ll_rw_blk.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. #include <linux/blktrace_api.h>
  31. #include <linux/fault-inject.h>
  32. /*
  33. * for max sense size
  34. */
  35. #include <scsi/scsi_cmnd.h>
  36. static void blk_unplug_work(struct work_struct *work);
  37. static void blk_unplug_timeout(unsigned long data);
  38. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  39. static void init_request_from_bio(struct request *req, struct bio *bio);
  40. static int __make_request(struct request_queue *q, struct bio *bio);
  41. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  42. static void blk_recalc_rq_segments(struct request *rq);
  43. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  44. struct bio *bio);
  45. /*
  46. * For the allocated request tables
  47. */
  48. static struct kmem_cache *request_cachep;
  49. /*
  50. * For queue allocation
  51. */
  52. static struct kmem_cache *requestq_cachep;
  53. /*
  54. * For io context allocations
  55. */
  56. static struct kmem_cache *iocontext_cachep;
  57. /*
  58. * Controlling structure to kblockd
  59. */
  60. static struct workqueue_struct *kblockd_workqueue;
  61. unsigned long blk_max_low_pfn, blk_max_pfn;
  62. EXPORT_SYMBOL(blk_max_low_pfn);
  63. EXPORT_SYMBOL(blk_max_pfn);
  64. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  65. /* Amount of time in which a process may batch requests */
  66. #define BLK_BATCH_TIME (HZ/50UL)
  67. /* Number of requests a "batching" process may submit */
  68. #define BLK_BATCH_REQ 32
  69. /*
  70. * Return the threshold (number of used requests) at which the queue is
  71. * considered to be congested. It include a little hysteresis to keep the
  72. * context switch rate down.
  73. */
  74. static inline int queue_congestion_on_threshold(struct request_queue *q)
  75. {
  76. return q->nr_congestion_on;
  77. }
  78. /*
  79. * The threshold at which a queue is considered to be uncongested
  80. */
  81. static inline int queue_congestion_off_threshold(struct request_queue *q)
  82. {
  83. return q->nr_congestion_off;
  84. }
  85. static void blk_queue_congestion_threshold(struct request_queue *q)
  86. {
  87. int nr;
  88. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  89. if (nr > q->nr_requests)
  90. nr = q->nr_requests;
  91. q->nr_congestion_on = nr;
  92. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  93. if (nr < 1)
  94. nr = 1;
  95. q->nr_congestion_off = nr;
  96. }
  97. /**
  98. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  99. * @bdev: device
  100. *
  101. * Locates the passed device's request queue and returns the address of its
  102. * backing_dev_info
  103. *
  104. * Will return NULL if the request queue cannot be located.
  105. */
  106. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  107. {
  108. struct backing_dev_info *ret = NULL;
  109. struct request_queue *q = bdev_get_queue(bdev);
  110. if (q)
  111. ret = &q->backing_dev_info;
  112. return ret;
  113. }
  114. EXPORT_SYMBOL(blk_get_backing_dev_info);
  115. /**
  116. * blk_queue_prep_rq - set a prepare_request function for queue
  117. * @q: queue
  118. * @pfn: prepare_request function
  119. *
  120. * It's possible for a queue to register a prepare_request callback which
  121. * is invoked before the request is handed to the request_fn. The goal of
  122. * the function is to prepare a request for I/O, it can be used to build a
  123. * cdb from the request data for instance.
  124. *
  125. */
  126. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  127. {
  128. q->prep_rq_fn = pfn;
  129. }
  130. EXPORT_SYMBOL(blk_queue_prep_rq);
  131. /**
  132. * blk_queue_merge_bvec - set a merge_bvec function for queue
  133. * @q: queue
  134. * @mbfn: merge_bvec_fn
  135. *
  136. * Usually queues have static limitations on the max sectors or segments that
  137. * we can put in a request. Stacking drivers may have some settings that
  138. * are dynamic, and thus we have to query the queue whether it is ok to
  139. * add a new bio_vec to a bio at a given offset or not. If the block device
  140. * has such limitations, it needs to register a merge_bvec_fn to control
  141. * the size of bio's sent to it. Note that a block device *must* allow a
  142. * single page to be added to an empty bio. The block device driver may want
  143. * to use the bio_split() function to deal with these bio's. By default
  144. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  145. * honored.
  146. */
  147. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  148. {
  149. q->merge_bvec_fn = mbfn;
  150. }
  151. EXPORT_SYMBOL(blk_queue_merge_bvec);
  152. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  153. {
  154. q->softirq_done_fn = fn;
  155. }
  156. EXPORT_SYMBOL(blk_queue_softirq_done);
  157. /**
  158. * blk_queue_make_request - define an alternate make_request function for a device
  159. * @q: the request queue for the device to be affected
  160. * @mfn: the alternate make_request function
  161. *
  162. * Description:
  163. * The normal way for &struct bios to be passed to a device
  164. * driver is for them to be collected into requests on a request
  165. * queue, and then to allow the device driver to select requests
  166. * off that queue when it is ready. This works well for many block
  167. * devices. However some block devices (typically virtual devices
  168. * such as md or lvm) do not benefit from the processing on the
  169. * request queue, and are served best by having the requests passed
  170. * directly to them. This can be achieved by providing a function
  171. * to blk_queue_make_request().
  172. *
  173. * Caveat:
  174. * The driver that does this *must* be able to deal appropriately
  175. * with buffers in "highmemory". This can be accomplished by either calling
  176. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  177. * blk_queue_bounce() to create a buffer in normal memory.
  178. **/
  179. void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
  180. {
  181. /*
  182. * set defaults
  183. */
  184. q->nr_requests = BLKDEV_MAX_RQ;
  185. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  186. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  187. q->make_request_fn = mfn;
  188. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  189. q->backing_dev_info.state = 0;
  190. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  191. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  192. blk_queue_hardsect_size(q, 512);
  193. blk_queue_dma_alignment(q, 511);
  194. blk_queue_congestion_threshold(q);
  195. q->nr_batching = BLK_BATCH_REQ;
  196. q->unplug_thresh = 4; /* hmm */
  197. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  198. if (q->unplug_delay == 0)
  199. q->unplug_delay = 1;
  200. INIT_WORK(&q->unplug_work, blk_unplug_work);
  201. q->unplug_timer.function = blk_unplug_timeout;
  202. q->unplug_timer.data = (unsigned long)q;
  203. /*
  204. * by default assume old behaviour and bounce for any highmem page
  205. */
  206. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  207. }
  208. EXPORT_SYMBOL(blk_queue_make_request);
  209. static void rq_init(struct request_queue *q, struct request *rq)
  210. {
  211. INIT_LIST_HEAD(&rq->queuelist);
  212. INIT_LIST_HEAD(&rq->donelist);
  213. rq->errors = 0;
  214. rq->bio = rq->biotail = NULL;
  215. INIT_HLIST_NODE(&rq->hash);
  216. RB_CLEAR_NODE(&rq->rb_node);
  217. rq->ioprio = 0;
  218. rq->buffer = NULL;
  219. rq->ref_count = 1;
  220. rq->q = q;
  221. rq->special = NULL;
  222. rq->data_len = 0;
  223. rq->data = NULL;
  224. rq->nr_phys_segments = 0;
  225. rq->sense = NULL;
  226. rq->end_io = NULL;
  227. rq->end_io_data = NULL;
  228. rq->completion_data = NULL;
  229. rq->next_rq = NULL;
  230. }
  231. /**
  232. * blk_queue_ordered - does this queue support ordered writes
  233. * @q: the request queue
  234. * @ordered: one of QUEUE_ORDERED_*
  235. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  236. *
  237. * Description:
  238. * For journalled file systems, doing ordered writes on a commit
  239. * block instead of explicitly doing wait_on_buffer (which is bad
  240. * for performance) can be a big win. Block drivers supporting this
  241. * feature should call this function and indicate so.
  242. *
  243. **/
  244. int blk_queue_ordered(struct request_queue *q, unsigned ordered,
  245. prepare_flush_fn *prepare_flush_fn)
  246. {
  247. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  248. prepare_flush_fn == NULL) {
  249. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  250. return -EINVAL;
  251. }
  252. if (ordered != QUEUE_ORDERED_NONE &&
  253. ordered != QUEUE_ORDERED_DRAIN &&
  254. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  255. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  256. ordered != QUEUE_ORDERED_TAG &&
  257. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  258. ordered != QUEUE_ORDERED_TAG_FUA) {
  259. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  260. return -EINVAL;
  261. }
  262. q->ordered = ordered;
  263. q->next_ordered = ordered;
  264. q->prepare_flush_fn = prepare_flush_fn;
  265. return 0;
  266. }
  267. EXPORT_SYMBOL(blk_queue_ordered);
  268. /**
  269. * blk_queue_issue_flush_fn - set function for issuing a flush
  270. * @q: the request queue
  271. * @iff: the function to be called issuing the flush
  272. *
  273. * Description:
  274. * If a driver supports issuing a flush command, the support is notified
  275. * to the block layer by defining it through this call.
  276. *
  277. **/
  278. void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
  279. {
  280. q->issue_flush_fn = iff;
  281. }
  282. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  283. /*
  284. * Cache flushing for ordered writes handling
  285. */
  286. inline unsigned blk_ordered_cur_seq(struct request_queue *q)
  287. {
  288. if (!q->ordseq)
  289. return 0;
  290. return 1 << ffz(q->ordseq);
  291. }
  292. unsigned blk_ordered_req_seq(struct request *rq)
  293. {
  294. struct request_queue *q = rq->q;
  295. BUG_ON(q->ordseq == 0);
  296. if (rq == &q->pre_flush_rq)
  297. return QUEUE_ORDSEQ_PREFLUSH;
  298. if (rq == &q->bar_rq)
  299. return QUEUE_ORDSEQ_BAR;
  300. if (rq == &q->post_flush_rq)
  301. return QUEUE_ORDSEQ_POSTFLUSH;
  302. /*
  303. * !fs requests don't need to follow barrier ordering. Always
  304. * put them at the front. This fixes the following deadlock.
  305. *
  306. * http://thread.gmane.org/gmane.linux.kernel/537473
  307. */
  308. if (!blk_fs_request(rq))
  309. return QUEUE_ORDSEQ_DRAIN;
  310. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  311. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  312. return QUEUE_ORDSEQ_DRAIN;
  313. else
  314. return QUEUE_ORDSEQ_DONE;
  315. }
  316. void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
  317. {
  318. struct request *rq;
  319. int uptodate;
  320. if (error && !q->orderr)
  321. q->orderr = error;
  322. BUG_ON(q->ordseq & seq);
  323. q->ordseq |= seq;
  324. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  325. return;
  326. /*
  327. * Okay, sequence complete.
  328. */
  329. uptodate = 1;
  330. if (q->orderr)
  331. uptodate = q->orderr;
  332. q->ordseq = 0;
  333. rq = q->orig_bar_rq;
  334. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  335. end_that_request_last(rq, uptodate);
  336. }
  337. static void pre_flush_end_io(struct request *rq, int error)
  338. {
  339. elv_completed_request(rq->q, rq);
  340. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  341. }
  342. static void bar_end_io(struct request *rq, int error)
  343. {
  344. elv_completed_request(rq->q, rq);
  345. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  346. }
  347. static void post_flush_end_io(struct request *rq, int error)
  348. {
  349. elv_completed_request(rq->q, rq);
  350. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  351. }
  352. static void queue_flush(struct request_queue *q, unsigned which)
  353. {
  354. struct request *rq;
  355. rq_end_io_fn *end_io;
  356. if (which == QUEUE_ORDERED_PREFLUSH) {
  357. rq = &q->pre_flush_rq;
  358. end_io = pre_flush_end_io;
  359. } else {
  360. rq = &q->post_flush_rq;
  361. end_io = post_flush_end_io;
  362. }
  363. rq->cmd_flags = REQ_HARDBARRIER;
  364. rq_init(q, rq);
  365. rq->elevator_private = NULL;
  366. rq->elevator_private2 = NULL;
  367. rq->rq_disk = q->bar_rq.rq_disk;
  368. rq->end_io = end_io;
  369. q->prepare_flush_fn(q, rq);
  370. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  371. }
  372. static inline struct request *start_ordered(struct request_queue *q,
  373. struct request *rq)
  374. {
  375. q->orderr = 0;
  376. q->ordered = q->next_ordered;
  377. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  378. /*
  379. * Prep proxy barrier request.
  380. */
  381. blkdev_dequeue_request(rq);
  382. q->orig_bar_rq = rq;
  383. rq = &q->bar_rq;
  384. rq->cmd_flags = 0;
  385. rq_init(q, rq);
  386. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  387. rq->cmd_flags |= REQ_RW;
  388. if (q->ordered & QUEUE_ORDERED_FUA)
  389. rq->cmd_flags |= REQ_FUA;
  390. rq->elevator_private = NULL;
  391. rq->elevator_private2 = NULL;
  392. init_request_from_bio(rq, q->orig_bar_rq->bio);
  393. rq->end_io = bar_end_io;
  394. /*
  395. * Queue ordered sequence. As we stack them at the head, we
  396. * need to queue in reverse order. Note that we rely on that
  397. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  398. * request gets inbetween ordered sequence. If this request is
  399. * an empty barrier, we don't need to do a postflush ever since
  400. * there will be no data written between the pre and post flush.
  401. * Hence a single flush will suffice.
  402. */
  403. if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
  404. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  405. else
  406. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  407. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  408. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  409. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  410. rq = &q->pre_flush_rq;
  411. } else
  412. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  413. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  414. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  415. else
  416. rq = NULL;
  417. return rq;
  418. }
  419. int blk_do_ordered(struct request_queue *q, struct request **rqp)
  420. {
  421. struct request *rq = *rqp;
  422. const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  423. if (!q->ordseq) {
  424. if (!is_barrier)
  425. return 1;
  426. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  427. *rqp = start_ordered(q, rq);
  428. return 1;
  429. } else {
  430. /*
  431. * This can happen when the queue switches to
  432. * ORDERED_NONE while this request is on it.
  433. */
  434. blkdev_dequeue_request(rq);
  435. end_that_request_first(rq, -EOPNOTSUPP,
  436. rq->hard_nr_sectors);
  437. end_that_request_last(rq, -EOPNOTSUPP);
  438. *rqp = NULL;
  439. return 0;
  440. }
  441. }
  442. /*
  443. * Ordered sequence in progress
  444. */
  445. /* Special requests are not subject to ordering rules. */
  446. if (!blk_fs_request(rq) &&
  447. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  448. return 1;
  449. if (q->ordered & QUEUE_ORDERED_TAG) {
  450. /* Ordered by tag. Blocking the next barrier is enough. */
  451. if (is_barrier && rq != &q->bar_rq)
  452. *rqp = NULL;
  453. } else {
  454. /* Ordered by draining. Wait for turn. */
  455. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  456. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  457. *rqp = NULL;
  458. }
  459. return 1;
  460. }
  461. static void req_bio_endio(struct request *rq, struct bio *bio,
  462. unsigned int nbytes, int error)
  463. {
  464. struct request_queue *q = rq->q;
  465. if (&q->bar_rq != rq) {
  466. if (error)
  467. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  468. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  469. error = -EIO;
  470. if (unlikely(nbytes > bio->bi_size)) {
  471. printk("%s: want %u bytes done, only %u left\n",
  472. __FUNCTION__, nbytes, bio->bi_size);
  473. nbytes = bio->bi_size;
  474. }
  475. bio->bi_size -= nbytes;
  476. bio->bi_sector += (nbytes >> 9);
  477. if (bio->bi_size == 0)
  478. bio_endio(bio, error);
  479. } else {
  480. /*
  481. * Okay, this is the barrier request in progress, just
  482. * record the error;
  483. */
  484. if (error && !q->orderr)
  485. q->orderr = error;
  486. }
  487. }
  488. /**
  489. * blk_queue_bounce_limit - set bounce buffer limit for queue
  490. * @q: the request queue for the device
  491. * @dma_addr: bus address limit
  492. *
  493. * Description:
  494. * Different hardware can have different requirements as to what pages
  495. * it can do I/O directly to. A low level driver can call
  496. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  497. * buffers for doing I/O to pages residing above @page.
