eeprom_4k.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  18. {
  19. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  20. }
  21. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  22. {
  23. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  24. }
  25. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  26. {
  27. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  28. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  29. int addr, eep_start_loc = 0;
  30. eep_start_loc = 64;
  31. if (!ath9k_hw_use_flash(ah)) {
  32. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  33. "Reading from EEPROM, not flash\n");
  34. }
  35. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  36. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
  37. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  38. "Unable to read eeprom region \n");
  39. return false;
  40. }
  41. eep_data++;
  42. }
  43. return true;
  44. #undef SIZE_EEPROM_4K
  45. }
  46. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  47. {
  48. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  49. struct ar5416_eeprom_4k *eep =
  50. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  51. u16 *eepdata, temp, magic, magic2;
  52. u32 sum = 0, el;
  53. bool need_swap = false;
  54. int i, addr;
  55. if (!ath9k_hw_use_flash(ah)) {
  56. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
  57. &magic)) {
  58. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  59. "Reading Magic # failed\n");
  60. return false;
  61. }
  62. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  63. "Read Magic = 0x%04X\n", magic);
  64. if (magic != AR5416_EEPROM_MAGIC) {
  65. magic2 = swab16(magic);
  66. if (magic2 == AR5416_EEPROM_MAGIC) {
  67. need_swap = true;
  68. eepdata = (u16 *) (&ah->eeprom);
  69. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  70. temp = swab16(*eepdata);
  71. *eepdata = temp;
  72. eepdata++;
  73. }
  74. } else {
  75. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  76. "Invalid EEPROM Magic. "
  77. "endianness mismatch.\n");
  78. return -EINVAL;
  79. }
  80. }
  81. }
  82. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  83. need_swap ? "True" : "False");
  84. if (need_swap)
  85. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  86. else
  87. el = ah->eeprom.map4k.baseEepHeader.length;
  88. if (el > sizeof(struct ar5416_eeprom_4k))
  89. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  90. else
  91. el = el / sizeof(u16);
  92. eepdata = (u16 *)(&ah->eeprom);
  93. for (i = 0; i < el; i++)
  94. sum ^= *eepdata++;
  95. if (need_swap) {
  96. u32 integer;
  97. u16 word;
  98. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  99. "EEPROM Endianness is not native.. Changing\n");
  100. word = swab16(eep->baseEepHeader.length);
  101. eep->baseEepHeader.length = word;
  102. word = swab16(eep->baseEepHeader.checksum);
  103. eep->baseEepHeader.checksum = word;
  104. word = swab16(eep->baseEepHeader.version);
  105. eep->baseEepHeader.version = word;
  106. word = swab16(eep->baseEepHeader.regDmn[0]);
  107. eep->baseEepHeader.regDmn[0] = word;
  108. word = swab16(eep->baseEepHeader.regDmn[1]);
  109. eep->baseEepHeader.regDmn[1] = word;
  110. word = swab16(eep->baseEepHeader.rfSilent);
  111. eep->baseEepHeader.rfSilent = word;
  112. word = swab16(eep->baseEepHeader.blueToothOptions);
  113. eep->baseEepHeader.blueToothOptions = word;
  114. word = swab16(eep->baseEepHeader.deviceCap);
  115. eep->baseEepHeader.deviceCap = word;
  116. integer = swab32(eep->modalHeader.antCtrlCommon);
  117. eep->modalHeader.antCtrlCommon = integer;
  118. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  119. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  120. eep->modalHeader.antCtrlChain[i] = integer;
  121. }
  122. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  123. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  124. eep->modalHeader.spurChans[i].spurChan = word;
  125. }
  126. }
  127. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  128. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  129. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  130. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  131. sum, ah->eep_ops->get_eeprom_ver(ah));
