * out which cpu is logically closest to our hot cache data.
  762. */
  763. if (this_cpu == cpu)
  764. this_cpu = -1; /* Skip this_cpu opt if the same */
  765. for_each_domain(cpu, sd) {
  766. if (sd->flags & SD_WAKE_AFFINE) {
  767. cpumask_t domain_mask;
  768. int best_cpu;
  769. cpus_and(domain_mask, sd->span, *lowest_mask);
  770. best_cpu = pick_optimal_cpu(this_cpu,
  771. &domain_mask);
  772. if (best_cpu != -1)
  773. return best_cpu;
  774. }
  775. }
  776. /*
  777. * And finally, if there were no matches within the domains
  778. * just give the caller *something* to work with from the compatible
  779. * locations.
  780. */
  781. return pick_optimal_cpu(this_cpu, lowest_mask);
  782. }
  783. /* Will lock the rq it finds */
  784. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  785. {
  786. struct rq *lowest_rq = NULL;
  787. int tries;
  788. int cpu;
  789. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  790. cpu = find_lowest_rq(task);
  791. if ((cpu == -1) || (cpu == rq->cpu))
  792. break;
  793. lowest_rq = cpu_rq(cpu);
  794. /* if the prio of this runqueue changed, try again */
  795. if (double_lock_balance(rq, lowest_rq)) {
  796. /*
  797. * We had to unlock the run queue. In
  798. * the mean time, task could have
  799. * migrated already or had its affinity changed.
  800. * Also make sure that it wasn't scheduled on its rq.
  801. */
  802. if (unlikely(task_rq(task) != rq ||
  803. !cpu_isset(lowest_rq->cpu,
  804. task->cpus_allowed) ||
  805. task_running(rq, task) ||
  806. !task->se.on_rq)) {
  807. spin_unlock(&lowest_rq->lock);
  808. lowest_rq = NULL;
  809. break;
  810. }
  811. }
  812. /* If this rq is still suitable use it. */
  813. if (lowest_rq->rt.highest_prio > task->prio)
  814. break;
  815. /* try again */
  816. spin_unlock(&lowest_rq->lock);
  817. lowest_rq = NULL;
  818. }
  819. return lowest_rq;
  820. }
  821. /*
  822. * If the current CPU has more than one RT task, see if the non
  823. * running task can migrate over to a CPU that is running a task
  824. * of lesser priority.
  825. */
  826. static int push_rt_task(struct rq *rq)
  827. {
  828. struct task_struct *next_task;
  829. struct rq *lowest_rq;
  830. int ret = 0;
  831. int paranoid = RT_MAX_TRIES;
  832. if (!rq->rt.overloaded)
  833. return 0;
  834. next_task = pick_next_highest_task_rt(rq, -1);
  835. if (!next_task)
  836. return 0;
  837. retry:
  838. if (unlikely(next_task == rq->curr)) {
  839. WARN_ON(1);
  840. return 0;
  841. }
  842. /*
  843. * It's possible that the next_task slipped in of
  844. * higher priority than current. If that's the case
  845. * just reschedule current.
  846. */
  847. if (unlikely(next_task->prio < rq->curr->prio)) {
  848. resched_task(rq->curr);
  849. return 0;
  850. }
  851. /* We might release rq lock */
  852. get_task_struct(next_task);
  853. /* find_lock_lowest_rq locks the rq if found */
  854. lowest_rq = find_lock_lowest_rq(next_task, rq);
  855. if (!lowest_rq) {
  856. struct task_struct *task;
  857. /*
  858. * find lock_lowest_rq releases rq->lock
  859. * so it is possible that next_task has changed.
  860. * If it has, then try again.