  498. **/
  499. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
  500. {
  501. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  502. int dma = 0;
  503. q->bounce_gfp = GFP_NOIO;
  504. #if BITS_PER_LONG == 64
  505. /* Assume anything <= 4GB can be handled by IOMMU.
  506. Actually some IOMMUs can handle everything, but I don't
  507. know of a way to test this here. */
  508. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  509. dma = 1;
  510. q->bounce_pfn = max_low_pfn;
  511. #else
  512. if (bounce_pfn < blk_max_low_pfn)
  513. dma = 1;
  514. q->bounce_pfn = bounce_pfn;
  515. #endif
  516. if (dma) {
  517. init_emergency_isa_pool();
  518. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  519. q->bounce_pfn = bounce_pfn;
  520. }
  521. }
  522. EXPORT_SYMBOL(blk_queue_bounce_limit);
  523. /**
  524. * blk_queue_max_sectors - set max sectors for a request for this queue
  525. * @q: the request queue for the device
  526. * @max_sectors: max sectors in the usual 512b unit
  527. *
  528. * Description:
  529. * Enables a low level driver to set an upper limit on the size of
  530. * received requests.
  531. **/
  532. void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
  533. {
  534. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  535. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  536. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  537. }
  538. if (BLK_DEF_MAX_SECTORS > max_sectors)
  539. q->max_hw_sectors = q->max_sectors = max_sectors;
  540. else {
  541. q->max_sectors = BLK_DEF_MAX_SECTORS;
  542. q->max_hw_sectors = max_sectors;
  543. }
  544. }
  545. EXPORT_SYMBOL(blk_queue_max_sectors);
  546. /**
  547. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  548. * @q: the request queue for the device
  549. * @max_segments: max number of segments
  550. *
  551. * Description:
  552. * Enables a low level driver to set an upper limit on the number of
  553. * physical data segments in a request. This would be the largest sized
  554. * scatter list the driver could handle.
  555. **/
  556. void blk_queue_max_phys_segments(struct request_queue *q,
  557. unsigned short max_segments)
  558. {
  559. if (!max_segments) {
  560. max_segments = 1;
  561. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  562. }
  563. q->max_phys_segments = max_segments;
  564. }
  565. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  566. /**
  567. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  568. * @q: the request queue for the device
  569. * @max_segments: max number of segments
  570. *
  571. * Description:
  572. * Enables a low level driver to set an upper limit on the number of
  573. * hw data segments in a request. This would be the largest number of
  574. * address/length pairs the host adapter can actually give as once
  575. * to the device.
  576. **/
  577. void blk_queue_max_hw_segments(struct request_queue *q,
  578. unsigned short max_segments)
  579. {
  580. if (!max_segments) {
  581. max_segments = 1;
  582. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  583. }
  584. q->max_hw_segments = max_segments;
  585. }
  586. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  587. /**
  588. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  589. * @q: the request queue for the device
  590. * @max_size: max size of segment in bytes
  591. *
  592. * Description:
  593. * Enables a low level driver to set an upper limit on the size of a
  594. * coalesced segment
  595. **/
  596. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  597. {
  598. if (max_size < PAGE_CACHE_SIZE) {
  599. max_size = PAGE_CACHE_SIZE;
  600. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  601. }
  602. q->max_segment_size = max_size;
  603. }
  604. EXPORT_SYMBOL(blk_queue_max_segment_size);
  605. /**
  606. * blk_queue_hardsect_size - set hardware sector size for the queue
  607. * @q: the request queue for the device
  608. * @size: the hardware sector size, in bytes
  609. *
  610. * Description:
  611. * This should typically be set to the lowest possible sector size
  612. * that the hardware can operate on (possible without reverting to
  613. * even internal read-modify-write operations). Usually the default
  614. * of 512 covers most hardware.
  615. **/
  616. void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
  617. {
  618. q->hardsect_size = size;
  619. }
  620. EXPORT_SYMBOL(blk_queue_hardsect_size);
  621. /*
  622. * Returns the minimum that is _not_ zero, unless both are zero.
  623. */
  624. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  625. /**
  626. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  627. * @t: the stacking driver (top)
  628. * @b: the underlying device (bottom)
  629. **/
  630. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  631. {
  632. /* zero is "infinity" */
  633. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  634. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  635. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  636. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  637. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  638. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  639. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  640. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  641. }
  642. EXPORT_SYMBOL(blk_queue_stack_limits);
  643. /**
  644. * blk_queue_segment_boundary - set boundary rules for segment merging
  645. * @q: the request queue for the device
  646. * @mask: the memory boundary mask
  647. **/
  648. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  649. {
  650. if (mask < PAGE_CACHE_SIZE - 1) {
  651. mask = PAGE_CACHE_SIZE - 1;
  652. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  653. }
  654. q->seg_boundary_mask = mask;
  655. }
  656. EXPORT_SYMBOL(blk_queue_segment_boundary);
  657. /**
  658. * blk_queue_dma_alignment - set dma length and memory alignment
  659. * @q: the request queue for the device
  660. * @mask: alignment mask
  661. *
  662. * description:
  663. * set required memory and length aligment for direct dma transactions.
  664. * this is used when buiding direct io requests for the queue.
  665. *
  666. **/
  667. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  668. {
  669. q->dma_alignment = mask;
  670. }
  671. EXPORT_SYMBOL(blk_queue_dma_alignment);
  672. /**
  673. * blk_queue_find_tag - find a request by its tag and queue
  674. * @q: The request queue for the device
  675. * @tag: The tag of the request
  676. *
  677. * Notes:
  678. * Should be used when a device returns a tag and you want to match
  679. * it with a request.
  680. *
  681. * no locks need be held.
  682. **/
  683. struct request *blk_queue_find_tag(struct request_queue *q, int tag)
  684. {
  685. return blk_map_queue_find_tag(q->queue_tags, tag);
  686. }
  687. EXPORT_SYMBOL(blk_queue_find_tag);
  688. /**
  689. * __blk_free_tags - release a given set of tag maintenance info
  690. * @bqt: the tag map to free
  691. *
  692. * Tries to free the specified @bqt@. Returns true if it was
  693. * actually freed and false if there are still references using it
  694. */
  695. static int __blk_free_tags(struct blk_queue_tag *bqt)
  696. {
  697. int retval;
  698. retval = atomic_dec_and_test(&bqt->refcnt);
  699. if (retval) {
  700. BUG_ON(bqt->busy);
  701. BUG_ON(!list_empty(&bqt->busy_list));
  702. kfree(bqt->tag_index);
  703. bqt->tag_index = NULL;
  704. kfree(bqt->tag_map);
  705. bqt->tag_map = NULL;
  706. kfree(bqt);
  707. }
  708. return retval;
  709. }
  710. /**
  711. * __blk_queue_free_tags - release tag maintenance info
  712. * @q: the request queue for the device
  713. *
  714. * Notes:
  715. * blk_cleanup_queue() will take care of calling this function, if tagging
  716. * has been used. So there's no need to call this directly.
  717. **/
  718. static void __blk_queue_free_tags(struct request_queue *q)
  719. {
  720. struct blk_queue_tag *bqt = q->queue_tags;
  721. if (!bqt)
  722. return;
  723. __blk_free_tags(bqt);
  724. q->queue_tags = NULL;
  725. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  726. }
  727. /**
  728. * blk_free_tags - release a given set of tag maintenance info
  729. * @bqt: the tag map to free
  730. *
  731. * For externally managed @bqt@ frees the map. Callers of this
  732. * function must guarantee to have released all the queues that
  733. * might have been using this tag map.
  734. */
  735. void blk_free_tags(struct blk_queue_tag *bqt)
  736. {
  737. if (unlikely(!__blk_free_tags(bqt)))
  738. BUG();
  739. }
  740. EXPORT_SYMBOL(blk_free_tags);
  741. /**
  742. * blk_queue_free_tags - release tag maintenance info
  743. * @q: the request queue for the device
  744. *
  745. * Notes:
  746. * This is used to disabled tagged queuing to a device, yet leave
  747. * queue in function.
  748. **/
  749. void blk_queue_free_tags(struct request_queue *q)
  750. {
  751. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  752. }
  753. EXPORT_SYMBOL(blk_queue_free_tags);
  754. static int
  755. init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
  756. {
  757. struct request **tag_index;
  758. unsigned long *tag_map;
  759. int nr_ulongs;
  760. if (q && depth > q->nr_requests * 2) {
  761. depth = q->nr_requests * 2;
  762. printk(KERN_ERR "%s: adjusted depth to %d\n",
  763. __FUNCTION__, depth);
  764. }
  765. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  766. if (!tag_index)
  767. goto fail;
  768. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  769. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  770. if (!tag_map)
  771. goto fail;
  772. tags->real_max_depth = depth;
  773. tags->max_depth = depth;
  774. tags->tag_index = tag_index;
  775. tags->tag_map = tag_map;
  776. return 0;
  777. fail:
  778. kfree(tag_index);
  779. return -ENOMEM;
  780. }
  781. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  782. int depth)
  783. {
  784. struct blk_queue_tag *tags;
  785. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  786. if (!tags)
  787. goto fail;
  788. if (init_tag_map(q, tags, depth))
  789. goto fail;
  790. INIT_LIST_HEAD(&tags->busy_list);
  791. tags->busy = 0;
  792. atomic_set(&tags->refcnt, 1);
  793. return tags;
  794. fail:
  795. kfree(tags);
  796. return NULL;
  797. }
  798. /**
  799. * blk_init_tags - initialize the tag info for an external tag map
  800. * @depth: the maximum queue depth supported
  801. * @tags: the tag to use
  802. **/
  803. struct blk_queue_tag *blk_init_tags(int depth)
  804. {
  805. return __blk_queue_init_tags(NULL, depth);
  806. }
  807. EXPORT_SYMBOL(blk_init_tags);
  808. /**
  809. * blk_queue_init_tags - initialize the queue tag info
  810. * @q: the request queue for the device
  811. * @depth: the maximum queue depth supported
  812. * @tags: the tag to use
  813. **/
  814. int blk_queue_init_tags(struct request_queue *q, int depth,
  815. struct blk_queue_tag *tags)
  816. {
  817. int rc;
  818. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  819. if (!tags && !q->queue_tags) {
  820. tags = __blk_queue_init_tags(q, depth);
  821. if (!tags)
  822. goto fail;
  823. } else if (q->queue_tags) {
  824. if ((rc = blk_queue_resize_tags(q, depth)))
  825. return rc;
  826. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  827. return 0;
  828. } else
  829. atomic_inc(&tags->refcnt);
  830. /*
  831. * assign it, all done
  832. */
  833. q->queue_tags = tags;
  834. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  835. return 0;
  836. fail:
  837. kfree(tags);
  838. return -ENOMEM;
  839. }
  840. EXPORT_SYMBOL(blk_queue_init_tags);
  841. /**
  842. * blk_queue_resize_tags - change the queueing depth
  843. * @q: the request queue for the device
  844. * @new_depth: the new max command queueing depth
  845. *
  846. * Notes:
  847. * Must be called with the queue lock held.
  848. **/
  849. int blk_queue_resize_tags(struct request_queue *q, int new_depth)
  850. {
  851. struct blk_queue_tag *bqt = q->queue_tags;
  852. struct request **tag_index;
  853. unsigned long *tag_map;
  854. int max_depth, nr_ulongs;
  855. if (!bqt)
  856. return -ENXIO;
  857. /*
  858. * if we already have large enough real_max_depth. just
  859. * adjust max_depth. *NOTE* as requests with tag value
  860. * between new_depth and real_max_depth can be in-flight, tag
  861. * map can not be shrunk blindly here.
  862. */
  863. if (new_depth <= bqt->real_max_depth) {
  864. bqt->max_depth = new_depth;
  865. return 0;
  866. }
  867. /*
  868. * Currently cannot replace a shared tag map with a new
  869. * one, so error out if this is the case
  870. */
  871. if (atomic_read(&bqt->refcnt) != 1)
  872. return -EBUSY;
  873. /*
  874. * save the old state info, so we can copy it back
  875. */
  876. tag_index = bqt->tag_index;
  877. tag_map = bqt->tag_map;
  878. max_depth = bqt->real_max_depth;
  879. if (init_tag_map(q, bqt, new_depth))
  880. return -ENOMEM;
  881. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  882. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  883. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  884. kfree(tag_index);
  885. kfree(tag_map);
  886. return 0;
  887. }
  888. EXPORT_SYMBOL(blk_queue_resize_tags);
  889. /**
  890. * blk_queue_end_tag - end tag operations for a request
  891. * @q: the request queue for the device
  892. * @rq: the request that has completed
  893. *
  894. * Description:
  895. * Typically called when end_that_request_first() returns 0, meaning
  896. * all transfers have been done for a request. It's important to call
  897. * this function before end_that_request_last(), as that will put the
  898. * request back on the free list thus corrupting the internal tag list.
  899. *
  900. * Notes:
  901. * queue lock must be held.
  902. **/
  903. void blk_queue_end_tag(struct request_queue *q, struct request *rq)
  904. {
  905. struct blk_queue_tag *bqt = q->queue_tags;
  906. int tag = rq->tag;
  907. BUG_ON(tag == -1);
  908. if (unlikely(tag >= bqt->real_max_depth))
  909. /*
  910. * This can happen after tag depth has been reduced.
  911. * FIXME: how about a warning or info message here?
  912. */
  913. return;
  914. list_del_init(&rq->queuelist);
  915. rq->cmd_flags &= ~REQ_QUEUED;
  916. rq->tag = -1;
  917. if (unlikely(bqt->tag_index[tag] == NULL))
  918. printk(KERN_ERR "%s: tag %d is missing\n",
  919. __FUNCTION__, tag);
  920. bqt->tag_index[tag] = NULL;
  921. /*
  922. * We use test_and_clear_bit's memory ordering properties here.
  923. * The tag_map bit acts as a lock for tag_index[bit], so we need
  924. * a barrer before clearing the bit (precisely: release semantics).
  925. * Could use clear_bit_unlock when it is merged.
  926. */
  927. if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
  928. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  929. __FUNCTION__, tag);
  930. return;
  931. }
  932. bqt->busy--;
  933. }
  934. EXPORT_SYMBOL(blk_queue_end_tag);
  935. /**
  936. * blk_queue_start_tag - find a free tag and assign it
  937. * @q: the request queue for the device
  938. * @rq: the block request that needs tagging
  939. *
  940. * Description:
  941. * This can either be used as a stand-alone helper, or possibly be
  942. * assigned as the queue &prep_rq_fn (in which case &struct request
  943. * automagically gets a tag assigned). Note that this function
  944. * assumes that any type of request can be queued! if this is not
  945. * true for your device, you must check the request type before
  946. * calling this function. The request will also be removed from
  947. * the request queue, so it's the drivers responsibility to readd
  948. * it if it should need to be restarted for some reason.
  949. *
  950. * Notes:
  951. * queue lock must be held.
  952. **/
  953. int blk_queue_start_tag(struct request_queue *q, struct request *rq)
  954. {
  955. struct blk_queue_tag *bqt = q->queue_tags;
  956. int tag;
  957. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  958. printk(KERN_ERR
  959. "%s: request %p for device [%s] already tagged %d",
  960. __FUNCTION__, rq,
  961. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  962. BUG();
  963. }
  964. /*
  965. * Protect against shared tag maps, as we may not have exclusive
  966. * access to the tag map.