  132. return -EINVAL;
  133. }
  134. return 0;
  135. #undef EEPROM_4K_SIZE
  136. }
  137. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  138. enum eeprom_param param)
  139. {
  140. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  141. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  142. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  143. switch (param) {
  144. case EEP_NFTHRESH_2:
  145. return pModal->noiseFloorThreshCh[0];
  146. case AR_EEPROM_MAC(0):
  147. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  148. case AR_EEPROM_MAC(1):
  149. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  150. case AR_EEPROM_MAC(2):
  151. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  152. case EEP_REG_0:
  153. return pBase->regDmn[0];
  154. case EEP_REG_1:
  155. return pBase->regDmn[1];
  156. case EEP_OP_CAP:
  157. return pBase->deviceCap;
  158. case EEP_OP_MODE:
  159. return pBase->opCapFlags;
  160. case EEP_RF_SILENT:
  161. return pBase->rfSilent;
  162. case EEP_OB_2:
  163. return pModal->ob_0;
  164. case EEP_DB_2:
  165. return pModal->db1_1;
  166. case EEP_MINOR_REV:
  167. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  168. case EEP_TX_MASK:
  169. return pBase->txMask;
  170. case EEP_RX_MASK:
  171. return pBase->rxMask;
  172. case EEP_FRAC_N_5G:
  173. return 0;
  174. default:
  175. return 0;
  176. }
  177. }
  178. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  179. struct ath9k_channel *chan,
  180. struct cal_data_per_freq_4k *pRawDataSet,
  181. u8 *bChans, u16 availPiers,
  182. u16 tPdGainOverlap, int16_t *pMinCalPower,
  183. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  184. u16 numXpdGains)
  185. {
  186. #define TMP_VAL_VPD_TABLE \
  187. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  188. int i, j, k;
  189. int16_t ss;
  190. u16 idxL = 0, idxR = 0, numPiers;
  191. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  192. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  193. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  194. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  195. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  196. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  197. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  198. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  199. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  200. int16_t vpdStep;
  201. int16_t tmpVal;
  202. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  203. bool match;
  204. int16_t minDelta = 0;
  205. struct chan_centers centers;
  206. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  207. ath9k_hw_get_channel_centers(ah, chan, &centers);
  208. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  209. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  210. break;
  211. }
  212. match = ath9k_hw_get_lower_upper_index(
  213. (u8)FREQ2FBIN(centers.synth_center,
  214. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  215. &idxL, &idxR);
  216. if (match) {
  217. for (i = 0; i < numXpdGains; i++) {
  218. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  219. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  220. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  221. pRawDataSet[idxL].pwrPdg[i],
  222. pRawDataSet[idxL].vpdPdg[i],
  223. AR5416_EEP4K_PD_GAIN_ICEPTS,
  224. vpdTableI[i]);
  225. }
  226. } else {
  227. for (i = 0; i < numXpdGains; i++) {
  228. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  229. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  230. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  231. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  232. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  233. maxPwrT4[i] =
  234. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  235. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  236. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  237. pPwrL, pVpdL,
  238. AR5416_EEP4K_PD_GAIN_ICEPTS,
  239. vpdTableL[i]);
  240. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  241. pPwrR, pVpdR,
  242. AR5416_EEP4K_PD_GAIN_ICEPTS,
  243. vpdTableR[i]);
  244. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  245. vpdTableI[i][j] =
  246. (u8)(ath9k_hw_interpolate((u16)