  861. */
  862. task = pick_next_highest_task_rt(rq, -1);
  863. if (unlikely(task != next_task) && task && paranoid--) {
  864. put_task_struct(next_task);
  865. next_task = task;
  866. goto retry;
  867. }
  868. goto out;
  869. }
  870. deactivate_task(rq, next_task, 0);
  871. set_task_cpu(next_task, lowest_rq->cpu);
  872. activate_task(lowest_rq, next_task, 0);
  873. resched_task(lowest_rq->curr);
  874. spin_unlock(&lowest_rq->lock);
  875. ret = 1;
  876. out:
  877. put_task_struct(next_task);
  878. return ret;
  879. }
  880. /*
  881. * TODO: Currently we just use the second highest prio task on
  882. * the queue, and stop when it can't migrate (or there's
  883. * no more RT tasks). There may be a case where a lower
  884. * priority RT task has a different affinity than the
  885. * higher RT task. In this case the lower RT task could
  886. * possibly be able to migrate where as the higher priority
  887. * RT task could not. We currently ignore this issue.
  888. * Enhancements are welcome!
  889. */
  890. static void push_rt_tasks(struct rq *rq)
  891. {
  892. /* push_rt_task will return true if it moved an RT */
  893. while (push_rt_task(rq))
  894. ;
  895. }
  896. static int pull_rt_task(struct rq *this_rq)
  897. {
  898. int this_cpu = this_rq->cpu, ret = 0, cpu;
  899. struct task_struct *p, *next;
  900. struct rq *src_rq;
  901. if (likely(!rt_overloaded(this_rq)))
  902. return 0;
  903. next = pick_next_task_rt(this_rq);
  904. for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
  905. if (this_cpu == cpu)
  906. continue;
  907. src_rq = cpu_rq(cpu);
  908. /*
  909. * We can potentially drop this_rq's lock in
  910. * double_lock_balance, and another CPU could
  911. * steal our next task - hence we must cause
  912. * the caller to recalculate the next task
  913. * in that case:
  914. */
  915. if (double_lock_balance(this_rq, src_rq)) {
  916. struct task_struct *old_next = next;
  917. next = pick_next_task_rt(this_rq);
  918. if (next != old_next)
  919. ret = 1;
  920. }
  921. /*
  922. * Are there still pullable RT tasks?
  923. */
  924. if (src_rq->rt.rt_nr_running <= 1)
  925. goto skip;
  926. p = pick_next_highest_task_rt(src_rq, this_cpu);
  927. /*
  928. * Do we have an RT task that preempts
  929. * the to-be-scheduled task?
  930. */
  931. if (p && (!next || (p->prio < next->prio))) {
  932. WARN_ON(p == src_rq->curr);
  933. WARN_ON(!p->se.on_rq);
  934. /*
  935. * There's a chance that p is higher in priority
  936. * than what's currently running on its cpu.
  937. * This is just that p is wakeing up and hasn't
  938. * had a chance to schedule. We only pull
  939. * p if it is lower in priority than the
  940. * current task on the run queue or
  941. * this_rq next task is lower in prio than
  942. * the current task on that rq.
  943. */
  944. if (p->prio < src_rq->curr->prio ||
  945. (next && next->prio < src_rq->curr->prio))
  946. goto skip;
  947. ret = 1;
  948. deactivate_task(src_rq, p, 0);
  949. set_task_cpu(p, this_cpu);
  950. activate_task(this_rq, p, 0);
  951. /*
  952. * We continue with the search, just in
  953. * case there's an even higher prio task
  954. * in another runqueue. (low likelyhood
  955. * but possible)
  956. *
  957. * Update next so that we won't pick a task
  958. * on another cpu with a priority lower (or equal)
  959. * than the one we just picked.
  960. */
  961. next = p;
  962. }
  963. skip:
  964. spin_unlock(&src_rq->lock);
  965. }
  966. return ret;
  967. }
  968. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  969. {
  970. /* Try to pull RT tasks here if we lower this rq's prio */
  971. if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
  972. pull_rt_task(rq);
  973. }
  974. static void post_schedule_rt(struct rq *rq)
  975. {
  976. /*
  977. * If we have more than one rt_task queued, then
  978. * see if we can push the other rt_tasks off to other CPUS.
  979. * Note we may release the rq lock, and since
  980. * the lock was owned by prev, we need to release it
  981. * first via finish_lock_switch and then reaquire it here.