  967. */
  968. do {
  969. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  970. if (tag >= bqt->max_depth)
  971. return 1;
  972. } while (test_and_set_bit(tag, bqt->tag_map));
  973. /*
  974. * We rely on test_and_set_bit providing lock memory ordering semantics
  975. * (could use test_and_set_bit_lock when it is merged).
  976. */
  977. rq->cmd_flags |= REQ_QUEUED;
  978. rq->tag = tag;
  979. bqt->tag_index[tag] = rq;
  980. blkdev_dequeue_request(rq);
  981. list_add(&rq->queuelist, &bqt->busy_list);
  982. bqt->busy++;
  983. return 0;
  984. }
  985. EXPORT_SYMBOL(blk_queue_start_tag);
  986. /**
  987. * blk_queue_invalidate_tags - invalidate all pending tags
  988. * @q: the request queue for the device
  989. *
  990. * Description:
  991. * Hardware conditions may dictate a need to stop all pending requests.
  992. * In this case, we will safely clear the block side of the tag queue and
  993. * readd all requests to the request queue in the right order.
  994. *
  995. * Notes:
  996. * queue lock must be held.
  997. **/
  998. void blk_queue_invalidate_tags(struct request_queue *q)
  999. {
  1000. struct blk_queue_tag *bqt = q->queue_tags;
  1001. struct list_head *tmp, *n;
  1002. struct request *rq;
  1003. list_for_each_safe(tmp, n, &bqt->busy_list) {
  1004. rq = list_entry_rq(tmp);
  1005. if (rq->tag == -1) {
  1006. printk(KERN_ERR
  1007. "%s: bad tag found on list\n", __FUNCTION__);
  1008. list_del_init(&rq->queuelist);
  1009. rq->cmd_flags &= ~REQ_QUEUED;
  1010. } else
  1011. blk_queue_end_tag(q, rq);
  1012. rq->cmd_flags &= ~REQ_STARTED;
  1013. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  1014. }
  1015. }
  1016. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1017. void blk_dump_rq_flags(struct request *rq, char *msg)
  1018. {
  1019. int bit;
  1020. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1021. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1022. rq->cmd_flags);
  1023. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1024. rq->nr_sectors,
  1025. rq->current_nr_sectors);
  1026. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1027. if (blk_pc_request(rq)) {
  1028. printk("cdb: ");
  1029. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1030. printk("%02x ", rq->cmd[bit]);
  1031. printk("\n");
  1032. }
  1033. }
  1034. EXPORT_SYMBOL(blk_dump_rq_flags);
  1035. void blk_recount_segments(struct request_queue *q, struct bio *bio)
  1036. {
  1037. struct request rq;
  1038. struct bio *nxt = bio->bi_next;
  1039. rq.q = q;
  1040. rq.bio = rq.biotail = bio;
  1041. bio->bi_next = NULL;
  1042. blk_recalc_rq_segments(&rq);
  1043. bio->bi_next = nxt;
  1044. bio->bi_phys_segments = rq.nr_phys_segments;
  1045. bio->bi_hw_segments = rq.nr_hw_segments;
  1046. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1047. }
  1048. EXPORT_SYMBOL(blk_recount_segments);
  1049. static void blk_recalc_rq_segments(struct request *rq)
  1050. {
  1051. int nr_phys_segs;
  1052. int nr_hw_segs;
  1053. unsigned int phys_size;
  1054. unsigned int hw_size;
  1055. struct bio_vec *bv, *bvprv = NULL;
  1056. int seg_size;
  1057. int hw_seg_size;
  1058. int cluster;
  1059. struct req_iterator iter;
  1060. int high, highprv = 1;
  1061. struct request_queue *q = rq->q;
  1062. if (!rq->bio)
  1063. return;
  1064. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1065. hw_seg_size = seg_size = 0;
  1066. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  1067. rq_for_each_segment(bv, rq, iter) {
  1068. /*
  1069. * the trick here is making sure that a high page is never
  1070. * considered part of another segment, since that might
  1071. * change with the bounce page.
  1072. */
  1073. high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
  1074. if (high || highprv)
  1075. goto new_hw_segment;
  1076. if (cluster) {
  1077. if (seg_size + bv->bv_len > q->max_segment_size)
  1078. goto new_segment;
  1079. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1080. goto new_segment;
  1081. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1082. goto new_segment;
  1083. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1084. goto new_hw_segment;
  1085. seg_size += bv->bv_len;
  1086. hw_seg_size += bv->bv_len;
  1087. bvprv = bv;
  1088. continue;
  1089. }
  1090. new_segment:
  1091. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1092. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1093. hw_seg_size += bv->bv_len;
  1094. else {
  1095. new_hw_segment:
  1096. if (nr_hw_segs == 1 &&
  1097. hw_seg_size > rq->bio->bi_hw_front_size)
  1098. rq->bio->bi_hw_front_size = hw_seg_size;
  1099. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1100. nr_hw_segs++;
  1101. }
  1102. nr_phys_segs++;
  1103. bvprv = bv;
  1104. seg_size = bv->bv_len;
  1105. highprv = high;
  1106. }
  1107. if (nr_hw_segs == 1 &&
  1108. hw_seg_size > rq->bio->bi_hw_front_size)
  1109. rq->bio->bi_hw_front_size = hw_seg_size;
  1110. if (hw_seg_size > rq->biotail->bi_hw_back_size)
  1111. rq->biotail->bi_hw_back_size = hw_seg_size;
  1112. rq->nr_phys_segments = nr_phys_segs;
  1113. rq->nr_hw_segments = nr_hw_segs;
  1114. }
  1115. static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
  1116. struct bio *nxt)
  1117. {
  1118. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1119. return 0;
  1120. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1121. return 0;
  1122. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1123. return 0;
  1124. /*
  1125. * bio and nxt are contigous in memory, check if the queue allows
  1126. * these two to be merged into one
  1127. */
  1128. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1129. return 1;
  1130. return 0;
  1131. }
  1132. static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
  1133. struct bio *nxt)
  1134. {
  1135. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1136. blk_recount_segments(q, bio);
  1137. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1138. blk_recount_segments(q, nxt);
  1139. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1140. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
  1141. return 0;
  1142. if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
  1143. return 0;
  1144. return 1;
  1145. }
  1146. /*
  1147. * map a request to scatterlist, return number of sg entries setup. Caller
  1148. * must make sure sg can hold rq->nr_phys_segments entries
  1149. */
  1150. int blk_rq_map_sg(struct request_queue *q, struct request *rq,
  1151. struct scatterlist *sg)
  1152. {
  1153. struct bio_vec *bvec, *bvprv;
  1154. struct req_iterator iter;
  1155. int nsegs, cluster;
  1156. nsegs = 0;
  1157. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1158. /*
  1159. * for each bio in rq
  1160. */
  1161. bvprv = NULL;
  1162. rq_for_each_segment(bvec, rq, iter) {
  1163. int nbytes = bvec->bv_len;
  1164. if (bvprv && cluster) {
  1165. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1166. goto new_segment;
  1167. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1168. goto new_segment;
  1169. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1170. goto new_segment;
  1171. sg[nsegs - 1].length += nbytes;
  1172. } else {
  1173. new_segment:
  1174. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1175. sg[nsegs].page = bvec->bv_page;
  1176. sg[nsegs].length = nbytes;
  1177. sg[nsegs].offset = bvec->bv_offset;
  1178. nsegs++;
  1179. }
  1180. bvprv = bvec;
  1181. } /* segments in rq */
  1182. return nsegs;
  1183. }
  1184. EXPORT_SYMBOL(blk_rq_map_sg);
  1185. /*
  1186. * the standard queue merge functions, can be overridden with device
  1187. * specific ones if so desired
  1188. */
  1189. static inline int ll_new_mergeable(struct request_queue *q,
  1190. struct request *req,
  1191. struct bio *bio)
  1192. {
  1193. int nr_phys_segs = bio_phys_segments(q, bio);
  1194. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1195. req->cmd_flags |= REQ_NOMERGE;
  1196. if (req == q->last_merge)
  1197. q->last_merge = NULL;
  1198. return 0;
  1199. }
  1200. /*
  1201. * A hw segment is just getting larger, bump just the phys
  1202. * counter.
  1203. */
  1204. req->nr_phys_segments += nr_phys_segs;
  1205. return 1;
  1206. }
  1207. static inline int ll_new_hw_segment(struct request_queue *q,
  1208. struct request *req,
  1209. struct bio *bio)
  1210. {
  1211. int nr_hw_segs = bio_hw_segments(q, bio);
  1212. int nr_phys_segs = bio_phys_segments(q, bio);
  1213. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1214. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1215. req->cmd_flags |= REQ_NOMERGE;
  1216. if (req == q->last_merge)
  1217. q->last_merge = NULL;
  1218. return 0;
  1219. }
  1220. /*
  1221. * This will form the start of a new hw segment. Bump both
  1222. * counters.
  1223. */
  1224. req->nr_hw_segments += nr_hw_segs;
  1225. req->nr_phys_segments += nr_phys_segs;
  1226. return 1;
  1227. }
  1228. static int ll_back_merge_fn(struct request_queue *q, struct request *req,
  1229. struct bio *bio)
  1230. {
  1231. unsigned short max_sectors;
  1232. int len;
  1233. if (unlikely(blk_pc_request(req)))
  1234. max_sectors = q->max_hw_sectors;
  1235. else
  1236. max_sectors = q->max_sectors;
  1237. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1238. req->cmd_flags |= REQ_NOMERGE;
  1239. if (req == q->last_merge)
  1240. q->last_merge = NULL;
  1241. return 0;
  1242. }
  1243. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1244. blk_recount_segments(q, req->biotail);
  1245. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1246. blk_recount_segments(q, bio);
  1247. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1248. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1249. !BIOVEC_VIRT_OVERSIZE(len)) {
  1250. int mergeable = ll_new_mergeable(q, req, bio);
  1251. if (mergeable) {
  1252. if (req->nr_hw_segments == 1)
  1253. req->bio->bi_hw_front_size = len;
  1254. if (bio->bi_hw_segments == 1)
  1255. bio->bi_hw_back_size = len;
  1256. }
  1257. return mergeable;
  1258. }
  1259. return ll_new_hw_segment(q, req, bio);
  1260. }
  1261. static int ll_front_merge_fn(struct request_queue *q, struct request *req,
  1262. struct bio *bio)
  1263. {
  1264. unsigned short max_sectors;
  1265. int len;
  1266. if (unlikely(blk_pc_request(req)))
  1267. max_sectors = q->max_hw_sectors;
  1268. else
  1269. max_sectors = q->max_sectors;
  1270. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1271. req->cmd_flags |= REQ_NOMERGE;
  1272. if (req == q->last_merge)
  1273. q->last_merge = NULL;
  1274. return 0;
  1275. }
  1276. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1277. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1278. blk_recount_segments(q, bio);
  1279. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1280. blk_recount_segments(q, req->bio);
  1281. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1282. !BIOVEC_VIRT_OVERSIZE(len)) {
  1283. int mergeable = ll_new_mergeable(q, req, bio);
  1284. if (mergeable) {
  1285. if (bio->bi_hw_segments == 1)
  1286. bio->bi_hw_front_size = len;
  1287. if (req->nr_hw_segments == 1)
  1288. req->biotail->bi_hw_back_size = len;
  1289. }
  1290. return mergeable;
  1291. }
  1292. return ll_new_hw_segment(q, req, bio);
  1293. }
  1294. static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
  1295. struct request *next)
  1296. {
  1297. int total_phys_segments;
  1298. int total_hw_segments;
  1299. /*
  1300. * First check if the either of the requests are re-queued
  1301. * requests. Can't merge them if they are.
  1302. */
  1303. if (req->special || next->special)
  1304. return 0;
  1305. /*
  1306. * Will it become too large?
  1307. */
  1308. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1309. return 0;
  1310. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1311. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1312. total_phys_segments--;
  1313. if (total_phys_segments > q->max_phys_segments)
  1314. return 0;
  1315. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1316. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1317. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1318. /*
  1319. * propagate the combined length to the end of the requests
  1320. */
  1321. if (req->nr_hw_segments == 1)
  1322. req->bio->bi_hw_front_size = len;
  1323. if (next->nr_hw_segments == 1)
  1324. next->biotail->bi_hw_back_size = len;
  1325. total_hw_segments--;
  1326. }
  1327. if (total_hw_segments > q->max_hw_segments)
  1328. return 0;
  1329. /* Merge is OK... */
  1330. req->nr_phys_segments = total_phys_segments;
  1331. req->nr_hw_segments = total_hw_segments;
  1332. return 1;
  1333. }
  1334. /*
  1335. * "plug" the device if there are no outstanding requests: this will
  1336. * force the transfer to start only after we have put all the requests
  1337. * on the list.
  1338. *
  1339. * This is called with interrupts off and no requests on the queue and
  1340. * with the queue lock held.
  1341. */
  1342. void blk_plug_device(struct request_queue *q)
  1343. {
  1344. WARN_ON(!irqs_disabled());
  1345. /*
  1346. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1347. * which will restart the queueing
  1348. */
  1349. if (blk_queue_stopped(q))
  1350. return;
  1351. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1352. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1353. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1354. }
  1355. }
  1356. EXPORT_SYMBOL(blk_plug_device);
  1357. /*
  1358. * remove the queue from the plugged list, if present. called with
  1359. * queue lock held and interrupts disabled.
  1360. */
  1361. int blk_remove_plug(struct request_queue *q)
  1362. {
  1363. WARN_ON(!irqs_disabled());
  1364. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1365. return 0;
  1366. del_timer(&q->unplug_timer);
  1367. return 1;
  1368. }
  1369. EXPORT_SYMBOL(blk_remove_plug);
  1370. /*
  1371. * remove the plug and let it rip..
  1372. */
  1373. void __generic_unplug_device(struct request_queue *q)
  1374. {
  1375. if (unlikely(blk_queue_stopped(q)))
  1376. return;
  1377. if (!blk_remove_plug(q))
  1378. return;
  1379. q->request_fn(q);
  1380. }
  1381. EXPORT_SYMBOL(__generic_unplug_device);
  1382. /**
  1383. * generic_unplug_device - fire a request queue
  1384. * @q: The &struct request_queue in question
  1385. *
  1386. * Description:
  1387. * Linux uses plugging to build bigger requests queues before letting
  1388. * the device have at them. If a queue is plugged, the I/O scheduler
  1389. * is still adding and merging requests on the queue. Once the queue
  1390. * gets unplugged, the request_fn defined for the queue is invoked and
  1391. * transfers started.