  247. FREQ2FBIN(centers.
  248. synth_center,
  249. IS_CHAN_2GHZ
  250. (chan)),
  251. bChans[idxL], bChans[idxR],
  252. vpdTableL[i][j], vpdTableR[i][j]));
  253. }
  254. }
  255. }
  256. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  257. k = 0;
  258. for (i = 0; i < numXpdGains; i++) {
  259. if (i == (numXpdGains - 1))
  260. pPdGainBoundaries[i] =
  261. (u16)(maxPwrT4[i] / 2);
  262. else
  263. pPdGainBoundaries[i] =
  264. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  265. pPdGainBoundaries[i] =
  266. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  267. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  268. minDelta = pPdGainBoundaries[0] - 23;
  269. pPdGainBoundaries[0] = 23;
  270. } else {
  271. minDelta = 0;
  272. }
  273. if (i == 0) {
  274. if (AR_SREV_9280_10_OR_LATER(ah))
  275. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  276. else
  277. ss = 0;
  278. } else {
  279. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  280. (minPwrT4[i] / 2)) -
  281. tPdGainOverlap + 1 + minDelta);
  282. }
  283. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  284. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  285. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  286. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  287. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  288. ss++;
  289. }
  290. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  291. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  292. (minPwrT4[i] / 2));
  293. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  294. tgtIndex : sizeCurrVpdTable;
  295. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  296. pPDADCValues[k++] = vpdTableI[i][ss++];
  297. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  298. vpdTableI[i][sizeCurrVpdTable - 2]);
  299. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  300. if (tgtIndex >= maxIndex) {
  301. while ((ss <= tgtIndex) &&
  302. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  303. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  304. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  305. 255 : tmpVal);
  306. ss++;
  307. }
  308. }
  309. }
  310. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  311. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  312. i++;
  313. }
  314. while (k < AR5416_NUM_PDADC_VALUES) {
  315. pPDADCValues[k] = pPDADCValues[k - 1];
  316. k++;
  317. }
  318. return;
  319. #undef TMP_VAL_VPD_TABLE
  320. }
  321. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  322. struct ath9k_channel *chan,
  323. int16_t *pTxPowerIndexOffset)
  324. {
  325. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  326. struct cal_data_per_freq_4k *pRawDataset;
  327. u8 *pCalBChans = NULL;
  328. u16 pdGainOverlap_t2;
  329. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  330. u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
  331. u16 numPiers, i, j;
  332. int16_t tMinCalPower;
  333. u16 numXpdGain, xpdMask;
  334. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  335. u32 reg32, regOffset, regChainOffset;
  336. xpdMask = pEepData->modalHeader.xpdGain;
  337. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  338. AR5416_EEP_MINOR_VER_2) {
  339. pdGainOverlap_t2 =
  340. pEepData->modalHeader.pdGainOverlap;
  341. } else {
  342. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  343. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  344. }
  345. pCalBChans = pEepData->calFreqPier2G;
  346. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  347. numXpdGain = 0;
  348. for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
  349. if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
  350. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  351. break;
  352. xpdGainValues[numXpdGain] =
  353. (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
  354. numXpdGain++;
  355. }
  356. }
  357. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  358. (numXpdGain - 1) & 0x3);
  359. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  360. xpdGainValues[0]);
  361. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  362. xpdGainValues[1]);
  363. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  364. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  365. if (AR_SREV_5416_20_OR_LATER(ah) &&
  366. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  367. (i != 0)) {
  368. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  369. } else
  370. regChainOffset = i * 0x1000;
  371. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  372. pRawDataset = pEepData->calPierData2G[i];
  373. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  374. pRawDataset, pCalBChans,
  375. numPiers, pdGainOverlap_t2,
  376. &tMinCalPower, gainBoundaries,
  377. pdadcValues, numXpdGain);
  378. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  379. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  380. SM(pdGainOverlap_t2,