  982. */
  983. if (unlikely(rq->rt.overloaded)) {
  984. spin_lock_irq(&rq->lock);
  985. push_rt_tasks(rq);
  986. spin_unlock_irq(&rq->lock);
  987. }
  988. }
  989. /*
  990. * If we are not running and we are not going to reschedule soon, we should
  991. * try to push tasks away now
  992. */
  993. static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
  994. {
  995. if (!task_running(rq, p) &&
  996. !test_tsk_need_resched(rq->curr) &&
  997. rq->rt.overloaded)
  998. push_rt_tasks(rq);
  999. }
  1000. static unsigned long
  1001. load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1002. unsigned long max_load_move,
  1003. struct sched_domain *sd, enum cpu_idle_type idle,
  1004. int *all_pinned, int *this_best_prio)
  1005. {
  1006. /* don't touch RT tasks */
  1007. return 0;
  1008. }
  1009. static int
  1010. move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1011. struct sched_domain *sd, enum cpu_idle_type idle)
  1012. {
  1013. /* don't touch RT tasks */
  1014. return 0;
  1015. }
  1016. static void set_cpus_allowed_rt(struct task_struct *p,
  1017. const cpumask_t *new_mask)
  1018. {
  1019. int weight = cpus_weight(*new_mask);
  1020. BUG_ON(!rt_task(p));
  1021. /*
  1022. * Update the migration status of the RQ if we have an RT task
  1023. * which is running AND changing its weight value.
  1024. */
  1025. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1026. struct rq *rq = task_rq(p);
  1027. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1028. rq->rt.rt_nr_migratory++;
  1029. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1030. BUG_ON(!rq->rt.rt_nr_migratory);
  1031. rq->rt.rt_nr_migratory--;
  1032. }
  1033. update_rt_migration(rq);
  1034. }
  1035. p->cpus_allowed = *new_mask;
  1036. p->rt.nr_cpus_allowed = weight;
  1037. }
  1038. /* Assumes rq->lock is held */
  1039. static void rq_online_rt(struct rq *rq)
  1040. {
  1041. if (rq->rt.overloaded)
  1042. rt_set_overload(rq);
  1043. __enable_runtime(rq);
  1044. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
  1045. }
  1046. /* Assumes rq->lock is held */
  1047. static void rq_offline_rt(struct rq *rq)
  1048. {
  1049. if (rq->rt.overloaded)
  1050. rt_clear_overload(rq);
  1051. __disable_runtime(rq);
  1052. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1053. }
  1054. /*
  1055. * When switch from the rt queue, we bring ourselves to a position
  1056. * that we might want to pull RT tasks from other runqueues.
  1057. */
  1058. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1059. int running)
  1060. {
  1061. /*
  1062. * If there are other RT tasks then we will reschedule
  1063. * and the scheduling of the other RT tasks will handle
  1064. * the balancing. But if we are the last RT task
  1065. * we may need to handle the pulling of RT tasks
  1066. * now.
  1067. */
  1068. if (!rq->rt.rt_nr_running)
  1069. pull_rt_task(rq);
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. /*
  1073. * When switching a task to RT, we may overload the runqueue
  1074. * with RT tasks. In this case we try to push them off to
  1075. * other runqueues.
  1076. */
  1077. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1078. int running)
  1079. {
  1080. int check_resched = 1;
  1081. /*
  1082. * If we are already running, then there's nothing
  1083. * that needs to be done. But if we are not running
  1084. * we may need to preempt the current running task.
  1085. * If that current running task is also an RT task
  1086. * then see if we can move to another run queue.
  1087. */
  1088. if (!running) {
  1089. #ifdef CONFIG_SMP
  1090. if (rq->rt.overloaded && push_rt_task(rq) &&
  1091. /* Don't resched if we changed runqueues */
  1092. rq != task_rq(p))
  1093. check_resched = 0;
  1094. #endif /* CONFIG_SMP */
  1095. if (check_resched && p->prio < rq->curr->prio)
  1096. resched_task(rq->curr);
  1097. }
  1098. }
  1099. /*
  1100. * Priority of the task has changed. This may cause
  1101. * us to initiate a push or pull.
  1102. */
  1103. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1104. int oldprio, int running)
  1105. {
  1106. if (running) {
  1107. #ifdef CONFIG_SMP
  1108. /*
  1109. * If our priority decreases while running, we
  1110. * may need to pull tasks to this runqueue.