  1392. **/
  1393. void generic_unplug_device(struct request_queue *q)
  1394. {
  1395. spin_lock_irq(q->queue_lock);
  1396. __generic_unplug_device(q);
  1397. spin_unlock_irq(q->queue_lock);
  1398. }
  1399. EXPORT_SYMBOL(generic_unplug_device);
  1400. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1401. struct page *page)
  1402. {
  1403. struct request_queue *q = bdi->unplug_io_data;
  1404. /*
  1405. * devices don't necessarily have an ->unplug_fn defined
  1406. */
  1407. if (q->unplug_fn) {
  1408. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1409. q->rq.count[READ] + q->rq.count[WRITE]);
  1410. q->unplug_fn(q);
  1411. }
  1412. }
  1413. static void blk_unplug_work(struct work_struct *work)
  1414. {
  1415. struct request_queue *q =
  1416. container_of(work, struct request_queue, unplug_work);
  1417. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1418. q->rq.count[READ] + q->rq.count[WRITE]);
  1419. q->unplug_fn(q);
  1420. }
  1421. static void blk_unplug_timeout(unsigned long data)
  1422. {
  1423. struct request_queue *q = (struct request_queue *)data;
  1424. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1425. q->rq.count[READ] + q->rq.count[WRITE]);
  1426. kblockd_schedule_work(&q->unplug_work);
  1427. }
  1428. /**
  1429. * blk_start_queue - restart a previously stopped queue
  1430. * @q: The &struct request_queue in question
  1431. *
  1432. * Description:
  1433. * blk_start_queue() will clear the stop flag on the queue, and call
  1434. * the request_fn for the queue if it was in a stopped state when
  1435. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1436. **/
  1437. void blk_start_queue(struct request_queue *q)
  1438. {
  1439. WARN_ON(!irqs_disabled());
  1440. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1441. /*
  1442. * one level of recursion is ok and is much faster than kicking
  1443. * the unplug handling
  1444. */
  1445. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1446. q->request_fn(q);
  1447. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1448. } else {
  1449. blk_plug_device(q);
  1450. kblockd_schedule_work(&q->unplug_work);
  1451. }
  1452. }
  1453. EXPORT_SYMBOL(blk_start_queue);
  1454. /**
  1455. * blk_stop_queue - stop a queue
  1456. * @q: The &struct request_queue in question
  1457. *
  1458. * Description:
  1459. * The Linux block layer assumes that a block driver will consume all
  1460. * entries on the request queue when the request_fn strategy is called.
  1461. * Often this will not happen, because of hardware limitations (queue
  1462. * depth settings). If a device driver gets a 'queue full' response,
  1463. * or if it simply chooses not to queue more I/O at one point, it can
  1464. * call this function to prevent the request_fn from being called until
  1465. * the driver has signalled it's ready to go again. This happens by calling
  1466. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1467. **/
  1468. void blk_stop_queue(struct request_queue *q)
  1469. {
  1470. blk_remove_plug(q);
  1471. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1472. }
  1473. EXPORT_SYMBOL(blk_stop_queue);
  1474. /**
  1475. * blk_sync_queue - cancel any pending callbacks on a queue
  1476. * @q: the queue
  1477. *
  1478. * Description:
  1479. * The block layer may perform asynchronous callback activity
  1480. * on a queue, such as calling the unplug function after a timeout.
  1481. * A block device may call blk_sync_queue to ensure that any
  1482. * such activity is cancelled, thus allowing it to release resources
  1483. * that the callbacks might use. The caller must already have made sure
  1484. * that its ->make_request_fn will not re-add plugging prior to calling
  1485. * this function.
  1486. *
  1487. */
  1488. void blk_sync_queue(struct request_queue *q)
  1489. {
  1490. del_timer_sync(&q->unplug_timer);
  1491. }
  1492. EXPORT_SYMBOL(blk_sync_queue);
  1493. /**
  1494. * blk_run_queue - run a single device queue
  1495. * @q: The queue to run
  1496. */
  1497. void blk_run_queue(struct request_queue *q)
  1498. {
  1499. unsigned long flags;
  1500. spin_lock_irqsave(q->queue_lock, flags);
  1501. blk_remove_plug(q);
  1502. /*
  1503. * Only recurse once to avoid overrunning the stack, let the unplug
  1504. * handling reinvoke the handler shortly if we already got there.
  1505. */
  1506. if (!elv_queue_empty(q)) {
  1507. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1508. q->request_fn(q);
  1509. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1510. } else {
  1511. blk_plug_device(q);
  1512. kblockd_schedule_work(&q->unplug_work);
  1513. }
  1514. }
  1515. spin_unlock_irqrestore(q->queue_lock, flags);
  1516. }
  1517. EXPORT_SYMBOL(blk_run_queue);
  1518. /**
  1519. * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
  1520. * @kobj: the kobj belonging of the request queue to be released
  1521. *
  1522. * Description:
  1523. * blk_cleanup_queue is the pair to blk_init_queue() or
  1524. * blk_queue_make_request(). It should be called when a request queue is
  1525. * being released; typically when a block device is being de-registered.
  1526. * Currently, its primary task it to free all the &struct request
  1527. * structures that were allocated to the queue and the queue itself.
  1528. *
  1529. * Caveat:
  1530. * Hopefully the low level driver will have finished any
  1531. * outstanding requests first...
  1532. **/
  1533. static void blk_release_queue(struct kobject *kobj)
  1534. {
  1535. struct request_queue *q =
  1536. container_of(kobj, struct request_queue, kobj);
  1537. struct request_list *rl = &q->rq;
  1538. blk_sync_queue(q);
  1539. if (rl->rq_pool)
  1540. mempool_destroy(rl->rq_pool);
  1541. if (q->queue_tags)
  1542. __blk_queue_free_tags(q);
  1543. blk_trace_shutdown(q);
  1544. kmem_cache_free(requestq_cachep, q);
  1545. }
  1546. void blk_put_queue(struct request_queue *q)
  1547. {
  1548. kobject_put(&q->kobj);
  1549. }
  1550. EXPORT_SYMBOL(blk_put_queue);
  1551. void blk_cleanup_queue(struct request_queue * q)
  1552. {
  1553. mutex_lock(&q->sysfs_lock);
  1554. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1555. mutex_unlock(&q->sysfs_lock);
  1556. if (q->elevator)
  1557. elevator_exit(q->elevator);
  1558. blk_put_queue(q);
  1559. }
  1560. EXPORT_SYMBOL(blk_cleanup_queue);
  1561. static int blk_init_free_list(struct request_queue *q)
  1562. {
  1563. struct request_list *rl = &q->rq;
  1564. rl->count[READ] = rl->count[WRITE] = 0;
  1565. rl->starved[READ] = rl->starved[WRITE] = 0;
  1566. rl->elvpriv = 0;
  1567. init_waitqueue_head(&rl->wait[READ]);
  1568. init_waitqueue_head(&rl->wait[WRITE]);
  1569. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1570. mempool_free_slab, request_cachep, q->node);
  1571. if (!rl->rq_pool)
  1572. return -ENOMEM;
  1573. return 0;
  1574. }
  1575. struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
  1576. {
  1577. return blk_alloc_queue_node(gfp_mask, -1);
  1578. }
  1579. EXPORT_SYMBOL(blk_alloc_queue);
  1580. static struct kobj_type queue_ktype;
  1581. struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1582. {
  1583. struct request_queue *q;
  1584. q = kmem_cache_alloc_node(requestq_cachep,
  1585. gfp_mask | __GFP_ZERO, node_id);
  1586. if (!q)
  1587. return NULL;
  1588. init_timer(&q->unplug_timer);
  1589. kobject_set_name(&q->kobj, "%s", "queue");
  1590. q->kobj.ktype = &queue_ktype;
  1591. kobject_init(&q->kobj);
  1592. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1593. q->backing_dev_info.unplug_io_data = q;
  1594. mutex_init(&q->sysfs_lock);
  1595. return q;
  1596. }
  1597. EXPORT_SYMBOL(blk_alloc_queue_node);
  1598. /**
  1599. * blk_init_queue - prepare a request queue for use with a block device
  1600. * @rfn: The function to be called to process requests that have been
  1601. * placed on the queue.
  1602. * @lock: Request queue spin lock
  1603. *
  1604. * Description:
  1605. * If a block device wishes to use the standard request handling procedures,
  1606. * which sorts requests and coalesces adjacent requests, then it must
  1607. * call blk_init_queue(). The function @rfn will be called when there
  1608. * are requests on the queue that need to be processed. If the device
  1609. * supports plugging, then @rfn may not be called immediately when requests
  1610. * are available on the queue, but may be called at some time later instead.
  1611. * Plugged queues are generally unplugged when a buffer belonging to one
  1612. * of the requests on the queue is needed, or due to memory pressure.
  1613. *
  1614. * @rfn is not required, or even expected, to remove all requests off the
  1615. * queue, but only as many as it can handle at a time. If it does leave
  1616. * requests on the queue, it is responsible for arranging that the requests
  1617. * get dealt with eventually.
  1618. *
  1619. * The queue spin lock must be held while manipulating the requests on the
  1620. * request queue; this lock will be taken also from interrupt context, so irq
  1621. * disabling is needed for it.
  1622. *
  1623. * Function returns a pointer to the initialized request queue, or NULL if
  1624. * it didn't succeed.
  1625. *
  1626. * Note:
  1627. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1628. * when the block device is deactivated (such as at module unload).
  1629. **/
  1630. struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1631. {
  1632. return blk_init_queue_node(rfn, lock, -1);
  1633. }
  1634. EXPORT_SYMBOL(blk_init_queue);
  1635. struct request_queue *
  1636. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1637. {
  1638. struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1639. if (!q)
  1640. return NULL;
  1641. q->node = node_id;
  1642. if (blk_init_free_list(q)) {
  1643. kmem_cache_free(requestq_cachep, q);
  1644. return NULL;
  1645. }
  1646. /*
  1647. * if caller didn't supply a lock, they get per-queue locking with
  1648. * our embedded lock
  1649. */
  1650. if (!lock) {
  1651. spin_lock_init(&q->__queue_lock);
  1652. lock = &q->__queue_lock;
  1653. }
  1654. q->request_fn = rfn;
  1655. q->prep_rq_fn = NULL;
  1656. q->unplug_fn = generic_unplug_device;
  1657. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1658. q->queue_lock = lock;
  1659. blk_queue_segment_boundary(q, 0xffffffff);
  1660. blk_queue_make_request(q, __make_request);
  1661. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1662. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1663. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1664. q->sg_reserved_size = INT_MAX;
  1665. /*
  1666. * all done
  1667. */
  1668. if (!elevator_init(q, NULL)) {
  1669. blk_queue_congestion_threshold(q);
  1670. return q;
  1671. }
  1672. blk_put_queue(q);
  1673. return NULL;
  1674. }
  1675. EXPORT_SYMBOL(blk_init_queue_node);
  1676. int blk_get_queue(struct request_queue *q)
  1677. {
  1678. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1679. kobject_get(&q->kobj);
  1680. return 0;
  1681. }
  1682. return 1;
  1683. }
  1684. EXPORT_SYMBOL(blk_get_queue);
  1685. static inline void blk_free_request(struct request_queue *q, struct request *rq)
  1686. {
  1687. if (rq->cmd_flags & REQ_ELVPRIV)
  1688. elv_put_request(q, rq);
  1689. mempool_free(rq, q->rq.rq_pool);
  1690. }
  1691. static struct request *
  1692. blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
  1693. {
  1694. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1695. if (!rq)
  1696. return NULL;
  1697. /*
  1698. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1699. * see bio.h and blkdev.h
  1700. */
  1701. rq->cmd_flags = rw | REQ_ALLOCED;
  1702. if (priv) {
  1703. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1704. mempool_free(rq, q->rq.rq_pool);
  1705. return NULL;
  1706. }
  1707. rq->cmd_flags |= REQ_ELVPRIV;
  1708. }
  1709. return rq;
  1710. }
  1711. /*
  1712. * ioc_batching returns true if the ioc is a valid batching request and
  1713. * should be given priority access to a request.
  1714. */
  1715. static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
  1716. {
  1717. if (!ioc)
  1718. return 0;
  1719. /*
  1720. * Make sure the process is able to allocate at least 1 request
  1721. * even if the batch times out, otherwise we could theoretically
  1722. * lose wakeups.
  1723. */
  1724. return ioc->nr_batch_requests == q->nr_batching ||
  1725. (ioc->nr_batch_requests > 0
  1726. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1727. }
  1728. /*
  1729. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1730. * will cause the process to be a "batcher" on all queues in the system. This
  1731. * is the behaviour we want though - once it gets a wakeup it should be given
  1732. * a nice run.
  1733. */
  1734. static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
  1735. {
  1736. if (!ioc || ioc_batching(q, ioc))
  1737. return;
  1738. ioc->nr_batch_requests = q->nr_batching;
  1739. ioc->last_waited = jiffies;
  1740. }
  1741. static void __freed_request(struct request_queue *q, int rw)
  1742. {
  1743. struct request_list *rl = &q->rq;
  1744. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1745. blk_clear_queue_congested(q, rw);
  1746. if (rl->count[rw] + 1 <= q->nr_requests) {
  1747. if (waitqueue_active(&rl->wait[rw]))
  1748. wake_up(&rl->wait[rw]);
  1749. blk_clear_queue_full(q, rw);
  1750. }
  1751. }
  1752. /*
  1753. * A request has just been released. Account for it, update the full and
  1754. * congestion status, wake up any waiters. Called under q->queue_lock.
  1755. */
  1756. static void freed_request(struct request_queue *q, int rw, int priv)
  1757. {
  1758. struct request_list *rl = &q->rq;
  1759. rl->count[rw]--;
  1760. if (priv)
  1761. rl->elvpriv--;
  1762. __freed_request(q, rw);
  1763. if (unlikely(rl->starved[rw ^ 1]))
  1764. __freed_request(q, rw ^ 1);
  1765. }
  1766. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1767. /*
  1768. * Get a free request, queue_lock must be held.
  1769. * Returns NULL on failure, with queue_lock held.
  1770. * Returns !NULL on success, with queue_lock *not held*.
  1771. */
  1772. static struct request *get_request(struct request_queue *q, int rw_flags,
  1773. struct bio *bio, gfp_t gfp_mask)
  1774. {
  1775. struct request *rq = NULL;
  1776. struct request_list *rl = &q->rq;
  1777. struct io_context *ioc = NULL;
  1778. const int rw = rw_flags & 0x01;
  1779. int may_queue, priv;
  1780. may_queue = elv_may_queue(q, rw_flags);
  1781. if (may_queue == ELV_MQUEUE_NO)
  1782. goto rq_starved;
  1783. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1784. if (rl->count[rw]+1 >= q->nr_requests) {
  1785. ioc = current_io_context(GFP_ATOMIC, q->node);
  1786. /*
  1787. * The queue will fill after this allocation, so set
  1788. * it as full, and mark this process as "batching".
  1789. * This process will be allowed to complete a batch of
  1790. * requests, others will be blocked.
  1791. */
  1792. if (!blk_queue_full(q, rw)) {
  1793. ioc_set_batching(q, ioc);
  1794. blk_set_queue_full(q, rw);
  1795. } else {
  1796. if (may_queue != ELV_MQUEUE_MUST
  1797. && !ioc_batching(q, ioc)) {
  1798. /*
  1799. * The queue is full and the allocating
  1800. * process is not a "batcher", and not
  1801. * exempted by the IO scheduler
  1802. */
  1803. goto out;
  1804. }
  1805. }
  1806. }
  1807. blk_set_queue_congested(q, rw);
  1808. }
  1809. /*
  1810. * Only allow batching queuers to allocate up to 50% over the defined
  1811. * limit of requests, otherwise we could have thousands of requests
  1812. * allocated with any setting of ->nr_requests
  1813. */
  1814. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1815. goto out;
  1816. rl->count[rw]++;
  1817. rl->starved[rw] = 0;
  1818. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1819. if (priv)
  1820. rl->elvpriv++;
  1821. spin_unlock_irq(q->queue_lock);
  1822. rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
  1823. if (unlikely(!rq)) {
  1824. /*
  1825. * Allocation failed presumably due to memory. Undo anything
  1826. * we might have messed up.
  1827. *
  1828. * Allocating task should really be put onto the front of the
  1829. * wait queue, but this is pretty rare.
  1830. */
  1831. spin_lock_irq(q->queue_lock);
  1832. freed_request(q, rw, priv);
  1833. /*
  1834. * in the very unlikely event that allocation failed and no
  1835. * requests for this direction was pending, mark us starved
  1836. * so that freeing of a request in the other direction will
  1837. * notice us. another possible fix would be to split the
  1838. * rq mempool into READ and WRITE
  1839. */
  1840. rq_starved:
  1841. if (unlikely(rl->count[rw] == 0))
  1842. rl->starved[rw] = 1;
  1843. goto out;
  1844. }
  1845. /*
  1846. * ioc may be NULL here, and ioc_batching will be false. That's
  1847. * OK, if the queue is under the request limit then requests need
  1848. * not count toward the nr_batch_requests limit. There will always
  1849. * be some limit enforced by BLK_BATCH_TIME.