  381. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  382. | SM(gainBoundaries[0],
  383. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  384. | SM(gainBoundaries[1],
  385. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  386. | SM(gainBoundaries[2],
  387. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  388. | SM(gainBoundaries[3],
  389. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  390. }
  391. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  392. for (j = 0; j < 32; j++) {
  393. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  394. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  395. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  396. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  397. REG_WRITE(ah, regOffset, reg32);
  398. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  399. "PDADC (%d,%4x): %4.4x %8.8x\n",
  400. i, regChainOffset, regOffset,
  401. reg32);
  402. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  403. "PDADC: Chain %d | "
  404. "PDADC %3d Value %3d | "
  405. "PDADC %3d Value %3d | "
  406. "PDADC %3d Value %3d | "
  407. "PDADC %3d Value %3d |\n",
  408. i, 4 * j, pdadcValues[4 * j],
  409. 4 * j + 1, pdadcValues[4 * j + 1],
  410. 4 * j + 2, pdadcValues[4 * j + 2],
  411. 4 * j + 3,
  412. pdadcValues[4 * j + 3]);
  413. regOffset += 4;
  414. }
  415. }
  416. }
  417. *pTxPowerIndexOffset = 0;
  418. }
  419. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  420. struct ath9k_channel *chan,
  421. int16_t *ratesArray,
  422. u16 cfgCtl,
  423. u16 AntennaReduction,
  424. u16 twiceMaxRegulatoryPower,
  425. u16 powerLimit)
  426. {
  427. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  428. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  429. static const u16 tpScaleReductionTable[5] =
  430. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  431. int i;
  432. int16_t twiceLargestAntenna;
  433. struct cal_ctl_data_4k *rep;
  434. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  435. 0, { 0, 0, 0, 0}
  436. };
  437. struct cal_target_power_leg targetPowerOfdmExt = {
  438. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  439. 0, { 0, 0, 0, 0 }
  440. };
  441. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  442. 0, {0, 0, 0, 0}
  443. };
  444. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  445. u16 ctlModesFor11g[] =
  446. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  447. CTL_2GHT40
  448. };
  449. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  450. struct chan_centers centers;
  451. int tx_chainmask;
  452. u16 twiceMinEdgePower;
  453. tx_chainmask = ah->txchainmask;
  454. ath9k_hw_get_channel_centers(ah, chan, &centers);
  455. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  456. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  457. twiceLargestAntenna, 0);
  458. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  459. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
  460. maxRegAllowedPower -=
  461. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  462. }
  463. scaledPower = min(powerLimit, maxRegAllowedPower);
  464. scaledPower = max((u16)0, scaledPower);
  465. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  466. pCtlMode = ctlModesFor11g;
  467. ath9k_hw_get_legacy_target_powers(ah, chan,
  468. pEepData->calTargetPowerCck,
  469. AR5416_NUM_2G_CCK_TARGET_POWERS,
  470. &targetPowerCck, 4, false);
  471. ath9k_hw_get_legacy_target_powers(ah, chan,
  472. pEepData->calTargetPower2G,
  473. AR5416_NUM_2G_20_TARGET_POWERS,
  474. &targetPowerOfdm, 4, false);
  475. ath9k_hw_get_target_powers(ah, chan,
  476. pEepData->calTargetPower2GHT20,
  477. AR5416_NUM_2G_20_TARGET_POWERS,
  478. &targetPowerHt20, 8, false);
  479. if (IS_CHAN_HT40(chan)) {
  480. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  481. ath9k_hw_get_target_powers(ah, chan,
  482. pEepData->calTargetPower2GHT40,
  483. AR5416_NUM_2G_40_TARGET_POWERS,
  484. &targetPowerHt40, 8, true);
  485. ath9k_hw_get_legacy_target_powers(ah, chan,
  486. pEepData->calTargetPowerCck,
  487. AR5416_NUM_2G_CCK_TARGET_POWERS,
  488. &targetPowerCckExt, 4, true);
  489. ath9k_hw_get_legacy_target_powers(ah, chan,
  490. pEepData->calTargetPower2G,
  491. AR5416_NUM_2G_20_TARGET_POWERS,
  492. &targetPowerOfdmExt, 4, true);
  493. }
  494. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  495. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  496. (pCtlMode[ctlMode] == CTL_2GHT40);
  497. if (isHt40CtlMode)
  498. freq = centers.synth_center;
  499. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  500. freq = centers.ext_center;
  501. else
  502. freq = centers.ctl_center;
  503. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  504. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  505. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  506. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  507. pEepData->ctlIndex[i]; i++) {