  1111. */
  1112. if (oldprio < p->prio)
  1113. pull_rt_task(rq);
  1114. /*
  1115. * If there's a higher priority task waiting to run
  1116. * then reschedule. Note, the above pull_rt_task
  1117. * can release the rq lock and p could migrate.
  1118. * Only reschedule if p is still on the same runqueue.
  1119. */
  1120. if (p->prio > rq->rt.highest_prio && rq->curr == p)
  1121. resched_task(p);
  1122. #else
  1123. /* For UP simply resched on drop of prio */
  1124. if (oldprio < p->prio)
  1125. resched_task(p);
  1126. #endif /* CONFIG_SMP */
  1127. } else {
  1128. /*
  1129. * This task is not running, but if it is
  1130. * greater than the current running task
  1131. * then reschedule.
  1132. */
  1133. if (p->prio < rq->curr->prio)
  1134. resched_task(rq->curr);
  1135. }
  1136. }
  1137. static void watchdog(struct rq *rq, struct task_struct *p)
  1138. {
  1139. unsigned long soft, hard;
  1140. if (!p->signal)
  1141. return;
  1142. soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
  1143. hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
  1144. if (soft != RLIM_INFINITY) {
  1145. unsigned long next;
  1146. p->rt.timeout++;
  1147. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1148. if (p->rt.timeout > next)
  1149. p->it_sched_expires = p->se.sum_exec_runtime;
  1150. }
  1151. }
  1152. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1153. {
  1154. update_curr_rt(rq);
  1155. watchdog(rq, p);
  1156. /*
  1157. * RR tasks need a special form of timeslice management.
  1158. * FIFO tasks have no timeslices.
  1159. */
  1160. if (p->policy != SCHED_RR)
  1161. return;
  1162. if (--p->rt.time_slice)
  1163. return;
  1164. p->rt.time_slice = DEF_TIMESLICE;
  1165. /*
  1166. * Requeue to the end of queue if we are not the only element
  1167. * on the queue:
  1168. */
  1169. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1170. requeue_task_rt(rq, p);
  1171. set_tsk_need_resched(p);
  1172. }
  1173. }
  1174. static void set_curr_task_rt(struct rq *rq)
  1175. {
  1176. struct task_struct *p = rq->curr;
  1177. p->se.exec_start = rq->clock;
  1178. }
  1179. static const struct sched_class rt_sched_class = {
  1180. .next = &fair_sched_class,
  1181. .enqueue_task = enqueue_task_rt,
  1182. .dequeue_task = dequeue_task_rt,
  1183. .yield_task = yield_task_rt,
  1184. #ifdef CONFIG_SMP
  1185. .select_task_rq = select_task_rq_rt,
  1186. #endif /* CONFIG_SMP */
  1187. .check_preempt_curr = check_preempt_curr_rt,
  1188. .pick_next_task = pick_next_task_rt,
  1189. .put_prev_task = put_prev_task_rt,
  1190. #ifdef CONFIG_SMP
  1191. .load_balance = load_balance_rt,
  1192. .move_one_task = move_one_task_rt,
  1193. .set_cpus_allowed = set_cpus_allowed_rt,
  1194. .rq_online = rq_online_rt,
  1195. .rq_offline = rq_offline_rt,
  1196. .pre_schedule = pre_schedule_rt,
  1197. .post_schedule = post_schedule_rt,
  1198. .task_wake_up = task_wake_up_rt,
  1199. .switched_from = switched_from_rt,
  1200. #endif
  1201. .set_curr_task = set_curr_task_rt,
  1202. .task_tick = task_tick_rt,
  1203. .prio_changed = prio_changed_rt,
  1204. .switched_to = switched_to_rt,
  1205. };
  1206. #ifdef CONFIG_SCHED_DEBUG
  1207. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1208. static void print_rt_stats(struct seq_file *m, int cpu)
  1209. {
  1210. struct rt_rq *rt_rq;
  1211. rcu_read_lock();
  1212. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1213. print_rt_rq(m, cpu, rt_rq);
  1214. rcu_read_unlock();
  1215. }
  1216. #endif