  1850. */
  1851. if (ioc_batching(q, ioc))
  1852. ioc->nr_batch_requests--;
  1853. rq_init(q, rq);
  1854. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1855. out:
  1856. return rq;
  1857. }
  1858. /*
  1859. * No available requests for this queue, unplug the device and wait for some
  1860. * requests to become available.
  1861. *
  1862. * Called with q->queue_lock held, and returns with it unlocked.
  1863. */
  1864. static struct request *get_request_wait(struct request_queue *q, int rw_flags,
  1865. struct bio *bio)
  1866. {
  1867. const int rw = rw_flags & 0x01;
  1868. struct request *rq;
  1869. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1870. while (!rq) {
  1871. DEFINE_WAIT(wait);
  1872. struct request_list *rl = &q->rq;
  1873. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1874. TASK_UNINTERRUPTIBLE);
  1875. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1876. if (!rq) {
  1877. struct io_context *ioc;
  1878. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1879. __generic_unplug_device(q);
  1880. spin_unlock_irq(q->queue_lock);
  1881. io_schedule();
  1882. /*
  1883. * After sleeping, we become a "batching" process and
  1884. * will be able to allocate at least one request, and
  1885. * up to a big batch of them for a small period time.
  1886. * See ioc_batching, ioc_set_batching
  1887. */
  1888. ioc = current_io_context(GFP_NOIO, q->node);
  1889. ioc_set_batching(q, ioc);
  1890. spin_lock_irq(q->queue_lock);
  1891. }
  1892. finish_wait(&rl->wait[rw], &wait);
  1893. }
  1894. return rq;
  1895. }
  1896. struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
  1897. {
  1898. struct request *rq;
  1899. BUG_ON(rw != READ && rw != WRITE);
  1900. spin_lock_irq(q->queue_lock);
  1901. if (gfp_mask & __GFP_WAIT) {
  1902. rq = get_request_wait(q, rw, NULL);
  1903. } else {
  1904. rq = get_request(q, rw, NULL, gfp_mask);
  1905. if (!rq)
  1906. spin_unlock_irq(q->queue_lock);
  1907. }
  1908. /* q->queue_lock is unlocked at this point */
  1909. return rq;
  1910. }
  1911. EXPORT_SYMBOL(blk_get_request);
  1912. /**
  1913. * blk_start_queueing - initiate dispatch of requests to device
  1914. * @q: request queue to kick into gear
  1915. *
  1916. * This is basically a helper to remove the need to know whether a queue
  1917. * is plugged or not if someone just wants to initiate dispatch of requests
  1918. * for this queue.
  1919. *
  1920. * The queue lock must be held with interrupts disabled.
  1921. */
  1922. void blk_start_queueing(struct request_queue *q)
  1923. {
  1924. if (!blk_queue_plugged(q))
  1925. q->request_fn(q);
  1926. else
  1927. __generic_unplug_device(q);
  1928. }
  1929. EXPORT_SYMBOL(blk_start_queueing);
  1930. /**
  1931. * blk_requeue_request - put a request back on queue
  1932. * @q: request queue where request should be inserted
  1933. * @rq: request to be inserted
  1934. *
  1935. * Description:
  1936. * Drivers often keep queueing requests until the hardware cannot accept
  1937. * more, when that condition happens we need to put the request back
  1938. * on the queue. Must be called with queue lock held.
  1939. */
  1940. void blk_requeue_request(struct request_queue *q, struct request *rq)
  1941. {
  1942. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1943. if (blk_rq_tagged(rq))
  1944. blk_queue_end_tag(q, rq);
  1945. elv_requeue_request(q, rq);
  1946. }
  1947. EXPORT_SYMBOL(blk_requeue_request);
  1948. /**
  1949. * blk_insert_request - insert a special request in to a request queue
  1950. * @q: request queue where request should be inserted
  1951. * @rq: request to be inserted
  1952. * @at_head: insert request at head or tail of queue
  1953. * @data: private data
  1954. *
  1955. * Description:
  1956. * Many block devices need to execute commands asynchronously, so they don't
  1957. * block the whole kernel from preemption during request execution. This is
  1958. * accomplished normally by inserting aritficial requests tagged as
  1959. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1960. * scheduled for actual execution by the request queue.
  1961. *
  1962. * We have the option of inserting the head or the tail of the queue.
  1963. * Typically we use the tail for new ioctls and so forth. We use the head
  1964. * of the queue for things like a QUEUE_FULL message from a device, or a
  1965. * host that is unable to accept a particular command.
  1966. */
  1967. void blk_insert_request(struct request_queue *q, struct request *rq,
  1968. int at_head, void *data)
  1969. {
  1970. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1971. unsigned long flags;
  1972. /*
  1973. * tell I/O scheduler that this isn't a regular read/write (ie it
  1974. * must not attempt merges on this) and that it acts as a soft
  1975. * barrier
  1976. */
  1977. rq->cmd_type = REQ_TYPE_SPECIAL;
  1978. rq->cmd_flags |= REQ_SOFTBARRIER;
  1979. rq->special = data;
  1980. spin_lock_irqsave(q->queue_lock, flags);
  1981. /*
  1982. * If command is tagged, release the tag
  1983. */
  1984. if (blk_rq_tagged(rq))
  1985. blk_queue_end_tag(q, rq);
  1986. drive_stat_acct(rq, rq->nr_sectors, 1);
  1987. __elv_add_request(q, rq, where, 0);
  1988. blk_start_queueing(q);
  1989. spin_unlock_irqrestore(q->queue_lock, flags);
  1990. }
  1991. EXPORT_SYMBOL(blk_insert_request);
  1992. static int __blk_rq_unmap_user(struct bio *bio)
  1993. {
  1994. int ret = 0;
  1995. if (bio) {
  1996. if (bio_flagged(bio, BIO_USER_MAPPED))
  1997. bio_unmap_user(bio);
  1998. else
  1999. ret = bio_uncopy_user(bio);
  2000. }
  2001. return ret;
  2002. }
  2003. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  2004. struct bio *bio)
  2005. {
  2006. if (!rq->bio)
  2007. blk_rq_bio_prep(q, rq, bio);
  2008. else if (!ll_back_merge_fn(q, rq, bio))
  2009. return -EINVAL;
  2010. else {
  2011. rq->biotail->bi_next = bio;
  2012. rq->biotail = bio;
  2013. rq->data_len += bio->bi_size;
  2014. }
  2015. return 0;
  2016. }
  2017. EXPORT_SYMBOL(blk_rq_append_bio);
  2018. static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
  2019. void __user *ubuf, unsigned int len)
  2020. {
  2021. unsigned long uaddr;
  2022. struct bio *bio, *orig_bio;
  2023. int reading, ret;
  2024. reading = rq_data_dir(rq) == READ;
  2025. /*
  2026. * if alignment requirement is satisfied, map in user pages for
  2027. * direct dma. else, set up kernel bounce buffers
  2028. */
  2029. uaddr = (unsigned long) ubuf;
  2030. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2031. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2032. else
  2033. bio = bio_copy_user(q, uaddr, len, reading);
  2034. if (IS_ERR(bio))
  2035. return PTR_ERR(bio);
  2036. orig_bio = bio;
  2037. blk_queue_bounce(q, &bio);
  2038. /*
  2039. * We link the bounce buffer in and could have to traverse it
  2040. * later so we have to get a ref to prevent it from being freed
  2041. */
  2042. bio_get(bio);
  2043. ret = blk_rq_append_bio(q, rq, bio);
  2044. if (!ret)
  2045. return bio->bi_size;
  2046. /* if it was boucned we must call the end io function */
  2047. bio_endio(bio, 0);
  2048. __blk_rq_unmap_user(orig_bio);
  2049. bio_put(bio);
  2050. return ret;
  2051. }
  2052. /**
  2053. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2054. * @q: request queue where request should be inserted
  2055. * @rq: request structure to fill
  2056. * @ubuf: the user buffer
  2057. * @len: length of user data
  2058. *
  2059. * Description:
  2060. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2061. * a kernel bounce buffer is used.
  2062. *
  2063. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2064. * still in process context.
  2065. *
  2066. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2067. * before being submitted to the device, as pages mapped may be out of
  2068. * reach. It's the callers responsibility to make sure this happens. The
  2069. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2070. * unmapping.
  2071. */
  2072. int blk_rq_map_user(struct request_queue *q, struct request *rq,
  2073. void __user *ubuf, unsigned long len)
  2074. {
  2075. unsigned long bytes_read = 0;
  2076. struct bio *bio = NULL;
  2077. int ret;
  2078. if (len > (q->max_hw_sectors << 9))
  2079. return -EINVAL;
  2080. if (!len || !ubuf)
  2081. return -EINVAL;
  2082. while (bytes_read != len) {
  2083. unsigned long map_len, end, start;
  2084. map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
  2085. end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
  2086. >> PAGE_SHIFT;
  2087. start = (unsigned long)ubuf >> PAGE_SHIFT;
  2088. /*
  2089. * A bad offset could cause us to require BIO_MAX_PAGES + 1
  2090. * pages. If this happens we just lower the requested
  2091. * mapping len by a page so that we can fit
  2092. */
  2093. if (end - start > BIO_MAX_PAGES)
  2094. map_len -= PAGE_SIZE;
  2095. ret = __blk_rq_map_user(q, rq, ubuf, map_len);
  2096. if (ret < 0)
  2097. goto unmap_rq;
  2098. if (!bio)
  2099. bio = rq->bio;
  2100. bytes_read += ret;
  2101. ubuf += ret;
  2102. }
  2103. rq->buffer = rq->data = NULL;
  2104. return 0;
  2105. unmap_rq:
  2106. blk_rq_unmap_user(bio);
  2107. return ret;
  2108. }
  2109. EXPORT_SYMBOL(blk_rq_map_user);
  2110. /**
  2111. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2112. * @q: request queue where request should be inserted
  2113. * @rq: request to map data to
  2114. * @iov: pointer to the iovec
  2115. * @iov_count: number of elements in the iovec
  2116. * @len: I/O byte count
  2117. *
  2118. * Description:
  2119. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2120. * a kernel bounce buffer is used.
  2121. *
  2122. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2123. * still in process context.
  2124. *
  2125. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2126. * before being submitted to the device, as pages mapped may be out of
  2127. * reach. It's the callers responsibility to make sure this happens. The
  2128. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2129. * unmapping.
  2130. */
  2131. int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
  2132. struct sg_iovec *iov, int iov_count, unsigned int len)
  2133. {
  2134. struct bio *bio;
  2135. if (!iov || iov_count <= 0)
  2136. return -EINVAL;
  2137. /* we don't allow misaligned data like bio_map_user() does. If the
  2138. * user is using sg, they're expected to know the alignment constraints
  2139. * and respect them accordingly */
  2140. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2141. if (IS_ERR(bio))
  2142. return PTR_ERR(bio);
  2143. if (bio->bi_size != len) {
  2144. bio_endio(bio, 0);
  2145. bio_unmap_user(bio);
  2146. return -EINVAL;
  2147. }
  2148. bio_get(bio);
  2149. blk_rq_bio_prep(q, rq, bio);
  2150. rq->buffer = rq->data = NULL;
  2151. return 0;
  2152. }
  2153. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2154. /**
  2155. * blk_rq_unmap_user - unmap a request with user data
  2156. * @bio: start of bio list
  2157. *
  2158. * Description:
  2159. * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
  2160. * supply the original rq->bio from the blk_rq_map_user() return, since
  2161. * the io completion may have changed rq->bio.
  2162. */
  2163. int blk_rq_unmap_user(struct bio *bio)
  2164. {
  2165. struct bio *mapped_bio;
  2166. int ret = 0, ret2;
  2167. while (bio) {
  2168. mapped_bio = bio;
  2169. if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
  2170. mapped_bio = bio->bi_private;
  2171. ret2 = __blk_rq_unmap_user(mapped_bio);
  2172. if (ret2 && !ret)
  2173. ret = ret2;
  2174. mapped_bio = bio;
  2175. bio = bio->bi_next;
  2176. bio_put(mapped_bio);
  2177. }
  2178. return ret;
  2179. }
  2180. EXPORT_SYMBOL(blk_rq_unmap_user);
  2181. /**
  2182. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2183. * @q: request queue where request should be inserted
  2184. * @rq: request to fill
  2185. * @kbuf: the kernel buffer
  2186. * @len: length of user data
  2187. * @gfp_mask: memory allocation flags
  2188. */
  2189. int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
  2190. unsigned int len, gfp_t gfp_mask)
  2191. {
  2192. struct bio *bio;
  2193. if (len > (q->max_hw_sectors << 9))
  2194. return -EINVAL;
  2195. if (!len || !kbuf)
  2196. return -EINVAL;
  2197. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2198. if (IS_ERR(bio))
  2199. return PTR_ERR(bio);
  2200. if (rq_data_dir(rq) == WRITE)
  2201. bio->bi_rw |= (1 << BIO_RW);
  2202. blk_rq_bio_prep(q, rq, bio);
  2203. blk_queue_bounce(q, &rq->bio);
  2204. rq->buffer = rq->data = NULL;
  2205. return 0;
  2206. }
  2207. EXPORT_SYMBOL(blk_rq_map_kern);
  2208. /**
  2209. * blk_execute_rq_nowait - insert a request into queue for execution
  2210. * @q: queue to insert the request in
  2211. * @bd_disk: matching gendisk
  2212. * @rq: request to insert
  2213. * @at_head: insert request at head or tail of queue
  2214. * @done: I/O completion handler
  2215. *
  2216. * Description:
  2217. * Insert a fully prepared request at the back of the io scheduler queue
  2218. * for execution. Don't wait for completion.
  2219. */
  2220. void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
  2221. struct request *rq, int at_head,
  2222. rq_end_io_fn *done)
  2223. {
  2224. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2225. rq->rq_disk = bd_disk;
  2226. rq->cmd_flags |= REQ_NOMERGE;
  2227. rq->end_io = done;
  2228. WARN_ON(irqs_disabled());
  2229. spin_lock_irq(q->queue_lock);
  2230. __elv_add_request(q, rq, where, 1);
  2231. __generic_unplug_device(q);
  2232. spin_unlock_irq(q->queue_lock);
  2233. }
  2234. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2235. /**
  2236. * blk_execute_rq - insert a request into queue for execution
  2237. * @q: queue to insert the request in
  2238. * @bd_disk: matching gendisk
  2239. * @rq: request to insert
  2240. * @at_head: insert request at head or tail of queue
  2241. *
  2242. * Description:
  2243. * Insert a fully prepared request at the back of the io scheduler queue
  2244. * for execution and wait for completion.
  2245. */
  2246. int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
  2247. struct request *rq, int at_head)
  2248. {
  2249. DECLARE_COMPLETION_ONSTACK(wait);
  2250. char sense[SCSI_SENSE_BUFFERSIZE];
  2251. int err = 0;
  2252. /*
  2253. * we need an extra reference to the request, so we can look at
  2254. * it after io completion
  2255. */
  2256. rq->ref_count++;
  2257. if (!rq->sense) {
  2258. memset(sense, 0, sizeof(sense));
  2259. rq->sense = sense;
  2260. rq->sense_len = 0;
  2261. }
  2262. rq->end_io_data = &wait;
  2263. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2264. wait_for_completion(&wait);
  2265. if (rq->errors)
  2266. err = -EIO;
  2267. return err;
  2268. }
  2269. EXPORT_SYMBOL(blk_execute_rq);
  2270. /**
  2271. * blkdev_issue_flush - queue a flush
  2272. * @bdev: blockdev to issue flush for
  2273. * @error_sector: error sector
  2274. *
  2275. * Description:
  2276. * Issue a flush for the block device in question. Caller can supply
  2277. * room for storing the error offset in case of a flush error, if they
  2278. * wish to. Caller must run wait_for_completion() on its own.