  508. if ((((cfgCtl & ~CTL_MODE_M) |
  509. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  510. pEepData->ctlIndex[i]) ||
  511. (((cfgCtl & ~CTL_MODE_M) |
  512. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  513. ((pEepData->ctlIndex[i] & CTL_MODE_M) |
  514. SD_NO_CTL))) {
  515. rep = &(pEepData->ctlData[i]);
  516. twiceMinEdgePower =
  517. ath9k_hw_get_max_edge_power(freq,
  518. rep->ctlEdges[ar5416_get_ntxchains
  519. (tx_chainmask) - 1],
  520. IS_CHAN_2GHZ(chan),
  521. AR5416_EEP4K_NUM_BAND_EDGES);
  522. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  523. twiceMaxEdgePower =
  524. min(twiceMaxEdgePower,
  525. twiceMinEdgePower);
  526. } else {
  527. twiceMaxEdgePower = twiceMinEdgePower;
  528. break;
  529. }
  530. }
  531. }
  532. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  533. switch (pCtlMode[ctlMode]) {
  534. case CTL_11B:
  535. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
  536. i++) {
  537. targetPowerCck.tPow2x[i] =
  538. min((u16)targetPowerCck.tPow2x[i],
  539. minCtlPower);
  540. }
  541. break;
  542. case CTL_11G:
  543. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
  544. i++) {
  545. targetPowerOfdm.tPow2x[i] =
  546. min((u16)targetPowerOfdm.tPow2x[i],
  547. minCtlPower);
  548. }
  549. break;
  550. case CTL_2GHT20:
  551. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
  552. i++) {
  553. targetPowerHt20.tPow2x[i] =
  554. min((u16)targetPowerHt20.tPow2x[i],
  555. minCtlPower);
  556. }
  557. break;
  558. case CTL_11B_EXT:
  559. targetPowerCckExt.tPow2x[0] = min((u16)
  560. targetPowerCckExt.tPow2x[0],
  561. minCtlPower);
  562. break;
  563. case CTL_11G_EXT:
  564. targetPowerOfdmExt.tPow2x[0] = min((u16)
  565. targetPowerOfdmExt.tPow2x[0],
  566. minCtlPower);
  567. break;
  568. case CTL_2GHT40:
  569. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
  570. i++) {
  571. targetPowerHt40.tPow2x[i] =
  572. min((u16)targetPowerHt40.tPow2x[i],
  573. minCtlPower);
  574. }
  575. break;
  576. default:
  577. break;
  578. }
  579. }
  580. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  581. ratesArray[rate18mb] = ratesArray[rate24mb] =
  582. targetPowerOfdm.tPow2x[0];
  583. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  584. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  585. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  586. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  587. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  588. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  589. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  590. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  591. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  592. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  593. if (IS_CHAN_HT40(chan)) {
  594. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  595. ratesArray[rateHt40_0 + i] =
  596. targetPowerHt40.tPow2x[i];
  597. }
  598. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  599. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  600. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  601. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  602. }
  603. }
  604. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  605. struct ath9k_channel *chan,
  606. u16 cfgCtl,
  607. u8 twiceAntennaReduction,
  608. u8 twiceMaxRegulatoryPower,
  609. u8 powerLimit)
  610. {
  611. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  612. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  613. int16_t ratesArray[Ar5416RateSize];
  614. int16_t txPowerIndexOffset = 0;
  615. u8 ht40PowerIncForPdadc = 2;
  616. int i;
  617. memset(ratesArray, 0, sizeof(ratesArray));
  618. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  619. AR5416_EEP_MINOR_VER_2) {
  620. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  621. }
  622. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  623. &ratesArray[0], cfgCtl,
  624. twiceAntennaReduction,
  625. twiceMaxRegulatoryPower,
  626. powerLimit);
  627. ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
  628. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  629. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  630. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  631. ratesArray[i] = AR5416_MAX_RATE_POWER;
  632. }
  633. /* Update regulatory */
  634. i = rate6mb;
  635. if (IS_CHAN_HT40(chan))
  636. i = rateHt40_0;
  637. else if (IS_CHAN_HT20(chan))
  638. i = rateHt20_0;
  639. ah->regulatory.max_power_level = ratesArray[i];
  640. if (AR_SREV_9280_10_OR_LATER(ah)) {
  641. for (i = 0; i < Ar5416RateSize; i++)
  642. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  643. }
  644. /* OFDM power per rate */
  645. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  646. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  647. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  648. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  649. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  650. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  651. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  652. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  653. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  654. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  655. /* CCK power per rate */
  656. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  657. ATH9K_POW_SM(ratesArray[rate2s], 24)
  658. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  659. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  660. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  661. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  662. ATH9K_POW_SM(ratesArray[rate11s], 24)
  663. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  664. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  665. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  666. /* HT20 power per rate */
  667. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  668. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  669. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  670. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  671. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  672. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  673. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  674. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  675. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  676. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  677. /* HT40 power per rate */
  678. if (IS_CHAN_HT40(chan)) {
  679. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  680. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  681. ht40PowerIncForPdadc, 24)
  682. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  683. ht40PowerIncForPdadc, 16)
  684. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  685. ht40PowerIncForPdadc, 8)
  686. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  687. ht40PowerIncForPdadc, 0));
  688. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  689. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  690. ht40PowerIncForPdadc, 24)
  691. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  692. ht40PowerIncForPdadc, 16)
  693. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  694. ht40PowerIncForPdadc, 8)
  695. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  696. ht40PowerIncForPdadc, 0));
  697. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  698. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  699. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  700. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  701. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  702. }
  703. }
  704. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  705. struct ath9k_channel *chan)
  706. {
  707. struct modal_eep_4k_header *pModal;
  708. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  709. u8 biaslevel;
  710. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  711. return;
  712. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  713. return;
  714. pModal = &eep->modalHeader;
  715. if (pModal->xpaBiasLvl != 0xff) {
  716. biaslevel = pModal->xpaBiasLvl;
  717. INI_RA(&ah->iniAddac, 7, 1) =
  718. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  719. }
  720. }
  721. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  722. struct modal_eep_4k_header *pModal,
  723. struct ar5416_eeprom_4k *eep,
  724. u8 txRxAttenLocal)
  725. {
  726. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
  727. pModal->antCtrlChain[0]);
  728. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
  729. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
  730. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  731. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  732. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  733. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  734. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  735. AR5416_EEP_MINOR_VER_3) {
  736. txRxAttenLocal = pModal->txRxAttenCh[0];
  737. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  738. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  739. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  740. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  741. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  742. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  743. pModal->xatten2Margin[0]);
  744. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  745. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  746. /* Set the block 1 value to block 0 value */
  747. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  748. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  749. pModal->bswMargin[0]);