  2279. */
  2280. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2281. {
  2282. struct request_queue *q;
  2283. if (bdev->bd_disk == NULL)
  2284. return -ENXIO;
  2285. q = bdev_get_queue(bdev);
  2286. if (!q)
  2287. return -ENXIO;
  2288. if (!q->issue_flush_fn)
  2289. return -EOPNOTSUPP;
  2290. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2291. }
  2292. EXPORT_SYMBOL(blkdev_issue_flush);
  2293. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2294. {
  2295. int rw = rq_data_dir(rq);
  2296. if (!blk_fs_request(rq) || !rq->rq_disk)
  2297. return;
  2298. if (!new_io) {
  2299. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2300. } else {
  2301. disk_round_stats(rq->rq_disk);
  2302. rq->rq_disk->in_flight++;
  2303. }
  2304. }
  2305. /*
  2306. * add-request adds a request to the linked list.
  2307. * queue lock is held and interrupts disabled, as we muck with the
  2308. * request queue list.
  2309. */
  2310. static inline void add_request(struct request_queue * q, struct request * req)
  2311. {
  2312. drive_stat_acct(req, req->nr_sectors, 1);
  2313. /*
  2314. * elevator indicated where it wants this request to be
  2315. * inserted at elevator_merge time
  2316. */
  2317. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2318. }
  2319. /*
  2320. * disk_round_stats() - Round off the performance stats on a struct
  2321. * disk_stats.
  2322. *
  2323. * The average IO queue length and utilisation statistics are maintained
  2324. * by observing the current state of the queue length and the amount of
  2325. * time it has been in this state for.
  2326. *
  2327. * Normally, that accounting is done on IO completion, but that can result
  2328. * in more than a second's worth of IO being accounted for within any one
  2329. * second, leading to >100% utilisation. To deal with that, we call this
  2330. * function to do a round-off before returning the results when reading
  2331. * /proc/diskstats. This accounts immediately for all queue usage up to
  2332. * the current jiffies and restarts the counters again.
  2333. */
  2334. void disk_round_stats(struct gendisk *disk)
  2335. {
  2336. unsigned long now = jiffies;
  2337. if (now == disk->stamp)
  2338. return;
  2339. if (disk->in_flight) {
  2340. __disk_stat_add(disk, time_in_queue,
  2341. disk->in_flight * (now - disk->stamp));
  2342. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2343. }
  2344. disk->stamp = now;
  2345. }
  2346. EXPORT_SYMBOL_GPL(disk_round_stats);
  2347. /*
  2348. * queue lock must be held
  2349. */
  2350. void __blk_put_request(struct request_queue *q, struct request *req)
  2351. {
  2352. if (unlikely(!q))
  2353. return;
  2354. if (unlikely(--req->ref_count))
  2355. return;
  2356. elv_completed_request(q, req);
  2357. /*
  2358. * Request may not have originated from ll_rw_blk. if not,
  2359. * it didn't come out of our reserved rq pools
  2360. */
  2361. if (req->cmd_flags & REQ_ALLOCED) {
  2362. int rw = rq_data_dir(req);
  2363. int priv = req->cmd_flags & REQ_ELVPRIV;
  2364. BUG_ON(!list_empty(&req->queuelist));
  2365. BUG_ON(!hlist_unhashed(&req->hash));
  2366. blk_free_request(q, req);
  2367. freed_request(q, rw, priv);
  2368. }
  2369. }
  2370. EXPORT_SYMBOL_GPL(__blk_put_request);
  2371. void blk_put_request(struct request *req)
  2372. {
  2373. unsigned long flags;
  2374. struct request_queue *q = req->q;
  2375. /*
  2376. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2377. * following if (q) test.
  2378. */
  2379. if (q) {
  2380. spin_lock_irqsave(q->queue_lock, flags);
  2381. __blk_put_request(q, req);
  2382. spin_unlock_irqrestore(q->queue_lock, flags);
  2383. }
  2384. }
  2385. EXPORT_SYMBOL(blk_put_request);
  2386. /**
  2387. * blk_end_sync_rq - executes a completion event on a request
  2388. * @rq: request to complete
  2389. * @error: end io status of the request
  2390. */
  2391. void blk_end_sync_rq(struct request *rq, int error)
  2392. {
  2393. struct completion *waiting = rq->end_io_data;
  2394. rq->end_io_data = NULL;
  2395. __blk_put_request(rq->q, rq);
  2396. /*
  2397. * complete last, if this is a stack request the process (and thus
  2398. * the rq pointer) could be invalid right after this complete()
  2399. */
  2400. complete(waiting);
  2401. }
  2402. EXPORT_SYMBOL(blk_end_sync_rq);
  2403. /*
  2404. * Has to be called with the request spinlock acquired
  2405. */
  2406. static int attempt_merge(struct request_queue *q, struct request *req,
  2407. struct request *next)
  2408. {
  2409. if (!rq_mergeable(req) || !rq_mergeable(next))
  2410. return 0;
  2411. /*
  2412. * not contiguous
  2413. */
  2414. if (req->sector + req->nr_sectors != next->sector)
  2415. return 0;
  2416. if (rq_data_dir(req) != rq_data_dir(next)
  2417. || req->rq_disk != next->rq_disk
  2418. || next->special)
  2419. return 0;
  2420. /*
  2421. * If we are allowed to merge, then append bio list
  2422. * from next to rq and release next. merge_requests_fn
  2423. * will have updated segment counts, update sector
  2424. * counts here.
  2425. */
  2426. if (!ll_merge_requests_fn(q, req, next))
  2427. return 0;
  2428. /*
  2429. * At this point we have either done a back merge
  2430. * or front merge. We need the smaller start_time of
  2431. * the merged requests to be the current request
  2432. * for accounting purposes.
  2433. */
  2434. if (time_after(req->start_time, next->start_time))
  2435. req->start_time = next->start_time;
  2436. req->biotail->bi_next = next->bio;
  2437. req->biotail = next->biotail;
  2438. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2439. elv_merge_requests(q, req, next);
  2440. if (req->rq_disk) {
  2441. disk_round_stats(req->rq_disk);
  2442. req->rq_disk->in_flight--;
  2443. }
  2444. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2445. __blk_put_request(q, next);
  2446. return 1;
  2447. }
  2448. static inline int attempt_back_merge(struct request_queue *q,
  2449. struct request *rq)
  2450. {
  2451. struct request *next = elv_latter_request(q, rq);
  2452. if (next)
  2453. return attempt_merge(q, rq, next);
  2454. return 0;
  2455. }
  2456. static inline int attempt_front_merge(struct request_queue *q,
  2457. struct request *rq)
  2458. {
  2459. struct request *prev = elv_former_request(q, rq);
  2460. if (prev)
  2461. return attempt_merge(q, prev, rq);
  2462. return 0;
  2463. }
  2464. static void init_request_from_bio(struct request *req, struct bio *bio)
  2465. {
  2466. req->cmd_type = REQ_TYPE_FS;
  2467. /*
  2468. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2469. */
  2470. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2471. req->cmd_flags |= REQ_FAILFAST;
  2472. /*
  2473. * REQ_BARRIER implies no merging, but lets make it explicit
  2474. */
  2475. if (unlikely(bio_barrier(bio)))
  2476. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2477. if (bio_sync(bio))
  2478. req->cmd_flags |= REQ_RW_SYNC;
  2479. if (bio_rw_meta(bio))
  2480. req->cmd_flags |= REQ_RW_META;
  2481. req->errors = 0;
  2482. req->hard_sector = req->sector = bio->bi_sector;
  2483. req->ioprio = bio_prio(bio);
  2484. req->start_time = jiffies;
  2485. blk_rq_bio_prep(req->q, req, bio);
  2486. }
  2487. static int __make_request(struct request_queue *q, struct bio *bio)
  2488. {
  2489. struct request *req;
  2490. int el_ret, nr_sectors, barrier, err;
  2491. const unsigned short prio = bio_prio(bio);
  2492. const int sync = bio_sync(bio);
  2493. int rw_flags;
  2494. nr_sectors = bio_sectors(bio);
  2495. /*
  2496. * low level driver can indicate that it wants pages above a
  2497. * certain limit bounced to low memory (ie for highmem, or even
  2498. * ISA dma in theory)
  2499. */
  2500. blk_queue_bounce(q, &bio);
  2501. barrier = bio_barrier(bio);
  2502. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2503. err = -EOPNOTSUPP;
  2504. goto end_io;
  2505. }
  2506. spin_lock_irq(q->queue_lock);
  2507. if (unlikely(barrier) || elv_queue_empty(q))
  2508. goto get_rq;
  2509. el_ret = elv_merge(q, &req, bio);
  2510. switch (el_ret) {
  2511. case ELEVATOR_BACK_MERGE:
  2512. BUG_ON(!rq_mergeable(req));
  2513. if (!ll_back_merge_fn(q, req, bio))
  2514. break;
  2515. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2516. req->biotail->bi_next = bio;
  2517. req->biotail = bio;
  2518. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2519. req->ioprio = ioprio_best(req->ioprio, prio);
  2520. drive_stat_acct(req, nr_sectors, 0);
  2521. if (!attempt_back_merge(q, req))
  2522. elv_merged_request(q, req, el_ret);
  2523. goto out;
  2524. case ELEVATOR_FRONT_MERGE:
  2525. BUG_ON(!rq_mergeable(req));
  2526. if (!ll_front_merge_fn(q, req, bio))
  2527. break;
  2528. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2529. bio->bi_next = req->bio;
  2530. req->bio = bio;
  2531. /*
  2532. * may not be valid. if the low level driver said
  2533. * it didn't need a bounce buffer then it better
  2534. * not touch req->buffer either...
  2535. */
  2536. req->buffer = bio_data(bio);
  2537. req->current_nr_sectors = bio_cur_sectors(bio);
  2538. req->hard_cur_sectors = req->current_nr_sectors;
  2539. req->sector = req->hard_sector = bio->bi_sector;
  2540. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2541. req->ioprio = ioprio_best(req->ioprio, prio);
  2542. drive_stat_acct(req, nr_sectors, 0);
  2543. if (!attempt_front_merge(q, req))
  2544. elv_merged_request(q, req, el_ret);
  2545. goto out;
  2546. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2547. default:
  2548. ;
  2549. }
  2550. get_rq:
  2551. /*
  2552. * This sync check and mask will be re-done in init_request_from_bio(),
  2553. * but we need to set it earlier to expose the sync flag to the
  2554. * rq allocator and io schedulers.
  2555. */
  2556. rw_flags = bio_data_dir(bio);
  2557. if (sync)
  2558. rw_flags |= REQ_RW_SYNC;
  2559. /*
  2560. * Grab a free request. This is might sleep but can not fail.
  2561. * Returns with the queue unlocked.
  2562. */
  2563. req = get_request_wait(q, rw_flags, bio);
  2564. /*
  2565. * After dropping the lock and possibly sleeping here, our request
  2566. * may now be mergeable after it had proven unmergeable (above).
  2567. * We don't worry about that case for efficiency. It won't happen
  2568. * often, and the elevators are able to handle it.
  2569. */
  2570. init_request_from_bio(req, bio);
  2571. spin_lock_irq(q->queue_lock);
  2572. if (elv_queue_empty(q))
  2573. blk_plug_device(q);
  2574. add_request(q, req);
  2575. out:
  2576. if (sync)
  2577. __generic_unplug_device(q);
  2578. spin_unlock_irq(q->queue_lock);
  2579. return 0;
  2580. end_io:
  2581. bio_endio(bio, err);
  2582. return 0;
  2583. }
  2584. /*
  2585. * If bio->bi_dev is a partition, remap the location
  2586. */
  2587. static inline void blk_partition_remap(struct bio *bio)
  2588. {
  2589. struct block_device *bdev = bio->bi_bdev;
  2590. if (bio_sectors(bio) && bdev != bdev->bd_contains) {
  2591. struct hd_struct *p = bdev->bd_part;
  2592. const int rw = bio_data_dir(bio);
  2593. p->sectors[rw] += bio_sectors(bio);
  2594. p->ios[rw]++;
  2595. bio->bi_sector += p->start_sect;
  2596. bio->bi_bdev = bdev->bd_contains;
  2597. blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
  2598. bdev->bd_dev, bio->bi_sector,
  2599. bio->bi_sector - p->start_sect);
  2600. }
  2601. }
  2602. static void handle_bad_sector(struct bio *bio)
  2603. {
  2604. char b[BDEVNAME_SIZE];
  2605. printk(KERN_INFO "attempt to access beyond end of device\n");
  2606. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2607. bdevname(bio->bi_bdev, b),
  2608. bio->bi_rw,
  2609. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2610. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2611. set_bit(BIO_EOF, &bio->bi_flags);
  2612. }
  2613. #ifdef CONFIG_FAIL_MAKE_REQUEST
  2614. static DECLARE_FAULT_ATTR(fail_make_request);
  2615. static int __init setup_fail_make_request(char *str)
  2616. {
  2617. return setup_fault_attr(&fail_make_request, str);
  2618. }
  2619. __setup("fail_make_request=", setup_fail_make_request);
  2620. static int should_fail_request(struct bio *bio)
  2621. {
  2622. if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
  2623. (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
  2624. return should_fail(&fail_make_request, bio->bi_size);
  2625. return 0;
  2626. }
  2627. static int __init fail_make_request_debugfs(void)
  2628. {
  2629. return init_fault_attr_dentries(&fail_make_request,
  2630. "fail_make_request");
  2631. }
  2632. late_initcall(fail_make_request_debugfs);
  2633. #else /* CONFIG_FAIL_MAKE_REQUEST */
  2634. static inline int should_fail_request(struct bio *bio)
  2635. {
  2636. return 0;
  2637. }
  2638. #endif /* CONFIG_FAIL_MAKE_REQUEST */
  2639. /*
  2640. * Check whether this bio extends beyond the end of the device.
  2641. */
  2642. static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
  2643. {
  2644. sector_t maxsector;
  2645. if (!nr_sectors)
  2646. return 0;
  2647. /* Test device or partition size, when known. */
  2648. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2649. if (maxsector) {
  2650. sector_t sector = bio->bi_sector;
  2651. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2652. /*
  2653. * This may well happen - the kernel calls bread()
  2654. * without checking the size of the device, e.g., when
  2655. * mounting a device.
  2656. */
  2657. handle_bad_sector(bio);
  2658. return 1;
  2659. }
  2660. }
  2661. return 0;
  2662. }
  2663. /**
  2664. * generic_make_request: hand a buffer to its device driver for I/O
  2665. * @bio: The bio describing the location in memory and on the device.
  2666. *
  2667. * generic_make_request() is used to make I/O requests of block
  2668. * devices. It is passed a &struct bio, which describes the I/O that needs
  2669. * to be done.
  2670. *
  2671. * generic_make_request() does not return any status. The
  2672. * success/failure status of the request, along with notification of
  2673. * completion, is delivered asynchronously through the bio->bi_end_io
  2674. * function described (one day) else where.
  2675. *
  2676. * The caller of generic_make_request must make sure that bi_io_vec
  2677. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2678. * set to describe the device address, and the
  2679. * bi_end_io and optionally bi_private are set to describe how
  2680. * completion notification should be signaled.