  750. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  751. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  752. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  753. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  754. pModal->xatten2Margin[0]);
  755. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  756. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  757. pModal->xatten2Db[0]);
  758. }
  759. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  760. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  761. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  762. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  763. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  764. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  765. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  766. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  767. if (AR_SREV_9285_11(ah))
  768. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  769. }
  770. /*
  771. * Read EEPROM header info and program the device for correct operation
  772. * given the channel value.
  773. */
  774. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  775. struct ath9k_channel *chan)
  776. {
  777. struct modal_eep_4k_header *pModal;
  778. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  779. u8 txRxAttenLocal;
  780. u8 ob[5], db1[5], db2[5];
  781. u8 ant_div_control1, ant_div_control2;
  782. u32 regVal;
  783. pModal = &eep->modalHeader;
  784. txRxAttenLocal = 23;
  785. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  786. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  787. /* Single chain for 4K EEPROM*/
  788. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  789. /* Initialize Ant Diversity settings from EEPROM */
  790. if (pModal->version >= 3) {
  791. ant_div_control1 = pModal->antdiv_ctl1;
  792. ant_div_control2 = pModal->antdiv_ctl2;
  793. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  794. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  795. regVal |= SM(ant_div_control1,
  796. AR_PHY_9285_ANT_DIV_CTL);
  797. regVal |= SM(ant_div_control2,
  798. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  799. regVal |= SM((ant_div_control2 >> 2),
  800. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  801. regVal |= SM((ant_div_control1 >> 1),
  802. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  803. regVal |= SM((ant_div_control1 >> 2),
  804. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  805. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  806. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  807. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  808. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  809. regVal |= SM((ant_div_control1 >> 3),
  810. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  811. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  812. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  813. }
  814. if (pModal->version >= 2) {
  815. ob[0] = pModal->ob_0;
  816. ob[1] = pModal->ob_1;
  817. ob[2] = pModal->ob_2;
  818. ob[3] = pModal->ob_3;
  819. ob[4] = pModal->ob_4;
  820. db1[0] = pModal->db1_0;
  821. db1[1] = pModal->db1_1;
  822. db1[2] = pModal->db1_2;
  823. db1[3] = pModal->db1_3;
  824. db1[4] = pModal->db1_4;
  825. db2[0] = pModal->db2_0;
  826. db2[1] = pModal->db2_1;
  827. db2[2] = pModal->db2_2;
  828. db2[3] = pModal->db2_3;
  829. db2[4] = pModal->db2_4;
  830. } else if (pModal->version == 1) {
  831. ob[0] = pModal->ob_0;
  832. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  833. db1[0] = pModal->db1_0;
  834. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  835. db2[0] = pModal->db2_0;
  836. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  837. } else {
  838. int i;
  839. for (i = 0; i < 5; i++) {
  840. ob[i] = pModal->ob_0;
  841. db1[i] = pModal->db1_0;
  842. db2[i] = pModal->db1_0;
  843. }
  844. }
  845. if (AR_SREV_9271(ah)) {
  846. ath9k_hw_analog_shift_rmw(ah,
  847. AR9285_AN_RF2G3,
  848. AR9271_AN_RF2G3_OB_cck,
  849. AR9271_AN_RF2G3_OB_cck_S,
  850. ob[0]);
  851. ath9k_hw_analog_shift_rmw(ah,
  852. AR9285_AN_RF2G3,
  853. AR9271_AN_RF2G3_OB_psk,
  854. AR9271_AN_RF2G3_OB_psk_S,
  855. ob[1]);
  856. ath9k_hw_analog_shift_rmw(ah,
  857. AR9285_AN_RF2G3,
  858. AR9271_AN_RF2G3_OB_qam,
  859. AR9271_AN_RF2G3_OB_qam_S,
  860. ob[2]);
  861. ath9k_hw_analog_shift_rmw(ah,
  862. AR9285_AN_RF2G3,
  863. AR9271_AN_RF2G3_DB_1,
  864. AR9271_AN_RF2G3_DB_1_S,
  865. db1[0]);
  866. ath9k_hw_analog_shift_rmw(ah,
  867. AR9285_AN_RF2G4,
  868. AR9271_AN_RF2G4_DB_2,
  869. AR9271_AN_RF2G4_DB_2_S,
  870. db2[0]);
  871. } else {
  872. ath9k_hw_analog_shift_rmw(ah,
  873. AR9285_AN_RF2G3,
  874. AR9285_AN_RF2G3_OB_0,
  875. AR9285_AN_RF2G3_OB_0_S,
  876. ob[0]);
  877. ath9k_hw_analog_shift_rmw(ah,
  878. AR9285_AN_RF2G3,
  879. AR9285_AN_RF2G3_OB_1,
  880. AR9285_AN_RF2G3_OB_1_S,
  881. ob[1]);
  882. ath9k_hw_analog_shift_rmw(ah,
  883. AR9285_AN_RF2G3,
  884. AR9285_AN_RF2G3_OB_2,