  2681. *
  2682. * generic_make_request and the drivers it calls may use bi_next if this
  2683. * bio happens to be merged with someone else, and may change bi_dev and
  2684. * bi_sector for remaps as it sees fit. So the values of these fields
  2685. * should NOT be depended on after the call to generic_make_request.
  2686. */
  2687. static inline void __generic_make_request(struct bio *bio)
  2688. {
  2689. struct request_queue *q;
  2690. sector_t old_sector;
  2691. int ret, nr_sectors = bio_sectors(bio);
  2692. dev_t old_dev;
  2693. might_sleep();
  2694. if (bio_check_eod(bio, nr_sectors))
  2695. goto end_io;
  2696. /*
  2697. * Resolve the mapping until finished. (drivers are
  2698. * still free to implement/resolve their own stacking
  2699. * by explicitly returning 0)
  2700. *
  2701. * NOTE: we don't repeat the blk_size check for each new device.
  2702. * Stacking drivers are expected to know what they are doing.
  2703. */
  2704. old_sector = -1;
  2705. old_dev = 0;
  2706. do {
  2707. char b[BDEVNAME_SIZE];
  2708. q = bdev_get_queue(bio->bi_bdev);
  2709. if (!q) {
  2710. printk(KERN_ERR
  2711. "generic_make_request: Trying to access "
  2712. "nonexistent block-device %s (%Lu)\n",
  2713. bdevname(bio->bi_bdev, b),
  2714. (long long) bio->bi_sector);
  2715. end_io:
  2716. bio_endio(bio, -EIO);
  2717. break;
  2718. }
  2719. if (unlikely(nr_sectors > q->max_hw_sectors)) {
  2720. printk("bio too big device %s (%u > %u)\n",
  2721. bdevname(bio->bi_bdev, b),
  2722. bio_sectors(bio),
  2723. q->max_hw_sectors);
  2724. goto end_io;
  2725. }
  2726. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2727. goto end_io;
  2728. if (should_fail_request(bio))
  2729. goto end_io;
  2730. /*
  2731. * If this device has partitions, remap block n
  2732. * of partition p to block n+start(p) of the disk.
  2733. */
  2734. blk_partition_remap(bio);
  2735. if (old_sector != -1)
  2736. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2737. old_sector);
  2738. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2739. old_sector = bio->bi_sector;
  2740. old_dev = bio->bi_bdev->bd_dev;
  2741. if (bio_check_eod(bio, nr_sectors))
  2742. goto end_io;
  2743. ret = q->make_request_fn(q, bio);
  2744. } while (ret);
  2745. }
  2746. /*
  2747. * We only want one ->make_request_fn to be active at a time,
  2748. * else stack usage with stacked devices could be a problem.
  2749. * So use current->bio_{list,tail} to keep a list of requests
  2750. * submited by a make_request_fn function.
  2751. * current->bio_tail is also used as a flag to say if
  2752. * generic_make_request is currently active in this task or not.
  2753. * If it is NULL, then no make_request is active. If it is non-NULL,
  2754. * then a make_request is active, and new requests should be added
  2755. * at the tail
  2756. */
  2757. void generic_make_request(struct bio *bio)
  2758. {
  2759. if (current->bio_tail) {
  2760. /* make_request is active */
  2761. *(current->bio_tail) = bio;
  2762. bio->bi_next = NULL;
  2763. current->bio_tail = &bio->bi_next;
  2764. return;
  2765. }
  2766. /* following loop may be a bit non-obvious, and so deserves some
  2767. * explanation.
  2768. * Before entering the loop, bio->bi_next is NULL (as all callers
  2769. * ensure that) so we have a list with a single bio.
  2770. * We pretend that we have just taken it off a longer list, so
  2771. * we assign bio_list to the next (which is NULL) and bio_tail
  2772. * to &bio_list, thus initialising the bio_list of new bios to be
  2773. * added. __generic_make_request may indeed add some more bios
  2774. * through a recursive call to generic_make_request. If it
  2775. * did, we find a non-NULL value in bio_list and re-enter the loop
  2776. * from the top. In this case we really did just take the bio
  2777. * of the top of the list (no pretending) and so fixup bio_list and
  2778. * bio_tail or bi_next, and call into __generic_make_request again.
  2779. *
  2780. * The loop was structured like this to make only one call to
  2781. * __generic_make_request (which is important as it is large and
  2782. * inlined) and to keep the structure simple.
  2783. */
  2784. BUG_ON(bio->bi_next);
  2785. do {
  2786. current->bio_list = bio->bi_next;
  2787. if (bio->bi_next == NULL)
  2788. current->bio_tail = &current->bio_list;
  2789. else
  2790. bio->bi_next = NULL;
  2791. __generic_make_request(bio);
  2792. bio = current->bio_list;
  2793. } while (bio);
  2794. current->bio_tail = NULL; /* deactivate */
  2795. }
  2796. EXPORT_SYMBOL(generic_make_request);
  2797. /**
  2798. * submit_bio: submit a bio to the block device layer for I/O
  2799. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2800. * @bio: The &struct bio which describes the I/O
  2801. *
  2802. * submit_bio() is very similar in purpose to generic_make_request(), and
  2803. * uses that function to do most of the work. Both are fairly rough
  2804. * interfaces, @bio must be presetup and ready for I/O.
  2805. *
  2806. */
  2807. void submit_bio(int rw, struct bio *bio)
  2808. {
  2809. int count = bio_sectors(bio);
  2810. bio->bi_rw |= rw;
  2811. /*
  2812. * If it's a regular read/write or a barrier with data attached,
  2813. * go through the normal accounting stuff before submission.
  2814. */
  2815. if (!bio_empty_barrier(bio)) {
  2816. BIO_BUG_ON(!bio->bi_size);
  2817. BIO_BUG_ON(!bio->bi_io_vec);
  2818. if (rw & WRITE) {
  2819. count_vm_events(PGPGOUT, count);
  2820. } else {
  2821. task_io_account_read(bio->bi_size);
  2822. count_vm_events(PGPGIN, count);
  2823. }
  2824. if (unlikely(block_dump)) {
  2825. char b[BDEVNAME_SIZE];
  2826. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2827. current->comm, current->pid,
  2828. (rw & WRITE) ? "WRITE" : "READ",
  2829. (unsigned long long)bio->bi_sector,
  2830. bdevname(bio->bi_bdev,b));
  2831. }
  2832. }
  2833. generic_make_request(bio);
  2834. }
  2835. EXPORT_SYMBOL(submit_bio);
  2836. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2837. {
  2838. if (blk_fs_request(rq)) {
  2839. rq->hard_sector += nsect;
  2840. rq->hard_nr_sectors -= nsect;
  2841. /*
  2842. * Move the I/O submission pointers ahead if required.
  2843. */
  2844. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2845. (rq->sector <= rq->hard_sector)) {
  2846. rq->sector = rq->hard_sector;
  2847. rq->nr_sectors = rq->hard_nr_sectors;
  2848. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2849. rq->current_nr_sectors = rq->hard_cur_sectors;
  2850. rq->buffer = bio_data(rq->bio);
  2851. }
  2852. /*
  2853. * if total number of sectors is less than the first segment
  2854. * size, something has gone terribly wrong
  2855. */
  2856. if (rq->nr_sectors < rq->current_nr_sectors) {
  2857. printk("blk: request botched\n");
  2858. rq->nr_sectors = rq->current_nr_sectors;
  2859. }
  2860. }
  2861. }
  2862. static int __end_that_request_first(struct request *req, int uptodate,
  2863. int nr_bytes)
  2864. {
  2865. int total_bytes, bio_nbytes, error, next_idx = 0;
  2866. struct bio *bio;
  2867. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2868. /*
  2869. * extend uptodate bool to allow < 0 value to be direct io error
  2870. */
  2871. error = 0;
  2872. if (end_io_error(uptodate))
  2873. error = !uptodate ? -EIO : uptodate;
  2874. /*
  2875. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2876. * sense key with us all the way through
  2877. */
  2878. if (!blk_pc_request(req))
  2879. req->errors = 0;
  2880. if (!uptodate) {
  2881. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2882. printk("end_request: I/O error, dev %s, sector %llu\n",
  2883. req->rq_disk ? req->rq_disk->disk_name : "?",
  2884. (unsigned long long)req->sector);
  2885. }
  2886. if (blk_fs_request(req) && req->rq_disk) {
  2887. const int rw = rq_data_dir(req);
  2888. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2889. }
  2890. total_bytes = bio_nbytes = 0;
  2891. while ((bio = req->bio) != NULL) {
  2892. int nbytes;
  2893. /*
  2894. * For an empty barrier request, the low level driver must
  2895. * store a potential error location in ->sector. We pass
  2896. * that back up in ->bi_sector.
  2897. */
  2898. if (blk_empty_barrier(req))
  2899. bio->bi_sector = req->sector;
  2900. if (nr_bytes >= bio->bi_size) {
  2901. req->bio = bio->bi_next;
  2902. nbytes = bio->bi_size;
  2903. req_bio_endio(req, bio, nbytes, error);
  2904. next_idx = 0;
  2905. bio_nbytes = 0;
  2906. } else {
  2907. int idx = bio->bi_idx + next_idx;
  2908. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2909. blk_dump_rq_flags(req, "__end_that");
  2910. printk("%s: bio idx %d >= vcnt %d\n",
  2911. __FUNCTION__,
  2912. bio->bi_idx, bio->bi_vcnt);
  2913. break;
  2914. }
  2915. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2916. BIO_BUG_ON(nbytes > bio->bi_size);
  2917. /*
  2918. * not a complete bvec done
  2919. */
  2920. if (unlikely(nbytes > nr_bytes)) {
  2921. bio_nbytes += nr_bytes;
  2922. total_bytes += nr_bytes;
  2923. break;
  2924. }
  2925. /*
  2926. * advance to the next vector
  2927. */
  2928. next_idx++;
  2929. bio_nbytes += nbytes;
  2930. }
  2931. total_bytes += nbytes;
  2932. nr_bytes -= nbytes;
  2933. if ((bio = req->bio)) {
  2934. /*
  2935. * end more in this run, or just return 'not-done'
  2936. */
  2937. if (unlikely(nr_bytes <= 0))
  2938. break;
  2939. }
  2940. }
  2941. /*
  2942. * completely done
  2943. */
  2944. if (!req->bio)
  2945. return 0;
  2946. /*
  2947. * if the request wasn't completed, update state
  2948. */
  2949. if (bio_nbytes) {
  2950. req_bio_endio(req, bio, bio_nbytes, error);
  2951. bio->bi_idx += next_idx;
  2952. bio_iovec(bio)->bv_offset += nr_bytes;
  2953. bio_iovec(bio)->bv_len -= nr_bytes;
  2954. }
  2955. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2956. blk_recalc_rq_segments(req);
  2957. return 1;
  2958. }
  2959. /**
  2960. * end_that_request_first - end I/O on a request
  2961. * @req: the request being processed
  2962. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2963. * @nr_sectors: number of sectors to end I/O on
  2964. *
  2965. * Description:
  2966. * Ends I/O on a number of sectors attached to @req, and sets it up
  2967. * for the next range of segments (if any) in the cluster.
  2968. *
  2969. * Return:
  2970. * 0 - we are done with this request, call end_that_request_last()
  2971. * 1 - still buffers pending for this request
  2972. **/
  2973. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2974. {
  2975. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2976. }
  2977. EXPORT_SYMBOL(end_that_request_first);
  2978. /**
  2979. * end_that_request_chunk - end I/O on a request
  2980. * @req: the request being processed
  2981. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2982. * @nr_bytes: number of bytes to complete
  2983. *
  2984. * Description:
  2985. * Ends I/O on a number of bytes attached to @req, and sets it up
  2986. * for the next range of segments (if any). Like end_that_request_first(),
  2987. * but deals with bytes instead of sectors.
  2988. *
  2989. * Return:
  2990. * 0 - we are done with this request, call end_that_request_last()
  2991. * 1 - still buffers pending for this request
  2992. **/
  2993. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2994. {
  2995. return __end_that_request_first(req, uptodate, nr_bytes);
  2996. }
  2997. EXPORT_SYMBOL(end_that_request_chunk);
  2998. /*
  2999. * splice the completion data to a local structure and hand off to
  3000. * process_completion_queue() to complete the requests
  3001. */
  3002. static void blk_done_softirq(struct softirq_action *h)
  3003. {
  3004. struct list_head *cpu_list, local_list;
  3005. local_irq_disable();
  3006. cpu_list = &__get_cpu_var(blk_cpu_done);
  3007. list_replace_init(cpu_list, &local_list);
  3008. local_irq_enable();
  3009. while (!list_empty(&local_list)) {
  3010. struct request *rq = list_entry(local_list.next, struct request, donelist);
  3011. list_del_init(&rq->donelist);
  3012. rq->q->softirq_done_fn(rq);
  3013. }
  3014. }
  3015. static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
  3016. void *hcpu)
  3017. {
  3018. /*
  3019. * If a CPU goes away, splice its entries to the current CPU
  3020. * and trigger a run of the softirq
  3021. */
  3022. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3023. int cpu = (unsigned long) hcpu;
  3024. local_irq_disable();
  3025. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  3026. &__get_cpu_var(blk_cpu_done));
  3027. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3028. local_irq_enable();
  3029. }
  3030. return NOTIFY_OK;
  3031. }
  3032. static struct notifier_block blk_cpu_notifier __cpuinitdata = {
  3033. .notifier_call = blk_cpu_notify,
  3034. };
  3035. /**
  3036. * blk_complete_request - end I/O on a request
  3037. * @req: the request being processed
  3038. *
  3039. * Description:
  3040. * Ends all I/O on a request. It does not handle partial completions,
  3041. * unless the driver actually implements this in its completion callback
  3042. * through requeueing. The actual completion happens out-of-order,
  3043. * through a softirq handler. The user must have registered a completion
  3044. * callback through blk_queue_softirq_done().
  3045. **/
  3046. void blk_complete_request(struct request *req)
  3047. {
  3048. struct list_head *cpu_list;
  3049. unsigned long flags;
  3050. BUG_ON(!req->q->softirq_done_fn);
  3051. local_irq_save(flags);
  3052. cpu_list = &__get_cpu_var(blk_cpu_done);
  3053. list_add_tail(&req->donelist, cpu_list);
  3054. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3055. local_irq_restore(flags);
  3056. }
  3057. EXPORT_SYMBOL(blk_complete_request);
  3058. /*
  3059. * queue lock must be held
  3060. */
  3061. void end_that_request_last(struct request *req, int uptodate)
  3062. {
  3063. struct gendisk *disk = req->rq_disk;
  3064. int error;
  3065. /*
  3066. * extend uptodate bool to allow < 0 value to be direct io error
  3067. */
  3068. error = 0;
  3069. if (end_io_error(uptodate))
  3070. error = !uptodate ? -EIO : uptodate;
  3071. if (unlikely(laptop_mode) && blk_fs_request(req))
  3072. laptop_io_completion();
  3073. /*
  3074. * Account IO completion. bar_rq isn't accounted as a normal
  3075. * IO on queueing nor completion. Accounting the containing
  3076. * request is enough.