  885. AR9285_AN_RF2G3_OB_2_S,
  886. ob[2]);
  887. ath9k_hw_analog_shift_rmw(ah,
  888. AR9285_AN_RF2G3,
  889. AR9285_AN_RF2G3_OB_3,
  890. AR9285_AN_RF2G3_OB_3_S,
  891. ob[3]);
  892. ath9k_hw_analog_shift_rmw(ah,
  893. AR9285_AN_RF2G3,
  894. AR9285_AN_RF2G3_OB_4,
  895. AR9285_AN_RF2G3_OB_4_S,
  896. ob[4]);
  897. ath9k_hw_analog_shift_rmw(ah,
  898. AR9285_AN_RF2G3,
  899. AR9285_AN_RF2G3_DB1_0,
  900. AR9285_AN_RF2G3_DB1_0_S,
  901. db1[0]);
  902. ath9k_hw_analog_shift_rmw(ah,
  903. AR9285_AN_RF2G3,
  904. AR9285_AN_RF2G3_DB1_1,
  905. AR9285_AN_RF2G3_DB1_1_S,
  906. db1[1]);
  907. ath9k_hw_analog_shift_rmw(ah,
  908. AR9285_AN_RF2G3,
  909. AR9285_AN_RF2G3_DB1_2,
  910. AR9285_AN_RF2G3_DB1_2_S,
  911. db1[2]);
  912. ath9k_hw_analog_shift_rmw(ah,
  913. AR9285_AN_RF2G4,
  914. AR9285_AN_RF2G4_DB1_3,
  915. AR9285_AN_RF2G4_DB1_3_S,
  916. db1[3]);
  917. ath9k_hw_analog_shift_rmw(ah,
  918. AR9285_AN_RF2G4,
  919. AR9285_AN_RF2G4_DB1_4,
  920. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  921. ath9k_hw_analog_shift_rmw(ah,
  922. AR9285_AN_RF2G4,
  923. AR9285_AN_RF2G4_DB2_0,
  924. AR9285_AN_RF2G4_DB2_0_S,
  925. db2[0]);
  926. ath9k_hw_analog_shift_rmw(ah,
  927. AR9285_AN_RF2G4,
  928. AR9285_AN_RF2G4_DB2_1,
  929. AR9285_AN_RF2G4_DB2_1_S,
  930. db2[1]);
  931. ath9k_hw_analog_shift_rmw(ah,
  932. AR9285_AN_RF2G4,
  933. AR9285_AN_RF2G4_DB2_2,
  934. AR9285_AN_RF2G4_DB2_2_S,
  935. db2[2]);
  936. ath9k_hw_analog_shift_rmw(ah,
  937. AR9285_AN_RF2G4,
  938. AR9285_AN_RF2G4_DB2_3,
  939. AR9285_AN_RF2G4_DB2_3_S,
  940. db2[3]);
  941. ath9k_hw_analog_shift_rmw(ah,
  942. AR9285_AN_RF2G4,
  943. AR9285_AN_RF2G4_DB2_4,
  944. AR9285_AN_RF2G4_DB2_4_S,
  945. db2[4]);
  946. }
  947. if (AR_SREV_9285_11(ah))
  948. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  949. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  950. pModal->switchSettling);
  951. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  952. pModal->adcDesiredSize);
  953. REG_WRITE(ah, AR_PHY_RF_CTL4,
  954. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  955. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  956. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  957. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  958. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  959. pModal->txEndToRxOn);
  960. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  961. pModal->thresh62);
  962. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  963. pModal->thresh62);
  964. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  965. AR5416_EEP_MINOR_VER_2) {
  966. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  967. pModal->txFrameToDataStart);
  968. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  969. pModal->txFrameToPaOn);
  970. }
  971. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  972. AR5416_EEP_MINOR_VER_3) {
  973. if (IS_CHAN_HT40(chan))
  974. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  975. AR_PHY_SETTLING_SWITCH,
  976. pModal->swSettleHt40);
  977. }
  978. }
  979. static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
  980. struct ath9k_channel *chan)
  981. {
  982. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  983. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  984. return pModal->antCtrlCommon & 0xFFFF;
  985. }
  986. static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
  987. enum ieee80211_band freq_band)
  988. {
  989. return 1;
  990. }
  991. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  992. {
  993. #define EEP_MAP4K_SPURCHAN \
  994. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  995. u16 spur_val = AR_NO_SPUR;
  996. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  997. "Getting spur idx %d is2Ghz. %d val %x\n",
  998. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  999. switch (ah->config.spurmode) {
  1000. case SPUR_DISABLE:
  1001. break;
  1002. case SPUR_ENABLE_IOCTL:
  1003. spur_val = ah->config.spurchans[i][is2GHz];
  1004. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1005. "Getting spur val from new loc. %d\n", spur_val);
  1006. break;
  1007. case SPUR_ENABLE_EEPROM:
  1008. spur_val = EEP_MAP4K_SPURCHAN;
  1009. break;
  1010. }
  1011. return spur_val;
  1012. #undef EEP_MAP4K_SPURCHAN
  1013. }
  1014. const struct eeprom_ops eep_4k_ops = {
  1015. .check_eeprom = ath9k_hw_4k_check_eeprom,
  1016. .get_eeprom = ath9k_hw_4k_get_eeprom,
  1017. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  1018. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  1019. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  1020. .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
  1021. .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
  1022. .set_board_values = ath9k_hw_4k_set_board_values,
  1023. .set_addac = ath9k_hw_4k_set_addac,
  1024. .set_txpower = ath9k_hw_4k_set_txpower,
  1025. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  1026. };