  3077. */
  3078. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  3079. unsigned long duration = jiffies - req->start_time;
  3080. const int rw = rq_data_dir(req);
  3081. __disk_stat_inc(disk, ios[rw]);
  3082. __disk_stat_add(disk, ticks[rw], duration);
  3083. disk_round_stats(disk);
  3084. disk->in_flight--;
  3085. }
  3086. if (req->end_io)
  3087. req->end_io(req, error);
  3088. else
  3089. __blk_put_request(req->q, req);
  3090. }
  3091. EXPORT_SYMBOL(end_that_request_last);
  3092. static inline void __end_request(struct request *rq, int uptodate,
  3093. unsigned int nr_bytes, int dequeue)
  3094. {
  3095. if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
  3096. if (dequeue)
  3097. blkdev_dequeue_request(rq);
  3098. add_disk_randomness(rq->rq_disk);
  3099. end_that_request_last(rq, uptodate);
  3100. }
  3101. }
  3102. static unsigned int rq_byte_size(struct request *rq)
  3103. {
  3104. if (blk_fs_request(rq))
  3105. return rq->hard_nr_sectors << 9;
  3106. return rq->data_len;
  3107. }
  3108. /**
  3109. * end_queued_request - end all I/O on a queued request
  3110. * @rq: the request being processed
  3111. * @uptodate: error value or 0/1 uptodate flag
  3112. *
  3113. * Description:
  3114. * Ends all I/O on a request, and removes it from the block layer queues.
  3115. * Not suitable for normal IO completion, unless the driver still has
  3116. * the request attached to the block layer.
  3117. *
  3118. **/
  3119. void end_queued_request(struct request *rq, int uptodate)
  3120. {
  3121. __end_request(rq, uptodate, rq_byte_size(rq), 1);
  3122. }
  3123. EXPORT_SYMBOL(end_queued_request);
  3124. /**
  3125. * end_dequeued_request - end all I/O on a dequeued request
  3126. * @rq: the request being processed
  3127. * @uptodate: error value or 0/1 uptodate flag
  3128. *
  3129. * Description:
  3130. * Ends all I/O on a request. The request must already have been
  3131. * dequeued using blkdev_dequeue_request(), as is normally the case
  3132. * for most drivers.
  3133. *
  3134. **/
  3135. void end_dequeued_request(struct request *rq, int uptodate)
  3136. {
  3137. __end_request(rq, uptodate, rq_byte_size(rq), 0);
  3138. }
  3139. EXPORT_SYMBOL(end_dequeued_request);
  3140. /**
  3141. * end_request - end I/O on the current segment of the request
  3142. * @rq: the request being processed
  3143. * @uptodate: error value or 0/1 uptodate flag
  3144. *
  3145. * Description:
  3146. * Ends I/O on the current segment of a request. If that is the only
  3147. * remaining segment, the request is also completed and freed.
  3148. *
  3149. * This is a remnant of how older block drivers handled IO completions.
  3150. * Modern drivers typically end IO on the full request in one go, unless
  3151. * they have a residual value to account for. For that case this function
  3152. * isn't really useful, unless the residual just happens to be the
  3153. * full current segment. In other words, don't use this function in new
  3154. * code. Either use end_request_completely(), or the
  3155. * end_that_request_chunk() (along with end_that_request_last()) for
  3156. * partial completions.
  3157. *
  3158. **/
  3159. void end_request(struct request *req, int uptodate)
  3160. {
  3161. __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
  3162. }
  3163. EXPORT_SYMBOL(end_request);
  3164. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  3165. struct bio *bio)
  3166. {
  3167. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  3168. rq->cmd_flags |= (bio->bi_rw & 3);
  3169. rq->nr_phys_segments = bio_phys_segments(q, bio);
  3170. rq->nr_hw_segments = bio_hw_segments(q, bio);
  3171. rq->current_nr_sectors = bio_cur_sectors(bio);
  3172. rq->hard_cur_sectors = rq->current_nr_sectors;
  3173. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  3174. rq->buffer = bio_data(bio);
  3175. rq->data_len = bio->bi_size;
  3176. rq->bio = rq->biotail = bio;
  3177. if (bio->bi_bdev)
  3178. rq->rq_disk = bio->bi_bdev->bd_disk;
  3179. }
  3180. int kblockd_schedule_work(struct work_struct *work)
  3181. {
  3182. return queue_work(kblockd_workqueue, work);
  3183. }
  3184. EXPORT_SYMBOL(kblockd_schedule_work);
  3185. void kblockd_flush_work(struct work_struct *work)
  3186. {
  3187. cancel_work_sync(work);
  3188. }
  3189. EXPORT_SYMBOL(kblockd_flush_work);
  3190. int __init blk_dev_init(void)
  3191. {
  3192. int i;
  3193. kblockd_workqueue = create_workqueue("kblockd");
  3194. if (!kblockd_workqueue)
  3195. panic("Failed to create kblockd\n");
  3196. request_cachep = kmem_cache_create("blkdev_requests",
  3197. sizeof(struct request), 0, SLAB_PANIC, NULL);
  3198. requestq_cachep = kmem_cache_create("blkdev_queue",
  3199. sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
  3200. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3201. sizeof(struct io_context), 0, SLAB_PANIC, NULL);
  3202. for_each_possible_cpu(i)
  3203. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3204. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3205. register_hotcpu_notifier(&blk_cpu_notifier);
  3206. blk_max_low_pfn = max_low_pfn - 1;
  3207. blk_max_pfn = max_pfn - 1;
  3208. return 0;
  3209. }
  3210. /*
  3211. * IO Context helper functions
  3212. */
  3213. void put_io_context(struct io_context *ioc)
  3214. {
  3215. if (ioc == NULL)
  3216. return;
  3217. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3218. if (atomic_dec_and_test(&ioc->refcount)) {
  3219. struct cfq_io_context *cic;
  3220. rcu_read_lock();
  3221. if (ioc->aic && ioc->aic->dtor)
  3222. ioc->aic->dtor(ioc->aic);
  3223. if (ioc->cic_root.rb_node != NULL) {
  3224. struct rb_node *n = rb_first(&ioc->cic_root);
  3225. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3226. cic->dtor(ioc);
  3227. }
  3228. rcu_read_unlock();
  3229. kmem_cache_free(iocontext_cachep, ioc);
  3230. }
  3231. }
  3232. EXPORT_SYMBOL(put_io_context);
  3233. /* Called by the exitting task */
  3234. void exit_io_context(void)
  3235. {
  3236. struct io_context *ioc;
  3237. struct cfq_io_context *cic;
  3238. task_lock(current);
  3239. ioc = current->io_context;
  3240. current->io_context = NULL;
  3241. task_unlock(current);
  3242. ioc->task = NULL;
  3243. if (ioc->aic && ioc->aic->exit)
  3244. ioc->aic->exit(ioc->aic);
  3245. if (ioc->cic_root.rb_node != NULL) {
  3246. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3247. cic->exit(ioc);
  3248. }
  3249. put_io_context(ioc);
  3250. }
  3251. /*
  3252. * If the current task has no IO context then create one and initialise it.
  3253. * Otherwise, return its existing IO context.
  3254. *
  3255. * This returned IO context doesn't have a specifically elevated refcount,
  3256. * but since the current task itself holds a reference, the context can be
  3257. * used in general code, so long as it stays within `current` context.
  3258. */
  3259. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3260. {
  3261. struct task_struct *tsk = current;
  3262. struct io_context *ret;
  3263. ret = tsk->io_context;
  3264. if (likely(ret))
  3265. return ret;
  3266. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3267. if (ret) {
  3268. atomic_set(&ret->refcount, 1);
  3269. ret->task = current;
  3270. ret->ioprio_changed = 0;
  3271. ret->last_waited = jiffies; /* doesn't matter... */
  3272. ret->nr_batch_requests = 0; /* because this is 0 */
  3273. ret->aic = NULL;
  3274. ret->cic_root.rb_node = NULL;
  3275. ret->ioc_data = NULL;
  3276. /* make sure set_task_ioprio() sees the settings above */
  3277. smp_wmb();
  3278. tsk->io_context = ret;
  3279. }
  3280. return ret;
  3281. }
  3282. /*
  3283. * If the current task has no IO context then create one and initialise it.
  3284. * If it does have a context, take a ref on it.
  3285. *
  3286. * This is always called in the context of the task which submitted the I/O.
  3287. */
  3288. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3289. {
  3290. struct io_context *ret;
  3291. ret = current_io_context(gfp_flags, node);
  3292. if (likely(ret))
  3293. atomic_inc(&ret->refcount);
  3294. return ret;
  3295. }
  3296. EXPORT_SYMBOL(get_io_context);
  3297. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3298. {
  3299. struct io_context *src = *psrc;
  3300. struct io_context *dst = *pdst;
  3301. if (src) {
  3302. BUG_ON(atomic_read(&src->refcount) == 0);
  3303. atomic_inc(&src->refcount);
  3304. put_io_context(dst);
  3305. *pdst = src;
  3306. }
  3307. }
  3308. EXPORT_SYMBOL(copy_io_context);
  3309. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3310. {
  3311. struct io_context *temp;
  3312. temp = *ioc1;
  3313. *ioc1 = *ioc2;
  3314. *ioc2 = temp;
  3315. }
  3316. EXPORT_SYMBOL(swap_io_context);
  3317. /*
  3318. * sysfs parts below
  3319. */
  3320. struct queue_sysfs_entry {
  3321. struct attribute attr;
  3322. ssize_t (*show)(struct request_queue *, char *);
  3323. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3324. };
  3325. static ssize_t
  3326. queue_var_show(unsigned int var, char *page)
  3327. {
  3328. return sprintf(page, "%d\n", var);
  3329. }
  3330. static ssize_t
  3331. queue_var_store(unsigned long *var, const char *page, size_t count)
  3332. {
  3333. char *p = (char *) page;
  3334. *var = simple_strtoul(p, &p, 10);
  3335. return count;
  3336. }
  3337. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3338. {
  3339. return queue_var_show(q->nr_requests, (page));
  3340. }
  3341. static ssize_t
  3342. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3343. {
  3344. struct request_list *rl = &q->rq;
  3345. unsigned long nr;
  3346. int ret = queue_var_store(&nr, page, count);
  3347. if (nr < BLKDEV_MIN_RQ)
  3348. nr = BLKDEV_MIN_RQ;
  3349. spin_lock_irq(q->queue_lock);
  3350. q->nr_requests = nr;
  3351. blk_queue_congestion_threshold(q);
  3352. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3353. blk_set_queue_congested(q, READ);
  3354. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3355. blk_clear_queue_congested(q, READ);
  3356. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3357. blk_set_queue_congested(q, WRITE);
  3358. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3359. blk_clear_queue_congested(q, WRITE);
  3360. if (rl->count[READ] >= q->nr_requests) {
  3361. blk_set_queue_full(q, READ);
  3362. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3363. blk_clear_queue_full(q, READ);
  3364. wake_up(&rl->wait[READ]);
  3365. }
  3366. if (rl->count[WRITE] >= q->nr_requests) {
  3367. blk_set_queue_full(q, WRITE);
  3368. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3369. blk_clear_queue_full(q, WRITE);
  3370. wake_up(&rl->wait[WRITE]);
  3371. }
  3372. spin_unlock_irq(q->queue_lock);
  3373. return ret;
  3374. }
  3375. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3376. {
  3377. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3378. return queue_var_show(ra_kb, (page));
  3379. }
  3380. static ssize_t
  3381. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3382. {
  3383. unsigned long ra_kb;
  3384. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3385. spin_lock_irq(q->queue_lock);
  3386. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3387. spin_unlock_irq(q->queue_lock);
  3388. return ret;
  3389. }
  3390. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3391. {
  3392. int max_sectors_kb = q->max_sectors >> 1;
  3393. return queue_var_show(max_sectors_kb, (page));
  3394. }
  3395. static ssize_t
  3396. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3397. {
  3398. unsigned long max_sectors_kb,
  3399. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3400. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3401. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3402. int ra_kb;
  3403. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3404. return -EINVAL;
  3405. /*
  3406. * Take the queue lock to update the readahead and max_sectors
  3407. * values synchronously:
  3408. */
  3409. spin_lock_irq(q->queue_lock);
  3410. /*
  3411. * Trim readahead window as well, if necessary:
  3412. */
  3413. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3414. if (ra_kb > max_sectors_kb)
  3415. q->backing_dev_info.ra_pages =
  3416. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3417. q->max_sectors = max_sectors_kb << 1;
  3418. spin_unlock_irq(q->queue_lock);
  3419. return ret;
  3420. }
  3421. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3422. {
  3423. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3424. return queue_var_show(max_hw_sectors_kb, (page));
  3425. }
  3426. static struct queue_sysfs_entry queue_requests_entry = {
  3427. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3428. .show = queue_requests_show,
  3429. .store = queue_requests_store,
  3430. };
  3431. static struct queue_sysfs_entry queue_ra_entry = {
  3432. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3433. .show = queue_ra_show,
  3434. .store = queue_ra_store,
  3435. };
  3436. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3437. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3438. .show = queue_max_sectors_show,
  3439. .store = queue_max_sectors_store,
  3440. };
  3441. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3442. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3443. .show = queue_max_hw_sectors_show,
  3444. };
  3445. static struct queue_sysfs_entry queue_iosched_entry = {
  3446. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3447. .show = elv_iosched_show,
  3448. .store = elv_iosched_store,
  3449. };
  3450. static struct attribute *default_attrs[] = {
  3451. &queue_requests_entry.attr,
  3452. &queue_ra_entry.attr,
  3453. &queue_max_hw_sectors_entry.attr,
  3454. &queue_max_sectors_entry.attr,
  3455. &queue_iosched_entry.attr,
  3456. NULL,
  3457. };
  3458. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3459. static ssize_t
  3460. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3461. {
  3462. struct queue_sysfs_entry *entry = to_queue(attr);
  3463. struct request_queue *q =
  3464. container_of(kobj, struct request_queue, kobj);
  3465. ssize_t res;
  3466. if (!entry->show)
  3467. return -EIO;
  3468. mutex_lock(&q->sysfs_lock);
  3469. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3470. mutex_unlock(&q->sysfs_lock);
  3471. return -ENOENT;
  3472. }
  3473. res = entry->show(q, page);
  3474. mutex_unlock(&q->sysfs_lock);
  3475. return res;
  3476. }
  3477. static ssize_t
  3478. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3479. const char *page, size_t length)
  3480. {
  3481. struct queue_sysfs_entry *entry = to_queue(attr);
  3482. struct request_queue *q = container_of(kobj, struct request_queue, kobj);
  3483. ssize_t res;
  3484. if (!entry->store)
  3485. return -EIO;
  3486. mutex_lock(&q->sysfs_lock);
  3487. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3488. mutex_unlock(&q->sysfs_lock);
  3489. return -ENOENT;
  3490. }
  3491. res = entry->store(q, page, length);
  3492. mutex_unlock(&q->sysfs_lock);
  3493. return res;
  3494. }
  3495. static struct sysfs_ops queue_sysfs_ops = {
  3496. .show = queue_attr_show,
  3497. .store = queue_attr_store,
  3498. };
  3499. static struct kobj_type queue_ktype = {
  3500. .sysfs_ops = &queue_sysfs_ops,
  3501. .default_attrs = default_attrs,
  3502. .release = blk_release_queue,
  3503. };
  3504. int blk_register_queue(struct gendisk *disk)
  3505. {
  3506. int ret;
  3507. struct request_queue *q = disk->queue;
  3508. if (!q || !q->request_fn)
  3509. return -ENXIO;
  3510. q->kobj.parent = kobject_get(&disk->kobj);
  3511. ret = kobject_add(&q->kobj);
  3512. if (ret < 0)
  3513. return ret;
  3514. kobject_uevent(&q->kobj, KOBJ_ADD);
  3515. ret = elv_register_queue(q);
  3516. if (ret) {
  3517. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3518. kobject_del(&q->kobj);
  3519. return ret;
  3520. }
  3521. return 0;
  3522. }
  3523. void blk_unregister_queue(struct gendisk *disk)
  3524. {
  3525. struct request_queue *q = disk->queue;
  3526. if (q && q->request_fn) {
  3527. elv_unregister_queue(q);
  3528. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3529. kobject_del(&q->kobj);
  3530. kobject_put(&disk->kobj);
  3531. }
  3532. }